Math 401: Sec 0501: Homework 2

Pablo Venegas

Handed out: Feb. 6, 2015
Due: Feb. 13, 2015

Complete problems 1-5. Each of these problems is worth 20 points. In a question, each subproblem is worth the same amount of points. Explain your steps carefully. If you use a well known theorem, make clear which theorem you are using and justify its use.

Problem 1.3.23: Given the factorization

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-6 & 4 & -1 \\
4 & -6 & 7
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
2 & -4 & 1
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 3
\end{array}\right),
$$

explain, without computing, which elementary row operations are used to reduce A to upper triangular form. Be careful to state which order they should be applied. Then check the correctness of your answer by performing the elimination.

Problem 1.3.25: Let t_{1}, t_{2}, \ldots be distinct real numbers. Find the $L U$ factorization of the following Vandermonde matrices:

$$
\text { (a) }\left(\begin{array}{cc}
1 & 1 \\
t_{1} & t_{2}
\end{array}\right) \quad \text { (b) }\left(\begin{array}{ccc}
1 & 1 & 1 \\
t_{1} & t_{2} & t_{3} \\
t_{1}^{2} & t_{2}^{2} & t_{3}^{2}
\end{array}\right)
$$

Can you spot a pattern? Test your conjecture with the 4×4 Vandermonde matrix.
Problem 1.3.28: Prove that if A is a regular 2×2 matrix, then its $L U$ factorization is unique. In other words, if $A=L U=\widehat{L} \widehat{U}$ where \widehat{L}, L are lower triangular matrices with 1 's on their diagonals (unit lower triangular matrices) and \widehat{U}, U are upper triangular matrices, then $\widehat{L}=L$ and $\widehat{U}=U$. The general case will be analyzed in class.
Problem 1.4.9 : Write down the elementary 4×4 permutation matrices P_{1} and P_{2} such that

- P_{1} that permutes the second and fourth rows
- P_{2} that permutes the first and fourth rows
- Do P_{1} and P_{2} commute?
- Explain what the matrix products $P_{1} P_{2}$ and $P_{2} P_{1}$ do to a 4×4 matrix.

Problem 1.4.19.e: Find a permuted $L U$ factorization of the matrix A, and use this factorization to solve the system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
2 & 3 & 1 & 0 \\
1 & 4 & -1 & 2 \\
7 & -1 & 2 & 3
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
-1 \\
-4 \\
0 \\
5
\end{array}\right)
$$

