Math 401: Sec 0501: Midterm \# 2 May 1, 2015

Complete problems $1-5$. For full credit you MUST write down clearly all steps and circle the final answer(s). Solve each problem in a separate sheet. If you use a well known theorem, make clear which theorem you are using and justify its use.

Problem 1 ($\mathbf{2 5}$ points): Consider $\mathbb{V}=\mathbb{P}_{2}$, i.e., the space of polynomials of degree ≤ 2 with the inner product

$$
\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)
$$

for all $p, q \in \mathbb{P}_{2}$.
(1) Prove that the bilinear, symmetric function $\langle\cdot, \cdot\rangle$ defines an inner product on \mathbb{V}.
(2) Prove that $p(x)=1$ and $q(x)=x$ are orthogonal with respect to $\langle\cdot, \cdot\rangle$.
(3) Find b and c such that

$$
r(x)=x^{2}+b x+c,
$$

is orthogonal to the set $\{p(x), q(x)\}$.
Problem 2 (10 points): Given the set of experimental data $(1,10)$, $(2,15),(3,17),(4,23)$, write the least squares problem $A \mathrm{x} \approx \mathrm{b}$ for fitting the data with the following function

$$
q(x)=\frac{1}{a(3+x)+b \sin (x-\pi)},
$$

with unknowns coefficients a and b. Indicate how to find a and b, but do not solve!

Problem 3 (15 points):

a) Formulate the linear algebra problem of finding the closest polynomial $p \in \operatorname{span}\left\{t, t^{2}\right\}$ to the function $f(t)=e^{t} \cos (t)$ with respect to the L^{2} inner product (do not solve!).
b) Is the coefficient matrix of a) symmetric positive definite?.

Problem 4 (20 points):

(1) Let $A, B \in \mathbb{R}^{n \times n}$ be such that $A=B B^{T}$. Under what conditions on B is the matrix A symmetric and positive definite? Hint: Do not consider a particular case of B.
(2) Let $A \in \mathbb{R}^{3 \times 3}$ be given by

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 8 & 4 \\
0 & 4 & 8
\end{array}\right)
$$

Prove that A is a symmetric and positive definite matrix and compute the Cholesky decomposition. Hint: As a first step, compute the $L U$ decomposition of A.

Problem 5 ($\mathbf{3 0}$ points): (a) Find a set of orthogonal vectors that spand the same subspace $S \subset \mathbb{R}^{4}$ as

$$
\mathbf{a}_{1}=(0,-1,1,0)^{T}, \quad \mathbf{a}_{2}=(2,0,2,0)^{T}, \quad \mathbf{a}_{3}=(-1,0,0,1)^{T}
$$

(b) Find the projection of $\mathbf{b}=(-1,1,1,1)^{T}$ onto S.

