Publications
1 - Journal Articles
In Preparation
Lepe, F., Querales, J., Vellojin, J. and Venegas, P.
A posteriori analysis for the three dimensional acoustic problem. Submitted
Querales, J. and Venegas, P.
Numerical approximation of an axisymmetric elastoacoustic eigenvalue problem.
Gómez, D., Lopez-Rodríguez, B., Salgado, P. and Venegas, P.
Mathematical and numerical analysis of an axisymmetric thermoelectrical problem.
Refereed Journal Articles
1.- Albella, J., Rodríguez, R. and Venegas, P..
Numerical approximation of a potentials formulation for the elasticity vibration problem. Computers and Mathematics with Applications vol. 137, pp. 61-72 (2023) [https://doi.org/10.1016/j.camwa.2023.02.005]
2.- Venegas, P., Gómez, D., Arrinda, M., Oyarbide, M., Macicior, H. and Bermúdez, A.
Kalman filter and classical Preisach hysteresis model applied to the state of charge battery estimation. Computers and Mathematics with Applications vol. 118, pp. 74-84 (2022). [https://doi.org/10.1016/j.camwa.2022.05.009]
3.-Bermúdez, A., Lopez-Rodríguez, B., Pena, F.J., Rodríguez, R., Salgado, P. and Venegas, P.
Numerical solution of an axisymmetric eddy current model with current and voltage excitations Journal of Scientific Computing vol. 91, pp. 1-26 (2022) [https://doi.org/10.1007/s10915-022-01780-4]
4.- Querales, J. and Venegas, P.
Mixed approximation of the axisymmetric acoustic eigenvalue problem. Computers and Mathematics with Applications vol. 108, pp. 1-11 (2022). [https://doi.org/10.1016/j.camwa.2021.12.013].
5.- Querales, J., Rodríguez, R. and Venegas, P.
Numerical approximation of the displacement formulation of the axisymmetric the acoustic vibration problem. SIAM Journal on Scientific Computing , vol. 43, pp. A1583-A1606 (2021). Preprint .
6.- Bermúdez, A., Gómez, D. and Venegas, P.
Mathematical analysis and numerical solution of models with dynamic Preisach hysteresis. Journal of Computational and Applied Mathematics , vol. 367, pp. 112452-18 (2020). Preprint .
7.- Araya, R., Rodríguez, R. and Venegas, P.
Numerical analysis for a time-domain elastoacoustic problem. IMA Journal of Numerical Analysis, vol. 40, pp. 1122-1153 (2020). Preprint .
8.- Camaño, J., Rodríguez, R. and Venegas, P.
Convergence of a lowest-order finite element method for the transmission eigenvalue problem Calcolo, vol. 55, num. 3, Art. 33, 14 (2018).Preprint .
9.- Antil, H., Nochetto, R. H. and Venegas, P.
Controlling the Kelvin Force: Basic Strategies and Applications to Magnetic Drug Targeting. Optimization and Engineering, vol. 19, pp. 559-589 (2018).
10.- Alonso Rodríguez, A., Camaño, J., Rodríguez, R., Valli, A. and Venegas, P.
Finite element approximation of the spectrum of the curl operator in a multiply-connected domain. Foundations of Computational Mathematics, vol. 18, pp. 1493-1533 (2018).
11.- Antil, H., Nochetto, R. H. and Venegas, P.
Optimizing the Kelvin Force in a Moving Target Subdomain. Mathematical Models and Methods in Applied Sciences vol. 28, pp. 95-130, (2018).
12.- Bermúdez, A., Gómez, D., Piñeiro, M. , Salgado, P. and Venegas, P.
Numerical Simulation of Magnetization and Demagnetization Processes. IEEE Transactions on Magnetics, vol 53, pp.1-6, (2017).
13.- Bermúdez, A., Gómez, D., Dupré, L. and Venegas, P.
Electromagnetic computations with Preisach hysteresis model. Finite Elements in Analysis and Design vol. 116, pp. 65–74, (2017).
14.- Lara, E., Rodríguez, R. and Venegas, P.
Spectral approximation of the curl operator in multiply connected domains. Discrete and Continuous Dynamical Systems, Series S vol. 9, pp. 235-253, (2016).
15.- Bermúdez, A., Gómez, D., Rodríguez, R. and Venegas, P.
Numerical analysis of a transient non-linear axisymmetric eddy current model. Computers and Mathematics with Applications, vol. 70, pp. 1984-2005, (2015).
16.- Camaño, J., Gatica, G., Oyarzúa, R., Ruiz-Baier, R. and Venegas, P.
New fully-mixed finite element methods for the Stokes-Darcy coupling. Computer Methods in Applied Mechanics and Engineering, vol. 295, pp. 362-395, (2015).
17.- Rodríguez, R. and Venegas, P.
Numerical approximation of the spectrum of the curl operator Mathematics of Computation, vol. 83, 286, pp. 553-577, (2014).
18.- Araya, R. and Venegas, P.
An a posteriori error estimator for a unsteady singularly perturbed problem. Computers and Mathematics with Applications, vol. 66, 12, pp. 2456-2476, (2013).
19.- Bermúdez, A., Gómez, D., Rodríguez, R., Salgado, P. and Venegas, P.
Numerical solution of a transient nonlinear axisymmetric eddy current model with non-local boundary conditions, Mathematical Models and Methods in Applied Sciences, vol. 23, 13, pp. 2495-2521, (2013).
2 - Other publications
20.- Bermúdez, A., Gómez, D. and Venegas, P.
Preisach hysteresis model. Some applications in electrical engineering. Magnetic Materials - Recent Advances and Applications (2021). [DOI: 10.5772/intechopen.99590]
21.- Bermúdez, A., Gómez, D. and Venegas, P.
Mathematical analysis for a class of partial differential equations with dynamic Preisach model model. Progress in Industrial Mathematics at ECMI 2018, pp. 351-357 (2019). [https://doi.org/10.1007/978-3-030-27550-1_44]
22.- Bermúdez, A., Gómez, D., Rodríguez, R. and Venegas, P.
Mathematical analysis and numerical solution of axisymmetric eddy-current problems with Preisach hysteresis model. Proceedings of the Spring School on Rate-Independent Evolutions and Hysteresis Modelling. Rendiconti del Seminario Matematico. Università e Politecnico Torino, vol. 72, pp. 73-117, (2014). [PDF]
Alonso Rodríguez, A., Camaño, J., Rodríguez, R., Valli, A. and Venegas, P.
Correction: Finite element approximation of the spectrum of the curl operator in a multiply-connected domain. Foundations of Computational Mathematics, vol. 19, pp. 243-244, (2019). [https://doi.org/10.1007/s10208-018-9373-4]
3 - Thesis
Advisors: Bermúdez, A., Gómez, D. and Rodríguez, R.
Contribution to the mathematical and numerical analysis of some electromagnetic problems. Doctoral Programe in Applied Sciences with major in Mathematical Engineering, Universidad de Concepción, Chile (2013).
Advisor: Araya, R.
An a posteriori error estimator for a non-stationary advection-diffusion-reaction problem. Mathematical Engineering, Universidad de Concepción, Chile (2008).