

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA Miercoles 11/10, 2017

MÉTODOS NUMÉRICOS 220138: EVALUACIÓN 1

Complete los problemas 1–3. Explique el desarrollo cuidadosamente. Si se utiliza un resultado visto en clases, dejar claro qué resultado se está utilizando y justificar su uso.

Problema 1: (15 pts). Dado $m \in \mathbb{R}$, considere la siguiente matriz $A = \begin{bmatrix} m & 2 & 1 \\ 2 & 4 & 3 \\ 1 & 8 & 1 \end{bmatrix}$

- (a) Determine el valor de $m \in \mathbb{R}$ de modo que **NO** se pueda efectuar la descomposición LU de A.
- (b) Considerando el valor de m obtenido en (a), realice la factorización PA = LU.
- (c) Plantee los sistemas de ecuaciones si se quiere resolver Ax = b mediante la factorización de la parte (b).

Problema 2: (20 pts). Dado $\alpha \in \mathbb{R}$, considere la siguiente matriz $A = \begin{bmatrix} 16 & \alpha & 0 \\ \alpha & 5 & 2 \\ 0 & 2 & 2 \end{bmatrix}$.

- a) Obtenga los valores de $\alpha \in \mathbb{R}$ de modo que la matriz A sea definida positiva.
- b) Luego considere $\alpha=4$ y obtenga la factorizaci
n de Cholesky $A=LL^T.$
- c) Calcular $||L||_1$ y $||L||_{\infty}$.

Problema 3: (25 pts). Dado el sistema lineal

$$6x_1 + 3x_2 = 3$$
$$3x_1 + 4x_2 + 2x_3 = 1$$
$$2x_2 + 2x_3 = 2$$

- (a) Escriba los esquemas iterativos de Jacobi y Gauss-Seidel identificando explícitamente las matrices de iteración M_J y M_{G-S} .
- (b) Encuentre $\sigma(M_J)$ y $\rho(M_J)$. Es el método convergente?.
- (c) Si el método de Jacobi resulta convergente, decida cual de los dos métodos converge más rápidamente sabiendo que $\sigma(M_G) \approx \{0, 0.875\}$.