# Math 401: Sec 0501: Homework 6 

Pablo Venegas

Handed out: Apr. 3, 2015
Due: Apr. 10, 2015

Complete problems $1-5$. In a question, each subproblem is worth the same amount of points. Explain your steps carefully. If you use a well known theorem, make clear which theorem you are using and justify its use.

Problem 3.1.2: Which of the following formulas for $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ define inner products on $\mathbb{R}^{2}$ ?

1. $2 v_{1} w_{1}+3 v_{2} w_{2}$.
2. $v_{1} w_{2}+v_{2} w_{1}$.
3. $\left(v_{1}+v_{2}\right)\left(w_{1}+w_{2}\right)$.
4. $\sqrt{v_{1}^{2}+v_{2}^{2}} \sqrt{w_{1}^{2}+w_{2}^{2}}$.
5. $2 v_{1} w_{1}+\left(v_{1}-v_{2}\right)\left(w_{1}-w_{2}\right)$.
6. $4 v_{1} w_{1}-2 v_{1} w_{2}-2 v_{2} w_{1}+4 v_{2} w_{2}$.

## Problem 3.1.11:

1. Prove the identity $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\frac{1}{4}\left(\|\boldsymbol{u}+\boldsymbol{v}\|^{2}-\|\boldsymbol{u}-\boldsymbol{v}\|^{2}\right)$, which allows us to reconstruct an inner product from its norm.
2. Use it to find the inner product on $\mathbb{R}^{2}$ corresponding to the norm $\|\boldsymbol{v}\|=\sqrt{v_{1}^{2}-3 v_{1} v_{2}+5 v_{2}^{2}}$.

Problem 3.1.26: Let $V=C^{1}(-1,1)$ denote the vector space of continuously differentiable functions for $-1 \leq x \leq 1$.

1. Does the expression $\langle f, g\rangle=\int_{-1}^{1} f^{\prime}(x) g^{\prime}(x) d x$ define an inner product on $V$ ?
2. Answer the same question for the subspace $W=\{f \in V: f(0)=0\}$ consisting of all continuously differentiable functions which vanish at 0 .

Problem 3.2.19: Determine a basis for the subspace $W \subset \mathbb{R}^{4}$ consisting of all vectors which are orthogonal to the vector $(1,2,-1,3)^{T}$.

## Problem 3.2.26:

1. Show that the polynomials $p_{1}(x)=1, p_{2}(x)=x-\frac{1}{2}, p_{3}(x)=x^{2}-x+\frac{1}{6}$ are mutually orthogonal with respect to the $L^{2}$-inner product on the interval $[0,1]$.
2. Show that the functions $\sin (n \pi x), n=1,2, \ldots$ are mutually orthogonal with respect to the $L^{2}$-inner product on the interval $[0,1]$.
