Spring 2015 - Math 401 Section 0501 Applications of Linear Algebra

Matlab Project 2 - Due Date: May 6, 2015

You should complete each problem in a separate m-file and bring a copy of each problem to class. You can also use the new MATLAB ${ }^{\circledR}$ command publish.

Problem 1. (40 pts) Data Fitting. The following data represents the population (in millions) of the USA between 1900 and 1990:

t	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990
y	75.995	91.972	105.711	123.203	131.669	150.697	179.323	203.212	226.505	249.633

Proceed as follows to find the least squares fit $p(t)=\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}+\alpha_{3} t^{3}$ to the given table using MATLAB ${ }^{\circledR}$.
(a) Determine the rectangular matrix A and right-hand side \mathbf{b} of the least squares problem.
(b) Form and solve the Normal Equations. Use the commands A' to transpose A and \backslash to solve the linear system. Plot the table and $p(x)$ using plot($\mathrm{t}, \mathrm{y},{ }^{\prime} .^{\prime}, \mathrm{x}, \mathrm{p}(\mathrm{x})$), where $\mathrm{x}=[1900: 0.01: 1990]$.
(c) Let $B \in \mathbb{R}^{m \times n}$ with $n \leq m$, prove that $B^{T} B$ is symmetric and positive definite if $\operatorname{rank}(B)=n$ (B is full rank). Next, use the command $\operatorname{rank}(\mathrm{A})$ to find the rank of A defined in (a). Compute the Cholesky decomposition of $A^{T} A$, using the command $\mathrm{R}=\operatorname{chol}\left(\mathrm{A}{ }^{\prime} * \mathrm{~A}\right)$ (see Olver-Shakiban p .168), and then solve the system by backward and forward substitution (use the command \backslash).
(d) Repeat parts (a) and (b) with $q(t)=\alpha_{0} e^{\alpha_{1} t}$. Compare $p(t)$ and $q(t)$. Which one is the best approximation in the the Euclidean norm? Type help norm (Hint: see Olver-Shakiban Example 4.11, p.199).

Problem 2. (30 pts) Data Fitting and Orthogonal Polynomials. This problem repeats $\mathrm{Pb} \# 1$ but replacing the canonical basis $\left\{1, t, t^{2}, t^{3}\right\}$ of \mathbb{P}^{3} by orthogonal polynomials.
(a) Obtain orthogonal polynomials $\left\{p_{i}(t)\right\}_{i=0}^{3}$ with respect to the scalar product $\langle p, q\rangle=\int_{a}^{b} p(t) q(t) d t$ where $a=1900$ and $b=1990$. First, determine by hand the orthogonal basis of \mathbb{P}^{3} on the interval $[-1,1]$ by using of the Gram-Schmidt procedure. Then transform the derived basis to the interval [1900,1990] by the simple change of variables $x=(t-1945) / 45$. Explain why the resulting polynomials are still orthogonal.
(b) Repeat items (a) and (b) of Problem 1 using the orthogonal basis obtained above. Use the command cond ($\mathrm{A}^{\prime} * \mathrm{~A}$) to find the condition number of $A^{T} A$ and compare with that in $\mathrm{Pb} \# 1(\mathrm{~b})$. Draw conclusions.

Problem 3. (30 pts) The MATLAB ${ }^{\circledR}$ command polyfit returns the coefficients c_{i} for a polynomial of degree n

$$
p(x)=c_{1} x^{n}+\cdots c_{n} x+c_{n+1}
$$

that is a best fit (in a least-squares sense) for the data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$. In particular, when $n=m-1$, $p(x)$ is the interpolating polynomial of degree $\leq n$ for the given $n+1$ nodes.

1. Consider the data $\left(x_{i}, \sin \left(x_{i}\right)\right)_{i=0}^{10}$ with $x_{i}=0,1, \ldots, 10$.
(a) In one graph, plot the data and the best polynomial approximation of degree 5 and 10 in the least-squares sense. To do this, use polyfit to find the best approximation and polyval to evaluate the polynomial. Type help polyfit and help polyval to learn how these commands work.
(b) Verify that the polynomial of degree 10 interpolates the data (Hint: use the norm command).
2. Plot, in one graph:
(a) the function $f(x)=\frac{1}{1+x^{2}}$ for $-5 \leq x \leq 5$;
(b) the points $(x, f(x))$ for $x=-5,-4, \ldots, 4,5$;
(c) and the polynomials of degree 6 and 10 that fit the points in the least squares sense (use polyfit and polyval). Explain the cause of the observed oscillations.
