Math 401: Sec 0501: Homework 4

Pablo Venegas

Handed out: Feb. 20, 2015
Due: Feb. 27, 2015

Complete problems $1-3$. In a question, each subproblem is worth the same amount of points. Explain your steps carefully. If you use a well known theorem, make clear which theorem you are using and justify its use.

Problem 1.8.4 (40 pts.): Let

$$
A=\left(\begin{array}{ccc|c}
a & 0 & b & 2 \\
a & 2 & a & b \\
b & 2 & a & a
\end{array}\right)
$$

be the augmented matrix for a linear system. For which values of a and b does the system have
i) a unique solution?.
ii) no solution?.
iii) infinitely many solutions?.
iv) Given $a=-2$ and $b=0$, find all solutions of the system.

Problem 2.1 (20 pts.): Determine which of the following sets are vector spaces. If the set is not a vector space explain which property is not satisfied. On the other hand, if the set is a vector space you should provide a proof.
a) $V=\left\{A \in \mathbb{R}^{n \times n}: A\right.$ is a diagonal matrix $\}$.
b) $V=\left\{A \in \mathbb{R}^{2 \times 2}: A=\left(\begin{array}{ll}1 & a \\ b & 1\end{array}\right), \quad a, b \in \mathbb{R}\right\}$.
c) $V=\left\{(x, y, z) \in \mathbb{R}^{3}: x \geq 0, y \geq 0, z \geq 0\right\}$.
d) $V=\left\{(x, y, z) \in \mathbb{R}^{3}: y z=0\right\}$.

Problem 2.2.13 ($\mathbf{4 0} \mathbf{~ p t s}$.): Which of the following are subspaces? Justify your answer!
a) The set of all row vectors of the form $(a, 3 a)$.
b) The set of all vectors of the form $(a, a+1)$.
c) The set of all continuous functions in \mathbb{R} for which $f(-1)=0$.
d) The set of all periodic functions of period 1, i.e. $f(x+1)=f(x)$.
e) The set of all non-negative functions, i.e. $f(x) \geq 0$.
f) The set of all even polynomials, i.e. $p(x)=p(-x)$.
g) The set of all polynomials $p(x)$ that have $(x-1)$ as a factor.
h) The set of all quadratic forms $q(x, y)=a x^{2}+b x y+c y^{2}$.

