Spring 2015 - Math 401 Section 0501 Applications of Linear Algebra

Matlab Project 2 - Due Date: May 6, 2015

You should complete each problem in a separate m-file and bring a copy of each problem to class. You can also use the new MATLAB[©] command publish.

Problem 1. (40 pts) *Data Fitting*. The following data represents the population (in millions) of the USA between 1900 and 1990:

t	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990
y	75.995	91.972	105.711	123.203	131.669	150.697	179.323	203.212	226.505	249.633

Proceed as follows to find the least squares fit $p(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3$ to the given table using MATLAB[©].

- (a) Determine the rectangular matrix A and right-hand side **b** of the least squares problem.
- (b) Form and solve the Normal Equations. Use the commands A' to transpose A and $\$ to solve the linear system. Plot the table and p(x) using plot(t,y,'.',x,p(x)), where x=[1900:0.01:1990].
- (c) Let $B \in \mathbb{R}^{m \times n}$ with $n \leq m$, prove that $B^T B$ is symmetric and positive definite if rank(B) = n (B is full rank). Next, use the command rank(A) to find the rank of A defined in (a). Compute the Cholesky decomposition of $A^T A$, using the command $\mathbf{R} = \text{chol}(A'*A)$ (see Olver-Shakiban p.168), and then solve the system by backward and forward substitution (use the command \backslash).
- (d) Repeat parts (a) and (b) with $q(t) = \alpha_0 e^{\alpha_1 t}$. Compare p(t) and q(t). Which one is the best approximation in the the Euclidean norm? Type help norm (Hint: see Olver-Shakiban Example 4.11, p.199).

Problem 2. (30 pts) Data Fitting and Orthogonal Polynomials. This problem repeats Pb#1 but replacing the canonical basis $\{1, t, t^2, t^3\}$ of \mathbb{P}^3 by orthogonal polynomials.

- (a) Obtain orthogonal polynomials $\{p_i(t)\}_{i=0}^3$ with respect to the scalar product $\langle p,q \rangle = \int_a^b p(t)q(t) dt$ where a = 1900 and b = 1990. First, determine by hand the orthogonal basis of \mathbb{P}^3 on the interval [-1,1] by using of the Gram-Schmidt procedure. Then transform the derived basis to the interval [1900,1990] by the simple change of variables x = (t 1945)/45. Explain why the resulting polynomials are still orthogonal.
- (b) Repeat items (a) and (b) of Problem 1 using the orthogonal basis obtained above. Use the command cond(A'*A) to find the condition number of $A^T A$ and compare with that in Pb#1 (b). Draw conclusions.

Problem 3. (30 pts) The MATLAB[©] command polyfit returns the coefficients c_i for a polynomial of degree n

$$p(x) = c_1 x^n + \dots + c_n x + c_{n+1}$$

that is a best fit (in a least-squares sense) for the data $(x_1, y_1), \ldots, (x_m, y_m)$. In particular, when n = m - 1, p(x) is the interpolating polynomial of degree $\leq n$ for the given n + 1 nodes.

- 1. Consider the data $(x_i, \sin(x_i))_{i=0}^{10}$ with $x_i = 0, 1, ..., 10$.
 - (a) In one graph, plot the data and the best polynomial approximation of degree 5 and 10 in the least-squares sense. To do this, use polyfit to find the best approximation and polyval to evaluate the polynomial. Type help polyfit and help polyval to learn how these commands work.
 - (b) Verify that the polynomial of degree 10 interpolates the data (Hint: use the norm command).
- 2. Plot, in one graph:
 - (a) the function $f(x) = \frac{1}{1+x^2}$ for $-5 \le x \le 5$;
 - (b) the points (x, f(x)) for $x = -5, -4, \dots, 4, 5$;
 - (c) and the polynomials of degree 6 and 10 that fit the points in the least squares sense (use polyfit and polyval). Explain the cause of the observed oscillations.