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Abstract. In two and three dimensions, we analyze mixed finite element methods for a velocity-
pressure-pseudostress formulation of the Stokes eigenvalue problem. The methods consist in two
schemes: the velocity and pressure are approximated with piecewise polynomial, whereas for the
pseudostress we consider two classic families of finite elements for H(div) spaces: the Raviart-Thomas
and the Brezzi-Douglas-Marini elements. With the aid of the classic spectral theory for compact
operators, we prove that our method does not introduce spurious modes. Also, we obtain convergence
and error estimates for the proposed methods. We report numerical results to compare the accuracy
and robustness between both numerical schemes.
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1. Introduction. The Stokes problem is a system of equations that describes
the motion of a certain fluid. For a given domain Ω ⊂ Rn, where n ∈ {2, 3} with
Lipschitz boundary, we are interested in the Stokes eigenvalue problem

(1.1)

 −2µ∆u+∇p = λu in Ω,
divu = 0 in Ω,

u = 0 on ∂Ω,

where µ is the kinematic viscosity, u is the velocity and p is the pressure.
It is well known that mixed formulations are a suitable alternative to analyze dif-

ferent problems, since the introduction of additional unknowns with physical meaning
allows to obtain more information on certain phenomena. Hence, the design of finite
element approximations has been an important subject of study for mathematicians
and engineers, where several families of mixed elements have been developed. For a
complete state of art about mixed methods we resort to [5].

In particular, mixed formulations for eigenvalue problems has been well developed
in the past years and the theory to study these problems can be found in [4, 28], just
to mention the most classic references. On the other hand, concrete applications for
mixed formulations in spectral problems can be found in different contexts as, for
instance, [2, 14, 17, 16, 20, 22, 23], where an amount of numerical approaches such as
DG methods, VEM methods, FEM, or a posteriori analysis, have been implemented.

We mention that the Stokes eigenvalue problem has attracted much interest since
it is frequently encountered in important applications, for instance, to study the
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stability of fluid flow problems, and it also appears in the analysis of the elastic
stability of thin plates [29, 28], reinforcing the importance of the accuracy when the
eigenmodes of the Stokes spectral system are computed.

In the present work, we consider a mixed formulation for the Stokes spectral
problem that incorporates the so-called nonsymmetric pseudotress tensor (see [11] for
further details related to this tensor) which is a suitable unknown in order to eliminate
the pressure and velocity from the PDE system, leading to an elliptic problem as is
analyzed in [26, 21].

Now, in our work, we do not eliminate these variables and consider a more com-
plete system where the pseudotress, the pressure and velocity are part of the system,
leading to a mixed formulation that is numerically analyzed with inf-sup stable fam-
ilies of finite elements. With this new approach for the Stokes eigensystem, instead
of recovering the velocity and pressure with a postprocess as in [26], we are able to
obtain these unknowns directly by using standard eigensolvers.

More precisely, we will study the Stokes eigenvalue problem with the mixed for-
mulation proposed in [15], already analyzed for the source problem, where not only
the velocity and the pressure are the unknowns as in (1.1), but also the pseudostress
tensor. With this formulation, it is expected that the computational costs for the nu-
merical methods increase, when compared to the classic velocity-pressure formulation,
since we need to approximate each component of the pseudostress, each component
of the velocity, and the scalar associated to the pressure. However, the choice of
appropriate discrete spaces might compensate for the increase in degrees of freedom.
In addition, the pseudostress tensor is an interesting unknown, because it allows to
compute other quantities of interest. For example, in the Stokes flow problems, the
pseudostress relates the classic stress and the gradient of the velocity. Hence, with an
accurate approximation of the pseudostress we are able to obtain accurate values for
these other important unknowns that might be desired in certain applications.

Whereas the computational costs are an important subject, the regularity for the
eigenfunctions with the formulation presented in this work is less restrictive when
compared, for instance, to [26], since the H(div) space does not need to be split in a
direct sum. In fact, the classic regularity results for the velocity-pressure formulation
can be used straightforwardly in order to obtain additional regularity for the pseu-
dotress tensor. Besides, mixed formulations are flexible in the choice of finite element
families to approximate the space H(div). In our case, we consider two families: the
Raviart-Thomas elements and the Brezzi-Douglas-Marini elements (see for instance
[8, 30]). The aim is to compare the accuracy of these inf-sup stable finite elements to
approximate the eigenfunctions and eigenvalues of (1.1). It is well known that BDM
schemes are more expensive than RT schemes, due to the difference in degrees of free-
dom between them, which immediately implies the computational costs as first main
difference. However, in eigenvalue problems, the orders of convergence and accuracy
for the approximation of the spectrum of the solution operator can benefit when using
elements that are able to increase their degrees of freedom (see [10, 21, 20, 27] for
some papers related to this subject). To make matters precise, in the present work
we perform a theoretical and computational analysis for high order mixed methods
for the both families of finite elements, where we are interested in their performance
in the computation of the spectrum, namely, the accuracy, computational cost and
order of convergence.

The paper is organized as follows: in Section 2 we introduce the Stokes eigenvalue
problem, for two and three dimensions, together with the pseudostress tensor. With
suitable Hilbert spaces we derive a variational formulation for (1.1) where the main
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unknowns are the pseudostress, the velocity and the pressure. We introduce the
corresponding solution operators and present an additional regularity result for the
eigenfunctions. Finally, a spectral characterization is deduced. Section 3 is the core of
our paper, where we introduce the finite element schemes of our analysis. We prove the
stability for the discrete eigenvalue problem. Also, we introduce the discrete solution
operator. In Section 4 we perform the spectral analysis, where convergence and error
estimates for the eigenfunctions and eigenvalues are proved. Finally, in Section 5 we
report a series of numerical tests where we confirm our theoretical results, together
with a comparison between the mixed schemes of our paper.

We end this section with some of the notations that we will use below. Given any
Hilbert space X, let X2 and X denote, respectively, the space of vectors and tensors
with entries in X. In particular, I is the identity matrix of Rn×n, and 0 denotes a
generic null vector or tensor. Given τ := (τij) and σ := (σij) ∈ Rn×n, we define,
as usual, the transpose tensor τ t := (τji), the trace tr τ :=

∑n
i=1 τii, the deviatoric

tensor τ d := τ − 1
n (tr τ ) I, and the tensor inner product τ : σ :=

∑n
i,j=1 τijσij .

Let Ω be a polygonal Lipschitz bounded domain of Rn with boundary ∂Ω. For
s ≥ 0, ‖·‖s,Ω stands indistinctly for the norm of the Hilbertian Sobolev spaces Hs(Ω),
Hs(Ω)n or Hs(Ω) for scalar, vectorial and tensorial fields, respectively, with the con-
vention H0(Ω) := L2(Ω), [H0(Ω)]n = [L2(Ω)]n and H0(Ω) := L2(Ω). We also define
for s ≥ 0 the Hilbert space Hs(div; Ω) := {τ ∈ Hs(Ω) : div τ ∈ [Hs(Ω)]n}, whose
norm is given by ‖τ‖2div,Ω := ‖τ‖2s,Ω + ‖div τ‖2s,Ω.

The relation a . b indicates that a ≤ Cb, with a positive constant C which is
independent of a, b and the mesh size h, which will be introduced in Section 3.

2. The model problem. Let Ω = Rn, where n ∈ {2, 3} represents the di-
mension, be a bounded simply connected polygonal domain with boundary ∂Ω. We
introduce the pseudostress tensor σ := 2µ∇u − pI. Hence, system (1.1) is rewritten
as follows

(2.1)


divσ = −λu in Ω,

σ − 2µ∇u+ pI = 0 in Ω,

p+
1

n
tr(σ) = 0 in Ω,

u = 0 on ∂Ω.

See [15] for details related to the derivation of this system. For the analysis of
problem (2.1), we are interested in the following variational formulation: Find λ ∈ R
and the triplet 0 6= (σ, p,u) ∈ H(div,Ω)× L2(Ω)× [L2(Ω)]n such that

1

2µ

∫
Ω

σd : τ d +
n

2µ

∫
Ω

(
p+

1

n
tr(σ)

)(
q +

1

n
tr(τ )

)
+

∫
Ω

u · div τ = 0,(2.2) ∫
Ω

v · divσ = −λ(u,v),(2.3)

for all (τ , q,v) ∈ H(div,Ω)× L2(Ω)× [L2(Ω)]n.
It is important to remark that the only eigenfunction in problem (2.2)–(2.3) is

the velocity field u, and hence the corresponding solution operator is defined only on
this unknown (see (2.9) and (2.14) below). This implies that our eigenvalue problem
can be defined as follows: Find (λ,u) ∈ R × [L2(Ω)]n, with u 6= 0 such that there
exist (σ, p) ∈ H(div,Ω)× L2(Ω) satisfying (2.2)–(2.3).

For our analysis, the decomposition H(div,Ω) = H0 ⊕ RI will be useful (see [15,
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Section 2]), where

H0 :=

{
τ ∈ H(div,Ω) :

∫
Ω

tr(τ ) = 0

}
.

In order to simplify the presentation of the material, we define H := H0 × L2(Ω)
and Qu := [L2(Ω)]n. The bilinear forms a : H×H→ R and b : H(div,Ω)×Qu → R
are defined as follows:

a((ξ, r), (τ , q)) :=
1

2µ

∫
Ω

ξd : τ d +
γ

µ

(
p+

1

n
tr(ξ)

)(
q +

1

n
tr(τ )

)
,

b(ξ,v) :=

∫
Ω

v · div ξ.

According to [15, Lemma 2.2], we have that any solution of problem (2.2)–(2.3) with
σ ∈ H0 is also solution of

a((σ, p), (τ , q)) + b(τ ,u) = 0 ∀(τ , q) ∈ H,(2.4)

b(σ,v) = −λ(u,v) ∀v ∈ Qu,(2.5)

with γ = 1 if n = 2 and γ = 3/2 if n = 3, whereas any solution of (2.4)–(2.5) is also
a solution of problem (2.2)–(2.3).

It is possible to consider an alternative reduced formulation for our problem (2.4)–
(2.5), which only depends on the stress tensor and the velocity.

With the space H0 at hand, we consider the following problem: find λ ∈ R and
0 6= (σ,u) ∈ H0 ×Qu such that

a0(σ, τ ) + b(τ ,u) = 0 ∀τ ∈ H0,(2.6)

b(σ,v) = −λ(u,v) ∀v ∈ Qu,(2.7)

where a0 : H0 ×H0 → R is a bounded bilinear form defined by

a0(ξ, τ ) :=
1

2µ

∫
Ω

ξd : τ d ∀(ξ, τ ) ∈ H0 ×H0.

We remark that the pressure can be recovered with the third equation of system (2.1).

Remark 2.1. It is easy to check that (λ,σ, p,u) ∈ R × H × Q is a solution of
problem (2.4)–(2.5) if and only if (λ,σ,u) ∈ R × H0 × Q is a solution of problem
(2.6)–(2.7), together with the third equation of system (2.1) (see [15, Lemma 2.3]).

For the analysis of the mixed problem (2.6)–(2.7) we invoke the following result
(see [5, Ch. 9, Proposition 9.1.1])

(2.8) ‖τ‖20,Ω . ‖τ d‖20,Ω + ‖div τ‖20,Ω ∀τ ∈ H0.

Let us introduce the kernel of the operator induced by b(·, ·)

V := {τ ∈ H0 : b(τ ,v) = 0 ∀v ∈ Q} = {τ ∈ H0 : div τ = 0}.

With the aid of (2.8) it is easy to check that a0(·, ·) is coercive in V (see [15,
Subsection 2.3]). On the other hand, there exists a positive constant β such that the
following inf-sup condition for b(·, ·) holds (see [15, Theorem 2.1])
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sup
0 6=τ∈H0

b(τ ,v)

‖τ‖div,Ω
≥ β‖v‖0,Ω ∀v ∈ Qu.

With these results at hand, we are in position to introduce the solution operator

(2.9) T : Qu → Qu, f 7→ Tf := û,

where the pair (σ̂, û) ∈ H0 × Qu is the solution of the following well posed source
problem

a0(σ̂, τ ) + b(τ , û) = 0 ∀τ ∈ H0,(2.10)

b(σ̂,v) = −(f ,v) ∀v ∈ Qu,(2.11)

implying that T is well defined due to the Babuŝka-Brezzi theory. Moreover, we have
the following estimate

(2.12) ‖σ̂‖div,Ω + ‖û‖0,Ω . ‖f‖0,Ω.

Moreover, it is easy to check that T is self-adjoint respect to the [L2(Ω)]n inner

product. Indeed, given f̂ , f̃ ∈ Qu, let (σ̂, û) ∈ H0 ×Qu and (σ̃, ũ) ∈ H0 ×Qu be

the solutions to problem (2.10)–(2.11) with right hand sides f̂ and f̃ , respectively.

Assume that T f̂ = û and T f̃ = ũ. From the symmetry of a0(·, ·) and (·, ·)0,Ω we
have that

(f̂ ,T f̃)0,Ω = (f̂ , ũ)0,Ω = −b(σ̂, ũ) = −b(σ̃, û) = (f̃ , û)0,Ω = (T f̂ , f̃)0,Ω.

We observe that (λ, (σ,u)) ∈ R × H0 ×Qu solves (2.6)–(2.7) if and only if (κ,u) is
an eigenpair of T , i.e. Tu = κu with κ := 1/λ.

From [13, 32] we have the following regularity result for the Stokes spectral prob-
lem.

Theorem 2.2. If (λ,u, p) ∈ [H1
0(Ω)]n×L2

0(Ω)×R solves (1.1), there exists s > 0
such that u ∈ [H1+s(Ω)]n and p ∈ Hs(Ω).

We observe that Theorem 2.2, together with the first and second equations of
(2.1) reveal that divσ ∈ [H1+s(Ω)]n and σ ∈ [Hs(Ω)]n, respectively. This additional
regularity for the pseudotress tensor is a key ingredient for the numerical approxima-
tion.

Remark 2.3. Note that the estimate

(2.13) ‖σ̂‖s,Ω + ‖û‖1+s,Ω . ‖f‖0,Ω

holds. Hence, the operator T is compact. Moreover, the spectrum of T satisfies
sp(T ) = {0} ∪ {µk}k∈N, where {µk}k∈N ∈ (0, 1) is a sequence of real positive eigen-
values which converges to zero, repeated according their respective multiplicities.

We have from Remark 2.1 that problems (2.4)–(2.5) and (2.6)–(2.7) are equivalent.
However, the finite element discretizations for these problems are not equivalent (cf.
Section 3). Hence, to obtain error estimates for our methods, we need to consider an
additional solution operator associated with the problem (2.4)–(2.5).



6 FELIPE LEPE, GONZALO RIVERA, AND JESUS VELLOJIN

Now, let T̃ be the solution operator defined by

(2.14) T̃ : Qu → Qu, f 7→ T̃ f̃ := ũ,

where (σ̃, p̃, ũ) ∈ H×Qu is the solution of the following source problem

a((σ̃, p̃), (τ , q)) + b(τ , ũ) = 0 ∀(τ , q) ∈ H,

b(σ̃,v) = −(f̃ ,v) ∀v ∈ Qu.

Thanks to Remark 2.1 and the fact that the operator T is well-defined, we have that
also that T̃ is well defined (see [15, Theorem 2.2]).

Moreover, it is easy to check that T̃ is self-adjoint respect the [L2(Ω)]n- inner
product and that the pair (λ, (σ, p,u)) ∈ R×H×Qu solves (2.4)–(2.5) if and only if

(κ,u) is an eigenpair of T̃ . Hence, T̃ is compact and sp(T̃ ) = sp(T ) = {0}∪{µk}k∈N.

3. The mixed finite element method. The present section deals with the
finite element approximation for the eigenvalue problem. To do this task, we begin by
introducing a regular family of triangulations of Ω denoted by {Th}h>0. Let hT the
diameter of a triangle T of the triangulation and let us define h := max{hT : T ∈ Th}.

Given an integer ` ≥ 0 and a subset D of Rn, we denote by P`(D) the space of
polynomials of degree at most ` defined in D.

3.1. The finite element spaces. In our study, we consider two numerical
schemes that only differ in the space that approximates the pseudostress. Hence,
we only refer to Hσh as the finite element space related to the approximation of σ. For
the velocity field, we consider the space Qu

h and for the pressure Qph. In what follows,
we specify each of these finite dimensional spaces.

For k ≥ 0 we define the local Raviart-Thomas space of order k as follows (see [5])

RTk(T ) = [Pk(T )]n ⊕ Pk(T )x,

where if t denotes the transpose operator, xt represents a generic vector of Rn. Hence,
the global Raviart-Thomas space is defined by

RTk(Th) := {τ ∈ H(div,Ω) : τ |tT ∈ RTk(T ), ∀T ∈ Th}.

More precisely, in the definition above τ |tT must be understood as (τi1, τi2)t ∈
RTk(T ) for all i ∈ {1, 2} when n = 2, and (τj1, τj2, τj3)t ∈ RTk(T ) for all j ∈ {1, 2, 3}
when n = 3.

On the other hand, we define the space of piecewise polynomials of degree at most
k

Pk(Th) := {v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀T ∈ Th}.

In addition, we introduce the Brezzi-Douglas-Marini finite element space [8],

BDMk := [Pk(Th)]n ∩H with k ≥ 1.

It is well known from the literature that RTk−1 ⊂ BDMk ⊂ RTk for all k ≥ 1
(see [5, Section 2]). Moreover, the number of degrees of freedom per edge is the
same for both finite elements, however, the number of internal degrees of freedom of
Brezzi-Douglas-Marini (BDMk) elements is less than that of standard finite elements
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of the same order such as Raviart-Thomas (RTk). A count of the internal degrees of
freedom for n = 2 gives

BDMk : 2(k − 1)(k + 1), RTk : 2k(k + 1),

and for n = 3

BDMk :
3

2
(k − 1)(k + 1)(k + 2), RTk :

3

2
k(k + 1)(k + 2).

3.2. Approximation errors. In the following, some approximation results for
discrete spaces are presented. To make matters precise, since we consider two spaces
to approximate the pseudostress tensor, we need to introduce suitable interpolators
for each finite element space, namely, Raviart-Thomas and BDM spaces. We begin
with the classical approximation property for piecewise polynomials (see [5]). Let
Rh : [L2(Ω)]n → [Pk(Th)]n. The following estimate holds

(3.1) ‖v −Rhv‖0,Ω . hmin{t,k+1}‖v‖t,Ω ∀t ∈ [Ht(Ω)]n ∩ [L2(Ω)]n.

For the Raviart-Thomas spaces, we have the following approximation results: let
ΠRT
h : [Ht(Ω)]n×n → RTk be the tensorial version of the Raviart-Thomas interpolation

operator , which satisfies the following classical error estimate, see [9, 31],

(3.2) ‖τ −ΠRT
h τ‖0,Ω . hmin{t,k+1}‖τ‖t,Ω ∀τ ∈ [Ht(Ω)]n×n, t ≥ 1.

Also, thanks to the commuting diagram, if div τ ∈ [Hr(Ω)]n with r ≥ 0 we have the
following result

(3.3) ‖div(τ −ΠRT
h τ )‖0,Ω = ‖div τ −Rh div τ‖0,Ω . hmin{r,k+1}‖div τ‖r,Ω.

Moreover, ΠRT
h can also be defined as ΠRT

h : [Ht(Ω)]n×n ∩ H(div,Ω) → RTk for all
t ∈ (0, 1], and we have the following estimate
(3.4)
‖τ −ΠRT

h τ‖0,Ω . ht(‖τ‖t,Ω + ‖div τ‖0,Ω) ∀τ ∈ [Ht(Ω)]n×n ∩H(div,Ω) t ∈ (0, 1].

For the BDM spaces, we have the following properties: let ` ≥ 1 and let ΠBDM
h :

[Ht(Ω)]n×n → BDM` be the tensorial version of the BDM-interpolation operator,
which satisfies the following classical error estimate, see [18, Theorem 3.16],

(3.5) ‖τ −ΠBDM
h τ‖0,Ω . hmin{t,`+1}‖τ‖t,Ω ∀τ ∈ [Ht(Ω)]n×n, t > 1/2.

Moreover, for less regular tensorial fields we have the following estimate
(3.6)
‖τ −ΠBDM

h τ‖0,Ω . ht(‖τ‖t,Ω +‖τ‖div,Ω) ∀τ ∈ [Ht(Ω)]n×n∩H(div,Ω), t ∈ (0, 1/2].

The following commuting diagram property holds true

(3.7) ‖div(τ −ΠBDM
h τ )‖0,Ω = ‖div τ −Rh div τ‖0,Ω . hmin{t,`}‖div τ‖t,Ω,

for div τ ∈ [Ht(Ω)]n and Rh being the [L2(Ω)]n-orthogonal projection onto
[P`−1(Th)]n.

We conclude this section by introducing the following notations

Hσ0,h :=

{
τ ∈ Hσh :

∫
Ω

tr(τ ) = 0

}
,
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where Hσh ∈ {RTk,BDMk+1}. Also, we define Qph := Pk(Th), Qu
h := [Pk(Th)]n and

Hh := Hσh ×Q
p
h.

Therefore, as a consequence of (3.1)–(3.7), we have the following approximation
properties for k ≥ 0: For each t > 0 and for each τ ∈ Ht(Ω)∩H0 with div τ ∈ [Ht(Ω)]n

there exists τh ∈ Hσ0 such that

(3.8) ‖τ − τh‖div,Ω . hmin{t,k+1} (‖τ‖t,Ω + ‖div τ‖t,Ω) .

For q ∈ Qp there exists qh ∈ Qph such that

(3.9) ‖q − qh‖0,Ω . hmin{t,k+1}‖q‖t,Ω.

For v ∈ [Ht(Ω)]n there exists vh ∈ Qu
h such that

(3.10) ‖v − vh‖0,Ω . hmin{t,k+1}‖v‖t,Ω.

3.3. Discrete eigenvalue problems. As we claim in Section 2, discrete coun-
terparts of problems (2.4)–(2.5) and (2.6)–(2.7) are not equivalent (see [15, Lemma
3.1] for further details). Hence, we need to analyze each discrete eigenvalue problem
separately.

With the discrete spaces defined above, we are in position to introduce the dis-
cretization of problem (2.4)–(2.5): Find λh ∈ R and 0 6= (σh, ph,uh) ∈ Hh×Qu

h such
that

a((σh, ph), (τh, qh)) + b(τh,uh) = 0 ∀(τh, qh) ∈ Hh,(3.11)

b(σh,vh) = −λh(uh,vh) ∀vh ∈ Qu
h .(3.12)

Similarly as in the continuous case, it is possible to consider a reduced formulation
for the discrete eigenvalue problem. These reduced discrete problem reads as follows:
find λh ∈ R and 0 6= (σh,uh) ∈ Hσ0,h ×Qu

h such that

a0(σh, τh) + b(τh,uh) = 0 ∀τh ∈ Hσ0,h,(3.13)

b(σh,vh) = −λ(uh,vh) ∀vh ∈ Qu
h .(3.14)

It has been proved in [15, Lemma 3.2] that there exists a positive constant β,
independent of h, such that the following inf-sup condition holds

(3.15) sup
06=τh∈Hσ

0,h

b(τh,vh)

‖τh‖div,Ω
≥ β‖vh‖0,Ω ∀vh ∈ Qu

h .

On the other hand, the discrete kernel of b(·, ·) (namely, the kernel of the operator
induced by b(·, ·)) is defined by

Vh := {τ ∈ Hσ0,h : b(τ ,v) = 0 ∀v ∈ Qu
h} = {τ ∈ Hσ0,h : div τ = 0 in Ω}.

In [15, Theorem 3.1] the authors have stated that a0(·, ·) is coercive in Vh and that
b(·, ·) satisfies the corresponding discrete inf-sup condition.

With these ingredients at hand, we are in position to introduce the discrete solu-
tion operator associated to (3.13)–(3.14)

T h : Qu → Qu
h , f 7→ T hf := ûh,
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where (σ̂h, ûh) ∈ Hσ0,h ×Qu
h is the solution of the following source problem

a0(σ̂h, τh) + b(τh, ûh) = 0 ∀τh ∈ Hσ0,h,(3.16)

b(σ̂h,vh) = −(f ,vh) ∀vh ∈ Qu
h ,(3.17)

which according to the Babuŝka-Brezzi theory, is well posed (see [5]).
As is stated in [15, Lemma 3.1], a necessary condition for the equivalence between

discrete problem (3.11)–(3.12) and problem (3.13)–(3.14) is that tr(Hσ0,h) ⊂ Qph and,
since in this case, this condition does not hold, we need to define the following discrete
solution operator T̃ h associated with the problem (3.11)–(3.12)

T̃ h : Qu → Qu
h , f̃ 7→ T̃ hf̃ := ũh,

where the triplet (σ̃h, p̃h, ũh) ∈ Hh×Qu
h is the solution of the following source problem

a((σ̃h, p̃h), (τh, qh)) + b(τh, ũh) = 0 ∀(τh, qh) ∈ Hh,

b(σ̃h,vh) = −(f̃ ,vh) ∀vh ∈ Qu
h .

Observe that [15, Theorem 3.3] guarantees that T̃ h is well-defined.

4. Convergence and Error estimates. Since T is compact, under the ap-
proach of the classic compact operator theory of [3], the present section is dedicated
to derive approximation results related to the continuous and discrete solutions op-
erators, leading to the approximation of the respective spectrums. Once we obtain
these results, error estimates for the eigenfunctions and eigenvalues will be proved.
We remark that, for both of the numerical schemes considered in our paper, these
results are valid.

4.1. Convergence analysis. We begin by analyzing the convergence of T h to
T as h goes to zero. Since our aim is to use the compact operators theory, this
convergence is in norm, more precisely, and due to the definition of T , in the L2(Ω)
norm. This analysis is presented in the following result.

Lemma 4.1. Let f ∈ Qu. If Πh represents the RT-interpolation operator (ΠRT
h )

or the BDM-interpolation operator (ΠBDM
h ), as appropriate, there holds

‖(T − T h)f‖0,Ω . ‖σ̂ −Πhσ̂‖0,Ω + ‖û−Rhû‖0,Ω,

and

‖(T̃ − T̃ h)f‖0,Ω . ‖σ̃ −Πhσ̃‖0,Ω + ‖p̃−Rhp̃‖0,Ω + ‖ũ−Rhũ‖0,Ω,

where the hidden constant are independent of h.

Proof. Let f ∈ Qu be such that Tf = û and T hf = ûh where û is the solution
of (2.10)–(2.11) and ûh is the solution of (3.16)–(3.17), we have

(4.1) ‖(T − T h)f‖0,Ω = ‖û− ûh‖0,Ω ≤ ‖û−Rhû‖0,Ω + ‖Rhû− ûh‖0,Ω.

Set vh := Rhû− ûh ∈ Qu
h in (3.15). Then

‖Rhû− ûh‖0,Ω ≤
1

β
sup

0 6=τh∈Hσ
0,h

b(τh,Rhû− ûh)

‖τh‖div,Ω
.
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Now, the fact that τh ∈ Hσ0,h, then div(τh) ∈ Qu
h and using that Rh is the L2(Ω)-

orthogonal projector, we have

b(τh,Rhû− ûh) = b(τh, û)− b(τh, ûh)

= a0(σ̂h, τh)− a0(σ̂, τh) . ‖σ̂h − σ̂‖0,Ω‖τh‖0,Ω,

where we have used (2.10) and (3.16). Therefore

(4.2) ‖Rkhû− ûh‖0,Ω . ‖σ̂h − σ̂‖0,Ω.

The following step is to bound ‖σ̂− σ̂h‖0,Ω. From the triangle inequality we have

(4.3) ‖σ̂ − σ̂h‖0,Ω ≤ ‖σ̂ −Πhσ̂‖0,Ω + ‖Πhσ̂ − σ̂h‖0,Ω,

where Πh is the RT-interpolation operator (ΠRT
h ) or the BDM-interpolation operator

(ΠBDM
h ), as appropriate.
Now, using that (Πhσ̂ − σ̂h) ∈ Hσ0,h, the commuting diagram property (3.3) or

(3.7), as appropriate, together with (2.11) and (3.17), we obtain the following

div(Πhσ̂) = Rh(div σ̂) = Rh(−f) = div σ̂h,

where it is straightforward that div (Πhσ̂ − σ̂h) ∈ Vh.
Now, using that a0(·, ·) is coercive in Vh, then, there exists α > 0 such that

α‖Πhσ̂ − σ̂h‖20,Ω = α‖Πhσ̂ − σ̂h‖2div,Ω
≤ a0(Πhσ̂,Πhσ̂ − σ̂h)− a0(σ̂h,Πhσ̂ − σ̂h)

= a0(Πhσ̂,Πhσ̂ − σ̂h)− a0(σ̂,Πhσ̂ − σ̂h)− b(Πhσ̂ − σ̂h, û)

= a0(Πhσ̂ − σ̂,Πhσ̂ − σ̂h)

. ‖Πhσ̂ − σ̂‖0,Ω‖Πhσ̂ − σ̂h‖0,Ω.

These calculations imply that

(4.4) ‖Πhσ̂ − σ̂h‖0,Ω . ‖Πhσ̂ − σ̂‖0,Ω,

and, invoking (4.1), (4.2), (4.3) and (4.4), we have

‖(T − T h)f‖0,Ω . ‖û−Rhû‖0,Ω + ‖Πhσ̂ − σ̂‖0,Ω.

where the hidden constant is independent of h.
For the approximation error ‖(T̃ − T̃ h)f‖0,Ω, the derivation is similar as the

previous estimate. This concludes the proof.

We remark that Lemma 4.1 is a general result that holds for finite elements spaces
that satisfy the commuting diagram properties (3.3) or (3.7). If we are more specific
in the numerical scheme, the lemma above becomes into an error estimate for each
scheme.

Since we are dealing with two numerical schemes and two discrete eigenvalue
problems, as corollaries, we derived the following results. The first corresponds to the
approximation error between T and T h.

Corollary 4.2 (Approximation between T and T h). Let f ∈ Qu. Un-
der the assumptions of Theorem 2.2, if the approximation schemes [Pk]n-RTk or
[P]nk -BDMk+1 are considered, then for 0 < s < k + 1, there holds

‖(T − T h)f‖0,Ω . hs‖f‖0,Ω,
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where the hidden constant is independent of h.

Proof. If s > 1/2 the proof follows from (2.13), the first estimate of Lemma
4.1, the approximation properties (3.2) for RT and (3.5) for BDM, and (3.10). If
0 < s ≤ 1/2 the proof follows from (2.12), (2.13), the first estimate of Lemma 4.1,
the approximation properties (3.4) for RT and (3.6) for BDM, and (3.10)

Now we present the analogous of Corollary 4.2, but for the error between T̃ and T̃ h.
The proof follows the same arguments of corollary above, so we skip the details.

Corollary 4.3 (Approximation between T̃ and T̃ h). Let f ∈ Qu. Under the
assumptions of Theorem 2.2, if the approximation schemes [Pk]n-Pk-RTk or [P]nk -Pk-
BDMk+1 are considered, then for s as in Corollary 4.2, there holds

‖(T̃ − T̃ h)f‖0,Ω . hs‖f‖0,Ω,

where the hidden constant is independent of h.

As a consequence of the previous results, it is immediate that our numerical
methods are spurious free, as is stated in the following result (see [19] for instance).

Theorem 4.4. Let V ⊂ C be an open set containing sp(T ). Then, there exists
h0 > 0 such that sp(T h) ⊂ V for all h < h0.

4.2. Error estimates. We end the this section deriving error estimates for the
eigenfunctions and eigenvalues.

Observe that according to Corollary 4.2, if κ ∈ (0, 1) is an isolated eigenvalue of
T with multiplicity m, and E its associated eigenspace, then, there exist m eigenval-

ues κ
(1)
h , ..., κ

(m)
h of T h, repeated according to their respective multiplicities, which

converge to κ. Let Eh be the direct sum of their corresponding associated eigenspaces
(see [19]). We recall the definition of the gap δ̂ between two closed subspaces X and
Y of L2(Ω):

δ̂(X ,Y) := max
{
δ(X ,Y), δ(Y,X )

}
, where δ(X ,Y) := sup

x∈X
‖x‖0,Ω=1

(
inf
y∈Y
‖x− y‖0,Ω

)
.

The following result holds.

Theorem 4.5. For k ≥ 0, the following error estimates for the eigenfunctions
and eigenvalues hold

δ̂(E , Eh) . hmin{s,k+1} and |µ− µh(i)| . hmin{s,k+1},

where the hidden constants are independent of h.

Proof. The proof follows applying the results [3, 6, 7].

The next result provides a double order of convergence for the eigenvalues.

Theorem 4.6. For k ≥ 0, there exists a strictly positive constant h0 such that,
for h < h0 there holds

|λ− λh| . h2 min{s,k+1},

where the hidden constant is independent of h.
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Proof. Let (λ,σ,u) be the solution of problem (2.10)–(2.11) and let (λh,σh,uh)
be the solution of problem (3.13)–(3.14) with ‖uh‖0,Ω = ‖u‖0,Ω = 1. The following
identity can be followed from the proof of Lemma 4 of [12]

λ− λh =
1

2µ
‖σd − σdh‖20,Ω − λh‖u− uh‖20,Ω.

Then

|λ− λh| . ‖σ − σh‖20,Ω + ‖u− uh‖20,Ω,

where the hidden constant is independent of h. The proof is completed with an
application of the estimate given in [31, Theorem 11.2], together with properties (3.8)–
(3.10), the additional regularity result given in Theorem 2.2 and the first equation of
(2.1).

5. Numerical experiments. In this section we report some numerical tests
in order to assess the performance of the proposed mixed element method, in the
computation of the eigenvalues of problem (3.11)–(3.12). In all our experiments we
consider the boundary condition u = 0 and µ = 1/2.

We have implemented the discrete eigenvalue problem in a FEniCS code [24, 1].
The rates of convergence have been computed with a least-square fitting.

The schemes are tested in two-dimensional and three-dimensional domains under
different geometrical conditions, such as convexity, non-convexity or curved domains.
For all the geometric configurations, we compute the lowest eigenvalues and conver-
gence orders. For the two-dimensional domains we prove the schemes with polynomi-
als degrees k = 0, 1, 2, except in the 3-D domains, where we only consider k = 0 due to
limitations of machine memory. With the computed results at hand, we compare the
schemes that only differ on the H(div) finite element space. Let us remark that, for
the first test, we have also programmed the reduced scheme (3.13)–(3.14), but there is
no significant change in the approximation results. This allows us to perform the rest
of the numerical tests with the scheme (3.11)–(3.12), which provides the pressure in
the preprocess. However, for computational efficiency purposes, the choice of (3.13)–
(3.14) is preferred because it is simpler and involves fewer degrees of freedom. This
becomes an important factor in three-dimensional problems (see Section 5.4 below).

In what follows, N denotes the mesh resolution, with h ∼ N−1, and dof denotes
the degrees of freedom, which will depends on the numerical scheme used.

In each test we also report plots of the associated eigenfunctions, in particular the
velocity fields and pressure fluctuations. Moreover, in several experiments we consider
the relative errors eλi i = 1, 2, 3, 4 for different choices of k, where

eλi
:=
|λhi
− λextri |
|λextri |

.

Finally, we denote by eλi
(RT) and eλi

(BDM) the relative errors obtained using
[Pk]n-Pk-RTk and [Pk]n-Pk-BDMk+1 schemes, respectively.

5.1. Test 1: Square. In this test we consider as computational domain the
square Ω := (−1, 1)2, where the number of elements scales as 2N2. The meshes for
the following tests are the presented in Figure 1. We observe that the convexity of this
domain leads to sufficiently smooth eigenfunctions for the Stokes eigenvalue problem.
This fact implies that the order of convergence will be optimal. The polynomial
degrees considered for the test are k = 0, 1, 2.
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Fig. 1. Test 1. Examples of the meshes used in the unit square. The left figure represents a
mesh for N = 4 and the right one for N = 6.

Table 1
Test 1. Lowest computed eigenvalues for polynomial degrees k = 0, 1, 2 using the [Pk]n-Pk-RTk

scheme.

k N = 10 N = 20 N = 30 N = 40 Order λextr [26] [25]

13.18205 13.10744 13.09534 13.09127 2.21 13.08688 13.0860 13.086
21.08840 22.63791 22.85202 22.93446 2.40 22.99702 23.0308 23.031

0
21.33183 22.69036 22.88083 22.93810 2.46 22.99245 23.0308 23.031
27.96811 31.27226 31.70100 31.81983 2.59 31.93357 32.0443 32.053
33.42538 37.66786 38.18478 38.32443 2.69 38.44565 38.5252 38.532
13.08698 13.08620 13.08617 13.08617 4.56 13.08617 13.0860 13.086
23.04310 23.03182 23.03123 23.03114 4.04 23.03109 23.0308 23.031

1
23.04310 23.03182 23.03123 23.03114 4.04 23.03109 23.0308 23.031
32.07944 32.05400 32.05270 32.05249 4.07 32.05239 32.0443 32.053
38.60095 38.53594 38.53227 38.53165 3.92 38.53134 38.5252 38.532
13.08528 13.08616 13.08617 13.08617 5.84 13.08617 13.0860 13.086
23.03116 23.03109 23.03109 23.03109 6.00 23.03109 23.0308 23.031

2
23.03116 23.03109 23.03109 23.03109 6.00 23.03109 23.0308 23.031
32.05268 32.05239 32.05239 32.05239 6.00 32.05239 32.0443 32.053
38.53256 38.53138 38.53136 38.53136 5.97 38.53136 38.5252 38.532

Table 2
Test 1. Lowest computed eigenvalues for polynomial degrees k= 0, 1, 2 using the

[Pk]n-Pk-BDMk+1 scheme.

k N = 10 N = 20 N = 30 N = 40 Order λextr [26] [25]

13.39520 13.16477 13.12123 13.10591 1.97 13.08574 13.0860 13.086
23.74378 23.22000 23.11593 23.07899 1.89 23.02641 23.0308 23.031

0
24.19514 23.32856 23.16384 23.10587 1.96 23.02865 23.0308 23.031
33.73344 32.50272 32.25523 32.16703 1.87 32.03920 32.0443 32.053
41.15209 39.23059 38.84532 38.70858 1.88 38.51262 38.5252 38.532
13.08919 13.08636 13.08621 13.08618 3.99 13.08617 13.0860 13.086
23.04441 23.03195 23.03126 23.03115 3.96 23.03109 23.0308 23.031

1
23.05331 23.03253 23.03138 23.03118 3.95 23.03109 23.0308 23.031
32.10055 32.0555 32.05302 32.05259 3.92 32.05238 32.0443 32.053
38.61259 38.53671 38.53243 38.53170 3.92 38.53134 38.5252 38.532
13.08618 13.08617 13.08617 13.08617 6.16 13.08617 13.0860 13.086
23.03117 23.03109 23.03109 23.03109 6.04 23.03109 23.0308 23.031

2
23.03128 23.03110 23.03109 23.03109 6.01 23.03109 23.0308 23.031
32.05303 32.05240 32.05239 32.05239 6.02 32.05239 32.0443 32.053
38.53239 38.53138 38.53136 38.53136 5.92 38.53136 38.5252 38.532

In Table 1 we report the first five eigenvalues computed with the [Pk]n-Pk-RTk
scheme, considering different meshes and polynomial degrees. In the column λextr we
report extrapolated values, obtained with a least square fitting, which we compare
with two well known references that have dealt with the same domain. We observe that
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our extrapolated values are close to those in [26, 25] and that the rates of convergence
are as we expect. In fact, we notice that for k = 0, the order of approximation is clearly
O(h2), meanwhile for k > 0 the observed order is close to O(h2(k+1)) ' O(dof−(k+1)).

On the other hand, Table 2 shows the computed eigenvalues when using the
[Pk]n-Pk-BDMk+1 scheme, where we observe that an optimal rate of convergence
O(h2(k+1)) is reached for high order elements. For instance, in Figure 3 we observe
that, except for the noise present in the error slopes, the scheme allows to stay on the
optimal rate of convergence. To complete the experiment, we present in Figure 2 the
first, third and fourth lowest computed eigenfunctions on the square domain, and in
Figure 3 we present the error behavior on the chosen numerical schemes.

Fig. 2. Test 1. Approximate velocity field uh (top row) and pressure ph (bottom row), corre-
sponding to the first, third and fourth lowest eigenvalues in the square domain.

5.2. Test 2: Circular domain. In this test we consider the unit circle as
computational domain, which we define by Ω := {(x, y) ∈ R2 : x2 + y2 ≤ 1}. The
relevance of this experiment is that we are approximating a curved domain with
triangular meshes, which lead to a variational crime. In Figure 4 we present examples
of the quasi-uniform triangular meshes considered to approximate the circular domain.

The fact that we are approximating a curved domain by means of a polygonal
one is reflected in the numerical experiments presented below in Table 3 where, in-
dependent of the polynomial degree, the order of convergence is O(h2) ' O(dof−1)
for all k ≥ 0. The results from using the [Pk]n-Pk-BDMk+1 scheme are described in
Table 4, where similar rates of convergence are observed. We recall that N represents
the mesh resolution such that the number of elements is 6N2. In Figure 5 we present
the approximated eigenfunctions for the lowest frequencies. We further describe the
results obtained in Figure 6, where we observe the experimental rates obtained, which
are in good agreement with those predicted by theory.
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Fig. 3. Test 1. Comparison of the eigenvalues error behavior in the square domain using
the [Pk]n-Pk-RTk and [Pk]n-Pk-BDMk+1 schemes. The experiment considers polynomials of degree
k = 0 (left) and k = 1 (right).

Fig. 4. Test 2. Meshes used in the circular domain.

Table 3
Test 2. Lowest computed eigenvalues for polynomial degrees k = 0, 1, 2 using the [Pk]n-Pk-RTk

scheme.

k N = 20 N = 30 N = 40 N = 50 Order λextr [21]

14.94827 14.79867 14.74712 14.72354 2.04 14.68251 14.68345
26.81747 26.56803 26.48211 26.44329 2.05 26.37559 26.37840

0
26.81821 26.56845 26.48262 26.44365 2.06 26.37683 26.37862
41.32838 40.98177 40.85915 40.80453 2.01 40.70533 40.71434
41.34096 40.98359 40.86093 40.80487 2.05 40.70809 40.71606
14.94196 14.79448 14.74448 14.72169 2.08 14.68323 14.68345
26.84091 26.57657 26.48686 26.44594 2.08 26.37704 26.37840

1
26.84099 26.57662 26.48687 26.44595 2.08 26.37703 26.37862
41.42501 41.01797 40.87964 40.81652 2.08 40.71046 40.71434
41.42543 41.01805 40.87966 40.81654 2.08 40.71037 40.71606
14.94315 14.79487 14.74464 14.72177 2.09 14.68361 14.68345
26.84301 26.57727 26.48715 26.44610 2.08 26.37680 26.37840

2
26.84303 26.57728 26.48716 26.44610 2.08 26.37680 26.37862
41.42807 41.01900 40.88008 40.81675 2.08 40.71012 40.71434
41.42814 41.01902 40.88008 40.81676 2.08 40.71010 40.71606

5.3. Test 3: The L-Shape domain.. In this numerical test we consider an
L-shape domain given by Ω := (−1, 1) × (−1, 1)\

(
(−1, 0) × (−1, 0)

)
. In Table 5 we

report the results when using [Pk]n-Pk-RTk and [Pk]n-Pk-BDMk+1 schemes to solve
the discrete eigenvalue problem. Note that the singularity produced by the reentrant
corner yields to a rate of convergence around 1.7 (see [25] for instance), as can be seen
in the lowest computed eigenvalue. In fact, we observe that the order of convergence
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Table 4
Test 2. Lowest computed eigenvalues for polynomial degrees k= 0, 1, 2 using the

[Pk]n-Pk-BDMk+1 scheme.

k N = 20 N = 30 N = 40 N = 50 Order λextr [21]

14.82469 14.71768 14.69784 14.69090 2.00 14.68199 14.68345
26.77392 26.47427 26.41889 26.39951 2.00 26.37450 26.37840

0
26.77392 26.47427 26.41889 26.39951 2.00 26.37450 26.37862
41.56881 40.92423 40.80343 40.76105 1.98 40.70545 40.71434
41.56881 40.92423 40.80343 40.76105 1.98 40.70545 40.71606
14.70933 14.68872 14.68496 14.68365 2.02 14.68199 14.68345
26.42481 26.38682 26.38000 26.37764 2.05 26.37473 26.37840

1
26.42481 26.38682 26.38000 26.37764 2.05 26.37703 26.37862
40.78741 40.72552 40.71483 40.71115 2.11 40.70686 40.71434
40.78741 40.72552 40.71483 40.71115 2.11 40.70686 40.71606
14.70930 14.68873 14.68496 14.68365 2.02 14.68200 14.68345
26.42370 26.38677 26.38000 26.37764 2.02 26.37467 26.37840

2
26.42370 26.38677 26.38000 26.37764 2.02 26.37467 26.37862
40.78222 40.72523 40.71478 40.71113 2.02 40.70655 40.71434
40.78222 40.72523 40.71478 40.71113 2.02 40.70655 40.71606

Fig. 5. Test 2. Approximate velocity field uh (top row) and pressure ph (bottom row), corre-
sponding to the first, third and fourth lowest eigenvalues in the unit circular domain.

is 2s ≥ 1.08, as is predictable in this geometry. For better visualization, we explore
this result in the relative error plots in Figure 7, where the slopes are compared with

O(dof−
√

3/2) ' O(h1.7), which is the best order possible with uniform refinements.
We end this test reporting plots of the velocity fields and pressure fluctuations in

Figure 8 where, as is expectable, high gradients around the singularity are observed.
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Fig. 6. Test 2. Comparison of the eigenvalues error behavior in the circle using the
[Pk]n-Pk-RTk and [Pk]n-Pk-BDMk+1 schemes. The experiment considers polynomials of degree
k = 0 (left) and k = 2 (right).

Table 5
Test 3. Lowest computed eigenvalues for polynomial degrees k = 0 in the L-shape domain.

Scheme N = 9 N = 15 N = 20 N = 35 Order λextr

[Pk]n-Pk-RTk

29.43565 30.83700 31.16193 31.62598 1.59 31.89457
34.98077 36.28132 36.50660 36.83669 2.03 36.94231
40.70064 41.43833 41.62290 41.83014 1.73 41.94524
46.83830 48.22776 48.47328 48.80875 2.07 48.91635
52.08483 53.96541 54.48404 55.02474 1.65 55.37238

[Pk]n-Pk-BDMk+1

32.59542 32.24970 32.14635 32.06144 1.75 32.00483
38.76953 37.57884 37.32081 37.11240 2.26 37.03276
44.76985 42.88018 42.46067 42.10765 2.19 41.96744
52.09587 50.19205 49.67367 49.20827 1.81 48.93475
58.84979 56.72442 56.20364 55.63553 1.79 55.33628

Fig. 7. Test 3. Comparison of the eigenvalues error behavior in the L-shape domain using
the [Pk]n-Pk-RTk and [Pk]n-Pk-BDMk+1 schemes. The experiment considers polynomials of degree
k = 0.

5.4. 3-D test. This test aims to confirm the accuracy of the proposed schemes
on three dimensions. To this end, we consider two scenarios: the first one considers a
cube in the region Ω = (0, 1)3, which we will use as a benchmark. Here, N scales as

the number of cells such that the number of tetrahedrons is 6(N+1)3 and N ∼ dof1/3.
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Fig. 8. Test 3. Approximate velocity field uh (top row) and pressure ph (bottom row), corre-
sponding to the first, third and fourth lowest eigenvalues in the L-shape domain.

Fig. 9. 3-D test. Examples of the meshes used in the unit cube. Left: mesh with N = 4.
Middle: mesh with N = 8. Right: mesh with N = 12.

In Figure 9 we present examples of the meshes used in the cube domain. In the second
scenario we consider the unit sphere Ω := {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1}. For this

case, the mesh resolution is such that N ∼ dof1/3. We remark that this test consists
into approximate a curved domain by means of tetrahedral meshes. In Figure 10 we
present examples of the meshes used in the experiment

The convergence results from using the lowest order approximations [P0]n-P0-RT0

and [P0]n-P0-BDM1 schemes in the unit cube domain are reported in Table 6. In Fig-
ure 13 we present the relative error plot for the approximated eigenvalues compared
with the extrapolated ones on each table. Clearly the expected rate of convergence
O(h2) ' O(dof−2/3) is attained. Together with this, the second and fourth lowest
eigenfunctions corresponding to uh and ph are depicted in Figure 12. We complete the
benchmarking with a computational cost test. Classical approaches such as Taylor-
Hood elements (P2 − P1), P2 − P0 and mini-element (P1+b − P1), where the subscript
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Fig. 10. 3-D test. Examples of the meshes used in the unit sphere. The left figure represents
a mesh for N = 8, the middle figure for N = 10 and the right figure for N = 14.

b denotes the corresponding bubble functions, are considered. The test is performed
by measuring memory consumption (MiB), flops counting double precision operations
(DPOPS), and execution times when solving the eigenvalue problem (preprocessing),
and extracting the first eigenfunction with the corresponding computation of addi-
tional variables (postprocessing). The results obtained are reported in Figure 11,
where we observe that the [P0]3-P0-BDM1, together with its reduced version are the
most expensive schemes, and hence slower, than the others. On the other hand, it
is observed that the [P0]3-P0-RT0 and [P0]3-RT0 schemes executes less DPOPS and
consumes less memory than Taylor-Hood and P2-P0 schemes. For instance, we ob-
serve that they are almost at par with the performance of the mini-element, which is
a scheme well known for its efficiency and low cost. Also, comparing the performance
of the complete and reduced schemes shows that setting the pressure as a variable in
the system is virtually free of charge.

We finish this section by presenting the results on the unit sphere case. The
convergence results are presented in Table 7. It notes that the proposed methods work
perfectly and deliver the expected double order of convergence O(h2) ' O(dof−2/3)
for both schemes, which is observed in Figure 13. For completeness, in Figure 14 we
present plots of the approximated velocity fields and pressure fluctuations associated
with the second and fourth lowest eigenvalues.

Table 6
3-D test. Lowest computed eigenvalues for polynomial degrees k = 0 in the unit cube domain.

Scheme N = 12 N = 14 N = 20 N = 22 Order λextr

[Pk]n-Pk-RTk

61.80994 61.90155 62.03636 62.05956 1.85 62.18158
61.88835 61.95891 62.06425 62.08258 1.80 62.18191
61.88835 61.95891 62.06425 62.08258 1.80 62.18191
91.46148 91.50688 91.56815 91.57848 2.17 91.62161
91.46148 91.50688 91.56815 91.57848 2.17 91.62161

[Pk]n-Pk-BDMk+1

63.01698 62.79574 62.48018 62.42719 1.99 62.17158
63.19549 62.92786 62.54560 62.48136 1.98 62.16910
63.19549 62.92786 62.54560 62.48136 1.98 62.16910
93.80876 93.24861 92.43604 92.29798 1.92 91.60166
93.80876 93.24861 92.43604 92.29798 1.92 91.60166

6. Conclusions. From our analysis and numerical tests, we derive the following
conclusions:

• The proposed numerical schemes in our study perform an accurate approxi-
mation of the eigenvalues and the associated eigenfunctions in two and three



20 FELIPE LEPE, GONZALO RIVERA, AND JESUS VELLOJIN

Fig. 11. 3-D test. Comparison of computational cost in the eigenvalue problem on the 3D unit
cube. The test considers the lowest order approximation on the augmented schemes (k = 0).

Fig. 12. 3-D test. Approximated velocity field uh (top) and pressure p (bottom), corresponding
to the second and fourth lowest eigenvalues in the unit cube domain.
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Table 7
3-D test. Lowest computed eigenvalues for polynomial degrees k = 0 in the unit sphere domain.

Scheme N = 15 N = 20 N = 25 N = 30 Order λextr

[Pk]n-Pk-RTk

20.62250 20.52408 20.47658 20.45165 1.91 20.38910
20.62132 20.52159 20.47604 20.45127 2.02 20.39546
20.61793 20.52068 20.47512 20.45118 1.99 20.39463
33.42601 33.50029 33.52026 33.53321 3.40 33.54308
33.43630 33.50574 33.52060 33.53473 3.57 33.54138

[Pk]n-Pk-BDMk+1

20.92522 20.68859 20.58360 20.52646 2.10 20.40504
20.92301 20.68732 20.58268 20.52622 2.10 20.40513
20.92037 20.68576 20.58228 20.52572 2.11 20.40671
34.64358 34.18189 33.94945 33.83133 1.82 33.50504
34.65002 34.18387 33.95073 33.83166 1.83 33.50625

Fig. 13. 3-D test. Comparison of the relative error behavior in the unit cube (left) and the unit
sphere (right) when using [Pk]n-Pk-RTk and [Pk]n-Pk-BDMk+1 schemes.

dimensions.
• For curved domains both schemes work perfectly in two and three dimensions.
• For the lowest order in both numerical schemes (k = 0) the double order

of convergence is clearly quadratic and, for k ≥ 1, the [Pk]n-Pk-BDMk+1

scheme seems to be more stable than the [Pk]n-Pk-RTk when the orders of
convergence are computed. This is due to the fact that, when [Pk]n-Pk-RTk is
considered, the computed eigenvalues are more close between them than the
scheme with BDM elements. This phenomenon is observable in the relative
error plots. However, it is preferable to choose the schemes with Raviart-
Thomas elements due to the efficiency and accuracy of the approximation.

• In non convex domains, the results are the expectable due to the singularity
of the geometry. This is an interesting fact that motivates the analysis of
adaptive schemes.
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