Math 401: Sec 0501: Homework 7

Pablo Venegas

Handed out: Apr. 15, 2015
Due: Apr. 22, 2015

Complete problems $1-5$. In a question, each subproblem is worth the same amount of points. Explain your steps carefully. If you use a well known theorem, make clear which theorem you are using and justify its use.
Problem 3.3.10: Which of the following formulas define norms on \mathbb{R}^{3} ?

1. $\|\boldsymbol{v}\|=\sqrt{2 v_{1}^{2}+v_{2}^{2}+3 v_{3}^{2}}$.
2. $\|\boldsymbol{v}\|=\sqrt{v_{1}^{2}+2 v_{1} v_{2}+v_{2}^{2}+v_{3}^{2}}$.
3. $\|\boldsymbol{v}\|=\max \left\{\left|v_{1}\right|,\left|v_{2}\right|,\left|v_{3}\right|\right\}$.
4. $\|\boldsymbol{v}\|=\left|v_{1}-v_{2}\right|+\left|v_{2}-v_{3}\right|+\left|v_{3}-v_{2}\right|$.
5. $\|\boldsymbol{v}\|=\left|v_{1}\right|+\max \left\{\left|v_{2}\right|,\left|v_{3}\right|\right\}$.

Problem 3.3.19: Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be two different norms on a vector space V.

1. Prove that $\|\boldsymbol{v}\|=\max \left\{\|\boldsymbol{v}\|_{1},\|\boldsymbol{v}\|_{2}\right\}$ defines a norm on V.
2. Does $\|\boldsymbol{v}\|=\min \left\{\|\boldsymbol{v}\|_{1},\|\boldsymbol{v}\|_{2}\right\}$ define a norm?
3. Does the arithmetic mean

$$
\|\boldsymbol{v}\|=\frac{1}{2}\left(\|\boldsymbol{v}\|_{1}+\|\boldsymbol{v}\|_{2}\right)
$$

define a norm on V ?
4. Does the geometric mean

$$
\|\boldsymbol{v}\|=\sqrt{\|\boldsymbol{v}\|_{1}\|\boldsymbol{v}\|_{2}}
$$

define a norm on V ?

Problem 3.4.25: Find the Gram matrix K for the functions $1, e^{x}, e^{2 x}$ using the L^{2} inner product on $[0,1]$. Is K positive definite?

Problem 3.5.11:

- Prove that id K_{1} and K_{2} are positive definite $n \times n$ matrices, then $K=\left(\begin{array}{cc}K_{1} & \mathbf{0} \\ \mathbf{0} & K_{2}\end{array}\right)$ is a positive definite $2 n \times 2 n$ matrix.
- Is the converse true?

Problem 3.5.2-3.5.3:

1. Find an $L D L^{T}$ factorization of the following symmetric matrix

$$
A=\left(\begin{array}{rrr}
3 & -1 & 3 \\
-1 & 5 & 1 \\
3 & 1 & 5
\end{array}\right)
$$

Determine whether A is positive definite or not.
2. For which values of c is the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & c & 1 \\
0 & 1 & 1
\end{array}\right)
$$

positive definite?

