Math 401: Sec 0501: Homework 6

Pablo Venegas

Handed out: Apr. 3, 2015 Due: Apr. 10, 2015

Complete problems 1–5. In a question, each subproblem is worth the same amount of points. Explain your steps carefully. If you use a *well known* theorem, make clear which theorem you are using and justify its use.

Problem 3.1.2: Which of the following formulas for $\langle v, w \rangle$ define inner products on \mathbb{R}^2 ?

- 1. $2v_1w_1 + 3v_2w_2$.
- 2. $v_1w_2 + v_2w_1$.
- 3. $(v_1 + v_2)(w_1 + w_2)$.

4.
$$\sqrt{v_1^2 + v_2^2}\sqrt{w_1^2 + w_2^2}$$

- 5. $2v_1w_1 + (v_1 v_2)(w_1 w_2)$.
- 6. $4v_1w_1 2v_1w_2 2v_2w_1 + 4v_2w_2$.

Problem 3.1.11:

- 1. Prove the identity $\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 \|u v\|^2)$, which allows us to reconstruct an inner product from its norm.
- 2. Use it to find the inner product on \mathbb{R}^2 corresponding to the norm $\|v\| = \sqrt{v_1^2 3v_1v_2 + 5v_2^2}$.

Problem 3.1.26: Let $V = C^{1}(-1, 1)$ denote the vector space of continuously differentiable functions for $-1 \le x \le 1$.

- 1. Does the expression $\langle f, g \rangle = \int_{-1}^{1} f'(x)g'(x)dx$ define an inner product on V?
- 2. Answer the same question for the subspace $W = \{f \in V : f(0) = 0\}$ consisting of all continuously differentiable functions which vanish at 0.

Problem 3.2.19: Determine a basis for the subspace $W \subset \mathbb{R}^4$ consisting of all vectors which are orthogonal to the vector $(1, 2, -1, 3)^T$.

Problem 3.2.26:

- 1. Show that the polynomials $p_1(x) = 1$, $p_2(x) = x \frac{1}{2}$, $p_3(x) = x^2 x + \frac{1}{6}$ are mutually orthogonal with respect to the L^2 -inner product on the interval [0, 1].
- 2. Show that the functions $sin(n\pi x)$, n = 1, 2, ... are mutually orthogonal with respect to the L^2 -inner product on the interval [0, 1].