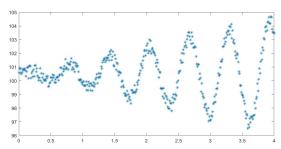


## UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA Miercoles 22/11, 2017



## MÉTODOS NUMÉRICOS 220138: EVALUACIÓN 2


Complete los problemas 1–4. Explique el desarrollo cuidadosamente. Si se utiliza un resultado visto en clases, dejar claro qué resultado se está utilizando y justificar su uso.

Problema 1: (15 pts) Demostrar la existencia y unicidad de un punto fijo de la función

$$f(x) = \frac{3}{x - 2}$$

en el intervalo  $[-2, -\frac{1}{2}]$ . Aplicar el algoritmo del punto fijo partiendo en  $x_0 = -2$  hasta completar dos iteraciones.

**Problema 2:** (15 pts). En la figura se muestran una serie de mediciones de una cantidad h que depende de una variable t. En la tabla se muestran algunos de estos datos:



| t    | 0      | 1      | 2      | 3     | 4      |
|------|--------|--------|--------|-------|--------|
| h(t) | 100.92 | 100.24 | 102.28 | 97.13 | 103.72 |

Proponga, mediante un análisis justificado, un modelo para estos datos y ajústelo por mínimos cuadrados a la tabla.

Problema 3: (15 pts). Considere la siguiente tabla de datos:

| x    | 0.1 | 0.5 | 1 | 1.5 |
|------|-----|-----|---|-----|
| f(x) | 3   | 5   | 1 | 3   |

- a) Cual es el polinomio de menor grado que **interpola** los datos de la tabla?. Plantear el sistema de ecuaciones que permite calcular tal polinomio.
- b) Determine una aproximación de los datos en el sentido de mínimos cuadrados considerando el modelo

$$y = \frac{2}{1 + exp(-\alpha - \beta x)}$$

donde exp es la función exponencial.

Problema 4: (15 pts). Considere la siguiente función por tramos:

$$S(x) = \begin{cases} S_0(x) = A + (x-1)^2 + B(x-1)^3, & x \in [1,3] \\ S_1(x) = 1 + C(x-3) + \frac{1}{2}(x-3)^2 - D(x-3)^3, & x \in [3,4] \end{cases}$$

determine los coeficientes A, B, C y D de modo que la función anterior sea una spline cúbica con condiciones de borde: S'(1) = S'(4) = 0.