

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

MÉTODOS NUMÉRICOS 220138: LISTADO 3

1. Complete la siguiente tabla utilizando la regla de derivación numérica de 3 pasos más conveneniente en cada punto:

x	-1.0	0.0	1.0	2.0	3.0
f(x)	0.0	1.0	4.0	8.0	12.0
f'(x)					

- 2. a) Complete la primera fila de la tabla utilizando la regla de derivación numérica de 3 pasos más conveneniente en cada punto. Complete la segunda fila con el error de la aproximación, considerando que la función utilizada fue $f(x) = x^3 2x^2 2x + 1$.
 - b) Complete la tercera fila de la tabla utilizando la regla de derivación numérica de 5 pasos (buscar una regla adecuada). Donde no se pueda aplicar, utilice la fórmula de 3 pasos más conveneniente. Complete la cuarta fila con el error de la aproximación, considerando la misma función anterior.
 - c) Compare los errores.

x	-0.3	-0.2	-0.1	-0.0	0.1	0.2	0.3
f(x)	1.3930	1.3120	1.1790	1.0000	0.7810	0.5280	0.2470
f'(x) (3 pasos)							
error							
f'(x) (5 pasos)							
error							

3. Considere la siguiente tabla de datos para una función f:

- (a) Calcule una aproximación de la integral de f(x) en [-1,2] mediante la regla del punto medio compuesta.
- (b) Calcule una aproximación de la integral de f(x) en [-1,2] mediante la regla de los trapecios compuesta.
- 4. Calcule una aproximación de la integral $\int_{0}^{1} e^{x^{2}} dx$ mediante:
 - (a) La regla del punto medio compuesta con 5 puntos equiespaciados.
 - (b) La regla de los trapecios compuesta con 5 puntos equiespaciados.
 - (c) La regla de simpson con los mismos 5 puntos y los 4 puntos intermedios.

5. Considere la integral:

$$\int_{1}^{2} (x^4 + x) dx.$$

Aproxime su valor mediante:

- a) La regla de **trapecio compuesta** con n = 3.
- b) Usando regla de integración de la forma:

$$\int_{-1}^{1} f(t)dt \approx \frac{2}{n(n-1)} [f(1) + f(-1)] + \sum_{i=2}^{n-1} A_i f(t_i)$$

Donde los nodos t_i en el intervalo [-1,1], como los coeficientes A_i de la regla se encuentran tabulados para n=4:

n	t_i	A_i		
4	-1.0000	0.1667		
	-0.4472	0.8333		
	0.4472	0.8333		
	1.000	0.1667		

Calcular el error de la aproximación obtenida para cada caso.

Indicación [b)]: Considere el cambio de variables:

$$x(t) = \frac{a+b}{2} + \frac{b-a}{2}t$$

para obtener

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f(x(t))dt.$$