Math 401: Sec 0501: Homework 3

Pablo Venegas

Handed out: Feb. 13, 2015
Due: Feb. 20, 2015

Complete problems $1-5$. Each of these problems is worth 20 points. In a question, each subproblem is worth the same amount of points. Explain your steps carefully. If you use a well known theorem, make clear which theorem you are using and justify its use.
Problem 1.4: Let $A \in \mathbb{R}^{3 \times 3}$ be

$$
A=\left(\begin{array}{ccc}
1 & a & 1 \\
a & 1 & 1 \\
b & a b+1 & 0
\end{array}\right) \quad a, b \in \mathbb{R}
$$

a) For which real numbers a and b matrix A is regular?.
b) Given $a=-1$ and $b=1$, perform the permuted $L U$ decomposition of A.

Problem 1.5.17: Prove that if $U \in \mathbb{R}^{n \times n}$ is a nonsingular upper triangular matrix, then the diagonal entries of U^{-1} are the reciprocals of the diagonal entries of U.
Problem 1.5.24.h: Find the inverse of the following matrix, if possible, by applying the Gauss-Jordan Method.

$$
A=\left(\begin{array}{cccc}
2 & 1 & 0 & 1 \\
0 & 0 & 1 & 3 \\
1 & 0 & 0 & -1 \\
0 & 0 & -2 & -5
\end{array}\right)
$$

Problem 1.6.13: Let $A, B \in \mathbb{R}^{m \times n}$.
(a) Suppose that $\mathbf{v}^{T} A \mathbf{w}=\mathbf{v}^{T} B \mathbf{w}$ for all vectors $\mathbf{v} \in \mathbb{R}^{m}$ and $\mathbf{w} \in \mathbb{R}^{n}$. Prove that $A=B$.
(b) Give an example of two matrices A and B such that $\mathbf{v}^{T} A \mathbf{v}=\mathbf{v}^{T} B \mathbf{v}$ for all vectors \mathbf{v}, but $A \neq B$.

Problem 1.7: Let $U=\left\{u_{i j}\right\} i, j=1, \ldots, n$ be a nonsingular upper triangular matrix. The solution of the system $U \mathbf{x}=\mathbf{b}$ is given by the Back Substitution algorithm:

$$
\begin{aligned}
& \text { For } i=n, n-1, \ldots, 1 \\
& \quad x_{i}=\frac{1}{u_{i i}}\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right)
\end{aligned}
$$

(a) Perform an operation count for the algorithm above.
(b) Let A be a general $n \times n$ regular matrix. Determine the exact number of operations needed to compute the solution of $A \mathbf{x}=\mathbf{b}$ using the $L U$ decomposition of A.

