Math 401: Sec 0501: Homework 5

Pablo Venegas

Handed out: Mar. 13, 2015 Due: Mar. 27, 2015

Complete problems 1–5. In a question, each subproblem is worth the same amount of points. Explain your steps carefully. If you use a *well known* theorem, make clear which theorem you are using and justify its use.

Problem 2.2.22 : Show that if W and Z are subspaces of V, then

- a) their intersection $W \cap Z$ is a subspace of V,
- b) their sum $W + Z = \{w + z : w \in W, z \in Z\}$ is also a subspace, but
- c) their union $W \cup Z$ is not a subspace of V, unless $W \subset Z$ or $Z \subset W$.

Problem 2: Let V be a vector space and $S \subset V$. Determine if S is a basis of V when:

- a) $S := \{(0, 4, -1), (-1, 0, 1), (1, -8, 1)\}$ and $V := \mathbb{R}^3$.
- b) $S := \{x^2 + 1, x^2 1, x^2 + x + 1\}$ and $V := \mathbb{P}^2$.
- c) $S := \{x^3, x^2 + 1, x^2 x, x + 1\}$ and $V := \mathbb{P}^3$.

Problem 2.3.7: Let *S* be the subspace of $\mathbb{R}^{2\times 2}$ consisting of all symmetric matrices. Show that *S* is spanned by the matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Problem 2.4.15: Determine all values of the scalar k for which the following four matrices form a basis for $\mathbb{R}^{2\times 2}$:

$$A_{1} = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} k & -3 \\ 1 & 0 \end{pmatrix} \qquad A_{3} = \begin{pmatrix} 1 & 0 \\ -k & 2 \end{pmatrix} \qquad A_{4} = \begin{pmatrix} 0 & k \\ -1 & -2 \end{pmatrix}.$$

Problem 2.5.24: For each of the following matrices A:

- a) Determine the rank and the dimensions of the range and kernel.
- b) Find basis for both the range and kernel.
- c) Find explicit conditions on vector \boldsymbol{b} which guarantee that the system $A\boldsymbol{x} = \boldsymbol{b}$ has a solution.
- d) Write down a specific *nonzero* vector b that satisfies your conditions, and then find all possible solutions x.

$$i)\begin{pmatrix} 2 & -5 & -1\\ 1 & -6 & -4\\ 3 & -4 & 2 \end{pmatrix} \qquad \qquad ii)\begin{pmatrix} 2 & 5 & 7\\ 6 & 13 & 19\\ 3 & 8 & 11\\ 1 & 2 & 3 \end{pmatrix}$$