Math 401: Sec 0501: Homework 1

Pablo Venegas

Handed out: Jan. 30, 2015
Due: Feb. 6, 2015

Complete problems $1-5$. Each of these problems is worth 20 points. In a question, each subproblem is worth the same amount of points. Explain your steps carefully. If you use a well known theorem, make clear which theorem you are using and justify its use.

Problem 1.1.1.d: Solve the following system of linear equations by reducing to triangular form and then using Back Substitution.

$$
\left(\begin{array}{rrr}
2 & -1 & 2 \\
-1 & -1 & 3 \\
3 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
u \\
v \\
w
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

Problem 1.1.2: How should the coefficients a, b and c be chosen so that the system $a x+b y+c z=3$, $a x-y+c z=1, x+b y-c z=2$, has the solution $x=1, y=2$ and $z=-1$?

Problem 1.2.12:

(a) Show that if $D=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ is a 2×2 diagonal matrix with $a \neq b$, then the only matrices that commute (under matrix multiplication) with D are another 2×2 diagonal matrices.
(b) What if $a=b$?
(c) Find all the matrices that commute with $D=\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right)$ where a, b, c are different.
(d) Answer the same question for the case when $a \neq b=c$.

Problem 1.2.15:.

(a) Show that, if A and B are commuting square matrices, then $(A+B)^{2}=A^{2}+2 A B+B^{2}$.
(b) Find a pair of 2×2 matrices A and B such that $(A+B)^{2} \neq A^{2}+2 A B+B^{2}$.

Problem 1.2.32: The trace of a $n \times n$ matrix $A \in \mathbb{R}^{n \times n}$ is defined to be the sum of its diagonal entries: $\operatorname{tr}(A)=a_{11}+a_{22}+a_{33}+\cdots+a_{n n}$.
(a) Compute the trace of

$$
\text { (i) }\left(\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right) \quad \text { (ii) }\left(\begin{array}{ccc}
1 & 3 & 2 \\
-1 & 0 & 1 \\
-4 & -3 & -1
\end{array}\right)
$$

(b) Prove that $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$.
(c) Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(d) Prove that the commutator matrix $C=A B-B A$ has zero trace $\operatorname{tr}(C)=0$.
(e) Is part (c) valid if A has size $m \times n$ and B has size $n \times m$?

