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1. Introduction. The approximation of eigenvalues and eigenfunctions of cer-15

tain systems involving partial differential equations is a subject in constant progress16

on the numerical analysis community, where different methods and techniques have17

emerged through the years to approximate accurately these quantities. In [7] we found18

the different approaches to study numerically eigenvalue problems arising from partial19

differential equations from the finite element method point of view, where prima and20

mixed formulations are analyzed. However, these techniques are possible to be ex-21

tended for other type of methods, particularly discontinuous Galerkin methods (DG)22

whose interesting features as for example, the meshes admit hanging-nodes with no23

restriction and elemental polynomial bases consisting of locally variable polynomial24

degrees are also admissible, owing to the lack of pointwise continuity requirements25

across the mesh-skeleton. Since the elements of the mesh does not share degrees26

of freedom (DOFs) at their interfaces, the DG method is intrinsically parallelizable,27

making it very efficient for large-scale computations. This provides a crucial benefit28

that offsets the greater number of DOFs it uses relative to the finite element method29

(FEM). Also, an important number of solvers are now available to solve the result-30

ing linear systems when the IPDG is implemented in two and three dimensions (see31

[3, 5, 8] for instance).32

The application of DG for eigenvalue problems, in particular the interior penal-33

ization approach (IPDG) was introduced, for the best of the authors’s knowledge, for34

the Laplace eigenvalue problem in [4], where the authors proved spectral correctness35

and error estimates under suitable norms. These developments have been also useful36

to tackle other eigenvalue problems as [9, 26, 23, 21, 20, 22] where the Maxwell’s37
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2 FELIPE LEPE, GONZALO RIVERA AND JESUS VELLOJIN

equations, elasticity, and flow equations, in primal and mixed formulations have been38

considered. On these references, one of the main contribution besides the mathemat-39

ical and numerical analysis, is related to the computational experimentation. More40

precisely, since the use of the IPDG method requieres the introduction of a stabi-41

lization parameter intrinsic to penalize the jumps on interments, which is positive42

and chosen proportionally to the square of the polynomial degree as is proposed in43

[9]. If this parameter is not correctly chosen on the implementation, may introduce44

undesirable eigenvalues with no physical meaning. These are the so-called spurious45

eigenvalues, and the effects of this parameter must be analyzed for IPDG methods.46

On the other hand, the IPDG has shown in the previously mentioned references a47

high accuracy on the approximation of eigenvalues for the operators in two and three48

dimensions and different geometries and boundary conditions. This makes the IPDG49

method a suitable alternative to solve eigenvalue problems arising from continuum50

mechanics.51

In the present paper, we continue with our research program related to DG to solve52

numerically eigenvalue problems now focusing our attention on the Stokes-Brinkman53

eigenvalue problem. This problem, already studied in for example [32] for the load54

problem, has the particularity of interpolate between pure Stokes flow and damped55

flow in porous media (similar to Brinkman or Darcy–Stokes). Now, the eigenvalue56

problem version of this problem is stated as follows: let Ω ⊂ Rd, with d ∈ {2, 3},57

be an open bounded domain with Lipschitz boundary ∂Ω. Let Γ1 and Γ2 be disjoint58

open subset of ∂Ω such that ∂Ω = Γ1 ∪Γ2. Considering a steady-state of the balance59

laws for linear fluid equations, the problem to be studied is given as follows60

K−1u− ν∆u+∇p = λu in Ω,(1.1)61

divu = 0 in Ω,(1.2)62

u = 0 on Γ1,(1.3)63

(ν∇u− pI)n = 0 on Γ2,(1.4)64

where u represents the fluid velocity, p is the pressure, I ∈ Rd×d denotes the identity65

matrix, the tensor K is the parameter associated to the permeability of the domain, ν66

is the viscosity of the fluid, and n represents the unit normal. For tensor K we assume67

that is bounded, symmetric, and positive definite. Let us observe that if K−1 → 0,68

system (1.1)–(1.4) is nothing but a Stokes eigensystem, while if ν = 0, we have Darcy’s69

law, which we do not consider for the analysis of an eigenvalue problem. Regarding70

the domain Ω, we split it in two media Ω := ΩS ∪ ΩD, where ΩS and ΩD represent71

subdomains where there is free flow and porous media, respectively. For the free-flow72

domain, we take K−1 = 0, while K−1 ≫ 0 is considered in ΩD. This allows to study73

the eigenmodes on domains where we have membrane-like behavior or internal filters.74

System (1.1)–(1.4) has been previously studied in [25] using inf-sup stable finite75

elements. In that work, convergence of the solution operators is established, along76

with both a priori and a posteriori error analyses. On this reference is analyzed77

how eigenvalues—and consequently, eigenfunctions—are affected by variations in the78

permeability of the medium in both two and three dimensions. Although the finite79

element method (FEM) is a well-known and effective technique for approximating80

the spectrum of operators, it remains somewhat restrictive compared to more general81

methods—particularly IPDG methods, which offer greater flexibility, as previously82

mentioned. Now our goal is to extend the results of [25] to a more general method83

as the IPDG method. Unlike [25], where the analysis is based on the theory of84

compact operators, the analysis of nonconforming methods such as IPDG requires85
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DG METHODS FOR THE STOKES-BRINKMAN EIGENVALUE PROBLEM 3

the theoretical framework developed in [10, 11] in order to establish convergence and86

derive error estimates, as shown, for instance, in [4, 20]. Moreover, since we are dealing87

with varying permeabilities, not only can geometric singularities affect the regularity88

of certain eigenfunctions, but the heterogeneity of the permeability coefficient itself89

may also impact them in different ways. This motivates the development of an a90

posteriori error estimator that is reliable, efficient, and fully computable within the91

IPDG framework. Also, these analyzes need to be supported with numerical tests. In92

this sense, as we discussed above in the influence of the stabilization parameter, we93

theoretically prove that the solution operator associated to the velocity is well defined94

when the stabilization is sufficiently large compared with quantities depending on95

physical parameters such as viscosity and permeability (cf. Lemma 3.1) and this must96

be confirmed by the theory, motivating the design of experiments where the influence97

of the stabilization plays an important role on the convergence and the appearance98

of spurious eigenvalues, as is studied in [20, 21, 22, 23] for IPDG methods in different99

contexts.100

1.1. Outline of the paper. The notations for Lebesgue spaces, norms, and101

inner products are the standard along our manuscript. In section 2 we summarize102

some details about the model problem, solutions operators, well posedness of the load103

problem and regularity results. Immediately in section 3 we introduce the definitions104

of the elements of the mesh, norms, seminorms, polynomial spaces in order to define105

the IPDG methods. Here we introduce the discrete bilinear forms and hence, the106

IPDG discretizations of the model problem. The discrete solutions operators are107

introduced with the corresponding discrete load problems which we prove are well108

posed. With this discrete framework at hand, in section 4 we analyze convergence109

and error estimates for the discontinuous numerical schemes. Section 5 contains the110

analysis for an a posteriori error estimator of the residual type and, finally in section111

6, we report a complete experimental analysis for in order to assess the performance112

of the IPDG methods when the spectrum of the model problem is approximated.113

2. Functional framework and variational formulation. Let us establish
the functional framework in which we will operate. The space where we seek the
velocity is

HΓ1
(Ω) := {v ∈ H1(Ω) : v = 0 on Γ1},

whereas L2(Ω) is the space for the pressure. If Γ2 = ∅, then the pressure is defined114

up to a constant. Hence, we take H1
0(Ω) for the velocity space and L2

0(Ω) for the115

pressure.116

Throughout this work, we assume that the permeability tensor is positive definite117

for all v ∈ HΓ1(Ω). More precisely, there exist positive constants K∗,K∗ > 0 such118

that119

0 < K∗∥v∥20,Ω ≤ (K−1v,v)0,Ω ≤ K∗∥v∥20,Ω.120

A variational formulation for system (1.1)–(1.4) is the following: find λ ∈ R+, the121

velocity 0 ̸= u ∈ HΓ1
(Ω), and the pressure 0 ̸= p ∈ L2(Ω) such that122 ∫

Ω

K−1u · v + ν

∫
Ω

∇u : ∇v −
∫
Ω

p div v = λ

∫
Ω

u · v ∀v ∈ HΓ1
(Ω),123

−
∫
Ω

divu q = 0 ∀q ∈ L2(Ω).124
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4 FELIPE LEPE, GONZALO RIVERA AND JESUS VELLOJIN

Defining the continuous bilinear forms a : HΓ1
(Ω)×HΓ1

(Ω) → R and b : HΓ1
(Ω)×

L2(Ω) → R as follows

a(u,v) :=

∫
Ω

K−1u · v + ν

∫
Ω

∇u : ∇v, and b(v, q) := −
∫
Ω

q div v,

the weak formulation is rewritten in the following abstract form:125

Problem 2.1. Find λ ∈ R+ and (0, 0) ̸= (u, p) ∈ HΓ1(Ω)× L2(Ω) such that126 {
a(u,v) + b(v, p) = λ(u,v)0,Ω, ∀v ∈ HΓ1

(Ω),

b(u, q) = 0, ∀q ∈ L2(Ω).
127

where (·, ·)0,Ω denotes the usual L2 inner product.128

We denote by K the kernel of b(·, ·) which si defined by

K := {v ∈ HΓ1
(Ω) : b(v, q) = 0 ∀q ∈ L2(Ω)} = {v ∈ HΓ1

(Ω) : div v = 0}.

With this space at hand, it is direct to prove that bilinear form a(·, ·) satisfies129

a(u,v) ≤ max{K∗, ν}∥u∥1,Ω∥v∥1,Ω ∀u,v ∈ HΓ1(Ω),130

a(v,v) ≥ min{K∗, ν}∥v∥21,Ω ∀v ∈ K.131

On the other hand, we have that there exists β > 0 such that the following inf-sup132

condition holds133

(2.1) sup
0̸=v∈HΓ1 (Ω)

b(v, q)

∥v∥1,Ω
≥ β∥q∥0,Ω, ∀q ∈ L2(Ω).134

Let us define the following continuous bilinear form

A((u, p), (v, q)) := a(u,v) + b(v, p) + b(u, q),

which allows to rewrite Problem 2.1 in the following manner:135

Problem 2.2. Find λ ∈ R+ and (0, 0) ̸= (u, p) ∈ HΓ1(Ω)× L2(Ω) such that136

A((u, p), (v, q)) = λ(u,v)0,Ω, ∀(v, q) ∈ HΓ1
(Ω)× L2(Ω).137

For the analysis of Problem 2.1 (namely Problem 2.2) it is necessary to introduce138

the corresponding solution operators associated to the velocity and the pressure as in139

[7]. With this idea in mind, let us denote by T the operator associated to the velocity140

and S the one associated to the pressure, which are defined by141

T : L2(Ω) → HΓ1
(Ω), f 7→ Tf := ũ,142

S : L2(Ω) → L2(Ω), f 7→ Sf := p̃,143

where the pair (ũ, p̃) ∈ HΓ1(Ω)× L2(Ω) solves the following source problem144

(2.2)

{
a(ũ,v) + b(v, p̃) = (f ,v)0,Ω, ∀v ∈ HΓ1

(Ω),

b(ũ, q) = 0, ∀q ∈ L2(Ω),
145

which is well posed due to (2.1), the coercivity of a(·, ·) on K, and the Babuška-Brezzi146

theory. This implies that T and S are well defined. Moreover, let µ be a real number147
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DG METHODS FOR THE STOKES-BRINKMAN EIGENVALUE PROBLEM 5

such that µ ̸= 0. Notice that (µ,u) ∈ R+ ×HΓ1
(Ω) is an eigenpair of T if and only148

if there exists p ∈ L2(Ω) such that, (λ, (u, p)) solves Problem 2.2 with µ := 1/λ.149

Let us remark that trivially, we can consider the following source problem: find150

(ũ, p̃) ∈ HΓ1(Ω)× L2(Ω) such that151

(2.3) A((ũ, p̃), (v, q)) = (f ,v)0,Ω, ∀(v, q) ∈ HΓ1(Ω)× L2(Ω).152

Since (K−1u,v)0,Ω is well defined, from the well known Stokes regularity results153

(see [14, 28] for instance), we have the following additional regularity result for the154

solution of the source problem (2.3).155

Theorem 2.3. There exists s > 0 that for all f ∈ L2(Ω), the solution (ũ, p̃) ∈156

HΓ1(Ω) × L2(Ω) of problem (2.3), satisfies for the velocity ũ ∈ H1+s(Ω), for the157

pressure p̃ ∈ Hs(Ω), and158

∥ũ∥1+s,Ω + ∥p̃∥s,Ω ≤ C∥f∥0,Ω,159

where C > 0 is a constant depending on the physical parameters.160

Remark 2.4. It is worth mentioning that the estimate provided in Theorem 2.3161

holds for the solutions of the load problem. Furthermore, for the eigenfunctions, there162

exists r > 0 and a constant C > 0, which depends on the physical parameters and163

the eigenvalue λ, such that164

(2.4) ∥u∥1+r,Ω + ∥p∥r,Ω ≤ C∥u∥0,Ω.165

Finally, since the embedding H1+s(Ω) ↪→ L2(Ω) holds, we conclude that T is166

compact and the following spectral characterization of T holds.167

Lemma 2.5. (Spectral Characterization of T ). The spectrum of T is such that168

sp(T ) = {0}∪{µk}k∈N where {µk}k∈N is a sequence of real eigenvalues that converge169

to zero, according to their respective multiplicities.170

We end this section with a result that establishes a general inf-sup condition for171

the bilinear form A(·, ·), which is essential for proving the reliability of the a posteriori172

estimator and its proof is available in [27, Lemma 4.3].173

Lemma 2.6. For all (0, 0) ̸= (u, p) ∈ HΓ1
(Ω) × L2(Ω), there exists (v, q) ∈

HΓ1
(Ω)× L2(Ω) with |||(v, q)||| ≤ C1|||(u, p)||| such that

A((u, p), (v, q)) ≥ C2|||(u, p)|||2,

where |||(v, p)|||2 = ∥v∥21,Ω + ∥q∥20,Ω and C1 and C2 are constants depending on the174

physical parameters.175

3. The DG method. Let us introduce the IPDG methods. With this purpose,176

we need to state the framework in which our analysis will be performed, implying177

the introduction of definitions and notations that we will use through the work. We178

begin with the elements of the mesh. Let Th be a shape regular family of meshes179

which subdivide the domain Ω̄ into triangles/tetrahedra that we denote by K. Let us180

denote by hK the diameter of any element K ∈ Th and let h be the maximum of the181

diameters of all the elements of the mesh, i.e. h := maxK∈Th
{hK}.182

Let F be a closed set. We say that F ⊂ Ω is an interior edge/face if F has a183

positive (d−1)-dimensional measure and if there are distinct elements K and K ′ such184

that F = K̄ ∩ K̄ ′. A closed subset F ⊂ Ω is a boundary edge/face if there exists185
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6 FELIPE LEPE, GONZALO RIVERA AND JESUS VELLOJIN

K ∈ Th such that F is an edge/face of K and F = K̄ ∩ Γ. Let F0
h and F∂

h be the186

sets of interior edges/faces and boundary edges/face, respectively. We assume that187

the boundary mesh F∂
h is compatible with the partition Γ = Γ1 ∪ Γ2, namely,188 ⋃
F∈F1

h

F = Γ1 and
⋃

F∈F2
h

F = Γ2,189

where F1
h := {F ∈ F∂

h ; F ⊂ Γ1} and F2
h := {F ∈ F∂

h : F ⊂ Γ2}. Also we denote190

Fh := F0
h ∪ F∂

h and F∗
h := F0

h ∪ F1
h. Also, for any element K ∈ Th, we introduce the191

set F(K) := {F ∈ Fh : F ⊂ ∂K} of edges/faces composing the boundary of K.192

For any t ≥ 0, we define the following broken Sobolev space193

Ht(Th) := {v ∈ L2(Ω) : v|K ∈ Ht(K) ∀K ∈ Th}.194

Also, the space of the skeletons of the triangulations Th is defined by L2(Fh) :=195 ∏
F∈Fh

L2(F ).196

In the forthcoming analysis, hF ∈ L2(Fh) will represent the piecewise constant197

function defined by hF |F := hF for all F ∈ Fh, where hF denotes the diameter of198

edge/face F .199

Let Pm(Th) be the space of piecewise polynomials respect with to Th of degree at200

most m ≥ 0; namely,201

Pm(Th) :=
{
v ∈ L2(Ω) : v|K ∈ Pm(K), ∀K ∈ Th

}
.202

Let k ≥ 1. To approximate the velocity we define the following space203

Vh := {vh ∈ L2(Ω) : vh|K ∈ Pk(K), ∀K ∈ Th},204

where Pk(K) := Pk(K)d, whereas for the approximation of the pressure, we consider205

the following space206

Qh := {qh ∈ L2(Ω) : qh|K ∈ Pk−1(K), ∀K ∈ Th}.207

Given a scalar field q, we define the average {q} ∈ L2(Fh) and the jump JqK ∈
L2(Fh) by

{q} := (qK + qK′)/2, JqK := qKnK + qK′nK′ ,

respectively, where nK is the outward unit normal vector to ∂K and qK represents
the restriction q|K . Similarly, for a vector field v, the average {v} ∈ L2(Fh) and
scalar jump JvK ∈ L2(Fh) are given by

{v} := (vK + vK′)/2 JvK := vK · nK + vK′ · nK′ ,

respectively, while the tensor (or total) jump JvK ∈ [L2(Fh)]
d×d is defined by

JvK := vK ⊗ nK + vK′ ⊗ nK′ .

Finally, if τ is a tensor field, we define the corresponding average and jump as

{τ} := (τK + τK′)/2 ∈ [L2(Fh)]
d×d, JτnK := τKnK + τK′nK′ ∈ L2(Fh),

respectively. If K ∈ Th is such that a facet F satisfies F ∈ F∂
h , we can obtain the208

definition of average and jump in the domain boundary by taking K = K ′ and K ′ = 0209

in the above definitions, respectively.210
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Motivated by [4], let us define the space V(h) := V + Vh which we endow with211

the following norm212

∥v∥2V(h) = ∥v∥20.Ω + ∥∇hv∥20,Ω + ∥h−1/2
F JvK∥20,Fh

.213

Finally, given a function ξ(x) ∈ L∞(Ω), we introduce the following trace inequality214

[23, Section 3]215

(3.1) ∥h1/2{ξ(x)v}∥0,F ≤ Cξ∥v∥0,Ω ∀v ∈ Pk(Th),216

where Cξ is a positive constant independent of the mesh but depending on ξ(x).217

3.1. Symmetric and nonsymmetric DG schemes. With the discrete spaces218

previously defined, we introduce the discrete counterpart of Problem 2.1 as follows:219

Find λh ∈ C and (0, 0) ̸= (uh, ph) ∈ Vh ×Qh such that220

(3.2)
ah(uh,vh) + bh(vh, ph) = λh(uh,vh)0,Ω ∀ vh ∈ Vh,

bh(uh, qh) = 0 ∀ qh ∈ Qh,
221

where the continuous sesquilinear form ah : Vh×Vh → C is defined, for all (uh,vh) ∈222

Vh × Vh, by ah(uh,vh) := aK(uh,vh) + a∇h (uh,vh), where223

aK(uh,vh) :=

∫
Ω

K−1uh · vh, ∀(uh,vh) ∈ Vh × Vh,224

and225

(3.3) a∇h (uh,vh) :=

∫
Ω

ν∇huh : ∇hvh +

∫
F∗

h

aS

hF
νJuhK : JvhK226

−
∫
F∗

h

{ν∇huh} : JvhK − ε

∫
F∗

h

{ν∇hvh} : JuhK, ∀(uh,vh) ∈ Vh × Vh.227

In (3.3) the parameter aS > 0, which is commonly named as the stabilization pa-228

rameter, is independent of the mesh size and will have an important influence on229

the computation of the spectrum as we will see in the forthcoming analys and more230

precisely on the numerical tests. On the other hand, the parameter ε ∈ {−1, 0, 1} dic-231

tates if the IPDG methods result to be symmetric or non-symmetric. More precisely,232

if ε = −1 we obtain the non-symmetric interior penalty method (NIP) and if ε = 0233

the incomplete interior penalty method (IIP).234

It is easy to check that ah(·, ·) is a continuous sesquilinear form, i.e., there exists235

a positive constant C⋆ such that for all vh,wh ∈ V(h) there holds236

(3.4) |ah(vh,wh)| = |a∇h (vh,wh) + aK(vh,wh)| ≤ C⋆∥vh∥V(h)∥wh∥V(h),237

where C⋆ := max{νmax, aSνmax, |ε|Cν , Cν ,K∗}.238

Finally we define the bounded sesquilinear form bh : Vh ×Qh → C by

bh(vh, qh) := −
∫
Ω

divh vhqh +

∫
F∗

h

{qh}JvhK, ∀v ∈ Vh, ∀qh ∈ Qh.

Defining the sesquilinear for Ah(·, ·) by239

Ah((uh, ph), (vh, qh)) := ah(uh,vh) + bh(vh, ph) + bh(uh, qh),240
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8 FELIPE LEPE, GONZALO RIVERA AND JESUS VELLOJIN

for all (uh, ph), (vh, qh) ∈ Vh × Qh, we rewrite (3.2) as follows: Find λh ∈ C and241

(uh, ph) ∈ Vh ×Qh such that242

Ah((uh, ph), (vh, qh)) = λh(uh,vh) ∀(vh, qh) ∈ Vh ×Qh.243

Observe that Ah(·, ·) is a bounded sesquilinear form due to the boundedness of ah(·, ·)244

and bh(·, ·).245

Let us recall the following discrete inf-sup condition [18, Proposition 10]: there246

exists a constant β̂ > 0, independent of h, such that247

(3.5) sup
τh∈Vh

bh(τh, qh)

∥τh∥V(h)
≥ β̂∥qh∥0,Ω ∀qh ∈ Qh.248

On the other hand, let us define the discrete kernel Kh of bh(·, ·) as follows249

Kh := {τh ∈ Vh : bh(τh,vh) = 0 ∀vh ∈ Vh}.250

With this kernel at hand, now we prove that ah(·, ·) is Kh- coercive.251

Lemma 3.1 (ellipticity of ah(·, ·)). For any ε ∈ {−1, 0, 1}, there exists a positive
parameter a∗ such that for all aS ≥ a∗ there holds

ah(vh,vh) ≥ α̂∥vh∥2V(h) ∀vh ∈ Kh,

where α̂ > 0 is independent of h.252

Proof. Let vh ∈ Kh. Then, we have ah(vh,vh) = aK(vh,vh) + a∇h (vh,vh). We
observe that the estimate for a∇h (vh,vh) is proved in [20, Lemma 1]. In fact, for τ > 0
we have that

a∇h (vh,vh) ≥ ν∗
(
1− Ct

(1 + ε)

2τ

)
︸ ︷︷ ︸

C1

∥∇hvh∥20,Ω + ν∗
(
aS − τ(1 + ε)

2

)
︸ ︷︷ ︸

C2

∥h−1/2
F JvhK∥20,F∗

h
,

where Ct > 0 is the constant provided by (3.1). According to [20, Lemma 1], C1 > 0253

if and only if τ is such that τ > (1+ ε)Ct/2. On the other hand, aS is chosen in such254

a way that aS > a∗ := (1 + ε)τ/2, where τ has been previously determined. Now, for255

aK(·, ·) we have aK(vh,vh) ≥ K∗∥vh∥20,Ω. Hence, ah(·, ·) is K-elliptic with constant256

α̂ := ν∗ min{C1, C2,K∗}. This concludes the proof.257

As a consequence of Lemma 3.1 and the definition of Ah(·, ·), is possible to con-258

clude that for all (vh, qh) ∈ Kh ×Qh there holds259

Ah((vh, qh), (vh, qh)) ≥ α̂∥vh∥2V(h),260

where α̂ > 0 is the constant previously determined.261

Its is important to observe that the constant α̂ of Lemma 3.1 depends on the262

choice of the penalization parameter aS which depends on the geometry of Ω and the263

physical parameters. This means that the well posedness of the source problem at264

discrete level is directly related to the configuration of the these parameters.265

Let us introduce the discrete solution operators for the approximations of the266

velocity and pressure. More precisely, we define these operators in the following267

manner268

T h : L2(Ω) → Vh, f 7→ T hf := ũh,269

Sh : L2(Ω) → Qh, f 7→ Shf := p̃h.270
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where the pair (ũh, p̃h) ∈ Vh×Qh corresponds to the solution of the following discrete271

source problem272

(3.6)
ah(ũh,vh) + bh(vh, p̃h) = (f ,vh)0,Ω ∀ vh ∈ Vh,

bh(ũh, qh) = 0 ∀ qh ∈ Qh,
273

which equivalently is written as the following problem274

Ah((ũh, p̃h), (vh, qh)) = (f ,vh)0,Ω ∀(vh, qh) ∈ Vh ×Qh,275

From (3.5) and Lemma 3.1, together with the Babuška-Brezzi theory, we conclude276

that (3.6) has a unique solution (ũh, p̃h) ∈ Vh ×Qh and as a consequence, operators277

T h and Sh are well defined.278

For the solutions of the continuous and discrete source problems, the following279

Céa estimate holds280

∥(ũ− ũh, p̃− p̃h)∥V(h)×Qh
≤ C inf

(ṽh,q̃h)∈Vh×Qh

∥(ũ, p̃)− (ṽh, q̃h)∥V(h)×Qh
,281

where C, depends on the continuity constant of ah(·, ·) and the discrete inf-sup con-282

stant given in (3.5). Then we have the following error convergence result for the source283

problem (see [12, Corollary 6.22])284

∥ũ− ũh∥V(h) + ∥p̃− p̃h∥0,Ω ≤ Chs(∥ũ∥1+s + ∥p̃∥s) ≤ Chs∥f∥0,Ω,285

where C depends on the physical constants, but is independent of h.286

4. Convergence and error estimates. Now our goal is to prove of conver-287

gence of the IPDG scheme and error estimates. To do this task, we resort to the288

theory of [10, 11], due to the non-conformity of the proposed methods. let us intro-289

duce some preliminary definitions and notations. We denote by ∥·∥L(V(h),V(h)) the290

corresponding norm acting from V(h) into the same space. In addition, we will de-291

note by ∥·∥L(Vh,V(h)) the norm of an operator restricted to the discrete subspace Vh;292

namely, if L : V(h) → V(h), then293

∥L∥L(Vh,V(h)) := sup
0̸=τh∈Vh

∥Lτh∥V(h)

∥τh∥V(h)
.294

According to [10], to establish spectral correctness we need to prove the following295

properties296

• P1. ∥T − T h∥L(Vh,V(h)) → 0 as h→ 0.297

• P2. ∀τ ∈ V , there holds

inf
τh∈Vh

∥τ − τh∥V(h) → 0 as h→ 0.

We observe that property P2 is immediate as a consequence of the density of con-298

tinuous piecewise degree k polynomial functions in V . On the other hand, P1 is not299

direct, and our goal is to prove it.300

4.1. Convergence. The IPDG methods considered for the Stokes-Brinkman301

eigenvalue problem does not differ from the Stokes eigenvalue problem studied in [20]302

except for the permeability term associated to the Brinkman equations. This implies303

that the convergence analysis for the Stokes-Brinkman eigenvalue problem is the same304
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as in [20]. However, and for completeness of the analysis, we summarize the results305

that are possible to derive. The first result that is needed is the following (see [20,306

Lemma 2]).307

Lemma 4.1. For all f ∈ V, we define ũ := Tf and p̃ := Sf as the solutions308

of (2.2), whereas ũh := T hf and p̃h := Shf are the solutions of (3.6). Then, the309

following estimate holds310

∥(T − T h)f∥V(h) ≤ Chmin{s,k}∥f∥0,Ω,311

where s > 0 and the hidden constant is independent of h and C > 0 depends on the312

physical constants.313

This result is directly extended for discrete sources as is stated in [20, Corollary314

1].315

Corollary 4.2. There following estimate holds316

∥T − T h∥L(Vh,V(h)) ≤ Chmin{s,k},317

where the hidden constant is independent of h.318

The following result indicates a gain of one additional order in the approximation319

of the error in the L2 norm for the solution operators T and T h. The proof follows the320

techniques in [17]. Moreover, for the proof we will assume, s > 1/2 which is perfectly321

reasonable, according to the results presented in [1, 2].322

Theorem 4.3. Let Ω be a convex domain. Let us assume s > 1/2. Then, under
the hypotheses of Lemma 4.1, there exists a constant C, independent of h, such that

∥ũ− ũh∥0,Ω ≤ Ch2min{s,k}(|ũ|1+s,Ω + |p̃|s,Ω) ≤ Ch2min{s,k}∥f∥0,Ω,

where C > 0 depends on the physical constants and independent of h.323

Proof. Let us define the following dual problem: Find (φ, ψ) ∈ HΓ1
(Ω) × L2(Ω)324

such that325

K−1φ− ν∆φ+∇ψ = ũ− ũh in Ω,326

divφ = 0 in Ω,327

φ = 0 on Γ1,328

(ν∇φ− ψI)n = 0 on Γ2329

Clearly the above solution satisfies the following data dependence

∥φ∥1+s,Ω + ∥ψ∥s,Ω ≤ Cν,K∥ũ− ũh∥0,Ω,

which holds for s > 1/2.330

On the other hand, let us consider the following identity331

∥ũ− ũh∥20,Ω =
∑
T∈Th

∫
T

(
K−1φ− ν∆φ+∇ψ

)
· (ũ− ũh),332

applying integration by parts, and using that (φ, ψ) ∈ H1+s(Ω)×Hs(Ω), we have333
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(4.1) ∥ũ− ũh∥20,Ω334

=
∑
T∈Th

(∫
T

K−1φ · (ũ− ũh) +

∫
T

ν∇φ : ∇(ũ− ũh)−
∫
T

div(ũ− ũh)ψ

)
335

+

∫
F∗

h

{ψ}Jũ− ũhK −
∫
F∗

h

{ν∇hφ} : Jũ− ũhK.336

Let us denote by Ξh : L2(Ω) → Qh the classic L2-orthogonal projection and let
Πhφ ∈ H1(Ω) be the Lagrange interpolator of φ. Now, testing Problem 2.2 and
Problem 3.6 with (Πhφ,Ξhψ) ∈ H1(Ω)× L2(Ω) we have the following identity

Ah((ũ− ũh, p̃− p̃h), (Πhφ,Ξhψ)) = 0.

By subtracting the above identity to (4.1), we obtain337

(4.2) ∥ũ− ũh∥20,Ω =
∑
T∈Th

∫
T

K−1(φ−Πhφ) · (ũ− ũh)︸ ︷︷ ︸
T1

338

+
∑
T∈Th

∫
T

ν∇(φ−Πhφ) : ∇(ũ− ũh)︸ ︷︷ ︸
T2

+
∑
T∈Th

∫
T

div(ũ− ũh)(Ξhψ − ψ)︸ ︷︷ ︸
T3

339

+
∑
T∈Th

∫
T

(p̃− p̃h) divΠhφ︸ ︷︷ ︸
T4

+
∑

F∈F∗
h

∫
F

{ψ − Ξhψ}Jũ− ũhK

︸ ︷︷ ︸
T5

340

+ (ε− 1)
∑

F∈F∗
h

∫
F

{ν∇h(Πhφ−φ)} : Jũ− ũhK

︸ ︷︷ ︸
T6

.341

The following task is to bound each of the terms Ti, for i = 1, 2, ..., 6. First we note
that to bound T4 it is necessary that:

T4 =
∑
T∈Th

∫
T

(p̃− p̃h) div(Πhφ−φ) =
∑
T∈Th

∫
T

(p̃− Ξhp̃) div(Πhφ−φ).

Using the approximation properties of Ih and the projector Ξh, together with the
regularity of the dual problem and the convergence order of the operators, we obtain
that:

T1 + T2 + T3 + T4 ≤ max{K∗, ν, 1, Cν,K}h2min{s,k}(|ũ|s,Ω + |p̃|s,Ω)∥ũ− ũh∥0,Ω.

To estimate T5, it is necessary to use trace inequality and the properties of approxi-342

mation343

(4.3) T5 ≤
∑

F∈F∗
h

∥h1/2F Jψ − ΞhψK∥0,F ∥h−1/2
F Jũ− ũhK∥0,F ≤ hs|ψ|s,Ω∥ũ− ũh∥V(h)344

≤ Cν,Kh
2min{s,k}∥ũ− ũh∥0,Ω(|ũ|1+s,Ω + |p̃|s,Ω).345
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For T6 we proceed analogously

T6 ≤ Cν,K|ε− 1|h2min{s,k}∥ũ− ũh∥0,Ω|ũ|1+s,Ω.

Thus, substituting in (4.1), all the estimates obtained for bounding the different Ti346

with i = 1, 2, 3, 4, 5, 6 completes the proof.347

The goal now is to establish that the numerical schemes are spurious free. To348

do this task, first we recall the definition of the resolvent operator of T and T h349

respectively:350

(zI − T )−1 : V → V , z ∈ C \ sp(T ),351

(zI − T h)
−1 : Vh → Vh , z ∈ C \ sp(T h).352

Let D denote the unit disk in the complex plane, defined as D := {z ∈ C : |z| ≤353

1}. According to [20, Lemma 4], the resolvent (zI − T )f is correctly bounded in the354

V(h) norm, in the sense that exists a constant C > 0 independent of h such that for355

all z ∈ D \ sp(T ) there holds356

∥(zI − T )f∥V(h) ≥ C|z| ∥f∥V(h) ∀f ∈ V(h).357

Moreover, on a compact subset E of D\sp(T ), the resolvent is invertible and bounded,358

i.e., for all z ∈ E, there exists a constant C > 0 such that359

∥(zI − T )−1∥L(V(h),V(h)) ≤ C ∀z ∈ E.360

On the other hand, the discrete resolvent is also bounded for sufficiently small361

values of h as stated in [20, Lemma 5]. More precisely, if z ∈ D \ sp(T ), there exist362

h0 > 0 and C > 0 independent of h but depending on |z|, such that for all h ≤ h0363

∥(zI − T h)f∥V(h) ≥ C ∥f∥V(h) ∀f ∈ V(h),364

As we mention of the continuous resolvent, if E is a compact subset of the complex365

plane such that E ∩ sp(T ) = ∅ for h small enough and for all z ∈ E, there exists a366

positive constant C independent of h such that ∥(zI − T h)
−1∥L(V(h),V(h)) ≤ C for367

all z ∈ E. Hence, with all these ingredients at hand, we conclude that for h small368

enough. the numerical schemes are spurious free. This is summarized in the following369

result proved in [10].370

Theorem 4.4. Let E ⊂ C be a compact subset not intersecting sp(T ). Then,371

there exists h0 > 0 such that, if h ≤ h0, then E ∩ sp(T h) = ∅.372

4.2. A priori error estimates. First we introduce the definition of the gap δ̂
between two closed subspaces X and Y of L2(Ω):

δ̂(X ,Y) := max
{
δ(X ,Y), δ(Y,X )

}
,

where

δ(X ,Y) := sup
x∈X : ∥x∥0,Ω=1

(
inf
y∈Y

∥x− y∥0,Ω

)
.

Let λ be an isolated eigenvalue of T and let D be any open disk in the complex373

plane with boundary γ such that λ is the only eigenvalue of T lying in D and γ ∩374
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sp(T ) = ∅. We introduce the spectral projector corresponding to the continuous and375

discrete solution operators T and T h, respectively376

E :=
1

2πi

∫
γ

(zI − T )
−1

dz : V(h) −→ V(h),377

378

Eh :=
1

2πi

∫
γ

(zI − T h)
−1

dz : V(h) −→ V(h).379

The following approximation result for the spectral projections holds is derived380

according to [4, Theorem 5.1].381

Lemma 4.5. There holds382

lim
h→0

∥E − Eh∥L(Vh,V(h)) = 0.383

We end this section with the a priori error estimates for the eigenfunctions and384

eigenvalues. These estimates depend on the IPDG under consideration, in the sense385

that for non-symmetric methods (ε ∈ {0,−1}) the orders of convergence are not opti-386

mal, whereas for the symmetric method (ε = 1) the order of convergence is quadratic.387

We begin by recalling [20, Lemma 7], which is straightforward for our eigenvalue388

problem.389

Lemma 4.6. There exists a strictly positive constant h0 such that, for h < h0390

there holds391

δ̂h(E(V),Eh(Vh)) ≤ Chmin{r,k},392

where r > 0 is the same as in (2.4) and the hidden constant C > 0 is independent of393

h.394

Remark 4.7. It is important to remark that this lemma, rigorously speaking, the
proof of this result lies in the fact that the IPDG methods are consistent in the sense
that for all (vh, qh) ∈ Vh ×Qh, the following identity holds

Ah((u− uh, p− ph), (vh, qh)) = 0,

with (u, p) ∈ H1+r(Ω)× Hr(Ω) and r > 0 and hence, the following Céa estimate for395

the eigenfunctions holds396

∥(u− uh, p− ph)∥V(h)×Qh
≤ C

(
1 +

C∗

β

)
inf

(vh,qh)∈Vh×Qh

∥(u, p)− (vh, qh)∥V(h)×Qh
,397

where C∗ and β are the continuity constant of ah(·, ·) and the inf-sup constant of398

bh(·, ·), respectively. Now, applying any suitable interpolant for u on Vh and the L2399

orthogonal projection operator, together with the fact that u ∈ E(V) ⊂ H1+r(Ω)400

with r > 0, we have401

∥(u− uh, p− ph)∥V(h)×Qh
≤ Chmin{r,k}(∥u∥1+r + ∥p∥r,Ω),402

where C is a constant depending on the physical constants and the corresponding403

eigenvalue.404

Theorem 4.8. There exists a strictly positive constant h0 such that, for h < h0405

there holds406
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1. If the symmetric IPDG method is considered (ε = 1), then there holds407

(4.4) |λ− λh| ≤ Ch2min{r,k},408

2. If any of the non-symmetric IPDG methods are considered (ε ∈ {−1, 0}),409

then there holds410

(4.5) |λ− λh| ≤ Chmin{r,k},411

where r > 0 and C is a constant depending on the physical constants and the corre-412

sponding eigenvalue given in (2.4).413

Proof. We begin by noticing that (4.5) is an immediate consequence of Lemma414

4.6. The estimate (4.4) follows from the well known algebraic identity415

(4.6) Ah((u−uh, p−ph), (u−uh, p−ph))−λ(u−uh,u−uh)0,Ω = (λh−λ)(uh,uh)0,Ω.416

It is straightforward to prove that there exists a positive constant C̃ such that417

(uh,uh)0,Ω > C̃ > 0. On the other hand, applying modulus on (4.6) we obtain418

C̃|λh − λ| ≤ |Ah((u− uh, p− ph), (u− uh, p− ph))|+ λ|(u− uh,u− uh)0,Ω|419

= |ah(u− uh,u− uh) + 2bh(u− uh, p− ph)|+ |λ||(u− uh,u− uh)0,Ω|420

≤ |ah(u− uh,u− uh)|+ 2|bh(u− uh, p− ph)|+ |λ||(u− uh,u− uh)0,Ω|421

≤ C∗∥u− uh∥2V(h) + 2∥u− uh∥V(h)∥p− ph∥0,Ω + C∥u− uh∥20,Ω,422

≤ max{C∗, C, 1}(∥u− uh∥2V(h) + ∥p− ph∥20,Ω),423

where the constant C∗ > 0 is the one involved in (3.4). Finally, the proof follows from424

Remark 4.7.425

5. A posteriori error analysis. The aim of this section is to introduce a suit-426

able fully computable residual-based error in the sense that it depends only on quan-427

tities available from the DG solution. Then, we will show its equivalence with the428

error. The analysis is focused only on eigenvalues with simple multiplicity.429

For T ∈ Th, we introduce the local indicator ηT as follows430

η2
T := h2T ∥λhuh + ν∆uh −K−1uh −∇ph∥20,T + ∥ divuh∥20,T431

+
hF
2

∑
F∈F0

h

∥Jν∇uh − phIKn∥20,F +
hF
2

∑
F∈F2

h

∥(ν∇uh − phI)n∥20,F432

+
h−1
F

2

∑
F∈F0

h

∥νJuhK∥20,F +
h−1
F

2

∑
F∈F1

h

∥νuh ⊗ n∥20,F .433

We introduce the global a posteriori error estimator434

η =

(∑
T∈Th

η2
T

)1/2

435

In what follows, let (λ, (u, p)) be a solution to Problem 2.1. We assume, for436

simplicity, that λ is a simple eigenvalue. Let us consider that ∥u∥0,Ω = 1. Then,437

for each Th, there exists a solution (λh, (uh, ph)) of problem (3.2) such that λh → λ,438

∥uh∥0,Ω = 1 and ∥u− uh∥V(h) → 0 as h→ 0.439
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5.1. Reliability. Following the approach presented in [27], we decompose the440

space of discontinuous finite elements by defining Vc
h := Vh∩HΓ1

(Ω). The orthogonal441

complement of Vc
h in Vh with respect to the norm ∥ · ∥1,h is denoted by Vr

h, where442

the norm is defined as:443

∥vh∥1,h := ∥∇hvh∥20,Ω + ∥h−1/2
F JvhK∥20,Fh

.444

Then, we have the decomposition Vh = Vc
h ⊕Vr

h, allowing us to uniquely decompose445

the DG velocity approximation into vh = vc
h+vr

h, where v
c
h ∈ Vc

h and vr
h ∈ Vr

h. The446

following auxiliary result is necessary to prove that the presented estimator is reliable447

and has to do with the Scott-Zhang quasi-interpolator operator (see [29]).448

Lemma 5.1. Let Ih : H1(Ω) → Vc
h be the Scott-Zhang quasi-interpolator opera-449

tor. Then, there exists a constant CSZ > 0 independent of h such that450 ∑
T∈Th

(
h−2
T ∥v − Ihv∥20,T + ∥∇(v − Ihv)∥20,T + h−1

T ∥v − Ihv∥0,∂T
)
≤ CSZ∥∇v∥20,Ω.451

For what follows, it is necessary to obtain an upper bound for ∥vr
h∥V(h). This is452

achieved using the Poincaré inequality (see [12, Corollary 5.4]), the estimate presented453

in [27, Proposition 4.1 ], and the definition of the local estimator ηT which yield to454

(5.1) ∥vr
h∥V(h) ≤ Cpν

−1

(∑
T∈Th

η2
T

)1/2

,455

where Cp > 0 is the Poincaré constant.456

The following result constitutes the main result on the efficiency of our estimator.457

Theorem 5.2. Let (λ, (u, p)) ∈ R × HΓ1
(Ω) × L2(Ω) be a solution of Problem458

2.1 and (λh, (uh, ph)) ∈ C × Vh × Qh its mixed DG solution of problem (3.2) with459

∥uh∥0,Ω = 1. Then, there exists a constant C > 0 independent of h such that460

|||(u− uh, p− ph)|||h ≤ C (η + |λ|∥u− uh∥0,Ω + |λ− λh|) ,461

where |||(v, q)|||2h = ∥v∥2V(h) + ∥q∥0,Ω.462

Proof. Let (λ, (u, p)) ∈ R × HΓ1
(Ω) × L2(Ω) be a solution of Problem 2.1 and463

(λh, (uh, ph)) ∈ C × Vh × Qh solution of problem (3.2) with ∥uh∥0,Ω = 1, we will464

decompose uh as uh = uc
h +ur

h. Thus using triangular inequality and (5.1), we have465

that466

(5.2) |||(u− uh, p− ph)|||h = |||(u− uc
h, p− ph)|||h + ∥ur

h∥V(h)467

≤ |||(u− uc
h, p− ph)|||h + Cpν

−1

(∑
T∈Th

η2
T

)1/2

.468

The next step is to bound the first term of the right hand side of the previous469

inequality, To this end, we first note that since u−uc
h ∈ HΓ1

(Ω) and p− ph ∈ L2(Ω),470

it follows that |||(u− uc
h, p− ph)|||h = |||(u− uc

h, p− ph)|||. Therefore, we can invoke471

Lemma 2.6 which gives us a function (v, q) ∈ HΓ1(Ω)× L2(Ω) such that |||(v, q)|||h ≤472

C1|||(u− uc
h, p− ph)|||h, where C1 > 0 is the constant involved in Lemma 2.6. Then,473

we have474
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(5.3) C−1
2 |||(u− uc

h, p− ph)|||2h ≤ A((u− uc
h, p− ph), (v, q))475

= A((u, p), (v, q))−A((uc
h, ph)(v, q))476

= λ(u,v)0,Ω−λh(uh,v)0,Ω+λh(uh,v)0,Ω−A((uh, ph), (v, q))+A((u
r
h, ph), (v, q)),477

we note that if we define vc
h := Ihv ∈ Vc

h as the Scott-Zhang quasi-interpolation of
v, and testing problem (3.2) with (vc

h, 0), we obtain that

Ah((uh, ph), (v
c
h, 0)) = λh(uh,v

c
h)0,Ω.

Therefore, adding and subtracting λh(uh,v
c
h)0,Ω in inequality (5.3) and using the478

above equality, we have that479

C−1
2 |||(u− uc

h, p− ph)|||2h ≤ (λu− λhuh,v)0,Ω + λh(uh,v − vc
h)0,Ω480

+Ah((uh, ph), (v
c
h, 0))−A((uh, ph), (v, q)) +A((ur

h, ph), (v, q)).481

Now, using the fact that vc
h ∈ HΓ1

(Ω), applying the definitions of A(·, ·) and482

Ah(·, ·), and [27, Proposition 4.1], the previous inequality can be rewritten as follows483

(5.4) C−1
2 |||(u− uc

h, p− ph)|||2h ≤ B1 +B2 +B3 +B4 +B5,484

where485

B1 := (λu− λhuh,v)0,Ω, B2 := −ε
∫
F∗

h

{ν∇hvh} : JuhK,486

487

B3 :=

∫
Ω

divh uhq +

∫
Ω

ν∇hu
r
h : ∇v +

∫
Ω

K−1ur
h · v, B4 := λh(uh,v − vc

h)0,Ω,488

and489

B5 = −
∫
Ω

K−1uh · (v − vc
h)−

∫
Ω

ν∇huh : ∇(v − vc
h)490

+

∫
Ω

divh(v − vc
h)ph +

∫
Ω

divh uhq.491

The task now is to estimate each of the terms on the right hand side of (5.4).
For the term B1 we apply a trace estimate in conjunction with a discrete inverse
inequality to an edge or face F ∈ F∗

h , where F = T1 ∩ T2 if F ∈ F0
h and F = T1 ∩ ∂Ω

with T2 = ∅ if F ∈ F∂
h , we obtain

∥∇hv
c
h∥0,F ≤ Ch

−1/2
F ∥∇hv

c
h∥0,T1∪T2

.

Thus, using the stability of the Scott-Zhang quasi-interpolator (cf. Lemma 5.1), we492

obtain that:493

B2 ≤ CSZCνCp|ε|

(∑
T∈Th

∥∇v∥20,T

)1/2(∑
T∈Th

η2
T

)1/2

494

≤ CSZCνCp|ε|

(∑
T∈Th

η2
T

)1/2

|||(u− uh, p− ph)|||h.495
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Let us focus on B3. Applying the Cauchy-Schwarz inequality and (5.1) we obtain496

B3 ≤ max{K∗, ν, 1}∥ur
h∥V(h)|||(v, q)|||497

≤ C1 max{K∗, ν, 1}∥ur
h∥V(h)|||(u− uh, p− ph)|||h498

≤ C1 max{K∗, ν, 1}Cpν
−1

(∑
T∈Th

η2
T

)1/2

|||(u− uh, p− ph)|||h.499

Finally, we proceed to bound the last two terms B4 and B5. From integration500

by parts and the approximation properties of the Scott-Zhang interpolator we obtain501

the following result502

B4 +B5503

=
∑
T∈Th

(∫
T

(
λhuh −K−1uh) · (v − vc

h)
)
−
∫
T

ν∇huh : ∇(v − vc
h) : (v − vc

h)504

+

∫
T

divh(v − vc
h)ph +

∫
T

divh uhq

)
505

=
∑
T∈Th

(∫
T

[
λhuh −K−1uh + ν∆huh +∇hph · (v − vc

h)
]
+

∫
T

divh uhq

)
506

+
∑
T∈Th

(∫
∂T

(ν∇huh − phI)n · (v − vc
h)

)
≤

(∑
T∈Th

η2
T

)1/2

|||(u− uh, p− ph)|||h,507

508

where for the last inequality, we have used that vc
h = Ihv and the approximation509

properties of the Scott-Zhang quasi-interpolator (see Lemma 5.1).510

Thus, replacing in (5.3), all the estimates obtained to bound the different Bi with511

i = 1, 2, 3, 4, 5 and then replacing this result in (5.2), the property is proved.512

We observe that from the proof of Theorem 4.8 and the previous theorem, we obtain513

the following result514

Corollary 5.3. There exists a constant C > 0 independent of h such that

|λ− λh| ≤ C (η + |λ− λh|+ ∥u− uh∥0,Ω)2 .

5.2. Efficiency. In order to perform the efficiency analysis, we adopt standard515

arguments widely recognized in the literature, which pertain to the behavior of bub-516

ble functions (see [24, 15, 31]). Given that these approaches have been thoroughly517

documented and validated in prior works, the detailed proof is omitted here, and only518

the main result is presented.519

Theorem 5.4. Let (λ, (u, p)) ∈ R×HΓ1(Ω)×L2(Ω) be a solution of Problem 2.1520

and (λh, (uh, ph)) ∈ C×Vh×Qh its mixed DG solution of problem (3.2). Then, there521

exists a constant C > 0 independent of h such that522

η ≤ C|||(u− uh, p− ph)|||h + h.o.t.523

where h.o.t :=
(∑

T∈Th
h2T
(
|λ− λh|2 + |λ|2∥u− uh∥20,Ω

))1/2
.524
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6. Numerical experiments. This section is dedicated to conducting various525

numerical experiments to assess the performance of the scheme across different ge-526

ometries and physical configurations. The implementations are using the DOLFINx527

software [6, 30], where the SLEPc eigensolver [19] and the MUMPS linear solver are528

employed to solve the resulting generalized eigenvalue problem. Meshes are gener-529

ated using GMSH [16] and the built-in generic meshes provided by DOLFINx. The530

convergence rates for each eigenvalue are determined using least-squares fitting and531

highly refined meshes.532

In what follows, we denote the mesh resolution by N , which is connected to the533

mesh-size h through the relation h ∼ N−1. We also denote the number of degrees of534

freedom by dof. The relation between dof and the mesh size is given by h ∼ dof−1/d,535

with d ∈ {2, 3}.536

Let us define err(λi) as the error on the i-th eigenvalue, with

err(λi) := |λh,i − λi|,

where λi is the extrapolated value. Similarly, the effectivity indexes with respect to
η and the eigenvalue λh,i is defined by

eff(λi) :=
err(λi)

η2
.

In order to apply the adaptive finite element method, we shall generate a sequence537

of nested conforming triangulations using the loop538

solve → estimate → mark → refine,539

based on [31]:540

1. Set an initial mesh Th.541

2. Solve (3.2) in the actual mesh to obtain (λh, (uh, ph)).542

3. Compute ηT for each T ∈ Th using the eigenfunctions (uh, ph).543

4. Use Dörfler [13] marking criterion to construct a subset Sh ⊂ Th such that
we refine the elements T that satisfies∑

T∈Sh

η2
T ≥ ζ

∑
T∈Th

η2
T ,

for some ζ ∈ (0, 1).544

5. Set Th as the actual mesh and go to step 2.545

For 2D experiments, we choose υ = 0.6, while υ = 0.8 is chosen for 3D test.546

It is worth noting that, while the permeability tensor is theoretically assumed to547

be positive definite, in the numerical experiments, it is set close to 0. As a result, the548

eigenfunctions in these regions exhibit behavior consistent with the Stokes eigenvalue549

problem. For all experiments, we set ν = 1 and consider various choices for K. The550

meshing of Ω into subdomains is such that there is conformity between the regions,551

i.e, the subregions are delimited exactly by the facets of the domain.552

The choice of the stabilization parameter is an important aspect in the correct553

prediction of the eigenvalues. Different studies [9, 21, 22, 20] have shown that taking554

a sufficiently large aS := ak2 guarantees an accurate computation of the spectrum.555

6.1. Stability analysis on a square domain with a porous subdomain.
Let us consider the domain Ω := (0, 1)2, ΩD := (3/8, 5/8)2 and ΩS := Ω\ΩD, which
consists of the unit square domain with an internal, possibly porous subdomain ΩD.
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For each region, we define the following permeability parameter

K−1 =

{
κI if (x, y) ∈ ΩD,

0, if (x, y) ∈ ΩS .

This choice determines a region of full permeability on ΩS , while a variable porosity556

is considered in ΩD. The idea of the experiment is to study the convergence of the557

DG scheme when κ is changed. For the tests in this section, we will consider reference558

values computed using the method proposed in [25].559

6.1.1. Dependence on the stabilization parameter. We start by analyzing560

what happens when we start moving the alpha stabilization parameter. According561

to Lemma 3.1, we note that aS must be large enough to guarantee the stability of562

the method. A mesh resolution N = 16, corresponding to dof = 4424 for k = 1 is563

selected.564

First, we show the results for the first 40 eigenvalues computed with the three565

variants of the methods in Figure 1. Here, it is noticeable that the symmetric method566

presents instability for values of a ≤ 2.5, while the incomplete and non-symmetric567

methods can tolerate values closer to zero. The oscillations observed for small values568

of a, including veering and crossing between eigenvalues, are due to the eigensolver569

detecting spurious eigenvalues, which can be positive or negative, real or imaginary.570

Also, there is little to no difference in the stabilization of the schemes when choosing571

different permeability parameters.572

To further study stabilization, given a > 0, we extract the eigenvalues computed573

by the solver and compare them with existing methods. In particular, we consider the574

numerical method given [25] using Taylor-Hood elements. The results for the values575

of a ∈ {0.5, 3, 10} are shown in Figure 2. As expected, for a = 0.5 the symmetric576

method shows spurious eigenvalues, while the other methods show an underestimation577

in the prediction for this stabilization value. On the other hand, for larger values578

of alpha, the tendency is always towards overestimation, which can be observed in579

all permeability cases, although for a = 3 the prediction is quite accurate. This580

selection, although it gives a small error with respect to the rest, does not guarantee581

that the convergence is optimal. In conclusion, a safe parameter for all the cases is582

a > 3. Big values of α will produce overprediction of eigenvalues, but it may help583

with convergence. In particular, considering [20] as a reference, we note that a safe584

parameter for the method is a ≥ 10. We select this parameter for all experiments in585

the rest of the numerical section.586

6.1.2. Convergence of the DG schemes. This section analyzes the compu-587

tational convergence of the proposed DG schemes when a safe stabilization parameter588

is given. All the cases consider a = 10. The reference values computed from [25] are589

shown in Table 1 for the different permeability cases under study.590

The absolute error and convergence behavior for the different schemes and per-591

meability parameters are presented in Figures 3–4. The error history in Figure 3,592

which corresponds to the case K−1|ΩD
= 10−8I, shows optimal convergence for all593

values of k when the symmetric scheme is used. A small perturbation is observed for594

k = 3. However, for the non-symmetric methods with k = 2, 3, a convergence rate595

of order O(h2(k−1)) is observed, which reflects the suboptimal behavior predicted in596

Theorem 4.8.597

We also analyze convergence in the case of a semi-permeable zone by considering598

K−1|ΩD
= 103I to study the maximum achievable convergence rate. From the results599
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Table 1
Example 6.1. Lowest four reference eigenvalues for different permeability parameters, computed

using the method from [25].

K−1|ΩD = 10−8 K−1|ΩD = 103 K−1|ΩD = 105

λ1 52.3447 65.3658 74.4455
λ2 92.1244 167.7481 214.1789
λ3 92.1244 182.6605 222.0403
λ4 128.2096 182.6605 222.0352

in Figure 4, we observe that for k = 1, 2, the methods behave similarly to the previous600

case. For k = 3, however, the symmetric method yields only O(dof−2) ≈ O(h4), sug-601

gesting that the geometric regularity induces min{r, k} = r = 2. The non-symmetric602

methods exhibit behavior consistent with theoretical expectations.603

Finally, although not shown here, we also studied the case K−1|ΩD
= 105I. In604

that case, convergence of order O(hm) was observed, with 1.2 < m < 1.8 for all values605

of k, which aligns with the expected behavior due to the obstacle effect induced by606

the subdomain ΩD and the presence of reentrant corners within the domain Ω.607
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Fig. 1. Test 6.1.1. Dependence of the spectrum on the stabilization parameter a > 0 in the
three IPDG variants (ε ∈ {1, 0,−1}), showing the first 40 lowest computed eigenvalues for different
values of K.
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Fig. 2. Test 6.1.1. Comparison of the first 40 lowest eigenvalues calculated with the three DG
variants against the reference values from [25]

.

6.2. Convergence on a 2D Lshaped porous domain with mixed bound-608

ary conditions. In this experment we put to the test the proposed scheme in609

the three variants of the method for a domain there there are singularities and610

mixed boundary conditions. The domain is the two-dimensional Lshape, defined as611

Ω := (0, 1)2\ ((0.5, 0)× (1, 0.5)). We split the interior of Ω in such a way that there612

is an arrangement of different zones with given permeability parameters. A sample613

of the meshed geometry is depicted in Figure 5. Non-slip and do-nothing boundary614

conditions are assumed on Γ1 and Γ2, respectively. We take K such that K−1 = 0 on615

ΩS , while K−1 = 103I on ΩD. On this test, the stabilization parameter is set to be616

a = 10.617

Taking as reference the suboptimal behavior observed in [25], we test the a pos-618

teriori estimator for k = 1 in the three variants of the proposed DG scheme, while,619

due to the suboptimality predicted in Theorem 4.8 and therefore the lost efficiency of620

the estimator, we only consider the symmetric case for the higher order k = 2.621

In Figure 6 we present the adaptive meshes obtained by the DG variants for622

k = 1. It is evident that our adaptive algorithm concentrates most of the refinements623

around the reentrant corner, as well as in regions with high pressure gradients. It624

is also worth noting that the number of elements marked inside the domain by the625
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Fig. 3. Test 6.1.2. Convergence history for the first four eigenvalues on each IPDG scheme
for a selected stability parameter a = 10k2 and K−1|ΩD

= 10−8.

skew-symmetric method is higher than in the other schemes.626

We conclude this test by presenting the error history and estimator efficiency for627

all IPDG schemes in Figures 8. In all cases, convergence rates of double order are628

observed, and the estimator remains both reliable and efficient, remaining bounded629

away from zero. For the symmetric case, a convergence rate of O(h2k) is clearly630

achieved. For the non-symmetric methods, the error curves and estimator efficiency631

exhibit very similar behavior and are optimal for k = 1.632

6.3. 3D channel with a porous obstacle. We end the numerical section by
presenting some results of the DG method on three-dimensional domains. For sim-
plicity, we only consider the symmetric case ε = 1. The domain under study is a box
defined by Ω := (0, 1)× (0, 1)× (0, 3). Within this domain, we define the permeability
parameter K as

K−1 =

{
κI if (x, y) ∈ ΩD,

0, if (x, y) ∈ ΩS ,

where ΩD := (0, 1)× (1/3, 2/3)× (4/3, 5/3) and ΩS = Ω\ΩD. We choose K−1 = 103I.633

This choice allows to have a membrane-like behavior with partial permeability across634

ΩD. A graphical description of the domain is portrayed in Figure 9.635
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Fig. 4. Test 6.1.2. Convergence history for the first four eigenvalues on each IPDG scheme
for a selected stability parameter a = 10k2 and K−1|ΩD

= 103.

Fig. 5. Test 6.2. Sample geometry of an Lshaped domain with a chessboard-like distribution of
permeability regions and N = 10.

We solve the eigenvalue problem with k = 1, 2 and obtain the extrapolated dis-636

crete eigenvalue λ1 = 33.70064, which is considered as the exact solution. Then, we637

perform 10 adaptive iterations for k = 1 and 9 iterations for k = 2 in order to observe638
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λh,1, ε = 1, dof = 174678 λh,1, ε = 0, dof = 204862 λh,1, ε = −1, dof = 229579

λh,4, ε = 1, dof = 166467 λh,4, ε = 0, dof = 167160 λh,4, ε = −1, dof = 178409

Fig. 6. Test 6.2. Last adaptive meshes for the first and fourth computed eigenvalue with for
all the variants of the IPDG method in the Lshaped geometry with mixed boundary conditions and
K−1 := 103I on ΩD.
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Fig. 7. Test 6.2. Error history for the adaptive refinements when computing the first and
fourth eigenvalue (left) together with their corresponding effectivity indexes (right) in the symmetric
case (ε = 1).

the convergence rates and the reliability/efficiency of the estimator. The stabilization639

parameter is set to be a = 10.640

We present the corresponding lowest eigenmodes in Figure 10. Here, we observe641

the velocity field across the domain, entering and exiting through Γ2, and we also642

note that some of the fluid, although with low magnitude, passes through the por-643
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Fig. 8. Test 6.2. Error history for the adaptive refinements when computing the first and fourth
eigenvalue (left) together with their corresponding effectivity indexes (right) in the incomplete and
skew-symmetric cases.

ous subdomain. This mild porosity causes high pressure gradients, represented by a644

concentrated cloud of points around ΩD. The eigenmode behavior is detected by the645

estimator and the adaptive algorithm, which marks the elements near the boundary646

of ΩD for refinement. Some samples of the adaptive meshes for k = 1, 2 are presented647

in Figure 11, where critical singular zones are refined as expected. Similar to the 2D648

case, fewer elements are marked to achieve optimal rates for k = 2.649

The error and effectivity indices for the symmetric DG scheme are depicted in650

Figure 12. A rate O(dof−2k/d) is observed for k ≥ 1 and d = 3, implying an h-651

convergence rate of O(h2k). Moreover, the estimator effectivity remains properly652

bounded, demonstrating the reliability and efficiency of the estimator in the three-653

dimensional case with mixed boundary conditions.654

Fig. 9. Test 6.3. The channel domain with the initial mesh configuration consisting of 2616
elements.
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uh,1

ph,1

Fig. 10. Test 6.3. First lowest computed eigenmodes represented as the velocity field (top) and
pressure dots cloud (bottom) in the last adaptive iteration.
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dof = 166600 dof = 534344 dof = 1200982

Fig. 11. Test 6.3. Intermediate adaptive meshes for k = 1, 2, in the symmetric IPDG scheme
(ε = 1.)
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