Math 401: Sec 0501: Homework 3

Pablo Venegas

Handed out: Feb. 13, 2015 Due: Feb. 20, 2015

Complete problems 1–5. Each of these problems is worth 20 points. In a question, each subproblem is worth the same amount of points. Explain your steps carefully. If you use a *well known* theorem, make clear which theorem you are using and justify its use.

Problem 1.4: Let $A \in \mathbb{R}^{3 \times 3}$ be

$$A = \begin{pmatrix} 1 & a & 1 \\ a & 1 & 1 \\ b & ab+1 & 0 \end{pmatrix} \qquad a, b \in \mathbb{R}$$

- a) For which real numbers a and b matrix A is regular?.
- b) Given a = -1 and b = 1, perform the permuted LU decomposition of A.

Problem 1.5.17: Prove that if $U \in \mathbb{R}^{n \times n}$ is a nonsingular upper triangular matrix, then the diagonal entries of U^{-1} are the reciprocals of the diagonal entries of U.

Problem 1.5.24.h: Find the inverse of the following matrix, if possible, by applying the Gauss-Jordan Method.

$$A = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & -2 & -5 \end{pmatrix}$$

Problem 1.6.13: Let $A, B \in \mathbb{R}^{m \times n}$.

- (a) Suppose that $\mathbf{v}^T A \mathbf{w} = \mathbf{v}^T B \mathbf{w}$ for all vectors $\mathbf{v} \in \mathbb{R}^m$ and $\mathbf{w} \in \mathbb{R}^n$. Prove that A = B.
- (b) Give an example of two matrices A and B such that $\mathbf{v}^T A \mathbf{v} = \mathbf{v}^T B \mathbf{v}$ for all vectors \mathbf{v} , but $A \neq B$.

Problem 1.7: Let $U = \{u_{ij}\}$ i, j = 1, ..., n be a nonsingular upper triangular matrix. The solution of the system $U\mathbf{x} = \mathbf{b}$ is given by the *Back Substitution* algorithm:

For
$$i = n, n - 1, \dots, 1$$

$$x_i = \frac{1}{u_{ii}} \left(b_i - \sum_{j=i+1}^n u_{ij} x_j \right)$$

- (a) Perform an operation count for the algorithm above.
- (b) Let A be a general $n \times n$ regular matrix. Determine the exact number of operations needed to compute the solution of $A\mathbf{x} = \mathbf{b}$ using the LU decomposition of A.