Publications
1 - Journal Articles
In Preparation
Gómez, D., Lopez-Rodríguez, B., Salgado, P. and Venegas, P.
Numerical approximation of an axisymmetric transient thermo-electromagnetic problem. In preparation
Lepe, F., Querales, J., Vellojin, J. and Venegas, P.
A posteriori analysis for the three dimensional acoustic problem. Submitted
Fuica, F., Lepe, F. and Venegas, P.
Error estimates for a bilinear optimal control problem of Maxwell's equations. Submitted
Refereed Journal Articles
1.-Gómez, D., Lopez-Rodríguez, B., Salgado, P. and Venegas, P.
A coupled steady thermo-electromagnetic problem in axisymmetric geometries. Mathematical and numerical analysis. IMA Journal of Numerical Analysis. Accepted
2.-Lopez-Rodríguez, B., Querales, J. and Venegas, P.
Finite element approximation for an axisymmetric time-dependent acoustic problem. Journal of Computational and Applied Mathematics vol. 448, pp.115940 (2024) [https://doi.org/10.1016/j.cam.2024.115940]
3.- Querales, J. and Venegas, P.
Numerical approximation of an axisymmetric elastoacoustic eigenvalue problem. Communications in Computational Physics vol. 34, pp. 1420-1438 (2023) [10.4208/cicp.OA-2023-0179]
4.- Albella, J., Rodríguez, R. and Venegas, P.
Numerical approximation of a potentials formulation for the elasticity vibration problem. Computers and Mathematics with Applications vol. 137, pp. 61-72 (2023) [https://doi.org/10.1016/j.camwa.2023.02.005]
5.- Venegas, P., Gómez, D., Arrinda, M., Oyarbide, M., Macicior, H. and Bermúdez, A.
Kalman filter and classical Preisach hysteresis model applied to the state of charge battery estimation. Computers and Mathematics with Applications vol. 118, pp. 74-84 (2022). [https://doi.org/10.1016/j.camwa.2022.05.009]
6.-Bermúdez, A., Lopez-Rodríguez, B., Pena, F.J., Rodríguez, R., Salgado, P. and Venegas, P.
Numerical solution of an axisymmetric eddy current model Journal of Scientific Computing vol. 91, pp. 1-26 (2022) [https://doi.org/10.1007/s10915-022-01780-4]
7.- Querales, J. and Venegas, P.
Mixed approximation of the axisymmetric acoustic eigenvalue problem. Computers and Mathematics with Applications vol. 108, pp. 1-11 (2022). [https://doi.org/10.1016/j.camwa.2021.12.013].
8.- Querales, J., Rodríguez, R. and Venegas, P.
Numerical approximation of the displacement formulation of the axisymmetric the acoustic vibration problem. SIAM Journal on Scientific Computing , vol. 43, pp. A1583-A1606 (2021). Preprint .
9.- Bermúdez, A., Gómez, D. and Venegas, P.
Mathematical analysis and numerical solution of models with dynamic Preisach hysteresis. Journal of Computational and Applied Mathematics , vol. 367, pp. 112452-18 (2020). Preprint .
10.- Araya, R., Rodríguez, R. and Venegas, P.
Numerical analysis for a time-domain elastoacoustic problem. IMA Journal of Numerical Analysis, vol. 40, pp. 1122-1153 (2020). Preprint .
11.- Camaño, J., Rodríguez, R. and Venegas, P.
Convergence of a lowest-order finite element method for the transmission eigenvalue problem Calcolo, vol. 55, num. 3, Art. 33, 14 (2018).Preprint .
12.- Antil, H., Nochetto, R. H. and Venegas, P.
Controlling the Kelvin Force: Basic Strategies and Applications to Magnetic Drug Targeting. Optimization and Engineering, vol. 19, pp. 559-589 (2018).
13.- Alonso Rodríguez, A., Camaño, J., Rodríguez, R., Valli, A. and Venegas, P.
Finite element approximation of the spectrum of the curl operator in a multiply-connected domain. Foundations of Computational Mathematics, vol. 18, pp. 1493-1533 (2018).
14.- Antil, H., Nochetto, R. H. and Venegas, P.
Optimizing the Kelvin Force in a Moving Target Subdomain. Mathematical Models and Methods in Applied Sciences vol. 28, pp. 95-130, (2018).
15.- Bermúdez, A., Gómez, D., Piñeiro, M. , Salgado, P. and Venegas, P.
Numerical Simulation of Magnetization and Demagnetization Processes. IEEE Transactions on Magnetics, vol 53, pp.1-6, (2017).
16.- Bermúdez, A., Gómez, D., Dupré, L. and Venegas, P.
Electromagnetic computations with Preisach hysteresis model. Finite Elements in Analysis and Design vol. 116, pp. 65–74, (2017).
17.- Lara, E., Rodríguez, R. and Venegas, P.
Spectral approximation of the curl operator in multiply connected domains. Discrete and Continuous Dynamical Systems, Series S vol. 9, pp. 235-253, (2016).
18.- Bermúdez, A., Gómez, D., Rodríguez, R. and Venegas, P.
Numerical analysis of a transient non-linear axisymmetric eddy current model. Computers and Mathematics with Applications, vol. 70, pp. 1984-2005, (2015).
19.- Camaño, J., Gatica, G., Oyarzúa, R., Ruiz-Baier, R. and Venegas, P.
New fully-mixed finite element methods for the Stokes-Darcy coupling. Computer Methods in Applied Mechanics and Engineering, vol. 295, pp. 362-395, (2015).
20.- Rodríguez, R. and Venegas, P.
Numerical approximation of the spectrum of the curl operator Mathematics of Computation, vol. 83, 286, pp. 553-577, (2014).
21.- Araya, R. and Venegas, P.
An a posteriori error estimator for a unsteady singularly perturbed problem. Computers and Mathematics with Applications, vol. 66, 12, pp. 2456-2476, (2013).
22.- Bermúdez, A., Gómez, D., Rodríguez, R., Salgado, P. and Venegas, P.
Numerical solution of a transient nonlinear axisymmetric eddy current model with non-local boundary conditions, Mathematical Models and Methods in Applied Sciences, vol. 23, 13, pp. 2495-2521, (2013).
2 - Other publications
23.- Bermúdez, A., Gómez, D. and Venegas, P.
Preisach hysteresis model. Some applications in electrical engineering. Magnetic Materials - Recent Advances and Applications (2021). [DOI: 10.5772/intechopen.99590]
24.- Bermúdez, A., Gómez, D. and Venegas, P.
Mathematical analysis for a class of partial differential equations with dynamic Preisach model model. Progress in Industrial Mathematics at ECMI 2018, pp. 351-357 (2019). [https://doi.org/10.1007/978-3-030-27550-1_44]
25.- Bermúdez, A., Gómez, D., Rodríguez, R. and Venegas, P.
Mathematical analysis and numerical solution of axisymmetric eddy-current problems with Preisach hysteresis model. Proceedings of the Spring School on Rate-Independent Evolutions and Hysteresis Modelling. Rendiconti del Seminario Matematico. Università e Politecnico Torino, vol. 72, pp. 73-117, (2014). [PDF]
Alonso Rodríguez, A., Camaño, J., Rodríguez, R., Valli, A. and Venegas, P.
Correction: Finite element approximation of the spectrum of the curl operator in a multiply-connected domain. Foundations of Computational Mathematics, vol. 19, pp. 243-244, (2019). [https://doi.org/10.1007/s10208-018-9373-4]
3 - Thesis
Advisors: Bermúdez, A., Gómez, D. and Rodríguez, R.
Contribution to the mathematical and numerical analysis of some electromagnetic problems. Doctoral Programe in Applied Sciences with major in Mathematical Engineering, Universidad de Concepción, Chile (2013).
Advisor: Araya, R.
An a posteriori error estimator for a non-stationary advection-diffusion-reaction problem. Mathematical Engineering, Universidad de Concepción, Chile (2008).