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ERROR ESTIMATES FOR A BILINEAR OPTIMAL CONTROL
PROBLEM OF MAXWELL’S EQUATIONS*

FRANCISCO FUICAT, FELIPE LEPE}, AND PABLO VENEGAS$

Abstract. We consider a control-constrained optimal control problem subject to time-harmonic
Maxwell’s equations; the control variable belongs to a finite-dimensional set and enters the state
equation as a coefficient. We derive existence of optimal solutions, and analyze first- and second-
order optimality conditions. We devise an approximation scheme based on the lowest order Nédélec
finite elements to approximate optimal solutions. We analyze convergence properties of the proposed
scheme and prove a priori error estimates. We also design an a posteriori error estimator that can
be decomposed as the sum two contributions related to the discretization of the state and adjoint
equations, and prove that the devised error estimator is reliable and locally efficient. We perform
numerical tests in order to assess the performance of the devised discretization strategy and the a
posteriori error estimator.
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1. Introduction. In this work we focus our study on existence of solutions,
optimality conditions, and a priori and a posteriori error estimates for an optimal
control problem that involves time-harmonic Maxwell’s equations as state equation
and a finite dimensional control space. More precisely, let  C R? be an open,
bounded, and simply connected polyhedral domain with Lipschitz boundary I'. Given
a control cost o > 0, desired states yg, € L*(Q;C) and Eq € L*(;C), and £ € N, we
define the cost functional

1 1 o
(1.1) J(y,u) = §||y ~Yaliz e + 5” curly — Eo|l{2o.c) + §||u||fw«-

Let f € L*(Q;C) be an externally imposed source term, let u € L>(Q) be a function
satisfying u > po > 0 with ug € R™, and let w > 0 be a constant representing the
angular frequency. Given a function &, € L*°(Q;C), we will be concerned with the
following optimal control problem: Find min J(y, u) subject to

(1.2) curly 'curly —w?(e, -u)y = f in Q, yxn=0 onl,
and the control constraints
(1.3) u=(uy,...,uy) € Usa, Uad::{veRezagvgb}.

Here, the control bounds a, b € R are such that 0 < a < b. We immediately point out
that, throughout this work, vector inequalities must be understood componentwise.
In (1.2), n denotes the outward unit normal. In an abuse of notation, we use &, - u
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2 F. FUICA, F. LEPE, P. VENEGAS

to denote Zizl €olq, Uk, Where {Qu.}¢_, is a given partition of Q (see section 2.2).
Further details on ¢, will be deferred until section 3.1.

Time-harmonic Maxwell’s equations are given by the system of first-order partial
differential equations:

(14) curly —iwph=0, curlh+iwvey=j, div(ey)=p, and div(uh)=0, in Q,

where y is the electric field, h is the magnetic field, ¢ is the real-valued electrical
permittivity of the material, i is the real-valued magnetic permeability, and the source
terms j and p are the current density and the charge density, respectively, which are
related by the charge conservation equation —iwp + divy = 0. We assume that
] = 3 + oy, where 3 is an externally imposed current and the real-valued coefficient
o is the conductivity. In addition, we assume that the medium €2 is surrounded by
a perfect conductor, so that we have the boundary condition y x n = 0 on 092. In
particular, for a detailed derivation of problem (1.2) from (1.4), we refer the reader
to [13, section 2]; see also [4, section 8.3.2]. We notice that, for simplicity, we have
considered f = iwj' .

Optimal control problems subject to Maxwell’s and eddy current equations have
been widely studied over the last decades, due to their strong relationship with physics
and engineering. We refer the interested reader to the following non-comprehensive
list of references concering numerical methods for their approximation, namely, a pri-
ori and a posteriori error estimates: [29, 26, 28, 31, 21, 6, 25, 22, 33, 34, 8, 24, 3]. In
all these references, the control enters the state equation as a source term. When the
control enters the state equation as coefficient, as in (1.2), the analysis becomes more
challenging due to the nonlinear coupling between the state and control variables;
this coupling has led to this type of problems being referred to as bilinear optimal
control problems. The aforementioned coupling complicates both the analysis and
discretization, since the state variable depends nonlinearly on the control and, con-
sequently, the uniqueness of solutions of (1.1)—(1.3) cannot be guaranteed. Hence, a
proper optimization study requires the analysis of second-order optimality conditions.

Regarding bilinear optimal control problems subject to Maxwell’s and eddy cur-
rent equations, we mention [30, 32, 15]. In [30], the author studied an optimal control
problem governed by the time-harmonic eddy current equations, where the controls
(scalar functions) entered as a coefficient in the state equation. After analyzing reg-
ularity results, existence of optimal controls, and first-order optimality conditions,
the author proposed a discretization strategy and prove, assuming that the optimal
controls belongs to W1:>°(£2), convergence results of such finite element discretization
without a rate; second-order optimality conditions were not provided. Similarly, in
[32], the author introduced an optimal control approach based on grad-div regulariza-
tion and divergence penalization for the problem previously studied in [30]. However,
due to the lack of regularity of controls, no discretization analysis was given. In [15],
the authors studied an optimal control problem with controls as coefficients of time-
harmonic Maxwell’s equations, with applications to invisibility cloak design. The
controls represented the permittivity and permeability of the metamaterial. After
presenting first-order optimality conditions using the Lagrange multiplier methodol-
ogy, the authors solve the state equation with the discontinuous Galerkin method and
presented numerical tests to demonstrate the effectiveness of the proposed method.

In contrast to [30, 32], besides considering Maxwell’s equations instead of eddy
current equations, in our work the control corresponds to a vector acting on both the
electrical permittivity and conductivity of the material €, in a given partition. This
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ESTIMATES FOR A CONTROL PROBLEM OF MAXWELL’S EQUATIONS 3

implies that conductivity may change in different regions of 2. This is a plausible
consideration on the conductivity in applications, since some devises that conduct
electricity are designed with different materials and hence, with different conductivity
properties. In this manuscript, we provide existence of optimal solutions and necessary
and sufficient optimality conditions. Then, we propose an approximation scheme
based on Nédélec finite elements and present a priori error estimates for the state
equations which, in turn, allow us to prove that continuous strict local solutions of the
control problem can be approximated by local minima of suitable discrete problems.
Moreover, under appropriate assumptions on the adjoint equation (see assumptions
(5.8) and (5.16)), we provide a priori error estimates and convergence rates between
continuous and discrete optimal solutions. The aforementioned assumptions, which
follow from the reduced regularity properties of the adjoint variable, motivate the
development and analysis of adaptive finite element methods [1, 27] for the proposed
control problem. With this in mind, we propose a residual-type a posteriori error
estimator for the control problem and prove its reliability and local efficiency; the
error estimator is built as the sum two contributions related to the discretization of
the state and adjoint equations. Moreover, it can be used to drive adaptive procedures
and is capable to attain optimal order of convergence for the approximation error by
refining in the regions where singularities may appear. Finally, we mention that
our problem also can be seen as an identification parameter problem for Maxwell’s
equations. On this matter, we refer the reader to [10] and the recent article [11].

We organize our manuscript as follows. Section 2 is devoted to set notation and
basic definitions that we will use throughout our work. In section 3, basic results
for the state equation as well as a priori and posteriori error estimates are reviewed.
The core of our paper begins in section 4, where the analysis of the optimal control
problem is performed. To make matters precise, in this section we prove existence
of optimal solutions for the considered problem and study first- and second-order
optimality conditions. In section 5 a suitable finite element discretization of the
optimal control problem is proposed and its corresponding convergence properties
are proved. Moreover, we propose an a posteriori error estimator for the designed
finite element scheme and show reliability and local efficiency properties. We end our
exposition with a series of numerical tests reported in section 6.

2. Notation and preliminaries.

2.1. Notation. Throughout the present manuscript, we use standard notation
for Lebesgue and Sobolev spaces and their norms. We use uppercase bold letters to
denote the vector-valued counterparts of the aforementioned spaces whereas lowercase
bold letters are used to denote vector-valued functions. In particular, we define

H(div, Q) := {w € L*(; C) : div w € L*(;C) },
H(curl, Q) := {w € L*(;C) : curlw € L*(Q;C)},

and Hy(curl, ) := {w € H(curl,Q) : w x n = 0}. In addition, given s > 0, we
introduce the space H*(curl, Q) := {w € H*(Q;C) : curlw € H*(Q; C)}.

If X is a normed vector space, we denote by X’ and ||-|| x the dual and the norm of
X, respectively. We denote by (-, ) x/ x the duality pairing between X’ and X'. When
the spaces X’ and X are clear from the context, we simply denote the duality pairing
(-,Yxr.x by (). For the particular case X = L*(G;C), with G C R® a bounded
domain, we shall denote its inner product and norm by (-, )¢ and || - ||g, respectively.
Given a complex function w, we denote by w its complex conjugate.

This manuscript is for review purposes only.



4 F. FUICA, F. LEPE, P. VENEGAS

The relation a < b indicates that a < Cb, with a constant C' > 0 that does not
depend on either a, b, or discretization parameters. The value of the constant C
might change at each occurrence.

2.2. Piecewise smooth fields. Let £ € N. The set P := {Q}{_, is called a
partition of () if any two elements do not intersect and Q = U§_, Qx. The correspond-
ing interface is defined by ¥ := Ui<pxr<¢(Tx N T'x), where I'y, and T'ys denote the
boundaries of {2, and €/, respectively. With this partition at hand, we define

PWh*(Q) == {¢ € L>®(2;C) : {|g, € Wh™(Q;C), 1 <k < ¢}

3. The state equation. In this section, we review well-posedness results for
(1.2) and further regularity properties for its solution. Additionally, we present a
priori and a posteriori error estimates for a specific finite element setting.

3.1. The model problem. Let f € Hy(curl, Q) be a given forcing term, let
€ L°(Q) be such that p > pg > 0 with pg € R, let u € Uyg, and let w € RT. We
introduce the electric permittivity € € L*°(€2) and the conductivity o € L*>(Q) of the
material €2, and assume that there exist e, ,e* € RT and o, ,0" € Rt such that

e, <e<et and oy <o<ot.
We define €, := ¢ +iow™! and consider the problem: Find y € Hy(curl, ) such that
(3.1) (u'eurly, curlw)g — w?((e, - u)y, w)g = (f,w) Vw € Hy(curl, Q).

We recall that €, - u denotes Zi:l €5 o, Uk, where P = {Q;}{_, is a given partition
of ; see section 2.2. This problem is well posed [4, Theorem 8.3.5]. In particular, we
have the Stablhty bound ||Y||H(curl,Q) 5 ||f||Ho(Curl7Q)’-

The next result states further regularity properties for the solution of (3.1).

THEOREM 3.1 (extra regularity). Lety € Ho(curl,Q) be the unique solution to
problem (3.1). Then,

(i) if £ € H(div,Q) and e,,p € PWH2(Q), there exists t € (0,3) such that
y € H*(curl, Q) for all s € [0,1),

(i) if £ € H(div,Q) and e,,u € WH(Q), there exists € > 0 such that'y €
Hy(curl, Q) N H2+<(Q; C). If, in addition, Q is convex, we have that € = :

Proof. The first statement stems from [13, Section 6.4], whereas that (ii) follows
from the fact that y € Ho(curl, Q) NH(div, ) in combination with the regularity of
the potential provided in [2, Proposition 3.7 and Theorem 2.17]. 0

3.2. Finite element approximation. In this section, we present a finite ele-
ment approximation for problem (3.1) and review basic error estimates.

We begin by introducing some terminology and further basic ingredients. We
denote by .7, = {T'} a conforming partition of Q into simplices 7" with size hy =
diam(7'). Let us define h := maxpe g, hr and #.7, the total number of elements in
. We denote by T := {7}, }1>0 a collection of conforming and shape regular meshes
that are refinements of an initial mesh Z,. A further requisite for each mesh 75, € T
is being conforming with the physical partition P (see section 2.2) [9, Section 2.4]:
Given .7, € T, we assume that, for all T' € 7}, there exists Q7 € P such that T C Q.
This implies that the interfaces of the partition P are covered by mesh faces.

Given a mesh .7}, we introduce the lowest-order Nédélec finite element space [20]

(3.2) V(T,) == {vy € Hyo(curl; Q) : v,|r € No(T) VT € T},
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ESTIMATES FOR A CONTROL PROBLEM OF MAXWELL’S EQUATIONS 5

with No(T) := [Po(T)]® @ & x [Py(T)]3, where Py(T) is the subset of homogencous
polynomials of degree 0 defined in T'.

With these ingredients at hand, we introduce the following Galerkin approxima-
tion to problem (3.1): Find y, € V(.7,) such that

(3.3)  (u'eurlyy, curlwy)g — w?((eq - Wyn, wr)a = (f,wy) VYwy, € V(F,).

The existence and uniqueness of a solution y; € V(%) for problem (3.3) follows as
in the continuous case. We also have that ||y H(cur,0) S [IfllHo(curL0) -

3.2.1. A priori error estimates for the model problem. The following
result follows directly from [13, Theorem 6.15].

THEOREM 3.2 (error estimates). Lety € Hy(curl,Q) and y, € V(F3,) be the
solutions to (3.1) and (3.3), respectively. If condition (i) from Theorem 3.1 holds,
then we have the a priori error estimate

ly = yullaeuo) S PP la@iv,0),

where s € [0,t) with t given as in Theorem 3.1.

3.2.2. A posteriori error estimate for the model problem. The aim of
this section is to introduce a suitable residual-based a posteriori error estimator for
(3.1). We note that, since we will not be dealing with uniform refinement within our
a posteriori error analysis setting, the parameter h does not bear the meaning of a
mesh size. It can be thus interpreted as h = 1/n, where n € N is an index set in a
sequence of refinements of an initial mesh 7.

Given T € 9,, 1 denotes the set of faces of T', .7} denotes the set of inner faces
of T. We also define the set

7= J o
TET,

We decompose .¥ = Yo U S, where 1 = {S € . : S CT} and S = S\
For T € 9}, we define the star associated with the element T as

(3.4) NTZZ{T/E%ZyTﬂyT/#Q)}.

In an abuse of notation, below we denote by Nr either the set itself or the union of
its elements. We also introduce, given a vertex v of an element 7', the sets N, :=
Urrezwer T, Ny := Uyen, Ny, and

(3.5) My = N

veT

see [23, Section 2]. Given S € ., we denote by Ng C .7, the subset that contains
the two elements that have S as a side, namely, Ng := {TF, T}, where TT, T~ € Z,
are such that S = Tt N T~. Moreover, for any sufficiently smooth function v, we
define the jump through S by

[v]s(x) = [v](x) := lim v(x —tny) — lim v(x +tny) forall x €S,
t—0+ t—0+

where ny denotes the outer unit normal vector.
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6 F. FUICA, F. LEPE, P. VENEGAS

Let T € Z,. We assume that f|, € H'(T;C). We introduce the local error
indicator 7 = €7 +512~72, where the local contributions 71 and £ are defined by

) h 2
Ef =l div(E + o (er - wyn)llF + 5 D (I + (o - wyn) - nls.
SesL

EF 5 =h%||f — curl(p™" curly,) + w?(e, - u yh”T + - Z [In~" curly,, x n]]”s
Se.sf

We thus propose the following global a posteriori error estimator associated to the
discretization (3.3) of problem (3.1): €5, =3 c 5 EF

We introduce the Schéberl quasi- 1nterpolat10n operator II;, : Hyo(curl, Q) —
V(7), which satisfies [23, Theorem 1]: For all w € Hy(curl, Q) there exists ¢ €
Hy(92) and ¥ € H{(Q) such that w — I, w = Vi + ¥, and also satisfy

(36)  hp'lellr +IVelr S lwllwe, b ¥l + [VE[lr < leurlw|
where M is defined in (3.5).

We present the following reliability result and, for the sake of readability, a proof.

THEOREM 3.3 (global reliability of £). Lety € Ho(curl, Q) and y, € V(F},) be
the solutions to (3.1) and (3.3), respectively. If condition (i) from Theorem 3.1 holds,
then we have the a posteriori error estimate

”y - yh”H(curl,Q) 5 gﬂh-
The hidden constant is independent of y, yn, the size of the elements in J}, and
# T

Proof. To simplify the presentation of the material, we define ey :=y —yj. Let
w € Hy(curl, Q) be arbitrary. The use of Galerkin orthogonality in conjunction with
the decomposition w — Iw = Vo + ¥, with ¢ € Hy(Q) and ¥ € H}(Q), yield

(! curley, curlw)g — w?((g, - u)ey, w)q
= (f+w?(eo - Wyn, (w — Mw))g — (u~ ' curlyy, curl(w — ITw))g

= (£ + w?(e0 - Wyn Vo)o + (£ + w2 (es - w)yn, W)g — (5~ curl y,, curl ),
Then, applying an elementwise integration by parts formula we obtain

(3.7) (u'curley, curlw)g — w?((g, - u)ey, w)q

= Z (f + w?(e, - w)yn—curl(p™ ' curlyy,), ®)r — Z([[,u_1 curly, x n], ¥)g

TeI, Ses
- Z (le(f + w2<50 : u)Yh); SD)T + Z ([[(f + wz(EU ' u)yh) . TL]], QO)S~
TeIh ses

On the other hand, from the coercivity property [13, Proposition 4.1] we observe that

(3-8) ||ey||H(curl Q) ~ S (™ curley7curl ey)o — W ((e5 - u)ey, ey)al.

Therefore, using w = ey in (3.7), inequality (3.8), basic inequalities, the estimates
in (3.6), and the finite number of overlapping patches, we arrive at ||ey||%l(curl7m <
€7, lley|lH(cur1,0); Which concludes the proof.

This manuscript is for review purposes only.



ESTIMATES FOR A CONTROL PROBLEM OF MAXWELL’S EQUATIONS 7

4. The optimal control problem. In this section, we analyze the following
weak formulation of the optimal control problem (1.1)—(1.3): Find

(4.1) min{J(y,u) : (y,u) € Hy(curl, Q) x Uuq},
subject to
(4.2)  (p'eurly,curlw)g — w?((e, - u)y, w)g = (f,w)q VYVw € Hy(curl, Q).

We recall that f € L*(Q;C), Uuq is defined in (1.3), and that w € R, p € L>®(Q),
and e, are given as in section 3.1. Note that in (4.2) the control corresponds to a
vector acting on both the electrical permittivity and conductivity of the material §2, in
a given partition. We have considered this scenario only for the sake of mathematical
generality. In particular, the analysis developed below can be adapted to take into
consideration the real-valued coefficients € or o.

Remark 4.1 (extensions). The analysis that we present in what follows extends
to other bilinear optimal control problems of relevant variables within the Maxwell’s
equations framework. For instance, given real-valued coefficients k,x € PW1>(Q)
satisfying k > kg > 0 and x > xo > 0 with kg, ug € R, the state equation (1.2) can
be modified as follows:

curl ycurly+ (k- -u)y=f inQ, yxn=0 onl.
This problem arises, for example, when discretizing time-dependent Maxwell’s equa-
tions (see, e.g., [23, 5, 12, 14] for a posteriori error analysis of such formulation).

4.1. Existence of solutions. Let us introduce the set U := {v € Rf : 3c €
Rf, ¢ > 0 such that v > ¢ > 0}. We note that U,q C U. With U at hand, we
introduce the control-to-state operator S : U — Hy(curl, Q) as follows: for any
u € U, § associates to it the unique solution y € Ho(curl, Q) of problem (4.2).

The next result states differentiability properties of S.

THEOREM 4.2 (differentiability properties of §). The control-to-state operator
S is of class C*. Moreover, for h € R, z := §'(u)h € Hy(curl, ) corresponds to
the unique solution to

(4.3) (u ' eurl z, curlw)g — w?((g, - 1)z, w)q = wW?((c, - h)y, w)q

for all w € Hy(curl,Q), where y = Su. Moreover, if hy,hy € R, then ( =
§"(u)(hy,hy) € Hyo(curl, Q) is the unique solution to

(4.4) (pteurl¢, curlw)g — w?((e5 - )¢, w)g = w?((65 - 1) zh, + (65 - ho)zn,, w)q
for all w € Hy(curl, ), with zn, = S'(w)h; and i € {1,2}.

Proof. The proof is based on the implicit function theorem. With this in mind,
we define the operator F : Hy(curl, Q) x U — Hy(curl, )’ by

1

F(y,u) :=curlp™! curly — w?(e, - u)y — f.

A direct computation reveals that F is of class C*° and satisfies F(Su,u) = 0 for all
u € U. Moreover, Lax-Milgram lemma yields that

Oy F(y,u)(z) = curl ™" curl z — w’(e, - u)z,

is an isomorphism from Hy(curl, Q) to Ho(curl, Q)’. Therefore, the implicit function
theorem implies that the control-to-state operator S is infinitely Fréchet differentiable.
Finally, (4.3) and (4.4) follow by simple calculations. d
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8 F. FUICA, F. LEPE, P. VENEGAS

Let us define the reduced cost functional j : U — R{ by j(u) = J(Su,u). A
direct consequence of Theorem 4.2 is the Fréchet differentiability j.

COROLLARY 4.3 (differentiability properties of j). The reduced cost functional
j: U= Ry is of class C°.

Since j is continuous and U,y is compact, Weierstrafl theorem immediately yields
the existence of at least one globally optimal control u* € U,q, with a corresponding
optimal state y* := Su* € Hy(curl, ). This is summarized in the next result.

THEOREM 4.4 (existence of optimal solutions).  The optimal control problem
(4.1)—(4.2) admits at least one global solution (y*,u*) € Hy(curl,Q) x U,gq.

Since our optimal control problem (4.1)—(4.2) is not convex, we discuss optimality
conditions under the framework of local solutions in RY with ¢ € N. To be precise,
a control u* € U,q is said to be locally optimal in R for (4.1)—(4.2) if there exists a
constant ¢ > 0 such that J(y*,u*) < J(y,u) for all u € U,q such that |[u—u*||ge < 6.
Here, y* and y denote the states associated to u* and u, respectively.

4.2. Optimality conditions.

4.2.1. First-order optimality condition. We begin with a standard result: if
u* € U,q denotes a locally optimal control for (4.1)—(4.2), then [7, Theorem 3.7]
(4.5) jJ(u)(u—u*)>0 VueUiy.

In (4.5), j/(u*) denotes the Gatedux derivative of j at u*. To explore (4.5) we intro-
duce, given u € U,q and y = Su, the adjoint variable p € Hy(curl, Q) as the unique
solution to the adjoint equation
(4.6) (" curlp, curlw)q — (e, - WP, w)a

= (y —yq, w)a + (curly — Eq, curlw)q

for all w € Hy(curl, ). The well-posedness of (4.6) follows from the Lax-Milgram
lemma. Moreover, the following stability estimate holds:

4.7)  [IpllaEewrno) S 1YlHEwLe) T [Yalle + |Ealle S |fllo + [lyallo + [Eallo-

We have all the ingredients at hand to give a characterization for (4.5).

THEOREM 4.5 (first-order necessary optimality condition). Fuvery locally optimal
control u* € Ugyq for problem (4.1)—(4.2) satisfies the variational inequality

¢
(4.8) Z (auz + w?NRe {/ eoy” p*}) (up —ui) >0 Yu € Ugyg,
— Qp

k=1

*
7

where p* € Hy(curl, Q) solves (4.6) with u and y replaced by u* and y* = Su
respectively. We recall that P = {Qk}ézl is the given partition from section 2.2.

Proof. A direct calculation reveals that (4.5) can be rewritten as follows:
(4.9) Re{(zu—u, YY" —yg)a + (curl(zy_yu+),curly* —Eq)o} + a(u*,u—u*)g: >0

for all u € U,q, where, to simplify the notation, we have defined zy_y+ := &’ (u*)(u—
u*). We immediately notice that zy_u+ € Hg(curl, Q) corresponds to the unique
solution to (4.3) with u = u*, y = y*, and h = u — u*. Since a(u*,u — u*)pe is
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ESTIMATES FOR A CONTROL PROBLEM OF MAXWELL’S EQUATIONS 9

already present in (4.9), we concentrate on the remaining terms. Let us use w = Zy_yu=
in problem (4.6) and w = p* in the problem that z,_y+ solves to obtain

(4.10) Re{(zu—u, YY" — Yq)a + (curl(zy_yu-),curly” — Eq)q}
= w'Re{(e; - (u—u"))y", pal.
Therefore, using identity (4.10) in (4.9), we conclude the desired inequality (4.8). 0O

4.2.2. Second-order optimality conditions. For each k € {1,...,¢}, we de-
fine 9y, := auj + wQ%e{ka eey* - p*}. Here, u*,y*,p* and Q are given as in the
statement of Theorem 4.5. We introduce the cone of critical directions at u* € Uygq:

(4.11) Cyu- := {v € R’ that satisfies (4.12) and v, = 0 if [9;] > 0},
where condition (4.12) reads, for all k € {1,...,¢}, as follows:
(4.12) v >0 if up=a; and v <0 if uj} =by.

With this set at hand, we present the next result which follows from the standard
Karush—-Kuhn—Tucker theory of mathematical optimization in finite-dimensional spa-
ces; see, e.g., [7, Theorem 3.8] and [19, Section 6.3].

THEOREM 4.6 (second-order necessary and sufficient optimality conditions). If
u* € Uyq is a local minimum for problem (4.1)—(4.2), then j"”(u*)v? >0 for all v €
Cu~. Conversely, if u* € U,q satisfies the variational inequality (4.8) (equivalently
(4.5)) and the second-order sufficient condition

(4.13) 7" (u*)v? >0 Vv e Cy-\ {0},
then there exist n > 0 and § > 0 such that
3 2 )+ Flu -l Vue Uu fu—ull <6

In particular, u* is a strict local solution of (4.1)—(4.2).

In order to provide error estimates for solutions of problem (4.1)—(4.2), we shall
use an equivalent condition to (4.13) which follows directly of our finite dimensional
setting for the control variable. To present it, we introduce, for 7 > 0, the cone

(4.14) CT. := {v € R that satisfies (4.12) and (4.15)},
where, for k € {1,...,¢}, condition (4.15) reads as follows:
(4.15) [Pr| >7 = v =0.

THEOREM 4.7 (equivalent condition). Let u* € Uyq be such that it satisfies the
variational inequality (4.8) (equivalently (4.5)). Then, (4.13) is equivalent to

(4.16) Ir,v>0: ')V >v|vli. Vv e Ch..

We end this section with a result that will be useful for proving error estimates.

PROPOSITION 4.8 (j” is locally Lipschitz). Let uy,us € Uyq and h € RY. Then,
we have the following estimate:

(4.17) 7" (w)h? — " (u2)h?| < Crllur — ol |[hz,

where C, > 0 denotes a constant depending only on the problem data.

This manuscript is for review purposes only.
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Proof. We proceed on the basis of two steps.
Step 1. (characterization of ;") Let u € U,q and h € RY. We start with a simple
calculation and obtain that

(4.18)  j"(w)h® = alh|F + [|2]& + || curl 2|3
+ Re{(¢,Su—ya)a + (curl(¢), curl(Su) — Eq)q},

where z = §’(u)h € Hy(curl,Q) and ¢ = S”(u)h? € Hy(curl, Q) solve (4.3) and
(4.4), respectively. We now set w = ¢ in (4.6) and w = p in (4.4) to obtain

Re{(¢,Su—yq)q + (curl(¢), curl(Su) — Eq)q} = Re{2w?((¢5 - h)z,P)q .
Replacing the previous identity in (4.18) results in
(4.19) j”(w)h? = a||h||2, + Re{2w?((e5 - h)2z,P)a} + || 2]|3 + || curl z||3.

Step 2. (estimate (4.17)) Let u;,us € U,y and h € R®. Define z; = S’(u;)h and
zo = §’(uz)h. In view of the characterization (4.19), we obtain

[1” (u1)—j" (u2)]h® = Re{2w?((e,-h) (21— 22), Py )0} +Re{2w?((e5-h) 22, Py —Py)0 }
+ [llz1l3 = Iz2/18] + [l curl 24 [|§ — || curl 23] =: T+ IT + IIL + IV,

where p; (i € {1,2}) denotes the solution to (4.6) with y and u replaced by y, = Su;
and uy, respectively. We bound each term on the right-hand side of the latter identity.

The use of an elemental inequality in combination with the stability estimate
(4.7) for p, yields the estimation

1 S Ibllpelleo L= @io)llz1 = 2z2llellpillo S Ihlleellz1 = 22/l eur0)-

Hence, it suffices to bound |21 — 22|, (curl,0). Note that z; — z2 € Hy(curl, Q)
corresponds to the solution of

(pteurl(z; — z9), curlw)q — w?((e5 - uy) (21 — 22), w)q

= w’((es - D) (y1 — ¥2), w)a + W (g5 - (11 — 12))22, W)
for all w € Hy(curl, ). A stability estimate allows us to obtain
121 = z2[lEg (cur) S (Bl [[Y1 = Yallo + [[22]lflur — g |pe.

We control ||zz]|q in view of the stability estimate [|z2]lo <[22/l (curt0) S [1hlre-
The term ||y; — y5]|o is bounded as follows:

(4.20) lly1 — yallo < ly1 — Yallmo(curre) S llY2llolfur — uzlre S [1fllollun — uz|ge.
We thus conclude that

(4.21) 21 — 2z2([H,(cur0) S [t — va|ge|[h][re,

and, consequently |I| < [Ju; —ug||ge[/h[|Z,. The control of II follows similar arguments.
In fact, in view of the estimate ||z2]lq < [|h||ge, we obtain

| < [[hleefleo i) 22 lallpy = Polla < Il Py — Pollsgcurte)-

This manuscript is for review purposes only.
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The term [|p; — Ps ||, (curl,0) i controlled as follows:

121 = Pl curno) S [1Y1 = YallHpcurro) + [P2lloflur —vzllpe S [Jur — uoflee,

upon using estimate (4.20) and the stability estimate (4.7) for p,. To control ITI, we
use the bounds ||z1]jq < ||hlre, [[22]lo S ||hl|ge, and (4.21), to arrive at

II| < |21 — 22llellz1 + 22lla < lur — vz]lee B[

Finally, to estimate the term IV, we use the bound (4.21), |21 ||t (curt,0) S [Ih|lre,
and [|22 ||y (curt,0) S [[hlge. These arguments yield

V] < fleurl(zy — 2z2)[lofleurl(zy + 22) o < [ur — us g |[b|R.

The desired bound (4.17) follows from the identity [j”(u;) — j”(uz)|h? = I+ 11+
III + IV and a collection of the estimates obtained for I, IT, III, and IV. 0

5. Finite element approximation. To approximate the optimal control prob-
lem (4.1)—(4.2), we propose the following discrete problem: Find min 7 (y;, us), with
(Yn,an) € V(1) X Uqa, subject to

(5.1) (p teurly,,curlwy)g — w?((eo - wp)yy, wh)a = (f,wr)o  Vawy, € V().

We recall that V(.7},) is defined as in (3.2).

Let us introduce the discrete control to state mapping S;, : U 2 up, — vy, €
V (%), where y;, solves (5.1). In view of Lax-Milgram lemma, we have that Sy, is con-
tinuous. We also introduce the discrete reduced cost function jp,(up) := J(Spup, up,).

The existence of optimal solutions follows from the compactness of U,q and the
continuity of j,. As in the continuous case, we characterize local optimal solutions
through a discrete first-order optimality condition: If uj denotes a discrete local
solution, then j; (u})(u—uj;) > 0 for all u € U,q4. Following the arguments developed
in the proof of Theorem 4.5, we can rewrite the latter inequality as follows:

62 Y (atups e { [ <o Pif) @020 Vel

k=1
where y; = Spuj, and p; € V(7},) solves the discrete adjoint problem
(5.3)  (u teurlp,curlwy)q — w?((eq - ul)p), wi)a
= (y; — yq,wp)a + (curly; — Eq,curlwy)q VYw, € V(7},),
whose well-posedness follows from the Lax-Milgram lemma.

5.1. Convergence of the discretization. In order to prove convergence prop-
erties of our discrete solutions, we shall consider the following assumption:

(5.4) f € H(div,Q) and p,e, € PWH2(Q).

LEMMA 5.1 (error estimate). Let u,uy, € Uyq and let y € Ho(curl, ) and
Yy, € V(T) be the unique solutions to (4.2) and (5.1), respectively. If assumption
(5.4) holds, then we have

(55) ||y - yh”Ho(curl,Q) 5 h® + ”u - uh”Rfv

where s € [0,t) is given as in Theorem 3.1. Moreover, if up, — u in R’ as h | 0, then
J(u) = limy, 0 jn(ug).

This manuscript is for review purposes only.
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12 F. FUICA, F. LEPE, P. VENEGAS

Proof. We introduce the auxiliary variable y, € V(.7,) as the solution to
(n~ " eurlyy, curlwy)g — w?((e5 - Wyn, wi)o = (f,wn)a  Yw, € V().
The use of the triangle inequality yields

(56) ||y - thHo(curl,Q) < Hy - yh”Ho(curl,Q) + ||Yh - thHo(Curl,Q)-

To estimate ||y — yullH,(cur,e) in (5.6), we note that y; corresponds to the finite
element approximation of y in V(%,). Hence, in light of the assumptions made on
F, n, and &5, we use Theorem 3.2 to obtain ||y — yalley(cur,0) S h° with s € [0,t).
On the other hand, we note that y, — y;, € V(.7,) solves the discrete problem

“teurl(y, — yy,), curlwy)o — W (65 - w)(yn — ¥p), wh)o

= w2((<€g . (u — uh))yh,wh)g Ywy, € V(%)

(1

The well-posedness of the latter discrete problem in combination with the estimate
lynlle < I flle implies that [lyn —yp [y (curt,0) < [[u—1p||ze. Therefore, (5.5) follows
from the estimates provided for ||y — yn |t (curt,0) @a0d |lyn — Yy [l #o(curr,0) and (5.6).

The second result of the theorem stems from the convergence u;, — u in R’ as
h ] 0, and the convergence y; — y in Hy(curl, Q), which follows from (5.5). d

We now prove that the sequence of discrete global solutions {uj }5~¢ contains
subsequences that converge, as h | 0, to global solutions of problem (4.1)—(4.2).

THEOREM 5.2 (convergence of global solutions). Let u} € U,q be a global solu-
tion of the discrete optimal control problem. If assumption (5.4) holds, then there exist
subsequences of {u} }n=o (still indezed by h) such that uj — u* in R®, as h | 0. Here,
u* € U,q corresponds to a global solution of the optimal control problem (4.1)—(4.2).

Proof. Since, for every h > 0, uj € U,q, we have that the sequence {uj },>0 is
uniformly bounded. Hence, there exists a subsequence (still indexed by h) such that
u; — u* in R® as h | 0. We now prove that u* € U,q solves (4.1)—(4.2).

Let 1 € Uyq be a global solution to (4.1)—(4.2). We denote by {p}nr>0 C Ugq
sequence such that a;, — u as h | 0. Hence, the global optimality of &, Lemma 5.1,
the global optimality of uj, and the convergence @i, — 1 in R¢ imply the bound

(1) < i) = L i () < T i () — ().
g() < j(u”) = lim ja () < lim ja (@) = j(a)
This proves that u* is a global solution to (4.1)—(4.2). d

In what follows, we prove that strict local solutions of problem (4.1)—(4.2) can be
approximated by local solutions of the discrete optimal control problem.

THEOREM 5.3 (convergence of local solutions). Let u* € Uuq be a strict local
minimum of (4.1)~(4.2). If assumption (5.4) holds, then there exists a sequence of
local minima {u }n~o of the discrete problem satisfying uj — u* in R® and jn(u}) —
j(u*) inR as h 0.

Proof. Since u* is a strict local minimum of (4.1)—(4.2), there exists § > 0 such
that the problem

(5.7) min{j(u):u € Uyg N Bs(u*)} with Bs(u*):= {uecR": ||u* — up <6},

admits u* as the unique solution. On the other hand, let us consider, for h > 0, the
discrete problem: Find min{jy,(uz) : up € UygNBs(u*)}. We notice that this problem
admits a solution. In fact, the set U,q N Bs(u*) is closed, bounded, and nonempty.

This manuscript is for review purposes only.
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Let u} be a global solution of min{jj(up) : up € Uga,n N Bs(u*)}. We proceed
as in the proof of Theorem 5.2 to conclude the existence of a subsequence of {uj },>0
such that it converges to a solution of problem (5.7). Since the latter problem admits
a unique solution u*, we must have u; — u* in R? as h | 0. This convergence also
implies, for h small enough, that the constraint uj, € Bs(u*) is not active. As a result,
u; is a local solution of the discrete optimal control problem. Finally, Lemma 5.1
yields that limy, o jx(u}) = j(u*), in view of the convergence uj — u* in R’. d

5.2. A priori error estimates. Let {u}},>0 C U, be a sequence of local
minima of the discrete control problems such that u; — u* in Rf as h | 0, where
u* € Uyq is a strict local solution of (4.1)—(4.2); see Theorem 5.3. In this section we
obtain an order of convergence for the approximation error u* — uj in R¢.

Let u € U,q be arbitrary and let y € Ho(curl, Q) be the unique solution to (4.2)
associated to u. Let p € Hy(curl, Q) be the unique solution to problem (4.6). We
introduce p,, € V(.7,) as the finite element approximation of p. In order to prove the
remaining results of this section, we assume that there exists s € (0, 1], such that

(5.8) lp—pplla Sh°

With this assumption at hand, we prove the following auxiliary result.

PROPOSITION 5.4 (error estimate). Let p* € Ho(curl,Q) and p; € V() be
the unique solutions to (4.6) and (5.3), respectively. Let us assume that assumptions
(5.4) and (5.8) hold. Then, we have the error estimate

lp* = pilla S R 4 ut = e,

where s € (0,1] and s € [0,t) with t given as in Theorem 5.2.
Proof. The use of the triangle inequality yields

(5.9) Ip" = pille S IP" = pulle + lPn — Phllo;
where pp, € V(.%},) is the unique solution to

(5.10) (' ecurlpy,curlwy)g — w?((eq - U )pn, wp)o

= (y* —yq,wr)a + (curly* — Eq, curlwy,)q VYwy, € V(F).

We notice that pp corresponds to the finite element approximation of p* in V(7).
Assumption (5.8) thus yields ||p* — prlla < h°. On the other hand, we note that
pr — P} € V(T,) solves

(n~ ! curl(py, — p}), curlwy)o — w?((e, - u*)(pr — PL)s wr)a = (Y* — Y5, wi)o

+ (curl(y* — y3), curlwy)g + w?((e, - (W' —u}))ph, wi)o  Vaw, € V().

The well-posedness of the previous discrete problem, the estimate ||pj; ||g,(curl,0) S
Iflla + llvalla + [ Eqlla, and Lemma 5.1 imply that

IPr = Phlle S 1y" = YhllHoeuro) + [0 = wpllre S 2° +[[u” — uj e

Using in (5.9) the estimates obtained for ||p* — ps|lo and ||py, — p}, |l ends the proof.O

We now provide a first estimate for |[u* — uj ||ge.
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14 F. FUICA, F. LEPE, P. VENEGAS

LEMMA 5.5 (auxiliary estimate). Let u* € Uyg such that it satisfies the second-
order optimality condition (4.16). If assumptions (5.4) and (5.8) hold, then there
exists hy > 0 such that

V * * . * . * * *
(5.11) Sl — w3 < [ (wh) - 5 () () —w) V< Ry,

Proof. We divide the proof into two steps.

Step 1. Let us prove that uj — u* € C{. when h is small enough; we recall that
CJ. is defined in (4.14). Since uj € Uyq the sign condition (4.12) holds. To prove
the remaining condition (4.15), we introduce the term 9;, € R* as follows:

(On)k = a(u})y + w?Re {/ T 'pZ} , ke{l,... 0.
Q

k

Invoke the term 0 € R’ defined by d; := auj + wQERe{ka esy* - p*}. A simple
computation thus reveals that

1
4 2\ 2
18— Bnllze < allu” — uj g +w? Zme{/ sa<y*~p*y;:~pz>}
k=1 Q,
1
2)2

Slhu® = willee + (ly™ = willellp™llo + lynllellp”™ — pille)-

Y4

<allu® - uj e +w? <Z

k=1

/ eoly® P — ¥, P

k

< o — e + lleo oo /g ly* - p* -y, - Bl
]

Hence, in view of Lemma 5.1, Proposition 5.4, and the convergence uj — u* in R¢,
as h | 0, we conclude that there exists ho > 0 such that [0 —p||ge < 7 for all A < h.

Now, let k € {1,...,¢} be fixed but arbitrary. If, on one hand, d; > 7, then
(0n)k > 0 and, in view of inequalities (4.8) and (5.2), we also have that uj = (uj)r =
a;. Consequently, (uj), — uj = 0. If, on the other hand, d; < —7, then (9)r < 0
and uj, = (u})r = by, and thus (uj )i —uj = 0. Therefore, uj —u* satisfies condition
(4.15) and thus it belongs to CJ..

Step 2. Let us prove estimate (5.11). Since uj —u* € CJ. for all h < h,, we are
allowed to use v = uj — u* in the second-order optimality condition (4.16) to obtain

(5.12) 7" (W) (uj, = w)? > vlu; — ufz.
On the other hand, the use of the mean value theorem yields (j'(u;) — j/'(u*))(uj, —

u*) = j”(u})(u; — u*)?, where uj = u* + 0, (uj —u*) with 6, € (0,1). This identity
in combination with inequality (5.12) results in

(5.13) vllup —uZe < (7' () = (W) (uj, — u*) + (5" (w") = 5" (ug)) (uj, — u")*.

The convergence uj — u* in R as h | 0 and estimate (4.17) allow us to conclude the
existence of 0 < hy < h, such that

. * . * * * v * *
(5" (u) = 3" (ug)) (wj, —u")* < S|luf —u[z VA < hy.

The use of the latter inequality in (5.13) concludes the proof. d

This manuscript is for review purposes only.
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We are now in position to present the main result of this section.

THEOREM 5.6 (a priori error estimate). Let u* € Uyq be such that it satisfies the
second-order optimality condition (4.16). Then, if assumptions (5.4) and (5.8) hold,
there exists hy > 0 such that

[u* —u|lge <A™ VR < Ry,

where 5 € (0,1] and s € [0,t) with t given as in Theorem 3.2.

Proof. Invoke estimate (5.11), the variational inequality (4.5) with u = uj, and
inequality —j; (u;)(uj, —u*) > 0 to obtain

%IIU* — il < 57 (wy) — 5" ()] (w;, — w) <[5 (uj) — g (up)] (uf, — ).

A direct computation reveals that

¢
[ () = g ()] (uf, —u”) = Y Re {/Q eo(Yu: - Puz — Ui, ~p2)} (wj, = u")g,
k=1 .
where y,. € Hy(curl, ) corresponds to the unique solution to problem (4.2) with
u =uj, and p,. € Hy(curl, Q) is the unique solution to problem (4.6) with u = u},
and y = Yu: - Hence, by proceeding as in Step 1 of the proof of Lemma 5.5 we obtain

v
G14) Dl — 0l S 97— vy lolpag o + 7l ll27 — P o

Using, in (5.14), the stability bounds ||y} [lo < [|flle and [|py: [ S [yalle+ [[Eallo +
|| f|lq in combination with the a priori error estimate from Theorem 3.2 we arrive at

(5.15) [u” = wjllpe S 27+ [ph — Py; llo-

o. We introduce py, € V(4,), defined as the finite element
approximation of Pu; - The use of the triangle inequality and assumption (5.8) yield

We now bound ||pj, — py:

195 — Pl < 195 — Bulle + 1B — P llo S 197, — Prll + e
We notice that pj, — pr € V(Z4) solves the discrete problem

-1

(n~ " eurl(p), — pn), curlwy)o — w?((e - ) (P, — Pr)swh)o

= (y} — yu;,wh)g + (curl(y; — yuz),curl wp)a Ywy € V(T,).
The stability of this problem provides the bound ||p; —prlla < |y} ~Yu; [[Ho(curl,Q) S

h®, upon using the error estimate from Theorem 3.2. We have thus concluded that
llp — Pu:llo S h™inds:s} which, in light of (5.15), concludes the proof. d

For the last result of this section, we assume that there exist § € (0, 1], such that

(5.16) | curl(p — py)lla < 1,

where p € Hy(curl, Q) is the solution of problem (4.6) and p; € V(.7,) corresponds
to its finite element approximation.

This manuscript is for review purposes only.
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COROLLARY 5.7 (error estimate). Let u* € Uyq such that it satisfies the second-
order optimality condition (4.16). If assumptions (5.4), (5.8), and (5.16) hold, then
there exists hy > 0 such that

(5.17) [lu* —ujllze + 1y = il mcurto) + 1P* = PilH(curLe) S RS VA < by

Proof. Since the bound for |u* —uj||ge follows from Theorem 5.6, we concentrate
on the remaining terms on the left-hand side of (5.17). To estimate ||y* — ¥} [|H(cur1,0)
we invoke the auxiliary variable Yur € Hy(curl, ), defined as the unique solution to
problem (4.2) with u = uj;, and the triangle inequality to obtain

lv* — yhllH(Ccurro) < 1Y° — yﬁ;”H(curl,ﬂ) + ”y'*lii = YnllH(curL,0)-

The error estimate from Theorem 3.2 in conjunction with the stability estimate ||y* —
Ui < [lu* — uj||ge immediately yield ||y* — ¥} |lacurs,0) S A5 for all
h < hy. To bound ||p* — p; ||H(cur1,0); We introduce p € Hy(curl, ) as the unique
solution to problem (4.6) with u = u} and y = y;. We thus can write

Ip* — PhllE(Curro) < P* — PllH(curt0) + [P — PhllH(Cur10);

and utilize assumptions (5.8) and (5.16), the bound [|p* —p[|H(curr,0) S 0" —uj [|ge +
ly* — y?‘LHH(CurLQ), and the estimates proved for ||u* - u;;||~Re and ||y* — yZ”H(cur],Q).
These arguments yield that ||p* — pj [|H(curl,0) S pmintss5} for all b < hy. ]

5.3. A posteriori error estimates. In this section, we devise an a posteriori
error estimator for the optimal control problem (4.1)—(4.2) and study its reliability
and efficiency properties. We recall that, in this context, the parameter h should be
interpreted as h = 1/n, where n € N is the index set in a sequence of refinements of
an initial mesh Z;,; see section 3.2.2.

We start with an instrumental result for our a posteriori error analysis.

LEMMA 5.8 (auxiliary estimate). Let u* € U,q be such that it satisfies the second-
order optimality condition (4.16). Let Cr, > 0 and v > 0 be the constants appearing
n (4.17) and (4.16), respectively. Assume that

(5.18) u; —u* € C. and |luj, —u*||ge <v/(2CL).
Then, we have

14 * * . * . * * *
(5.19) gl = up 1z < [ () — 5" (0] (), —u).

Proof. Since u; —u* € CJ,., we can use v = uj, —u” in the second-order sufficient
optimality condition (4.16) to obtain

(5.20) v, = ulfge < 5" (u%) () —ut)*
On the other hand, the use of the mean value theorem yields (j'(u;) — j/'(u*))(uj, —
u*) = j”(u})(u} — u*)? with uj = u* + 6,,(uj, — u*) and 6, € (0,1). Consequently,

from inequality (5.20) we arrive at

(5.21) vluj, —uge < (5 (uj) = 5" () (W) —w) + (57 (") = 5" (ug)) (wj, — uj)*.

To control the term (j”(u*) —j”(u}))(u; —uj})? in (5.21), we use estimate (4.17), the
fact that 65, € (0,1), and absumptlon (5. 18) These arguments lead to

(7" (u) = 5" (ug)) (w;, = u)?* < Ol — wfleefuj, — uf < 5||u2'1 = e

Using the latter estimation in (5.20) yields the desired inequality (5.19). d
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5.3.1. Global reliability analysis. In the present section we prove an upper
bound for the total error approximation in terms of a proposed a posteriori error
estimator. The analysis relies on estimates on the error between a solution to the
discrete optimal control problem and auxiliary variables that we define in what follows.

We first define the variable y,,. € Hj(curl, Q) as the unique solution to problem
(4.2) with u = uj,. We thus introduce, for T' € 7}, the local error indicator associated
to the discrete state equation: €2, . := EF | + 7.5, where 71 and g9 are given by

3 * * h’ * * 2
5%,1 = h2T|| div(f +W2(50 'uh)yh)HQT + 7T Z H[[(f +W2(50 -up)yh) -nﬂHs’

Se.s1
E35 =13 || f — curl(u curly}) + (=, - up)yi |}
h
+ 7T Z |1~ " curly;; x nﬂHQS,
Se.st

respectively. The error estimator associated to the finite element discretization of the

state equation is defined by Sft’gh = ZTE% 532,5,T- An application of Theorem 3.3

with f = f and u = uj immediately yields the a posteriori error estimate
(5.22) Hyu;; - yZHH(curLQ) S Est, 7, -
Let us introduce the term p € Hy(curl, Q) as the unique solution to

(5.23) (p'eurlp, curlw)g — w?((e, - uj)p, w)q
= (¥; —yq,w)q + (curly; — Eq,curlw)g Yw € Hy(curl, Q).

Define now, for T' € 7}, the local error indicator associated to the discrete adjoint
equation: Sgdj’T = E2T71 + E2T72, where E7; and E7» are defined by

E7. :=h|ldiv(yy — yq + w’(es - up)pi) |17

, -
S 1w wa + P ipi) - ml

ra—— 1% — * * * 12
E%Q = h% |lvi —yq+ curl(curly; — Eq) — curl(u Leurlp}) + w?(e, - uh)thT

h -
+ -z z H[[(curly;*l — Eq — p ! curlpj) x n}]HQLQ(S) ,

2
Se.sf

respectively. The global error estimator associated to the finite element discretization
of the state equation is thus defined by Egdjﬂh =D rea, 53dj’T.
The next result establishes reliability properties for the discrete adjoint equation.

LEMMA 5.9 (upper bound). Let p € Hy(curl,Q) and p}, € V(%) be the unique
solutions to (5.23) and (5.3), respectively. If, for all T € T, yo|r, Ealr € HY(T;C),
then

(5.24) P — PhllE(curt,0) S Eadj, 7, -

The hidden constant is independent of p, p;,, the size of the elements in F,, and #.T},.
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18 F. FUICA, F. LEPE, P. VENEGAS

Proof. The proof closely follows the arguments developed in the proof of Theo-
rem 3.3 (see also [16, Lemma 3.2]).

Define e, := p — p;. Galerkin orthogonality, the decomposition w — II,w =
Vo + ¥, with ¢ € Hj(Q) and ¥ € H{(Q), and an elementwise integration by parts
formula allow us to obtain

(1! curle,, curlw)g — w?((5, - uf)ep, w)g = Z(yznyJr curl(curly; — Eq)

TeI
—curl(y~ ' curl p})+w* (e,-uj)pj,, W)+ Y _ ([(curly;, — Eq—p ™" curlpj,)xn], ®)s
Ses
- Z (div(y;, — Yo +w’ (o -ujy)py), T+Z Y5, — Yo +wi(es wp)pr) nl,¢)s.
TeI, SeS
Hence, using w = ep, an analogous estimate of (3.8) for e,, basic inequalities,
the estimates in (3.6), and the finite number of overlapping patches, we arrive at
||ep||%{(curl7m < Eadj, 7, ||€p |l (cur1,0), Which concludes the proof. |

After having defined error estimators associated to the discretization of the state
and adjoint equations, we define an a posteriori error estimator for the discrete optimal
control problem which can be decomposed as the sum of two contributions:

(525) ggcp, = gft,%L + ggdj,eyh °

We now state and prove the main result of this section.

THEOREM 5.10 (global reliability). Let u* € U,q be such that it satisfies the
second-order optimality condition (4.16). Let u} be a local minimum of the discrete
optimal control problem with y; and p; being the corresponding state and adjoint
state, respectively. If, for all T € T, flr,yolr, Ealr € HY(T;C) and assumption
(5.18) holds, then

”p* - prL”H(curl,Q) + ||y* - er”H(curl,Q) + ||U* - u;;”R“ S 5ocp,=7m

with a hidden constant that is independent of continuous and discrete optimal vari-
ables, the size of the elements in Ty, and #T},.

Proof. We proceed in three steps.

Step 1. (|[u* —uj||re < Eocp,7,) Since we have assumed (5.18), we are in position
to use estimate (5.19). The latter, the variational inequality (4.5) with u = u}, and
inequality —j; (u})(u} —u*) > 0 yield the bound

[u* = wilfe S 1 (wh) — 5" (0] (wj, —u*) <[5 (af) — g (wp)] (w), — u¥).
Using the arguments that lead to (5.14) in the proof of Theorem 5.6, we obtain
u” = ujllee S 1Yh — Yu; o + 1Ph — Pu; llo;

where y,. € Hj(curl, Q) corresponds to the unique solution to problem (4.2) with
u = u;, and p,. € Hy(curl, ) is the unique solution to problem (4.6) with u = uj,
and y = y,,.. Invoke the a posteriori error estimate (5.22) to conclude that

(5.26) 0" —wjllee S Est. 7, + IPh —
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To estimate ||p}, — py: [l we invoke the term p € Ho(curl, 2), solution to (5.23), and

the a posteriori error estimate (5.24) to arrive at

(5.27)  |Ipr, = Puz lo < lIPh —Plle + P = Pu: o S €adj.7i + 1P — Puy [ H(curLe)-
Finally, we note that the term p — Pu; € Hy(curl, Q) solves

(1" curl(p — p; ), curlw)o — (2 - u})(p — Pu: ) w)o
= (y; — Yu: > w)q + (curl(y; — yui), curlw)g Yw € Hy(curl, Q).

The stability of this problem gives us ||p — pu2||H(cur17Q) < llyj — Yur

H(curl,Q) /S
Est,7,, where, to obtain the last inequality, we have used the error estimate (5.22).
Therefore, using ||p — Py [[H(curL0) < Est.7, in (5.27) and the obtained estimate in

(5.26), we conclude that:

(5.28) 0" —upl[re S Eocp, 7, -

Step 2. (y* =y llH(cur,0) S Eocp,,) Invoke the variable y,,. € Ho(curl, 2) and
the triangle inequality to obtain
(529) Hy* - y;kL”H(curl,Q) < ||yu; - yZHH(curl,Q) + ”y* - yu;‘L”H(curl,Q)'

The first term in the right-hand side of (5.29) can be bounded in view of (5.22),
whereas the second term can be bounded in view of the stability estimate ||y* —
Yu: [H(curL) S |lu* — uf||ge. These bounds, in combination with (5.28), yield

(530) ||y>‘< - y;kz”H(curl,Q) 5 gocp”?h-

Step 3. ([|[p* — P llH(cur,0) S Eocp,7,,) Similarly to the previous step, we use the
variable p € Hy(curl, ), solution to (5.23), and the triangle inequality to arrive at

(531) Hp* - pZHH(curl,Q) < ||P* - pHH(curl,Q) + ||p - p;kz||H(Cur1,Q)~

The term ||p* — p|le(curl,0) is controlled in view of (5.24). To bound the remaining
term in (5.31), we use the stability estimate ||p* — pl|a(cur,0) S 1Y — Y7 [ H(curL,0) +
[u* —u} [|ge. Hence, we have [|p* —pj; [[s(curt0) S 1Y — U lH(curr,o) + [0 —uj [|[re +
Eadj, 7, We conclude the proof in view of estimates (5.28) and (5.30). |

5.3.2. Efficiency analysis. In the forthcoming analysis we derive an upper
bound for the a posteriori error estimator &,cp, 7, . To simplify the exposition, in this
section we assume that x~! and e, are piecewise polynomial on the partition P; see
section 2.2. The analysis will be based on standard bubble function arguments. In
particular, it requires the introduction of bubble functions for tetrahedra and their
corresponding faces (see [1, 27]).

LEMMA 5.11 (bubble function properties). Let j > 0. For any T € , and
S € L, let by and bg be the corresponding interior quadratic and cubic edge bubble
function, respectively. Then, for all g € P;(T) and p € P;(S), there hold

1/2 1/2
lallF S 17%al3 < llallF  lbspll% < lIplE S 158 %P3

Moreover, for all p € P;(S), there exists an extension of p € P;(T), which we denote
simply as p, such that the following estimates hold

1/2
helpld S 1165 °plF < hrlpld v € Pi(S).

This manuscript is for review purposes only.



710

-
!
&~ W

- ~1 =~ =
NN
Ot

BN

20 F. FUICA, F. LEPE, P. VENEGAS

As a final ingredient, given T' € .7, and v € L?(Q; C) such that v|; € HY(T;C),
we introduce the term

osc(v;T) := Z (hr||v — mpo||p + hy||div v — wpdivol|7)
T'eNr

+ 3 B[l - 7o) - n]s,

S'est

where w7 denotes the L2(T)-orthogonal projection operator onto Py(T), w7 denotes
the L?(T')-orthogonal projection operator onto [Po(7)]3, and N7t is defined in (3.4).

THEOREM 5.12 (local efficiency of £ 7). Let u* € Uyq be a local solution to
(4.1)~(4.2). Let uj be a local minimum of the discrete optimal control problem with
y;, and pj, being the corresponding state and adjoint state, respectively. Then, for
T € G, the local error indicator Estr satisfies the bound

Estr S 0" = uhllre + |y" — yhlH(eurtay) +ose(f5 1),
where Nt is defined in (3.4). The hidden constant is independent of continuous and
discrete optimal variables, the size of the elements in 7, and #.7},.

Proof. Let T € J;, and S € .#}. We define the element and interelement residuals

Rra = div(f +w?(eo - wi)yi)ly,  Tsa = [(f +w’(eo - wp)yp) -],

Rro = (f — curl(p'curly}) + w?(ey - uf)yi)|lp,  Js2:=[p 'curly) x n].

We immediately note that €2, := h%[|Rrx|3 + 4 Yosesl | Ts.kl|% with k € {1,2},
and E2, 1 = €71 + £7.5; cf. section 5.3.1. We now proceed on the basis of four steps
and estimate each term in the definition of the local estimator £ - separately.

Step 1. (estimation of hT||RT2HT) Let T € 9;,. We define the term 7~3T’2 =
(rrf — curl(p~! curly}) + w?(e, - uj)y;)|p- The triangle inequality yields

(5.32) hrl|Rezllr < hrllf — mrflr + hrl| Rz r.

Now, a simple computation reveals, in view of (4.2), that

(5.33)  (u~ curl(y —y;), curlw)g — w?((g5 - u*)(y* — yj,), w)o
Z Rro,w)r — Z(JS,Q,W)S +(f —mrf,w)g — W ((e, - [uf — u*]yl, w)a
€T

SeS

for all w € Hp(curl, Q). We now invoke the bubble function bz, introduced in Lemma
5.11, set w = bRy € HY(T) in (5.33), and use basic inequalities to obtain

IRz2l7 SIF = 7rfllr|Rezlr + o = wjllellyilr|Re2llr
+lleelly” = yillrlRezllr + [ eurl(y™ — y3) || ]| curl(br Rz 2)|7,

upon using the properties of by provided in Lemma 5.11. Hence, a standard inverse
estimate and the bounds |y} |lr < |ly;lle S | flle and ||u*||ge < ||b||Re yield

hr|Reelle S hellf —mr fllr +hrlu® =) llge +helly” —yille + || carl(y” —y3)| 7,
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which, in view of (5.32), allows us to conclude that
hrl|Rrzllr S hellf —mo fllr + hellu® —ugllre + helly™ —yillr + | curl(y® —y5)| 2.

1

Step 2. (estimation of h2||Jsz2||s) Let T € Z, and S € .#. Invoke the bubble
function bg from Lemma 5.11, use w = bsJg2 in (5.33), and a standard inverse
estimate in combination with the properties of bg to arrive at

1Ts2ll3 < D (Rezller + u* = llze |yl
T'e€Ns

1
+hyt |l eurl(y™ — yi)llr + lu*lwelly™ — yillr) B2 Tsalls

We thus conclude, in light of ||y} ||z S ||fllq and estimate (16), the estimation

1Ts2lls S hrllu® — up[|re

+ > (hrllf—mrflle + hrlly —yi e + | eurl(y” —y;) 7).
T'eNs

Step 3. (estimation of hr||Rrq1|r) Let T € 5. We define the term 7§,T71 =
(mrdiv f — div(w?(es - u})y;))|r. The triangle inequality thus yields

(534) hT”RT,l”T S hT”lef — WTdinHT + ]’LTH']NQTJHT.

On the other hand, in light of (4.2), we have

*

—Yn) w)o

= ((f+w’(eo - up)ys w)r — (0" curlyy, curlw)r — (e, - W) —u])yj. w)r)
TeT

(5.35) (u ! curl(y® — y}), curlw)g — w?((e, - u*)(y

for all w € Hy(curl, 2). We then set w = V(bTﬁ’,Tyl) in the latter identity, and apply
an integration by parts formula to obtain

W (g0 -0 (y" — y}), V(brRra))r — (60 - [, — 0y}, V(brRe1)r
— |6y >R |3 + (div f — wpdiv £, bRyt )7

Therefore, utilizing standard inverse estimates in combination with the properties of
br we obtain hy||Rrallr S |ly* — vl + [[u* —uj ||[ge + hr||div f — wpdiv f||7, which,
in view of (5.34), implies that

(5.36) hrl[Rralle S y* = yille + [0 = v [[ee + hrl|div f — wrdiv 7.

1 .
Step 4. (estimation of h2|Js1lls) Let T € ), and S € .#,. Define Jg1 :=
[(7wrf + w?(es - uj)y;) - n]. An application of the triangle inequality results in

(5.37) Wil Tsalls < RENIE = 7 f) - nllls + hil Tsalls.

Invoke the bubble function bs from Lemma 5.11, use w = V(bsJs.1) in (5.35), and
apply an integration by parts formula. These arguments yield the identity

. (P ((eo - u) (Y = i), V(brTs))r + @ (g0 - [w), — u )y, V(bs Tra)r)
T'eNs
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= b5 Tsa %+ ([(f — 70 f) -n],bsTsn)s — Y. (Re,bsTs)r.

T'eNs

We thus utilize inverse estimates in combination with the properties of bg to obtain

1~ 1
Wil Tsalls S I —wjllee+ Y (ly" —whlle +hel| Rl +hEI[(F =7 f)-nlls).
T'eéNs

The combination of the latter estimate and estimates (5.37) and (5.36) results in

1
Wil Tsalls S —wjllee + D (ly" =yl
T'eNs

+ hrldiv £ — mpediv £l + BEI(F — w2 f) - nlls).

We end the proof in view of the estimates obtained in the four previous steps. O

THEOREM 5.13 (local efficiency of Euq51). Let u* € Uyq be a local solution to
(4.1)-(4.2). Let uj, be a local minimum of the discrete optimal control problem with
y; and p; being the corresponding state and adjoint state, respectively. Then, for
T € G, the local error indicator Eqq5, 1 satisfies the bound

Cagjr S 0" = Ujllw + |1Y" — Yhla(curtar + [P7 = PhllE(curt N + 0sc(yq; T)

1
+ Y hpcurl Eg — mrcurl Egll + Y h2|[(Eq — wrEq) x n]|s,
T'€NT S'e L

where N is defined in (3.4). The hidden constant is independent of continuous and
discrete optimal variables, the size of the elements in T, and #},.

Proof. The proof follows analogous arguments to the ones provided in the proof
of Theorem 5.12. For brevity, we skip details. 0

We conclude this section with the following result, which is a direct consequence
of Theorems 5.12 and 5.13.

COROLLARY 5.14 (efficiency of Eycp ). In the framework of Theorems 5.12 and
5.13 we have, for T € J},, that the local error indicator Eqep r satisfies the bound

800P7T S HU* - uZHRl + ||y* - yZHH(curl,NT) + Hp* - pZHH(CUY'LNT) + OSC(f;T)

1
+osc(yg; T) —|—Z hy/|| curl Eq — 7w curl Eq|| 7 +Z hW2|[(Eq—mrEq)xn]|s,
T'eNr sesl

where Nt is defined in (3.4). The hidden constant is independent of continuous and
discrete optimal variables, the size of the elements in T, and #.7},.

6. Numerical experiments. In this section, we present three numerical tests
in order to validate our theoretical findings and assess the performance of the proposed
a posteriori error estimator Eycp, 7, , defined in (5.25). These experiments have been
carried out with the help of a code that we implemented in a FEniCS script [18] by
using lowest-order Nédélec elements.

In the following numerical examples, we shall restrict to the case where all the
functions and variables present in the optimal control problem are real-valued. This,
with the aim of simplifying numerical computations, acknowledging that the inclusion
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of complex variables would significantly increase computational costs. In particular,
and following Remark 4.1, we consider the following problem: min 7 (y,u) subject to

curlycurly+ (k-u)y=f inQ, yxn=0 onl,

and the control constraints u = (uy,...,us) € Uyg and U,q := {v eRl:a<v< b}.
We recall that real-valued coefficients x,x € PW1>(Q) satisfy k > ko > 0 and
X > xo > 0 with kg, o € RT and that x-u = Zf;:l K| g, Uk

6.1. Implementation issues. In this section we briefly discuss implementation

details of the discretization strategy proposed in section 5.
For a given mesh 7},, we seek (y},p,u}) € V() x V(F4) x Ugq that solves

(' curly;, curlwvy)o + (- uf)yr, vn)e = (£, vn)a,

(0" curlpj, curlwy,)o + ((k - u})pj, wh)a = (Y} — Yo, wh)o
+ (curly;, — Eq, curlwy)q,

S (a(wi)e = fo, 7 -7 ) (e = (w))e) 20,

for all (vp,wp,up) € V(T,) x V(F3,) X Uyg. This discrete optimality system is
solved by using a semi-smooth Newton method. To present the latter, we define
X(F) == V(F) x V() x R and introduce, for n = (y,,,p,,un) and O =
(vp, wp,up) in X(J,), the operator Fg, : X(J,) — X(Z3), whose dual action
on O, ie. (Fz,(V),0)x 7 x(7,) is defined by

(u~teurly,,curlvy)g + (k- up)y, — f,vn)a
(4! curlp,, — curly,, + Eq, curlwy)q + ((5 - wn)pj;, — ¥j, + Yo, wa)a
(up); — ¢1 — max{a; — ¢1,0} + max{c; — by, 0}

(uh)g — Cy — max{ag — Cy, 0} + max{ce — bg, O}

where ¢, := —a~! [, wy), - p, with &k € {1,...,¢}. Given an initial guess n, =
(¥}, p),up) € X(Jh) and j € No, we consider the following Newton iteration n; , =
1; + 6n, where the incremental term én=(5y,,, 0p;, duy) € X(T}) solves

(6.1) (Fg, (m;)(61), O)x( 7y x(7) = —(F 7. (1;), O)x (73,1 x(71)

for all © = (vp, wn,up) € X(F). Here, F, (n;)(6n) denotes the Gateaux derivate
of Fg, at m; = (yi, pfl, ufl) in the direction 1. We immediately notice that, in the
semi-smooth Newton method, we apply the following derivative to max{-,0}:

max{c,0} =1 if ¢ >0, max{c,0} =0 if ¢ <O0.

To apply the adaptive finite element method, we generate a sequence of nested
conforming triangulations using the adaptive procedure described in Algorithm 6.1.

6.2. Test 1. Smooth solutions. We consider this example to verify that the
expected order of convergence is obtained when solutions of the control problem are
smooth. In this context, we assume Q := (0,1)3, a = 0.01, b=5, a = 0.1, x = 1,
and xk = 0.1; the source term f, the desired states y and Eq, and the boundary
conditions are chosen such that the exact optimal state and adjoint state are given by

y*(x) = (cos(mx) sin(my) sin(7wz), sin(nzx) cos(my) sin(rz), sin(nzx) sin(my) cos(rz)),
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Algorithm 6.1 Adaptive Algorithm.

Input: Initial mesh o, data f, desired states y, and Eq, functions x and &, vector con-
straints a and b, and control cost «a.

Set: n =0.

Active set strategy:

1 : Choose initial discrete guess 1, = (y2,p°,ud) € X(Z,).

2 : Compute [y, p,,,u,] = SSNM|[T,, 0y, f,Yq, Eq, X, k,a,b,a], where SSNM imple-
ments Newton iteration (6.1).

Adaptive loop:

3 : For each T € .7, compute the local indicators s, v and Eqq5,7 defined in section 5.3.1.
4 : Mark an element 7" for refinement if (7 > 0.5 maxy/c o, (77, with {r € {Est,1, Eagjr}-

5 : From step 4, construct a new mesh, using a longest edge bisection algorithm. Set
n < n+ 1 and go to step 1.

p*(x) = — (2% sin(my) sin(nz), sin(7z) sin(72), sin(7z) sin(7y)),

where x = (x,y, z). Given the smoothness of the solution, we present the obtained
errors and their experimental rates of convergence only with uniform refinement.
In particular, Table 6.1 shows the convergence history for ||y* — YillH(curr,0) and
lp* — P llH(cur,0)- In the same table, the corresponding experimental convergence
rates are shown in terms of the mesh size h. We observe that the optimal rate of
convergence is attained for both variables (cf. Theorem 3.1(ii) and Corollary 5.7).

TABLE 6.1
Test 1: H(curl, Q)-error and experimental order of convergence for the approzimations of y*
and p* with uniform refinement.

h Hy* - y;”H(curl,Q) Order Ilp* - p;”H(curl,Q) Order
0.8660 0.98925 - 1.70729 -

0.4330 0.38458 0.825 0.96359 1.363
0.2165 0.16768 0.961 0.49503 1.197
0.1082 0.08271 0.986 0.24997 1.019
0.0541 0.04609 0.972 0.12747 0.843

6.3. Test 2. A 3D L-shaped domain. This test aims to assess the per-
formance of the numerical scheme when solving the optimal control problem for a
solution with a line singularity, with uniform and adaptive refinement. To this end,
we consider the classical three-dimensional L-shape domain given by

Q:=(=1,1) x (=1,1) x (0,1)\((0, 1) x (=1,0) x (0,1)).

An example of the initial mesh used for this example is depicted in Figure 6.2 (left).
Let f, yq, and Eq be such that the exact solution of the optimal control problem
witha=001,b=1,a=1x=1,k=00lisy* =p* = (2, %,0), where function
S is given, in terms of the polar coordinates (r,6), by S(r,0) = r?/%sin(260/3). Notice
that (y*, p*) have a line singularity located at z—axis, and the solution belongs only
to H?/3~¢(curl, Q) for any ¢ > 0 (see, for instance, [17]). According to (5.17) the
expected convergence rate should be C’)(h2/3_€) for any € > 0.

In Figure 6.1 (right) we present experimental rates of convergence for |y* —
Y5 lH(cur1,0), With uniform and adaptive refinement, in terms of the number of ele-
ments N of the meshes. We observe that y; converges to y* with order O(N792) ~
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O(hY6) for the uniform case, which is close to the expected order of convergence. On
the other hand, the convergence for the adaptive scheme is O(N~3) ~ O(h%?). We
note that the adaptive scheme is able to recover the optimal order O(N~1/3) =~ O(h).
In the same figure, we also present &,p 7, for each adaptive iteration. It notes that
the estimator decays asymptotically as O(N ~%29). We observe that the convergences
of the a posteriori error estimator and the energy error are almost optimal. Due to
the similarity in observed behavior between the approximation of p* and the previ-
ous results, both in terms of error and estimator performance, we have omitted its
analysis for brevity. Finally, in Figure 6.2 (right) we observe a comparison between
meshes in different adaptive iterations. It can be seen that the adaptive algorithm
refine around the singularity produced by the re-entrant corner.

—0— ||y — yjl|ln(eune) (adaptive)
QN3

Eocp, T,
- - O(N02)

107

Fi1G. 6.1. Test 2. Left: Initial mesh for the L-shaped domain. Right: Comparison between error
curves for uniform and adaptive refinements, together with computed values of estimator Eycp, 7, -

Fi1c. 6.2. Test 2. Intermediate adaptively refined meshes with 15408 (left) and 263463 (right)
number of elements using the estimator Eocp, 7, -

6.4. Test 3. Discontinuous parameters and unknown solution. This ex-
ample is to further test the robustness of the adaptive algorithm in the case where
discontinuous parameters are considered. More precisely, we consider

0.0001 if & € Qq,
x(xz) = nE 0 k(x) = K1(x) + ke(x) = 1g, + 100 X 1q;,.
1.0 otherwise

Here, 1q,, 1a, denote the characteristic functions of g, C Q defined by
Qg :={x = (z,y,2) € Q:max{|x — 0.5],|]y — 0.5],|z — 0.5]} < 0.25},
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and € := Qg NQ, respectively; the computational domain is Q := (0,1)®. We choose
as data a = (0.1,0.1), b = (100, 100), o = 1, and

yo(x) = (2% sin(my) sin(nz), sin(rx) sin(rz), sin(7z) sin(ry)), f(x) = (1,0,0).

In contrast to the previous examples, the solution of this problem cannot be described
analytically. Moreover, due to the discontinuities of the parameters, a smooth solution
cannot be expected and may exhibit pronounced singularities.

Figure 6.3 illustrates the adaptive meshes generated by Algorithm 6.1. Note that
the adaptive refinement is concentrated on the boundary of €y, which is where the
parameter discontinuity takes place. In Figure 6.4 (left), we show the approximate
solution on the finest adaptively refined mesh, where we observe that the solution
primarily concentrates on )y and its magnitude decreases outside this region. In
the absence of an exact solution, we employ the error estimators £ 5, and Eq45, 7, to
evaluate the convergence of the adaptive method. Figure 6.4 (right) shows the conver-
gence history for £, 7, and £q4, 7, , computed with uniform and adaptive refinement.
From this figure we observe a convergence behavior of both estimators towards zero
for increasing number of elements of the mesh. Notably, the adaptive method achieves
significantly superior numerical performance. We also observe a lower order of con-
vergence for the estimators compared to the previous example. This is expected due
to the poor regularity and the non-smoothness detected in the solution.

Fic. 6.3. Test 8. Adaptively refined mesh with 1626796 number of elements and the corre-
sponding cross sections of the mesh.
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