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Abstract. In this paper we propose and analyze a virtual element method to approximate the
natural frequencies of the acoustic eigenvalue problem with polygonal meshes that allow the presence
of small edges. With the aid of a suitable seminorm that depends on the stabilization of the small
edges method, we prove convergence and error estimates for the eigenfrequencies and eigenfunctions
of the problem, supporting our analysis on the compact operators theory. We report some numerical
tests that allows us to assess the performance of the method and the accuracy on the approximation.
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1. Introduction. Numerical methods for the acoustic problem has been a mat-
ter of study from several years due the importance of the knowledge of the natural
frequencies of fluids with acoustic properties. The acoustic phenomenon is well estab-
lished from the physical point of view, where in [27] it is possible to find a complete
description of the meaning of the physical interpretation of the acoustic system when
we are in presence of fluids that may produce for instance, internal dissipation, or
inviscid fluids. When dissipative fluids are considered, naturally, the eigenvalue prob-
lem that emerge is non-linear and the analysis for this type of problem is not direct.
We refer to [8, 18] where it is possible to find the functional treatment of such prob-
lems. On the other hand, fluids that not have presence of dissipative properties lead
to linear eigenvalue problems, where the literature related to the numerical approxi-
mation of the solution of the acoustic system is abundant, not only on what concerns
to numerical methods, but also on the different formulations of the systems of partial
differential equations.

Regarding to the virtual element method (VEM), the applications to solve eigen-
value problems are well documented on the literature for different nature of partial
differential equations and the spectral problems associated to them. We refer, for in-
stance, to [13, 15, 14, 22, 21, 25, 24, 26] where the VEM have shown, on its conforming
and non-conforming versions, the accuracy in the approximation of the solutions of
eigenvalue problems related to second and fourth order eigenvalue problems, elasticity
and Stokes eigenvalue problems, mixed formulations, etc. In particular, we refer to
[7, 20] where the displacement formulation of the acoustic eigenvalue problem has
been considered, involving VEM spaces to discretize the space H(div). All these ref-
erences and the references therein, operate under the classic assumptions of [5] for
the polygonal meshes which consists in star-shaped polygons and the sides of these
polygons are not allowed to be too small. This last condition has been relaxed on [6]
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2 D. AMIGO, F. LEPE AND G. RIVERA

for the two dimensional Laplace source problem and extended in [12] for polyhedral
allowing small faces leading to an important advance on the study of VEM but, for
the best of our knowledge, is only available for second order elliptic problems involving
the discretization of H1 spaces. In this sense, the new approach of small edges have
emerged as an excellent tool to approximate the solutions of eigenvalue problems as is
presented in [3, 19, 23]. This is precisely what motivates our work in order to continue
with our research program on the applications of the VEM allowing for small edges
on spectral problems. In the present case we focus on the acoustic eigenvalue problem
in its pressure formulation. Despite to the fact that in [19] the Laplace operator has
been already studied with the VEM allowing small edges as in our present case, we
have to precise some difference: in one hand, we need to stabilize every bilinear form
for the acoustic problem which for the Steklov problem is no needed. On the other
hand, since the left-hand side of our discrete problem is not stable, it is not possible
to relate the H1 norm and the seminorm introduced in [6], implying that the conver-
gence analysis in H1 norm for the solution operators must be analyzed with different
techniques compared with [19], where now, the discrete coercivity is no longer needed
for the analysis. Let us remark that the choice of the pressure formulation for the
acoustic problem is precisely since the variational formulation demands to seek the
pressure on the space H1 and according to the classic regularity for the pure-Neumann
Laplace problem, the small edges approach can be used according to [6]. Moreover,
since the elasticity equations on its source and spectral problems have been already
studied with the VEM allowing small edges (see [2, 3]), the analysis of the acoustic
problem with a VEM allowing for small edges opens the gate to analyze numerically
a more challenging problem as the elastoacustic problem which we can describe as a
formulation depending on the displacement of the solid and the pressure of the fluid
(see [9] for instance).

The outline of our papers is as follows: In Section 2 we present the problem under
consideration. This includes the bilinear forms, functional spaces, regularity of the
eigenfunctions, the solution operator and the corresponding spectral characterization.
Section 3 states the virtual element method, where the definitions and assumptions on
the mesh are presented. With the aim of develop a small edges method, we introduce
a suitable norm depending on the stabilization term, which is taking in an appropriate
way for the small edges scheme. With the discrete bilinear forms we introduce the
discrete eigenvalue problem and the discrete solution operator in order to perform the
analysis of well posedness, spectral convergence and the derivation of error estimates.
We end the paper in Section 4 reporting a series of numerical tests to assess the
performance of the method, in order to confirm the theoretical results.

2. The model problem. Let Ω be an open and bounded bidimensional domain
with Lipschitz boundary ∂Ω. The classic acoustic problem is: Find ω ∈ R, the
displacement u and the pressure p on a domain Ω ⊂ Rd, such that

(2.1)

 ∇p− ω2ρu = 0 inΩ
p+ ρc2 divu = 0 inΩ

u · n = 0 on ∂Ω,

where ρ is the density, c is the sound speed, and n is the outward unitary vector.
Now, using the second equation of (2.1) we can eliminate the displacement in order
to obtain a problem depending only on the pressure. This problem consists into find
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the pressure p and the frequency ω such that

(2.2)

c2 div

(
1

ρ
∇p

)
+

ω2

ρ
p = 0 in Ω,

∇p · n = 0 on ∂Ω,

A variational formulation for (2.2) is: Find ω ∈ R and 0 ̸= p ∈ H1(Ω) such that

c2
∫
Ω

1

ρ
∇p · ∇v = ω2

∫
Ω

1

ρ
pv ∀v ∈ H1(Ω).

Let us define the bilinear forms a : H1(Ω)×H1(Ω) → R and b : H1(Ω)×H1(Ω) → R,
which are given by

a(q, v) := c2
∫
Ω

1

ρ
∇q · ∇v and b(q, v) :=

∫
Ω

1

ρ
qv ∀q, v ∈ H1(Ω).

With a shift argument and setting λ := ω2 + 1, we arrive to the following problem:
Find λ ∈ R and 0 ̸= p ∈ H1(Ω) such that

(2.3) â(p, v) = λb(p, v) ∀v ∈ H1(Ω),

where the bilinear form â : H1(Ω)×H1(Ω) → R is defined for all q, v ∈ H1(Ω) by

â(q, v) := a(q, v) + b(q, v).

It is easy to check that â(·, ·) is coercive in H1(Ω). This allows us to introduce
the solution operator T : H1(Ω) → H1(Ω), defined by Tf = p̃, where p̃ ∈ H1(Ω) is the
solution of the corresponding associated source problem: Find p̃ ∈ H1(Ω) such that

(2.4) â(p̃, v) = b(f, v) ∀v ∈ H1(Ω).

The regularity results that we need for our purposes are the ones related to the
Laplace problem with pure null boundary conditions. This regularity is stated in the
following lemma (see [25, Lemma 2.2] and [16]).

Lemma 2.1. There exists rΩ > 1/2 such that the following results hold:
1. For all f ∈ H1(Ω) and for all r ∈ (1/2, rΩ) the solution p̂ of (2.4) satisfies

p̂ ∈ H1+s(Ω) with s := min{r, 1}. Moreover, there exists a constant C > 0
such that

∥p̃∥1+s ≤ C∥f∥1,Ω;

2. If p is an eigenfunction of problem (2.3) with eigenvalue λ, for all r ∈
(1/2, rΩ) there hold that p ∈ H1+r(Ω) and also, there exists a constant C > 0,
depending on λ, such that

∥p∥1+r ≤ C∥p∥1,Ω.

In virtue of Lemma 2.1, the solution operator T results to be compact due the
compact inclusion of H1+s(Ω) onto H1(Ω) and self-adjoint with respect to â(·, ·). We
observe that (λ, p) ∈ R × H1(Ω) solves (2.3) if and only if (µ, p) ∈ R × H1(Ω) is an
eigenpair of T , with µ := 1/λ. Finally, since we have the additional regularity for the
eigenfunctions, the following spectral characterization of T holds.

Lemma 2.2 (Spectral Characterization of T ). The spectrum of T satisfies sp(T ) =
{0, 1} ∪ {µk}k∈N, where {µk}k∈N is a sequence of real and positive eigenvalues that
converge to zero, according to their respective multiplicities.
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3. The virtual element method. Let us now introduce the ingredients to
establish the virtual element method for the eigenvalue problem (2.3). First we recall
the mesh construction and the assumptions considered in [5] for the virtual element
method. Let {Th}h be a sequence of decompositions of Ω into polygons which we
denote by E. Let us denote by hE the diameter of the element E and h the maximum
of the diameters of all the elements of the mesh, i.e., h := maxE∈Ω hE . Moreover,
for simplicity, in what follows we assume that κ and γ are piecewise constant with
respect to the decomposition Th, i.e., they are piecewise constants for all E ∈ Th (see
for instance [6]).

For the analysis of the VEM, we will make as in [5] the following assumption:
there exists a positive real number ρ such that, for every E ∈ Th and for every Th,

• A1. For all meshes Th, each polygon E ∈ Th is star-shaped with respect to a
ball of radius greater than or equal to ρhE .

For any simple polygon E we define

Ṽ E
h := {vh ∈ H1(E) : ∆vh ∈ P1(E), vh|∂E ∈ C0(∂E), vh|e ∈ P1(e) ∀e ∈ ∂E}.

Now, in order to choose the degrees of freedom for Ṽ E
h we define

• Vh
E : the value of wh at each vertex of E,

as a set of linear operators from Ṽ E
h into R. In [1] it was established that Vh

E constitutes

a set of degrees of freedom for the space Ṽ E
h .

On the other hand, we define the projector Π∇,E : Ṽ E
h −→ P1(E) ⊆ Ṽ E

h for each

vh ∈ Ṽ E
h as the solution of∫

E

(∇Π∇,Evh −∇vh) · ∇q1 = 0 ∀q1 ∈ P1(E), Π∇,Evh = vh,

where for any sufficiently regular function v, we set v := |∂E|−1
∫
∂E

v.We observe that
the term Π∇,Evh is well defined and computable from the degrees of freedom of v given
by Vh

E , and in addition the projector Π∇,E satisfies the identity Π∇,E(P1(E)) = P1(E)
(see for instance [1]).

We are now in position to introduce our local virtual space

V E
h :=

{
vh ∈ Ṽ E

h :

∫
E

Π∇,Evhp1 =

∫
E

vhp1, ∀p1 ∈ P1(E)

}
.

Now, since V E
h ⊂ Ṽ E

h , the operator Π∇,E is well defined on V E
h and computable

only on the basis of the output values of the operators in Vh
E . In addition, due to

the particular property appearing in definition of the space V E
h , it can be seen that

∀p1 ∈ P1(E) and ∀vh ∈ V E
h the term (vh, p1)0,E is computable from Π∇,Evh, and

hence the L2(E)-projector operator ΠE : V E
h → P1(E) defined by∫

E

ΠEvhp1 =

∫
E

vhp1 ∀p1 ∈ P1(E),

depends only on the values of the degrees of freedom of vh. Actually, it is easy to
check that the projectors Π∇,E and ΠE are the same operators on the space V E

h (see
[1] for further details).

Finally, for every decomposition Th of Ω into simple polygons E we define the
global virtual space

(3.1) Vh :=
{
v ∈ H1(E) : v|E ∈ V E

h ∀E ∈ Th
}
,
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and the global degrees of freedom are obtained by collecting the local ones, with the
nodal and interface degrees of freedom corresponding to internal entities counted only
once those on the boundary are fixed to be equal to zero in accordance with the
ambient space H1

0(Ω).

3.1. Discrete bilinear forms. In order to propose the discrete counterparts of
a(·, ·) and b(·, ·), we split these forms as follows

a(q, v) =
∑
E∈Th

aE(q, v), b(q, v) =
∑
E∈Th

bE(q, v).

Now, for each polygon E ∈ Th, we introduce the following symmetric and semi-
positive definite bilinear form SE : Vh × Vh → R as follows:

SE(qh, vh) := hE

∫
∂E

∂sqh∂svh ∀qh, vh ∈ V E
h ,

where ∂s denotes a derivative along the edge. Then, we define the local discrete
bilinear form aEh (·, ·) : Vh × Vh → R by

aEh (qh, vh) := aE(Π∇,Eqh,Π
∇,Evh) + SE(qh −Π∇,Eqh, vh −Π∇,Evh),

for all qh, vh ∈ V E
h .

Now, we introduce the following discrete semi-norm (see [6] for details)

|||v|||2E := aE
(
Π∇,Ev,Π∇,Ev) + SE(v − v̄, v − v̄) ∀v ∈ V E

h + VE ,

where VE ⊆ H1(E) is a subspace of sufficiently regular functions for SE(·, ·) to make
sense.

For any sufficiently regular functions, we introduce the following global semi-
norms

|||v|||2 :=
∑
E∈Th

|||v|||2E , |v|21,h :=
∑
E∈Th

∥∇v∥20,E .

According to [6, Lemma 3.1] the existence of positive constants C1, C2, C3, indepen-
dent of h but depending on the polygon E, such that

C1|||v|||2E ≤ aEh (v, v) ≤ C2|||v|||2E ∀v ∈ V E
h ,(3.2)

aEh (v, v) ≤ C3(|||v|||2 + |v|21,E) ∀v ∈ V E
h .(3.3)

In addition, it holds

aE(v, v) ≤ C4|||v|||2E ∀v ∈ V E
h ,(3.4)

|||p1|||2E ≤ C5a
E(p1, p1) ∀p1 ∈ P1(E),(3.5)

where C4 and C5 are positive constants independent of h but depending on the polygon
E. On the other hand, to introduce the local discrete counterpart of bE(qh, vh), we
consider any symmetric and semi-positive definite bilinear form SE

0 : V E
h × V E

h → R
satisfying

b0b
E(vh, vh) ≤ SE

0 (vh, vh) ≤ b1bE(vh, vh) ∀vh ∈ V E
h ,
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where b0, b
1 are two positive constants. Then, we define for each polygon E the local

(and computable) bilinear form bEh : V E
h × V E

h → R by

bEh (qh, vh) = bE(ΠEqh,Π
Evh) + SE

0 (qh −ΠEqh, vh −ΠEvh) ∀qh, vh ∈ V E
h .

We remark that the discrete bilinear form bEh (·, ·) satisfies the classical properties of
consistency and stability. Then, the global discrete bilinear forms ah(·, ·) and bh(·, ·)
are be expressed componentwise as follows

ah(qh, vh) :=
∑
E∈Th

aEh (qh, vh), bh(qh, vh) :=
∑
E∈Th

bEh (qh, vh),

âh(qh, vh) :=
∑
E∈Th

aEh (qh, vh) + bEh (qh, vh).

3.2. Spectral discrete problem. Now we introduce the VEM discretization
of problem (2.3). To do this task, we require the global space Vh defined in (3.1)
together with the assumptions introduced in Section 3.

Setting λh := ω2
h + 1, the spectral problem reads as follows: Find λh ∈ R and

0 ̸= ph ∈ Vh such that

(3.6) âh(ph, vh) = λhbh(ph, vh) ∀vh ∈ Vh.

It is possible to prove that âh(·, ·) is Vh-coercive. Indeed, for vh ∈ Vh, using (3.2)
and (3.4) we have

âh(vh, vh) =
∑
E∈Th

aEh (vh, vh) + bEh (vh, vh)

≥
∑
E∈Th

C1|||vh|||2E +min{b0(E), 1}bE(vh, vh)

≥ min

{
min
E∈Th

{C1(E)C4(E)−1}, b0(E), 1

} ∑
E∈Th

aE(vh, vh)+ bE(vh, vh) ≥ C∥vh∥21,Ω,

where C := C(ρ, c)min

{
min
E∈Th

{C1(E)C4(E)−1}, b0(E), 1

}
and C(ρ, c) is a positive

constant depending on the density and sound speed of the fluid. Moreover, thanks to
(3.4), we obtain for every wh ∈ Vh:

(3.7) |||wh|||2 + ∥wh∥20,Ω ≥
∑
E∈Th

C−1
4 aE(wh, wh) + ∥wh∥20,E

≥ c2ρ−1 min
E∈Th

{C4(E)−1, 1}
(
|wh|21,Ω + ∥wh∥20,Ω

)
= C∗

1∥wh∥21,Ω,

where C∗
1 := c2ρ−1 min

E∈Th

{C4(E)−1, 1}.
On the other hand, the coercivity of âh(·, ·) allows us to introduce the discrete

solution operator Th : Vh → Vh defined by fh 7→ Thfh := p̃h, where p̃h ∈ Vh is the
solution of the discrete load problem

âh(p̃h, vh) = bh(fh, vh) ∀vh ∈ Vh.

Let us remark that Th is well defined due to the Lax-Milgram’s lemma and self-
adjoint with respect to âh(·, ·). Moreover, it is easy to check that (λh, ph) ∈ R × Vh

solves (3.6) if and only if (µh, ph) ∈ R× Vh is an eigenpair of Th with µh := 1/λh.
Finally, we present the spectral characterization of Th.
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Lemma 3.1 (Spectral characterization of Th). The spectrum of Th consists in
Mh := dim(Vh) positive and real eigenvalues with a certain multiplicity.

On the other hand, we also have the following well known approximation result
for polynomials in star-shaped domain (see for instance [11]).

Lemma 3.2. If the assumption A1 is satisfied, then there exists a constant C,
depending only on k and γ, such that for every s̃ with 0 ≤ s̃ ≤ k and for every
v ∈ H1+s̃(E), there exists vπ ∈ Pk(E) such that

∥v − vπ∥0,E + hE |v − vπ|1,E ≤ Ch1+s̃
E ∥v∥1+s̃,E .

Finally, we have the following result, that provides the existence of an interpolant
operator on the virtual space (see [25, Proposition 4.2]).

Lemma 3.3. Under the assumption A1, for each s̃ with 0 < s̃ ≤ 1, there exist σ̂
and a constant C, depending only on k, such that for every v ∈ H1+s̃(Ω), there exists
vI ∈ Vh that satisfies

|v − vI |1+t,E ≤ Chs̃−t
E |v|1+s̃,E 0 ≤ t ≤ min{σ̂, s̃},

∥v − vI∥0,E ≤ ChE |v|1+s̃,E .

As a direct consequence of the above two lemmas, standard results on spectral
approximation can be used (see [10, 17]). Observe that the operator Th is not well
defined for any source f ∈ H1(Ω) since bh(·, ·) is a stabilized bilinear form. This
implies that the classical theory of compact operators cannot be employed directly.
Inspired in [24], in order to fix it and taking adventage of the compactness of T , we
introduce the operator Ph : L2(Ω) → Vh ↪→ H1(Ω) defined by the following property:
b(Phu − u, vh) = 0 for every vh ∈ Vh. Is easy to check that ∥Phu∥0,Ω ≤ ∥u∥0,Ω.
Now, we define the operator T̂h : H1(Ω) → Vh, which is well-defined for any source

f ∈ H1(Ω). Moreover, the spectra of Th and T̂h coincide, and the same for the

eigenfunctions of Th and T̂h. The first task is to prove the convergence in norm of T̂h

to T . We begin with the following result.

Lemma 3.4. There exists a constant C > 0 independent of h such that for all
f ∈ H1(Ω), the following estimate holds

∥(T − T̂h)f∥1,Ω ≤ Chs∥f∥1,Ω,

where s is the regularity index given by Lemma 2.1.

Proof. Let f ∈ H1(Ω) be such that p̃ := Tf and p̃h := T̂hf . Let p̃I ∈ Vh be the
interpolant of p̃ ∈ H1(Ω) given by Lemma 3.3. From the triangle inequality we have

∥(T − T̂h)f∥1,Ω = ∥p̃− p̃h∥1,Ω ≤ ∥p̃− p̃I∥1,Ω + ∥p̃I − p̃h∥1,Ω.

We observe that the first term on the inequality above is immediately controlled by
using Lemma 3.3, obtaining ∥p̃− p̃I∥1,Ω ≤ Chs∥f∥1,Ω. For the second term, we invoke
the Vh-coercivity of âh(·, ·), defining vh := p̃I − p̃h and using (3.2) we have
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|||vh|||2 + ∥vh∥20,Ω ≤
∑
E∈Th

C−1
1 aEh (vh, vh) + bE(vh, vh)

≤ C max
E∈Th

{C1(E)−1, 1}âh(vh, vh) = max
E∈Th

{C1(E)−1, 1} (âh(p̃I , vh)− âh(p̃h, vh))

= max
E∈Th

{C1(E)−1, 1}

âh(p̃I − p̃π, vh)− â(p̃− p̃π, vh)︸ ︷︷ ︸
(I)

+ b(f, vh)− bh(Phf, vh)︸ ︷︷ ︸
(II)

 ,

where in the last equality we have used the consistency property for âh(·, ·). Now,
we need to estimate the contributions on the right-hand side. For (I), using triangle
inequality, (3.2) and Cauchy-Schwarz inequality, we obtain

(I) ≤
∑
E∈Th

|âEh (p̃I − p̃π, vh)− âE(p̃− p̃π, vh)|

≤
∑
E∈Th

|aEh (p̃I − p̃π, vh)− aE(p̃− p̃π, vh)|+ |bEh (p̃I − p̃π, vh)− bE(p̃− p̃π, vh)|

≤
∑
E∈Th

c2ρ−1C2(E)|||p̃I − p̃π|||E |||vh|||E + c2ρ−1|p̃− p̃π|1,E |vh|1,E

+ ρ−1b1∥p̃I − p̃π∥0,Ω∥vh∥0,Ω + ρ−1∥p̃− p̃π∥0,Ω∥vh∥0,Ω
≤

∑
E∈Th

c2ρ−1C2(E)|||p̃I − p̃π|||E |||vh|||E + c2ρ−1
√
C4|p̃− p̃π|1,E |||vh|||E

+ ρ−1b1∥p̃I − p̃π∥0,Ω∥vh∥0,Ω + ρ−1∥p̃− p̃π∥0,Ω∥vh∥0,Ω
≤ C∗

2 (|||p̃I − p̃π|||+ |p̃− p̃π|1,h + ∥p̃I − p̃π∥0,Ω

+∥p̃− p̃π∥0,Ω)
(
|||vh|||2 + ∥vh∥20,Ω

)1/2

,

where C∗
2 is a positive constant given by

C∗
2 := max

E∈Th

{
c2ρ−1C2(E), c2ρ−1

√
C4(E), ρ−1b1(E), ρ−1

}
.

On the other hand, using the definition of |||·||| we obtain

|||p̃− p̃I |||2 =
∑
E∈Th

[
aE(Π∇,E(p̃− p̃I),Π

∇,E(p̃− p̃I))

+SE(p̃− p̃I − p̃− p̃I , p̃− p̃I − p̃− p̃I)
]

=
∑
E∈Th

c2ρ−1|Π∇,E(p̃− p̃I)|21,E + SE(p̃− p̃I , p̃− p̃I)

=
∑
E∈Th

c2ρ−1|Π∇,E(p̃− p̃I)|21,E + hE |p̃− p̃I |21,∂E

≤
∑
E∈Th

c2ρ−1|p̃− p̃I |21,E + hE |p̃− p̃I |21,∂E ≤ max{c2ρ−1, 1}
∑
E∈Th

h2s
E |p̃|21+s,E

≤ max{c2ρ−1, 1}h2s|p̃|21+s,Ω,

where in the last inequality we have used a scaled trace inequality. Hence, we obtain

|||p̃− p̃I ||| ≤ max{cρ−1/2, 1}hs|p̃|1+s,Ω.
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The same arguments can be used for |||p̃− p̃π|||, obtaining

|||p̃− p̃π||| ≤ max{cρ−1/2, 1}hs|p̃|1+s,Ω.

On the other hand, using Lemma 3.2 we obtain |p̃ − p̃π|1,h ≤ Chs|p̃|1+s,Ω. Then,
using triangle inequality and the previous estimates, we conclude for (I) that

(I) ≤ C∗
3h

s|p̃|1+s,Ω

(
|||vh|||2 + ∥vh∥20,Ω

)1/2

, C∗
3 := max{cρ−1/2, 1}C∗

2 .

Now, for (II) we have

|(II)| ≤
∑
E∈Th

|bE(Phf, vh)− bEh (Phf, vh)|

=
∑
E∈Th

|bE(Phf − fπ, vh)− bEh (Phf − fπ, vh)|

≤ ρ−1 max
E∈Th

{b1(E), 1}∥Phf − fπ∥0,Ω∥vh∥0,Ω

≤ ρ−1 max
E∈Th

{b1(E), 1}(∥f − fI∥0,Ω + ∥f − fπ∥0,Ω)
(
|||vh|||2 + ∥vh∥20,Ω

)1/2

≤ ρ−1 max
E∈Th

{b1(E), 1}hs∥f∥1,Ω
(
|||vh|||2 + ∥vh∥20,Ω

)1/2

,

where we have used Lemmas 3.3, 3.2, and the best approximation property for Ph.
Therefore, using Lemma 2.1 we obtain

(3.8) |||vh|||2 + ∥vh∥20,Ω ≤ C∗
4h

s∥f∥1,Ω
(
|||vh|||2 + ∥vh∥20,Ω

)1/2

,

where C∗
4 := max

E∈Th

{C∗
3 , ρ

−1b1(E), ρ−1} and hence, combining the previous estimate

with (3.7), we obtain ∥vh∥1,Ω ≤ C∗
4C

∗−1/2
1 hs∥f∥1,Ω. Finally, defining the constant

C := max{C∗
4C

∗−1/2
1 , 1}, we conclude the proof.

Remark 3.5. Let us remark that (3.8) will be useful to derive the double order of
convergence for eigenvalues.

From the previous Lemma, we can conclude the convergence in norm for T̂h to T
as h → 0. This is a key ingredient in order to obtain error estimates for eigenvalues
and eigenfunctions.

We present as a consequence of the above, that the proposed method does not
introduce spurious eigenvalues. In practical terms, this implies that isolated parts of
sp(T ) are approximated by isolated parts of sp(T̂h) (see [17]). This is contained in
the following result.

Theorem 3.6. Let G ⊂ C be an open set containing sp(T ). Then, there exists

h0 > 0 such that sp(T̂h) ⊂ G for all h < h0.

Let us remark that that the spectra of Th and T̂h coincide. According to this,
let µ be an isolated eigenvalue if T with multiplicity m and let E be its associated

eigenspace. Then, there exist m eigenvalues µ
(1)
h , . . . , µ

(m)
h of Th, repeated according

to their respective multiplicities that converge to µ. Now, let Eh be the direct sum of

the associated eigenspaces of µ
(1)
h , . . . , µ

(m)
h . With these definitions at hand, now we

focus on the analysis of error estimates.
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3.3. Error estimates. Now our task is to obtain error estimates for the approx-
imation of the eigenvalues and eigenfunctions. With this goal in mind, first we need
to recall the definition of the gap δ̂ between two closed subspaces X and Y of H1(Ω):

δ̂(X ,Y) := max{δ(X ,Y), δ(X ,Y)},

where δ(X ,Y) := sup
x∈X :∥x∥1,Ω=1

{
inf
y∈Y

∥x− y∥1,Ω
}
.

The following result provides an error estimate for the eigenfunctions and eigen-
values.

Theorem 3.7. The following estimates hold

δ̂(E , Eh) ≤ Chr, |µ− µ
(i)
h | ≤ Chr, i = 1, . . . ,m,

where r is given in Lemma 2.1.

Proof. Thanks to Lemma 3.4, the proof is a direct consequence of the compact
operators theory of Babuška-Osborn (see [4, Theorems 7.1 and 7.3]).

Let us observe that Theorem 3.7 is a result with a preliminary error estimate for
the eigenvalues. However, it is possible to improve the order of convergence for the
eigenvalues as we prove on the following result.

Theorem 3.8. The following estimate holds

|λ− λ
(i)
h | ≤ Kh2r,

where K > 0 is a constant independent of h and r is given in Lemma 2.1.

Proof. Let (λ
(i)
h , ph) ∈ R× Vh be a solution of (3.6) with ∥ph∥1,Ω = 1. According

to Theorem 3.4, there exists a solution (λ, p) ∈ R×H1(Ω) of the eigenvalue problem
(2.3) such that ∥p− ph∥1,Ω ≤ Chr.

From the symmetry of the bilinear forms and the facts that â(p, v) = λb(p, v) for

all v ∈ H1(Ω) (cf.(2.3)) and âh(ph, vh) = λ
(i)
h b(ph, vh) for all vh ∈ Vh (cf.(3.6)), we

have

â(p− ph, p− ph)− λb(p− ph, p− ph) = â(ph, ph)− λb(ph, ph)

= [â(ph, ph)− âh(ph, ph)]−
(
λ− λ

(i)
h

)
b(ph, ph),

from which we obtain the following identity:

(λ
(i)
h − λ)b(ph, ph) = â(p− ph, p− ph)− λb(p− ph, p− ph)︸ ︷︷ ︸

T1

+ [âh(ph, ph)− â(ph, ph)]︸ ︷︷ ︸
T2

+λ
(i)
h [b(ph, ph)− bh(ph, ph)]︸ ︷︷ ︸

T3

.

Now our task is to estimate the contributions T1, T2 and T3 of the right-hand side.
For the term T1 we invoking Lemma 3.4 in order to obtain

(3.9) |T1| ≤ Cc2ρ−1∥p− ph∥21,Ω + ∥p− ph∥20,Ω
≤ max{c2ρ−1, 1}∥p− ph∥21,Ω ≤ C2 max{c2ρ−1, 1}h2r.
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The estimate for T2 is obtained as follows

|T2| ≤
∑
E∈Th

|âEh (ph, ph)− âE(ph, ph)|

=
∑
E∈Th

|âEh (ph − pπ, ph − pπ)− âE(ph − pπ, ph − pπ)|

≤
∑
E∈Th

c2ρ−1C2(E)|||ph − pπ|||2E + c2ρ−1|ph − pπ|21,E + ρ−1 max{bE1 , 1}∥ph − pπ∥20,Ω

≤ C∗
5

∑
E∈Th

(
|||p− pI |||2E + |||ph − pI |||2E + |||p− pπ|||2E + |p− pπ|21,E

+|p− ph|21,E + ∥ph − pI∥20,Ω + ∥p− pI∥20,Ω + ∥p− pπ∥20,Ω
)
,

where C∗
5 := max

E∈Th

{c2ρ−1C2(E), c2ρ−1, ρ−1b1(E), ρ−1}. Now, invoking (3.8) and Lem-

mas 3.2, 3.3 and 3.4, we obtain

(3.10) |T2| ≤ C∗
6h

2r, C∗
6 := C∗

5 max{C∗2
3 , C2, ρ−1, 1}.

On the other hand, using approximation properties for Π, we obtain for T3

(3.11) |T3| ≤ max
E∈Th

{b1(E)}∥ph −Πph∥20,Ω ≤ max
E∈Th

{b1(E)}Ch2r.

Finally, using the fact that λ
(i)
h → 0 as h → 0, we obtain

bh(ph, ph) =
âh(ph, ph)

λ
(i)
h

≥
C∥ph∥21,Ω

λ
(i)
h

≥ C̃ > 0.

Therefore, gathering (3.9), (3.10) and (3.11) and defining

K := max

{
C2 max{c2ρ−1, 1}, C∗

6 , max
E∈Th

{b1(E)}C
}
,

we conclude the proof.

3.4. Error estimates in L2 norm. In the present subsection we establish error
estimates for eigenfunctions in L2 norm. We begin this subsection with the following
result, where a classical duality argument has been used.

Lemma 3.9. Let f ∈ E be such that p̃ := Tf and p̃h := T̂hf . Then, the following
estimate holds

∥p̃− p̃h∥0,Ω ≤ J hr̃+s∥f∥1,Ω,

where J is a positive constant independent of h, and r̃ is given by Lemma 2.1.

Proof. Let us consider the following auxiliarly problem: Find q ∈ H1(Ω) such
that

(3.12) â(q, v) = b(p̃− p̃h, v) ∀v ∈ H1(Ω).

Observe that this problem is well-posed and there exists r̃ as in Lemma 2.1, such that

|q|1+r̃,Ω ≤ C∥p̃− p̃h∥0,Ω.
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Now, testing (3.12) with v := p̃− p̃h, we obtain the following identity

∥p̃− p̃h∥20,Ω = b(p̃− p̃h, p̃− p̃h) = â(q, p̃− p̃h)

= â(q − qI , p̃− p̃h) + â(qI , p̃− p̃h)

= â(q − qI , p̃− p̃h)︸ ︷︷ ︸
B1

+ b(f, qI)− bh(Phf, qI)︸ ︷︷ ︸
B2

+ âh(qI , p̃h)− â(qI , p̃h)︸ ︷︷ ︸
B3

.

Then, we need to estimate the contributions on the right-hand side of the above
equation. To estimate B1, we invoke Lemma 3.4 and Lemma 3.3 in order to obtain

(3.13) |B1| ≤ c2ρ−1|p̃− p̃h|1,Ω|q − qI |1,Ω ≤ c2ρ−1Chr̃+s∥f∥1,Ω|q|1+r̃,Ω.

For B2, using error estimates for Π and triangle inequality, we obtain

(3.14)

|B2| = |b(Phf, qI)− bh(Phf, qI)| ≤ max
E∈Th

{b1(E), 1}ρ−1∥f −Πf∥0,Ω∥qI −ΠqI∥0,Ω

≤ max
E∈Th

{b1(E), 1}ρ−1hs∥f∥1,Ω (∥q − qI∥0,Ω + ∥q −Πq∥0,Ω + ∥Π(q − qI)∥0,Ω)

≤ max
E∈Th

{b1(E), 1}ρ−1hr̃+s∥f∥1,Ω|q|1+r̃,Ω.

Finally, for B3 we invoke (3.2) and (3.4) in order to obtain

(3.15) |B3| ≤
∑
E∈Th

|âEh (p̃h, qI)− âE(p̃h, qI)|

=
∑
E∈Th

|âEh (p̃h − pπ, qI − qπ)− âE(p̃h − pπ, qI − qπ)|

≤ C∗
7

∑
E∈Th

|||qI − qπ|||E |||p̃h − pπ|||E + ∥p̃h − pπ∥0,Ω∥qπ − qI∥0,Ω

≤ C∗
7 [(|||q − qI |||+ |||q − qπ|||) (|||p̃− p̃I |||+ |||p̃h − p̃I |||+ |||p̃− pπ|||)

+ (∥p̃− p̃I∥0,Ω + ∥p̃I − p̃h∥0,Ω + ∥p̃− pπ∥0,Ω) (∥q − qI∥0,Ω + ∥q − qπ∥0,Ω)] .

where C∗
7 := c2ρ−1 max

E∈Th

{C2(E), C4(E), b1(E), 1}. Hence, using (3.8), we conclude

that |B3| ≤ Ĉhr̃+s∥f∥1,Ω|q|1+r̃,Ω, where the constant Ĉ is defined by

Ĉ := max{C7

√
C∗

4 max{c2ρ−1, 1},max{c2ρ−1, 1}}.

Therefore, combining (3.13), (3.14) and (3.15), together with the additional regularity
for q, and setting

J := max{c2ρ−1C, max
E∈Th

{b1(E), 1}, Ĉ},

we obtain

∥(T − T̂h)f∥0,Ω = ∥p̃− p̃h∥0,Ω ≤ J hr̃+s∥f∥1,Ω,

concluding the proof.
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Now, we introduce the solution operator on the space L2(Ω), given by

T̃ : L2(Ω) → L2(Ω), f̃ 7→ T̃ f̃ := p̃,

where p̃ is the (unique) solution of the associated source problem. It is easy to check

that T̃ is compact and self-adjoint with respect to â(·, ·). Moreover, the spectra of T

and T̃ coincide.
Now, we are in position to prove the convergence in the L2 norm for T̂h to T̃ as

h → 0.

Lemma 3.10. The following estimate holds

∥(T̃ − T̂h)f̃∥0,Ω ≤ J̃ hs∥f̃∥0,Ω ∀f̃ ∈ L2(Ω),

where s is given in Lemma 2.1.

Proof. The proof follows the same arguments that those in the proof of Lemma
3.4, but the term (II) must be estimated by follows:

|(II)| ≤
∑
E∈Th

|bE(Phf, vh)− bEh (Phf, vh)|

=
∑
E∈Th

|bE(Phf, vh − (vh)π)− bEh (Phf, vh − (vh)π)|

≤ max
E∈Th

{b1(E), 1}ρ−1∥Phf∥0,Ω∥vh − (vh)π∥0,Ω

≤ max
E∈Th

{b1(E), 1}ρ−1hs∥f∥0,Ω∥vh∥1,Ω,

where, invoking (3.4) we obtain

∥vh∥1,Ω ≤ cρ−1/2 max
E∈Th

{C4(E), 1}
(
|||vh|||2 + ∥vh∥20,Ω

)1/2

.

This concludes the proof with

J̃ := max

{
cρ−1/2 max

E∈Th

{C4(E), 1}, C∗
3 , ρ

−1b1(E), ρ−1

}
.

As a consequence of the previous Lemma, a spectral convergence result analogous
to Theorem 3.7 holds for T̃ and T̂h. This allows us to obtain the following result.

Theorem 3.11. Let ph be an eigenfunction of T̂h associated to the eigenvalue µ
(i)
h ,

1 ≤ i ≤ m with ∥ph∥0,Ω = 1. Then, there exists an eigenfunction p of T̃ associated to
the eigenvalue µ such that

∥p− ph∥0,Ω ≤ J hr̃+s∥f∥1,Ω,

where J is a positive constant independent of h.

Proof. Observe that invoking Lemma 3.10 and [4, Theorem 7.1], we have spectral

convergence of T̂h to T̃ . On the other hand, due to the relation between the eigen-
functions of T and Th with those of T̃ and T̂h respectively, we have ph ∈ Ẽh and there
exists p ∈ E such that

(3.16) ∥p− ph∥0,Ω ≤ C sup
f̃∈Ẽ:∥f̃∥0,Ω=1

∥(T̃ − T̂h)f̃∥0,Ω.

This manuscript is for review purposes only.



14 D. AMIGO, F. LEPE AND G. RIVERA

Then, invoking Lemma 3.9, for every f̃ ∈ Ẽ , if f ∈ E is such that f̃ = f then

∥(T̃ − T̂h)f̃∥0,Ω = ∥(T − T̂h)f∥0,Ω ≤ J̃ hr̃+s∥f∥1,Ω.

Finally, since f ∈ E , we have that ∥f∥1,Ω = µ−1∥Tf∥1,Ω ≤ C∥f∥0,Ω, and combining
it with (3.16), we conclude the proof.

4. Numerical experiments. Now we present a number of numerical tests to
illustrate the performance of the proposed method. All the results have been obtained
with a Matlab code. Since we are interested on the versatility of the method, we focus
our tests for two type of domains: convex and non-convex. It is well known that for
convex domains the eigenfunctions are sufficiently smooth compared with the ones
associated to non-convex domains, which is reflected on the convergence order for the
eigenvalues This must be captured with our method. Hence, the convergence orders
and extrapolated values for the frequencies are obtained by means of a standard
least-square fitting of the form

(4.1) ωhi ≈ ωi + Cih
ξi ,

where ξi represents the computed order of convergence. Through all this section, N
represents the mesh refinement which is considered as the number of polygons on the
bottom of the domain.

For the construction of meshes allowing for small edges we recall the following
procedure introduced in [3]:
Step 1 For any polygon E ∈ Th, we add a hanging node on each edge of every

polygon. This hanging node, denoted by xHG, is constructed by using the
following convex combination:

xHG := (1− t)x1
V + tx2

V , t :=
dist(x1

V , x
2
V )

M
,

where x1
V and x2

V are the vertices of the corresponding edge for which the
hanging node has been added and M > 0.

Step 2 The hanging node on Step 1 now is displaced along the edge with respect
to a vertex of the polygon using the parameter M > 0, in order to make this
hanging node collapse with such vertex in each refinement. More precisely, if
xHG is close to x1

V , the distance between x1
V and xHG is

dist(xHG, x
1
V ) =

dist(x1
V , x

2
V )

2

M
.

Hence, the idea is taking M > 0 increasing in each mesh refinement, in order to obtain
a hanging node that collapse with one of the vertices, and therefore, small edges.

First, we define the ratio as Ratio = hm(E)/hE , where hE is the diameter of E
and hm(E) is the shortest edge of E. In Figure 1 we present some polygonal meshes
considered for the numerical experiments.
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Fig. 1. Sample of meshes. Left: T 1
h (N = 8); center: T 2

h (N = 11); right: T 3
h (N = 8).

Let us mention that the meshes T 1
h and T 3

h was constructed in the process de-
scribed previously, whereas mesh T 2

h has not hanging nodes. However, this mesh is
constructed with small edges.

4.1. Test 1: Rectangular acoustic cavity. For this test, the computational
domain is a rectangle of the form Ω := (0, a)×(0, b). For this domain, if we consider the
physical parameters equal to one (ρ = c = 1), the exact eigenvalues and eigenfunctions
are know and are of the form

λnm := π2

((n
a

)2

+
(m
b

)2
)
, n,m = 0, 1, 2, . . . , n+m ̸= 0

unm(x, y) :=


n

a
sin

(nπx
a

)
cos

(mπy

b

)
m

b
cos

(nπx
a

)
sin

(mπy

b

)
 ,

where unm(x, y) corresponds to the displacement of the fluid which can be computed

by the relation
∇pnm
λnm

= unm that holds for the acoustic problem. Moreover we have

considered the theoretical stabilization term, that is

(4.2) S(ph, qh) =
∑
E∈Th

SE(ph, qh), SE(ph, qh) = σEhE

∫
E

∂sph∂sqh,

where in this case, the stabilization parameter has been taken as σE = 1, whereas the
constanst a and b has been taken as a = 1 and b = 1.1.

In Tables 1, 2 and 3 we report approximated values of each one of the frequencies
ωi =

√
λi − 1, i = 1, . . . , 5, their respective orders of convergence and extrapolated

frequencies for different meshes presented in Figure 1. Also, in each table, in the
row ”Ratio” we report the measure of the on each refinement, in order to present the
presence of real small edges on the meshes.
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Table 1
Five lowest approximated frequencies, orders of convergence, extrapolated frequencies and ra-

tios, computed with T 1
h and the stabilization term defined in (4.2).

ωhi N = 32 N = 64 N = 128 N = 256 Order Exact.
ωh1 0.82710 0.82661 0.82649 0.82646 1.99 0.82645
ωh2 1.00079 1.00020 1.00005 1.00001 1.98 1.00000
ωh3 1.83520 1.82864 1.82699 1.82658 2.00 1.82645
ωh4 3.31640 3.30844 3.30645 3.30595 2.00 3.30579
ωh5 4.01300 4.00321 4.00080 4.00020 2.02 4.00001
Ratio 7.1638e-03 1.7794e-03 4.4413e-04 1.1099e-04

Table 2
Five lowest approximated frequencies, orders of convergence, extrapolated frequencies and ra-

tios, computed with T 2
h and the stabilization term defined in (4.2).

ωhi N = 11 N = 20 N = 39 N = 88 Order Exact.
ωh1 0.82796 0.82685 0.82655 0.82647 1.89 0.82645
ωh2 1.00287 1.00074 1.00018 1.00005 1.97 1.00002
ωh3 1.84173 1.83016 1.82737 1.82668 2.07 1.82658
ωh4 3.32838 3.31203 3.30739 3.30619 1.86 3.30587
ωh5 4.04570 4.01182 4.00294 4.00074 1.97 4.00028
Ratio 5.5513e-03 5.0032e-03 1.1050e-03 3.3969e-04

Table 3
Five lowest approximated frequencies, orders of convergence, extrapolated frequencies and ra-

tios, computed with T 3
h and the stabilization term defined in (4.2).

ωhi N = 32 N = 64 N = 128 N = 256 Order Exact.
ωh1 0.82709 0.82661 0.82649 0.82646 1.97 0.82645
ωh2 1.00292 1.00074 1.00018 1.00005 1.97 1.00000
ωh3 1.83576 1.82884 1.82705 1.82660 1.96 1.82644
ωh4 3.31611 3.30841 3.30644 3.30595 1.97 3.30577
ωh5 4.04669 4.01188 4.00301 4.00075 1.97 3.99996
Ratio 3.7655e-07 9.2970e-08 2.3171e-08 5.7882e-09

From Tables 1, 2 and 3 we observe that our method is sharp on the approximation
of the frequencies. We confirm this fact by comparing our results with the exact ones
presented in each column ”Exact”. Moreover, the reported Ratios are smaller when
the meshes are refined, confirming the presence of small edges on the meshes. These
results are similar for each of the meshes.

Let us remark the following: for the theoretical analysis we have used the stabi-
lization (4.2) that depend on the tangential derivatives. This is a theoretical argument
for the small edges treatment of the theory. However, from the computational point
of view, we are free to consider any stabilization for the method. This motivates the
analysis of the robustness of the VEM with small edges using other stabilizations.
With this goal in mind, let us compare the previous results with the following where
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we implement the following stabilization term

(4.3) S(ph, qh) =
∑
E∈Th

SE(ph, qh), SE(ph, qh) = σE

NE∑
i=1

ph(Vi)qh(Vi),

where Vi represent each vertex of the polygon E, and NE represent the number of
vertices of E. Again, we consider σE = 1 in order to compare the obtained results
with those in the previous tests. In Tables 4, 5 6 we report approximated values
of each one of the frequencies ωi =

√
λi − 1, i = 1, . . . , 5, their respective orders of

convergence, and extrapolated frequencies for the meshes presented in Figure 1.

Table 4
Five lowest approximated frequencies, orders of convergence, extrapolated frequencies and ra-

tios, computed with T 1
h and the stabilization term defined in (4.3).

ωhi N = 32 N = 64 N = 128 N = 256 Order Exact
ωh1 0.82710 0.82659 0.82649 0.82647 2.21 0.82645
ωh2 1.00078 1.00017 1.00005 1.00001 2.25 1.00001
ωh3 1.83527 1.82866 1.82700 1.82658 1.99 1.82644
ωh4 3.31656 3.30853 3.30645 3.30595 1.96 3.30575
ωh5 4.01356 4.00320 4.00080 4.00020 2.10 4.00005
Ratio 7.1638e-03 1.7794e-03 4.4413e-04 1.1099e-04

Table 5
Five lowest approximated frequencies, orders of convergence, extrapolated frequencies and ra-

tios, computed with T 2
h and the stabilization term defined in (4.3).

ωhi N = 11 N = 20 N = 39 N = 88 Order Exact.
ωh1 0.82721 0.82663 0.82649 0.82646 2.09 0.82645
ωh2 1.00205 1.00051 1.00013 1.00003 2.03 1.00002
ωh3 1.83098 1.82757 1.82672 1.82651 2.04 1.82648
ωh4 3.31806 3.30869 3.30651 3.30596 2.11 3.30590
ωh5 4.03224 4.00816 4.00203 4.00050 2.00 4.00021
Ratio 5.5513e-03 5.0032e-03 1.1050e-03 3.3969e-04

Table 6
Five lowest approximated frequencies, orders of convergence, extrapolated frequencies and ra-

tios, computed with T 3
h and the stabilization term defined in (4.3).

ωhi N = 32 N = 64 N = 128 N = 256 Order Exact.
ωh1 0.82695 0.82657 0.82647 0.82645 2.03 0.82645
ωh2 1.00209 1.00054 1.00013 1.00003 1.96 1.00000
ωh3 1.83278 1.82806 1.82688 1.82655 1.97 1.82645
ωh4 3.31355 3.30771 3.30623 3.30591 2.02 3.30578
ωh5 4.03362 4.00858 4.00201 4.00055 1.97 3.99992
Ratio 3.7655e-07 9.2970e-08 2.3171e-08 5.7882e-09

Note that there are not significant differences when the theoretical stabilization
term (4.2) is changed to (4.3). The results presented in Tables 4, 5 and 6 are very
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similar to those presented in Tables 1, 2 and 3, whereas the orders of convergence are
perfectly attained. Finally, in Figure 2 we present the plots of the first, third and
fifth eigenfunctions associated to the pressure, and their corresponding displacement
fields.

Fig. 2. Plots of first, third and fifth eigenfunctions on the rectangular acoustic cavity and the
corresponding displacements obtained for this test. Top row: p1h, p3h and p5h; bottom row: corre-
sponding displacement fields u1

h, u
3
h and u5

h.

4.2. Test 2: L-shaped domain. Now we will consider the non-convex domain
Ω := (−1, 1) × (−1, 1) \ [0, 1) × [0, 1), which is a L-shaped domain. The boundary
condition for this domain is ∇p ·n = 0. Clearly due to the geometrical singularity of
this geometrical configuration, some of the eigenfunctions of problem (2.2) result to
be non sufficiently smooth and hence, a loss on the convergence order of the numerical
method arises. Since for this geometry we do not have an exact solution, all our results
will be compared with the extrapolated frequencies computed by (4.1).

A sample of the meshes that we consider for this test are reported in Figure 3.
Let us remark that these meshes have been obtained with the procedure described
in Step 1 and Step 2. Finally, let us mention that for this test we take physical
parameters of acoustic fluids, more precisely, the ones associated to water and air.
These parameter are:

• For water, the density is ρ = 1000 kg/m3 and the sound speed c = 1430m/s;
• For the air, the density is ρ = 1kg/m3 and the sound speed c = 340m/s.
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Fig. 3. Sample of the meshes for the L-shaped domain for mesh refinement N = 16. Left T 4
h ;

right T 5
h

For this test, we only are concentrated on the behavior of our method when the
theoretical stabilization term defined in (4.2) is considered, whereas the stabilization
parameter σE has been chosen by σE := tr(aE(Πk,E ,Πk,E))/2. In Tables 7, 8, 9
and 10 we report approximated values of each one of the frequencies ωi =

√
λi − 1,

i = 1, . . . , 5, their respective orders of convergence and extrapolated frequencies for
different meshes presented in Figure 3. Let us recall that the extrapolated values
have been obtained with the aid of (4.1) and are reported on the last column of the
forthcoming tables.

In Tables 7 and 8 we compare the results obtained for mesh T 4
h when we consider

the density and sound speed of water, whereas in Tables 9 and 10 we compare the
results obtained for mesh T 5

h when we consider the density and sound speed of the
air. As in the previous test, in the row ”Ratio” we report the measure of the ratios in
each refinement, in order to present the presence of real small edges on the meshes.

Table 7
Five lowest approximated frequencies, orders of convergence, extrapolated frequencies and ra-

tios, computed with T 4
h and the stabilization term defined in (4.2) for ρ = 1000 kg/m3 and

c = 1430m/s.

ωhi N = 16 N = 32 N = 64 N = 128 Order Extrap.
ωh1 218.798 215.779 214.585 214.112 1.34 213.806
ωh2 515.993 513.062 512.303 512.109 1.95 512.039
ωh3 1448.270 1434.572 1431.148 1430.287 2.00 1430.004
ωh4 1448.357 1434.590 1431.148 1430.287 2.00 1430.001
ωh5 1697.359 1662.003 1653.164 1650.952 2.00 1650.217
Ratio 7.8740e-03 1.9569e-03 4.8852e-04 1.2209e-04
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Table 8
Five lowest approximated frequencies, orders of convergence, extrapolated frequencies and ra-

tios, computed with T 5
h and the stabilization term defined in (4.2) for ρ = 1000 kg/m3 and

c = 1430m/s.

ωhi N = 16 N = 32 N = 64 N = 128 Order Extrap.
ωh1 220.093 216.184 214.729 214.162 1.41 213.833
ωh2 520.743 513.702 512.461 512.149 2.44 512.126
ωh3 1456.979 1435.837 1431.136 1430.285 2.21 1429.959
ωh4 1497.770 1448.411 1434.398 1431.103 1.86 1429.493
ωh5 1715.697 1666.822 16547.520 1651.357 1.99 1650.444
Ratio 1.9124e-05 4.7522e-06 1.1862e-06 2.9645e-07

Table 9
Five lowest approximated frequencies, orders of convergence, extrapolated frequencies and ra-

tios, computed with T 4
h and the stabilization term defined in (4.2) for ρ = 1 kg/m3 and c = 340m/s.

ωhi N = 16 N = 32 N = 64 N = 128 Order Extrap.
ωh1 52.019 51.312 51.020 50.908 1.30 50.826
ωh2 122.678 121.977 121.806 121.760 2.02 121.748
ωh3 344.347 340.819 340.273 340.068 2.51 340.087
ωh4 344.368 341.154 340.273 340.068 1.91 339.977
ωh5 403.487 395.110 393.060 392.534 2.02 392.374
Ratio 7.8740e-03 1.9569e-03 4.8852e-04 1.2209e-04

Table 10
Five lowest approximated frequencies, orders of convergence, extrapolated frequencies and ra-

tios, computed with T 5
h and the stabilization term defined in (4.2) for ρ = 1 kg/m3 and c = 340m/s.

ωhi N = 16 N = 32 N = 64 N = 128 Order Extrap.
ωh1 52.347 51.407 51.054 50.920 1.41 50.840
ωh2 123.234 122.125 121.844 121.770 1.97 121.746
ωh3 344.188 341.004 340.270 340.068 2.08 340.023
ωh4 356.418 344.117 341.046 340.262 2.00 340.014
ωh5 408.457 396.474 393.438 392.630 1.97 392.374
Ratio 1.9124e-05 4.7522e-06 1.1862e-06 2.9645e-07

Observe that there is no significant difference with the results obtained for meshes
T 4
h and T 5

h for the density and sound speed of the water. The frequencies are well
captured and the orders of convergence are the expected according to the geometry
of the domain. The same occurs for the physical parameters of the air. Finally, we
present in Figure 4 the plots of the first, second and fifth eigenfunctions obtained in
this test for the physical parameters of the water.
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Fig. 4. Plots of the first, third and fifth eigenfunctions on the L-shaped domain for the acoustic
problem considering the physical parameters of water.

4.3. Test 3: Effects on the stability constants. The aim of this test is
to analyze the influence of the stability constant σE on the computed spectrum, in
order to investigate the effects of this parameter when the spectrum is computed
since for other VEMs applied to eigenvalue problems, this parameter may introduce
spurious frequencies when it is not correctly determined (see [3, 19, 21, 22] where this
phenomenon is well documented).

For this test, we have consider the domain Ω = (0, a)× (0, b) presented in Test 1,
for a = 1 and b = 1.1 and the mesh T 2

h presented in Figure 1. We observe that in this
case, there are not presence of spurious frequencies for any choice of the stabilization
parameter, which implies that the spectrum is correctly captured regardless of the
stabilization parameter. So, taking this in consideration, we present in Table 11
the lowest three approximated frequencies, orders of convergence and extrapolated
frequencies obtained for different stabilization parameters. Also, the ratios obtained
for this test have been presented in the row ”Ratio” at the bottom of the table. For
the other meshes the results also hold, in the sense that no spurious frequencies appear
on the computed spectrum.

The ratios reported in Table 11 clearly confirm the presence of small edges on
the computation of the orders of convergence. Let us remark that for other type of
meshes the results are similar. Let us emphasizes that the results on Table 11 have
been obtained when the density and the sound speed are equal to one. Therefore, if
we change the parameters to real ones as water, air, oil, etc., the behavior may be
different since the configuration of the problem changes and hence, the parameter σE

must be chosen in order to scale correctly like the bilinear forms considered.
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Table 11
Lowest three approximated frequencies and orders of convergence for T 1

h and ρ = 1 = c for
4−2 ≤ σE ≤ 42.

σE ωhi N = 11 N = 20 N = 39 N = 88 Order Extrap.

4−2
ωh1 0.83655 0.82905 0.82711 0.82661 1.95 0.82643
ωh2 1.01193 1.00309 1.00080 1.00020 1.95 1.00000
ωh3 1.83411 1.82818 1.82699 1.82658 2.20 1.82656

4−1
ωh1 0.83690 0.82909 0.82711 0.82661 1.98 0.82644
ωh2 1.01261 1.00320 1.00080 1.00020 1.98 1.00000
ωh3 1.86156 1.83522 1.82864 1.82699 2.00 1.82644

40
ωh1 0.83705 0.82910 0.82711 0.82661 2.00 0.82645
ωh2 1.01282 1.00321 1.00080 1.00020 2.00 1.00000
ωh3 1.96986 1.86172 1.83523 1.82864 2.03 1.82660

4
ωh1 0.83691 0.82910 0.82711 0.82660 1.97 0.82643
ωh2 1.01288 1.00321 1.00080 1.00017 1.99 0.99997
ωh3 2.40179 1.96768 1.86159 1.83520 2.03 1.82693

42
ωh1 0.83711 0.82910 0.82711 0.82661 2.01 0.82645
ωh2 1.01290 1.00322 1.00080 1.00020 2.00 1.00000
ωh3 3.47880 2.39146 1.96702 1.86155 1.49 1.77214

Ratio 3.5665e-03 8.8874e-04 2.2201e-04 5.5490e-05
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