

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA Jueves 8, Agosto 2019

Métodos Numéricos 220138

Solución numérica de problemas de valor inicial mediante ode 45

Ecuaciones diferenciales ordinarias

Para resolver la ecuación,

$$y' = f(t, y)$$
 $a \le t \le b$, $y(a) = y_0$.

MATLAB dispone de varias funciones para resolver mediante metodos numéricos ecuaciones diferenciales ordinarias: ode23, ode45, ode113. Para los siguientes problemas elegiremos ode45. Su sintaxis corta es la siguiente

$$[t,y] = ode45(odefun,t,y0)$$

donde $t = [t_0, t_1, \dots, t_n]$ es una discretización de [a, b] e $y = [y_0, y_1, \dots, y_n]$ es un vector tal que $y(t_i) \approx y_i$. odefun es el nombre de la función f (definida por *inline* o @) e y0 es el valor inicial.

Ejemplo: Para resolver la ecuación

$$y' = \frac{2 - 2ty}{t^2 + 1}$$
 $0 \le t \le 2$, $y(0) = 1$,

procedemos de la siguiente forma en la ventana de comando

```
>> t=0:0.2:2;
>> f=@(t,y) (2-2*t*y)/(t^2+1);
>> [t,y]=ode45(f,t,1);
>> plot(t,y,'-o')
```

si deseamos comparar con la solución exacta $y(t) = (2t+1)/(t^2+1)$ agregamos

```
>> hold on
>> fplot('(2*t+1)/(t^2+1)',[0,2]);
>> xlabel('t')
>> ylabel('y')
>> legend('Sol aproximada ','Sol exacta')
>> print -dpng Ejemplo.png
```

La expresión print -dpng Ejemplo.png permite crear un archivo Ejemplo.png con la figura graficada. Los resultados son mostrados en la Figura 1.

Sistemas de ecuaciones diferenciales ordinarias

Para resolver el sistema de ecuaciones 2×2 de la forma

$$\begin{cases} y_1' = y_1 - y_2 + 2 \\ y_2' = -y_1 + y_2 + 4t \end{cases} \quad 0 \le t \le 2, \quad y_1(0) = -1, \quad y_2(0) = 0$$

podemos utilizar ode45 pero hay que definir odefun e y0 de forma vectorial.

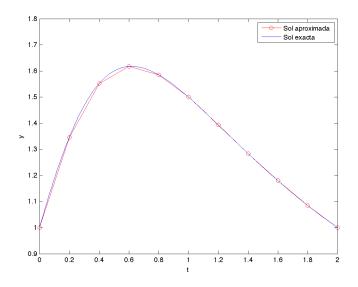


Figure 1: Ejemplo de Problema de Valor inicial

```
>> f=@(t,y) [y(1)-y(2)+2;-y(1)+y(2)+4*t];
>> t=0:0.2:2;
>> y0=[-1;0];
>> [t,y]=ode45(f,t,y0);
>> plot(t,y,'-o')
```

si deseamos comparar con la soluciones exactas $y_1(t) = -\frac{1}{2}\exp(2t) + t^2 + 2t - \frac{1}{2}$ e $y_2(t) = \frac{1}{2}\exp(2t) + t^2 - \frac{1}{2}$, agregamos

```
>>> hold on
>> y1=@(t) -.5*exp(2*t)+t^2+2*t-.5;
>> y2=@(t).5*exp(2*t)+t^2-.5;
>> fplot(y1,[0,2],'r');
>> fplot(y2,[0,2],'g');
>> xlabel('t')
>> ylabel('y')
>> legend('y1 aproximada ','y2 aproximada','y1 exacta','y2 exacta')
```

Los resultados son mostrados en la Figura 2

Ecuaciones de orden superior

Para resolver la ecuación de orden superior

$$y''' + 2y'' - y' - 2y = e^t$$
, $0 \le t \le 3$ $y(0) = 1$, $y'(0) = 2$, $y''(0) = 0$,

escribimos el problema como un problema de valor inicial vectorial definiendo Y(t) = [y(t); y'(t); y''(t)] y luego derivando obtenemos

$$Y'(t) = \begin{bmatrix} y'(t) \\ y''(t) \\ y'''(t) \end{bmatrix} = \begin{bmatrix} y'(t) \\ y''(t) \\ e^t - 2y''(t) + y'(t) + 2y(t) \end{bmatrix} = \begin{bmatrix} Y[2] \\ Y[3] \\ e^t - 2Y[3] + Y[2] + 2Y[1] \end{bmatrix} = F(t, Y(t)),$$

donde Y[i] es la componente i de Y(t) = [y(t); y'(t); y''(t)]. Luego podemos utilizar ode 45 de la forma

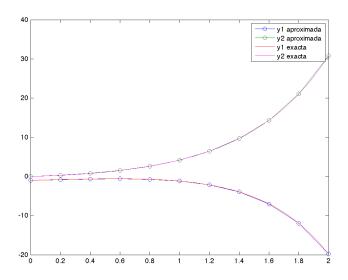


Figure 2: Ejemplo de sistemas de ecuaciones

```
>> t=0:0.5:3;

>>f=@(t,y) [y(2);y(3);exp(t)-2*y(3)+y(2)+2*y(1)];

>> y0=[1;2;0];

>> [t,y]=ode45(f,t,y0);

>> plot(t,y(:,1),'-o')
```

donde la expresión y(:,1) indica que solo graficamos la primera componente de Y(t). Si deseamos comparar con la solució exacta $y(t) = \frac{43}{36} \exp(t) + \frac{1}{4} \exp(-t) - \frac{4}{9} \exp(-2*t) + \frac{1}{6} t \exp(t)$

```
>> hold on
>> fplot('43*exp(t)/36+exp(-t)/4-4*exp(-2*t)/9+t*exp(t)/6',[0,3])
>> xlabel('t')
>> ylabel('y')
>> legend('Sol aproximada ','Sol exacta')
```

Los resultados son mostrados en la Figura 3.

Ecuaciones de orden superior: Circuito eléctrico

Considere el circuito eléctrico de la Figura 4. Queremos calcular la función v(t) que representa la caída de potencial en los extremos del condensador C partiendo del instante inicial t=0 en el cual ha sido apagado el interruptor I. Supongamos que la inductancia L puede expresarse como función explícita de la intensidad actual i, esto es L=L(i). La ley de Ohm da

$$e - \frac{d(i_1 L(i_1))}{dt} = i_1 R_1 + v$$

donde R_1 es una resistencia. Suponiendo que los flujos de corriente se dirigen como se indica en la Figura 4, derivando con respecto a t ambos miembros de la ley de Kirchoff $i_1 = i_2 + i_3$ y observando que $i_3 = C dv/dt$ e $i_2 = v/R_2$, obtenemos la ecuación adicional

$$\frac{di_1}{dt} = C\frac{d^2v}{dt^2} + \frac{1}{R_2}\frac{dv}{dt}.$$

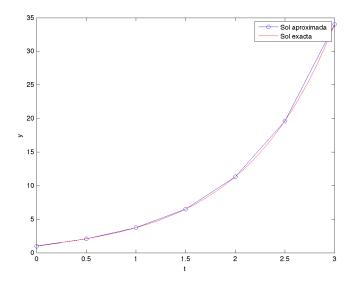


Figure 3: Ejemplo de ecuación diferencial de orden superior

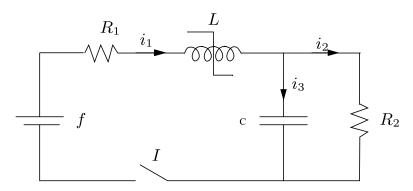


Figure 4: Circuito eléctrico

Por tanto hemos encontrado un sistema de dos ecuaciones diferenciales cuya solución permite la descripción de la variación a lo largo del tiempo de las dos incógnitas i_1 y v.

Supongamos que $L(i_1) = L$ es constante y que $R_1 = R_2 = R$ entonces v es solución del problema

$$LC\frac{d^2v}{dt^2} + \left(\frac{L}{R} + RC\right)\frac{dv}{dt} + 2v = e.$$

En este caso, v puede obtenerse resolviendo el siguiente sistema de dos ecuaciones diferenciales:

$$\begin{cases} z_1'(t) = z_2(t), \\ z_2'(t) = -\frac{1}{LC} \left(\frac{L}{R} + RC\right) z_2(t) - \frac{2}{LC} z_1(t) + \frac{e}{LC}. \end{cases}$$
 (1)

con condiciones iniciales $z_1(0) = z_2(0) = 0$.

La función del lado derecho puede ser escrito en MATLAB de la siguiente forma:

```
function dzdt= fun(t,z,L,C,R,e)
dzdt(1,1)= z(2);
dzdt(2,1)= -( L/R+R*C )/( L*C )*z(2) -2/( L*C )*z(1)+ e/( L*C );
end
```

Resolvemos el problema anterior utilizando el método de Euler explícito y la función ode45 de MATLAB considerando L=0.1 henrios, $C=10^{-3}$ R=10 ohmios y e=5 voltios donde henrio, faradio, ohmio y voltio son, respectivamente, las unidades de medida de inductancia, capacitancia, resistencia y voltaje.

En la Figura 5 mostramos los valores aproximados de z_1 y z_2 que corresponden a v y dv/dt, respectivamente. Como se esperaba, v(t) tiende a e/2=2.5 voltios para t grande. Notar que la solución de los métodos no coincide, es por ello que en la Figura 6 mostramos los valores aproximados de z_1 y z_2 para distintos valores de $h \in \{0.02, 0, 01, 0.001\}$. De esta figura notamos que las soluciones de Euler convergen.

```
%Datos del problema
L=0.1; C=1e-3; R=10; e=5;
ti=0;tf=0.1;
z0=[0; 0]
%Metodo de Euler explicito h=0.02
N=50;
tE=linspace(ti,tf,N+1);
h=tf/N;
M=length(tE);
yE=zeros(2,M);
yE(:,1)=[0; 0];
for i=2:M
    yE(:,i)=yE(:,i-1)+h*fun(tE(i-1),yE(:,i-1),L,C,R,e);
end
%ode45
[t,y] = ode45(@(t,z)fun(t,z,L,C,R,e),[ti tf],z0);
%Grafica de la solucion
subplot(1,2,1); plot(t,y(:,1),tE,yE(1,:),'--');
legend('Sol ode45','Sol Euler h=0.002')
xlabel('t');ylabel('z_1')
subplot(1,2,2);plot(t,y(:,2),tE,yE(2,:),'--');
legend('Sol ode45','Sol Euler h=0.002')
xlabel('t');ylabel('z_2')
```

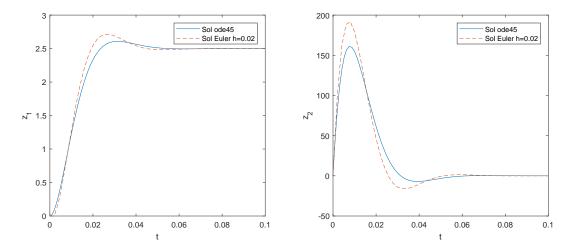


Figure 5: Solución numérica del sistema de ecuaciones diferenciales (1) mediante el método de Euler explícito con h = 0.02 y ode45. La caída de potencial v(t) se muestra a la izquierda, su derivada dv(t)/dt a la derecha.

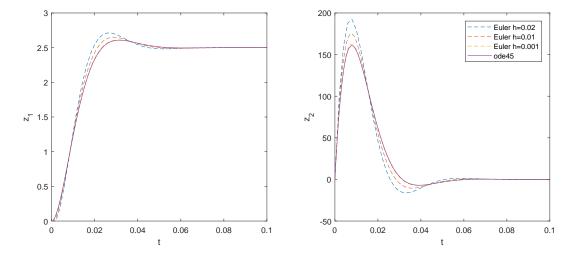


Figure 6: Solución numérica del sistema de ecuaciones diferenciales (1) mediante el método de Euler explícito con $h \in \{0.02, 0, 01, 0.001\}$ y ode45. La caída de potencial v(t) se muestra a la izquierda, su derivada dv(t)/dt a la derecha.