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Abstract. In this paper we propose and analyze a virtual element method for the two di-
mensional non-symmetric diffusion-convection eigenvalue problem in order to derive a priori and a
posteriori error estimates. Under the classic assumptions of the meshes, and with the aid of the
classic theory of compact operators, we prove error estimates for the eigenvalues and eigenfunctions.
Also, we develop an a posteriori error estimator which, in one hand, results to be reliable and on the
other, with standard bubble functions arguments, also results to be efficient. We test our method
on domains where the complex eigenfunctions are not sufficiently regular, in order to assess the
performance of the estimator that we compare with the uniform refinement given by the a priori
analysis.
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1. Introduction. The virtual element method (VEM) has proved through the
years the efficiency and versatility on the approximation of the solutions of partial
differential equations (PDEs). This has led to a number of works where this popularity
of the VEM is confirmed. We mention the book [4] where recent advances on the
development of the VEM are documented. In particular, the VEM has resulted to
be a good numerical strategy to approximate the eigenfunctions and eigenvalues of
spectral problems arising on the continuum mechanics and related problems, where
conforming and no-conforming virtual methods have emerged such as [13, 18, 20]
and the references therein. These references show the accuracy of the VEM when
the spectrum is computed and the easy way to handle with the spurious eigenvalues,
where the methods result to be precisely spurious free. In this sense, the literature
related to the a priori analysis for eigenvalue problems is very rich and the research
on this is in constant progress. However, the literature available on the analysis of a
posteriori error estimators for eigenvalue problems using VEM is, for the best of the
author’s knowledge, a topic that has not been sufficiently studied. On this subject, we
recall the works [1, 15, 17, 19, 24] where for different eigenvalue problems, adaptive
strategies have been considered. Clearly the literature for a posteriori error analysis
of eigenvalue problems must be taken into consideration.

It is well known that there exist different manners for which the eigenfunctions of
the eigenvalue problems may result to be non sufficiently smooth. This can be due to
the presence of certain parameters that may affect the regularity of the eigenfunctions
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(we can think for instance on the elasticity eigenvalue problems and the influence of
the Poisson ratio when it is close to 1/2) or the classical geometric singularities on the
domains, particularly the non-convexity of some domains or the presence of fractures.
This is precisely the motivation for the development of reliable and efficient a posteriori
error indicators, in order to recover the optimal order of convergence through adaptive
refinements in the regions where the singularities arise. In particular, our contribution
is focused on a priori and a posteriori error analysis for non-symmetric eigenvalue
problems based on the VEM. This nature of eigenvalue problems demand a more
sharp analysis, since not only the primal eigenvalue problem deserves attention, but
also the dual eigenvalue problem. In [25] there is a complete treatment, from the finite
element point of view, to analyze a posteriori error estimators for a non-symmetric
eigenvalue problem. Regarding non-symmetric spectral problems using the VEM we
refer to the following contributions [20, 22, 21, 24] where once again the VEM confirms
its accuracy on the approximation of the eigenvalues and eigenfunctions.

In our paper we consider the diffusion-convection eigenvalue problem which reads
as follows: For an open and bounded domain Ω ⊂ R2 with polygonal boundary ∂Ω,
find u ̸= 0 such that

(1.1) ∇ · (−κ(x)∇u) + ϑ(x) · ∇u = λu in Ω, u = 0 on ∂Ω,

where κ is a smooth function Ω → R with κ(x) ≥ κ0 > 0 for all x ∈ Ω and ϑ
is a sufficiently smooth vector-valued function Ω → R2. Clearly this problem is
non-symmetric and leads to complex eigenvalues and eigenfunctions. This problem
has been already analyzed in [14] with an a posteriori error estimator constructed
by means of the finite element method. Precisely the estimator, which is of the
residual type, results to be reliable and efficient as is expected. The difference on
our contributions lie on the fact that an inf-sup condition is a key point to perform
the analysis, which in [14] is no needed, since under suitable norms (an energy norm
considering only the real part of the complex sesquilinear forms) all the estimates are
derived. We directly use the H1 and L2 norms defined on complex fields as in [16]
for a virtual element method allowing for small edges, where a priori error estimates
are obtained. However, the inf-sup condition that we need is not the one proved
in [16] (since this reference uses other type of VEM), but is the one already well
established in [7] for a classic VEM. Clearly these highlights are important to take
into consideration for the VEM that we analyze, where now the difficulties arise on
the fact that the virtual element solution of the spectral problem is not computable
and the standard projections, virtual interpolators, and approximation properties now
play a role on the estimates, leading to a different algebraic and numerical difficulties
on the analysis. An example of this is available on the recent paper [24] where a
priori and a posteriori error estimators for a non-symmetric eigenvalue problem are
derived. It is also necessary to differentiate the a priori analysis presented in this
paper with the one presented in [16]. In order to obtain a computable primal and
dual residual estimator, it is necessary to write the sesquilinear form of the right-hand
side depending on the classical stability bilinear form for the inner product in L2 (see
[2]). However, this modification to the right-hand side bilinear form automatically
implies that one cannot define a solution operator Th from the continuous space into
the discrete space, since this operator is not computable. Therefore, the natural
alternative is to define the operator Th from the virtual space with itself, which would
imply using the theory of non-compact operators (see [11, 12]). However, inspired by
[17] we will define a suitable operator to be able to use the theory of and just prove
the convergence in norm of operators.
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1.1. Organization of the paper. The outline of the paper is the following:
In Section 2 we present the model problem under consideration, presenting the func-
tional space in which our work is supported, sesquilinear forms, well posedness of
the problem, the continuous solution operators and the regularity of the primal and
dual solutions. Section 3 is dedicated to introduce the virtual element method, where
the assumptions on the meshes are presented, the virtual element spaces with the
corresponding degrees of freedom, projections and discrete sesquilinear forms which
are needed to present the discrete counterpart of the continuous eigenvalue problem
introduced in the previous section. The core of our paper begins in Section 4 where
we study the discrete discrete eigenvalue problem. More precisely, we derive the nec-
essary error estimates for the the eigenvalues and eigenfunctions for the primal and
dual eigenvalue problems. In Section 5 we introduce and analyze the a posteriori
error estimators of our interest which are considered for both, the primal and dual
eigenvalue problems. We prove on this section the reliability and efficiency of the pro-
posed estimators. Finally in Section 6 we report a series of numerical tests where we
are able to assess the performance of the proposed estimator, implementing different
polygonal meshes for non-convex domains.

2. The variational problem. long our paper the relation a ≲ b indicates that
a ≤ Cb, with a positive constant C which is independent of a, b. Now, since the
eigenvalue problem that we are considering is non-symmetric, it is necessary to in-
troduce complex Hilbert spaces in order to perform the analysis. Let us consider the
space H1

0 (Ω,C) which corresponds to the classic H1 space but defined on a complex
field. We endow this space with the following inner product

(v, w)1,Ω =

∫
Ω

vw +

∫
Ω

∇v · ∇w ∀v, w ∈ H1
0 (Ω,C),

where w denotes the conjugated of w. Let us remark that the norm induced by the
complex inner product defined above is the standard for the space H1.

In order to simplify the presentation of the material, let us define V := H1
0 (Ω,C).

Let us begin with the variational formulation of problem (1.1): Find λ ∈ C and
0 ̸= u ∈ V such that

(2.1) B(u, v) = λc(u, v) ∀v ∈ V,

where B(·, ·) is the sesquilinear form defined by B(w, v) := a(w, v) + b(w, v) for all
w, v ∈ V and c(·, ·) is the sesquilinear form defined by c(w, v) := (w, v)0,Ω, whereas
a(·, ·) and b(·, ·) are the sesquilinear forms defined as follows

a : V × V −→ C; a(w, v) :=

∫
Ω

κ(x)∇w · ∇v̄, ∀w, v ∈ V,

b : V × V −→ C; b(w, v) :=

∫
Ω

(ϑ(x) · ∇w)v̄, ∀w, v ∈ V.

(2.2)

The assumptions on the coefficients κ and ϑ lead us to the correct definition of
the sesquilinear forms a(·, ·) and b(·, ·) and hence, the continuity of B(·, ·), i.e, there
exists a constant M1 > 0 such that B(w, v) ≤ M1∥w∥1,Ω∥v∥1,Ω for all v, w ∈ V with
M1 := max{∥κ∥∞,Ω, ∥ϑ∥∞,Ω}. Also, under the assumption that ϑ(x) is divergence-
free, the following condition holds (see [7, Equation (3.5)])

(2.3) sup
v∈H1

0 (Ω)

B(w, v)

∥v∥1,Ω
≥ β∥w∥1,Ω ∀w ∈ V,
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where β > 0 is a constant independent of v. This allows us to introduce the solution
operator T : V −→ V , which is defined for a source f ∈ V by Tf := ũ where ũ ∈ V
is the solution of the following source problem

B(ũ, v) = c(f, v) ∀v ∈ V.

We remark that T is well defined. On the other hand, we observe that (λ, u) ∈ C×V is
solution of (2.1) if and only if (µ, u) ∈ C×V is eigenpair of T , with µ = 1/λ. Finally,
since the bilinear form B(·, ·) is non-symmetric, the operator T is not selfadjoint. This
requires to consider the dual eigenvalue problem. Let us denote by V ∗ the dual space
of V . The dual eigenvalue problem reads as follows: Find λ∗ ∈ C and 0 ̸= u∗ ∈ V ∗

such that

(2.4) B(v, u∗) = λ∗c(v, u∗) ∀v ∈ V ∗,

where, using integration by parts and the fact that ϑ(x) is divergence free, we have

B(v, u∗) = a(u∗, v)− b(u∗, v), ∀v ∈ V ∗.

Then, we define the dual solution operator T ∗ : V ∗ −→ V ∗, which is defined for a
source f∗ ∈ V ∗ by T ∗f∗ := ũ∗ where ũ∗ ∈ V ∗ is the solution of the following source
problem

B(v, ũ∗) = c(v, f∗) ∀v ∈ V.

Now, for the implementation of the virtual element method of our interest, the
regularity of (2.1) is a key ingredient in order to obtain approximation properties.
In fact, there exists s > 0, depending on Ω, such that the solution of (2.1) satisfies
u ∈ H1+s(Ω,C) and

(2.5) ∥u∥1+s,Ω ≲ ∥u∥0,Ω.

Finally, due to the compact inclusion H1+s(Ω,C) onto V , we deduce that T is
compact. Therefore, the following spectral characterization of T holds.

Lemma 2.1 (Spectral characterization of T ). The spectrum of T is such that
sp(T ) = {0} ∪ {µk}k∈N, where {µk}k∈N is a sequence of complex eigenvalues that
converge to zero, according to their respective multiplicities.

For the dual eigenvalue problem, an additional regularity for the eigenfunctions
is also needed. In particular, there exists s∗ > 0 such that for u∗ ∈ V ∗ solution of
(2.4), the following estimate holds

(2.6) ∥u∗∥1+s∗,Ω ≲ ∥u∗∥0,Ω.

Finally the spectral characterization of T ∗ is given as follows.

Corollary 2.2 (Spectral characterization of T ∗). The spectrum of T ∗ is such
that sp(T ∗) = {0} ∪ {µ∗

k}k∈N, where {µ∗
k}k∈N is a sequence of complex eigenvalues

that converge to zero, according to their respective multiplicities.

It is important to take into account the following: if µ is an eigenvalue of T with
multiplicity m and µ∗ is an eigenvalue of T ∗ with the same multiplicity, then µ = µ∗.
Moreover, for the discrete solution operators, if µh is an eigenvalue of Th and µ∗

h is
an eigenvalue of T ∗

h , then µh = µ∗
h.
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3. The virtual element method. In this section we briefly review the virtual
element method that for the system (2.1). First we recall the mesh construction and
the assumptions considered in [6] for the virtual element method. Let {Th}h be a
sequence of decompositions of Ω into polygons, E. Let us denote by hE the diameter
of the element E and h the maximum of the diameters of all the elements of the mesh,
i.e., h := maxE∈Ω hE . Moreover, for simplicity in what follows we assume that κ is
piecewise constant with respect to the decomposition Th, i.e., it is piecewise constant
for all E ∈ Th.

For the analysis of the VEM, we will make as in [6] the following assumptions:
• A1. There exists ρ > 0 such that, for all meshes Th, each polygon E ∈ Th is
star-shaped with respect to a ball of radius greater than or equal to ρhE .

• A2. The distance between any two vertexes of E is ≥ ChE , where C is a
positive constant.

For any simple polygon E we define

Ṽ E
h := {vh ∈ H1(E,C) : ∆vh ∈ P1(E), vh|∂E ∈ C0(∂E), vh|e ∈ P1(e) ∀e ∈ ∂E}.

Now, in order to choose the degrees of freedom for Ṽ E
h we define

• Vh
E : the value of wh at each vertex of E,

as a set of linear operators from Ṽ E
h into R. In [2] it was established that Vh

E constitutes

a set of degrees of freedom for the space Ṽ E
h .

On the other hand, we define the projector Π∇,E : Ṽ E
h −→ P1(E) ⊆ Ṽ E

h for each

vh ∈ Ṽ E
h as the solution of∫

E

(∇Π∇,Evh −∇vh) · ∇q = 0 ∀q ∈ P1(E), Π∇,Evh = vh,

where for any sufficiently regular function v, we set v := |∂E|−1(v, 1)0,∂E . We observe
that the term Π∇,Evh is well defined and computable from the degrees of freedom of v
given by Vh

E , and in addition the projector Π∇,E satisfies the identity Π∇,E(P1(E)) =
P1(E) (see for instance [2]).

We are now in position to introduce our local virtual space

V E
h :=

{
vh ∈ Ṽ E

h :

∫
E

Π∇,Evhp =

∫
E

vhp, ∀p ∈ P1(E)

}
.

Now, since V E
h ⊂ Ṽ E

h the operator Π∇,E is well defined on V E
h and computable only

on the basis of the output values of the operators in Vh
E . In addition, due to the

particular property appearing in definition of the space V E
h , it can be seen that for

every p ∈ P1(E) and every vh ∈ V E
h the term (vh, p)0,E is computable from Π∇,Evh,

and hence the L2(E,C)-projector operator ΠE : V E
h → P1(E) defined by∫

E

ΠEvhp =

∫
E

vhp ∀p ∈ P1(E),

depends only on the values of the degrees of freedom of vh. Actually, it is easy to
check that the projectors Π∇,E and ΠE are the same operators on the space V E

h (see
[2] for further details).

Finally, for every decomposition Th of Ω into simple polygons E we define the
global virtual space

(3.1) Vh :=
{
v ∈ H1(E,C) : v|E ∈ V E

h ∀E ∈ Th
}
,
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and the global degrees of freedom are obtained by collecting the local ones, with the
nodal and interface degrees of freedom corresponding to internal entities counted only
once those on the boundary are fixed to be equal to zero in accordance with the
ambient space V . Finally, we denote by Π∇ the global virtual projection and by Π
the global L2-orthogonal projection.

3.1. Discrete formulation. In order to construct the discrete scheme, we need
some preliminary definitions. First, we split the sesquilinear form B(·, ·) as follows:

B(w, v) :=
∑
E∈Th

BE(w, v) :=
∑
E∈Th

aE(w, v) + bE(w, v) ∀w, v ∈ V,

where

aE(w, v) :=

∫
E

κ(x)∇w · ∇v̄, bE(w, v) :=

∫
E

(ϑ(x) · ∇w)v̄.

Now, in order to propose the discrete counterpart of a(·, ·) (cf. (2.2)), we consider
any symmetric and semi-positive definite sesquilinear form SE : V E

h × V E
h → R

satisfying

(3.2) a0a
E(wh, wh) ≤ SE(wh, wh) ≤ a1a

E(wh, wh), ∀wh ∈ V E
h ∩ ker(Π∇,E),

where a0 and a1 are positive constants depending on the mesh assumptions and on
κ. Next, we introduce another symmetric and positive definite sesquilinear form
SE
0 : V E

h × V E
h → R satisfying

(3.3) c0c
E(wh, wh) ≤ SE

0 (wh, wh) ≤ c1c
E(wh, wh), ∀wh ∈ V E

h ∩ ker(ΠE),

where c0, c1 are two uniform positive constants. Then, we introduce on each element
E the local (and computable) sesquilinear forms

• aEh (wh, vh) := aE(Π∇,Ewh,Π
∇,Evh) + SE(wh −Π∇,Ewh, vh −Π∇,Evh),

• bEh (wh, vh) := bE(Π∇,Ewh,Π
Evh),

• cEh (wh, vh) := (ΠEwh,Π
Evh)0,Ω + SE

0 (wh −ΠEwh, vh −ΠEvh),

for all wh, vh ∈ V E
h . Moreover, aEh (·, ·) satisfies the classical properties of consistency

and stability presented in [6, Section 3.1]. We also introduce the broken H1-seminorm

|v|21,h :=
∑

E∈Th
∥∇v∥20,E .

As is customary, the discrete sesquilinear forms Bh(·, ·), ch(·, ·) can be expressed
componentwise as follows

Bh(wh, vh) :=
∑
E∈Th

BE
h (wh, vh) =

∑
E∈Th

aEh (wh, vh) + bEh (wh, vh),

ch(wh, vh) :=
∑
E∈Th

cEh (wh, vh).

3.2. Spectral discrete problem. Now we introduce the VEM discretization
of problem (2.1). To do this task, we requiere the global space Vh defined in (3.1)
together with the assumptions introduced in Section 3.

The spectral problem reads as follows: Find λh ∈ C and 0 ̸= uh ∈ Vh such that

(3.4) Bh(uh, vh) = λhch(uh, vh) ∀vh ∈ Vh.
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From [7, Lemma 5.7], we invoke the existence of a constant β̂ > 0 such that, for
all h < h0 there holds

(3.5) sup
wh∈Vh

Bh(vh, wh)

∥wh∥1,Ω
≥ β̂∥vh∥1,Ω ∀vh ∈ Vh.

This allows us to introduce the discrete solution operator Th : Vh → Vh, which is
defined by Thfh := ũh where ũh ∈ Vh is the solution of the following source problem

(3.6) Bh(ũh, vh) = ch(fh, vh) ∀vh ∈ Vh.

As in the continuous case, is important to consider the discrete dual eigenvalue prob-
lem: Find λ∗h ∈ C and 0 ̸= u∗h ∈ Vh such that

Bh(vh, u
∗
h) = λ∗hch(vh, u

∗
h) ∀vh ∈ Vh.

For this dual eigenvalue problem, we introduce the discrete adjoint operator of Th,
T ∗
h : Vh → Vh, which is defined by T ∗

hfh := ũ∗h where ũ∗h ∈ Vh is the solution of the
following dual source problem

(3.7) Bh(vh, ũ
∗
h) = ch(vh, fh) ∀vh ∈ Vh.

On the other hand, the following best approximation property for the L2-projector
ΠE holds

(3.8) ∥v −ΠEv∥0,E = inf
q∈Pk(E)

∥v − q∥0,E , ∀v ∈ L2(E,C).

Moreover, the following estimate holds

(3.9) ∥v −ΠEv∥0,E ≲ hE |v|1,E , ∀v ∈ H1(E,C).

On the other hand, we also have the following well known approximation result
for polynomials in star-shaped domain (see for instance [9]).

Lemma 3.1. Under the assumptions A1 and A2, let v ∈ H1+s(E,C), with 0 ≤
s ≤ 1. Then, there exists vπ ∈ P1(E) such that

∥v − vπ∥0,E + hE |v − vπ|1,E ≲ h1+s
E |v|1+s,E .

Finally, we have the following result, that provides the existence of an interpolant
operator on the virtual space (see [18, Proposition 4.2]).

Lemma 3.2 (Existence of the virtual interpolation). Under the assumptions A1
and A2, let v ∈ H1+s(E,C), with 0 ≤ s ≤ 1. Then, there exists vI ∈ V E

h such that

∥v − vI∥0,E + hE |v − vI |1,E ≲ h1+s
E |v|1+s,E .

4. A priori error estimates. In the present section, we present the a priori
error estimates for the eigenfunctions and eigenvalues, as well as error estimates for
the dual eigenfunctions. With the aim of taking advantage of the compactness of
T to prove convergence in norm, and inspired by [17], we introduce the operator
Ph : L2(Ω,C) → Vh ↪→ V with range Vh, which is defined according to the following
property: c(Phu− u, vh) = 0 ∀vh ∈ Vh, where c(·, ·) is nothing else but the complex
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L2 product. Moreover, we have that ∥Phu∥0,Ω ≤ ∥u∥0,Ω. With the aid of this operator

Ph, let us introduce the following operator T̂h : ThPh : V → Vh which is correctly
defined for any source f ∈ V . Moreover, it is easy to check that sp(T̂h) = sp(Th)∪{0}
and that the eigenfunctions of T̂h and Th coincide. To define the operator T̂ ∗

h we
procede in the analogous way, but considering the space V ∗ instead V to define the
composition.

All the previous calculations allow us to obtain the desire convergence in norm of
T̂h to T as h goes to zero. This is established in the following result.

Lemma 4.1. The following estimates hold:
1. For the primal operators, there exists s > 0 such that

∥(T − T̂h)f∥1,Ω ≲ hs∥f∥1,Ω,

2. For the dual operators, there exists s∗ > 0 such that

∥(T ∗ − T̂ ∗
h )f

∗∥1,Ω ≲ hs
∗
∥f∗∥1,Ω,

where the hidden constants on each estimate are independent of h.

Proof. Let us define u := Tf and uh := T̂hf , and let uI ∈ Vh be the interpolant
of u. Using triangle inequality, we obtain

∥(T − T̂h)f∥1,Ω = ∥u− uh∥1,Ω ≤ ∥u− uI∥1,Ω + ∥uh − uI∥0,Ω.

Observe that the first term in the above inequality is estimated by using Lemma 3.2
and the boundedness of T , so we only need to estimate the second term. To do this
task, let us define vh := uh − uI ∈ Vh. Then, using (3.5) with wh = vh we obtain

β̂∥vh∥21,Ω ≤ Bh(vh, vh) = Bh(uh, vh)− Bh(uI , vh)

= ch(Phf, vh)−
∑
E∈Th

[
aEh (uI , vh) + bEh (uI , vh)

]
= ch(Phf, vh)− c(f, vh)︸ ︷︷ ︸

(I)

+
∑
E∈Th

[
aE(u, vh)− aEh (uI , vh)

]
︸ ︷︷ ︸

(II)

+
∑
E∈Th

[
bE(u, vh)− bEh (uI , vh)

]
︸ ︷︷ ︸

(III)

.

Now, we need to estimate the contributions on the right hand side of the above
estimate. Observe that (I) can be estimated using the same arguments on the proof
of [17, Lemma 4.2], in order to obtain

(4.1) (I) ≲ hs∥vh∥1,Ω (∥f − fI∥0,Ω + ∥f − fπ∥0,Ω) ,

where fπ ∈ L2(Ω,C) with fπ|E∈ P1(E) is chosen such that Lemma 3.1 is satisfied.
On the other hand, adding and substracting ΠEvh in (III), using the definition of
Π∇,E in (II) and the Cauchy-Schwarz inequality, is easy to see that

(4.2) (II)+ (III) ≲ hs∥f∥1,Ω∥vh∥1,Ω + ∥vh∥1,Ω
(
|uI −Π∇uI |1,h + |u− uI |1,Ω

)
,
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where uπ ∈ L2(Ω,C) with uπ|E∈ P1(E) is chosen such that Lemma 3.1 is satisfied,
and the hidden constant in the previous estimate depends on κ and ϑ. Then, applying
Lemmas 3.1 and 3.2 on (4.1) and (4.2), together with the boundedness of T , we can
deduce that ∥vh∥1,Ω ≲ hs∥f∥1,Ω. Thus, we obtain the desired estimate. Analogous

arguments can be used for the term ∥T ∗ − T̂ ∗
h∥1,Ω.

As a consequence of Lemma 4.1, we have the following estimates for primal and
dual eigenfunctions

(4.3) ∥u− uh∥1,Ω ≲ hs, ∥u∗ − u∗h∥1,Ω ≲ hs
∗
,

where the hidden constants depend on κ and ϑ, but not on h.

Let us denote by E the eigenspace associated to the eigenvalue µ of T , µ
(i)
h ,

i = 1, . . . ,m be discrete eigenvalues of T̂h (repeated according their respective mul-

tiplicities) such that µ
(i)
h converges to µ, 1 ≤ i ≤ m and let Eh be the direct sum of

their associated eigenspaces. By the relation between the eigenvalues of T and T ∗, let
us denote by E∗ the dual of E. The following result provides an error estimate for the
eigenvalues of our spectral problem. Let us remark that this result depends strongly
on the properties of the primal and dual problems.

Theorem 4.2. The following estimate holds

|µ− µ̂h| ≲ hs+s∗ ,

where µ̂h :=
1

m

∑m
k=1 µ

(
hk) and the hidden constant depends on κ and ϑ, but not on

h and the exponents s, s∗ > 0 are the ones provided by (2.5) and (2.6).

Proof. Let {uk}mk=1 be such that Tuk = µuk for k = 1, . . . ,m, and let {u∗k}mk=1

be the dual basis of {uk}mk=1, such that B(uk, u
∗
l ) = δk,l, where δk,l represents the

Kronecker delta. From [5, Theorem 7.2], the following identity holds true

|µ− µh| ≲
1

m

m∑
k=1

∣∣∣〈(T − T̂h)uk, u
∗
k

〉∣∣∣+ ∥T − T̂h∥L(V )∥T ∗ − T̂ ∗
h∥L(V ∗).

Observe that the last two terms can be estimated directly from (4.3). Hence, we need
to bound the first term in the above estimate. To do this task, we observe that the
following identity can be obtained〈

(T − T̂h)uk, u
∗
k

〉
= B((T − T̂h)uk, u

∗
k)

= B((T − T̂h)uk, u
∗
k − (u∗k)I) + B(Tuk, (u

∗
k)I)− B(T̂huk, (u

∗
k)I)

= B((T − T̂h)uk, u
∗
k − (u∗k)I)︸ ︷︷ ︸

(I)

+ [c(uk, (u
∗
k)I)− ch(Phuk, (u

∗
k)I)]︸ ︷︷ ︸

(II)

+ [Bh(T̂huk, (u
∗
k)I)− B(T̂huk, (u

∗
k)I)]︸ ︷︷ ︸

(III)

.

We now estimate the contributions on the right hand side in the above estimate. For
(I), using Cauchy-Schwarz inequality and Lemmas 4.1 and 3.2, we have
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(4.4) (I) ≤ Cκ,ϑ∥(T − T̂h)uk∥1,Ω∥u∗k − (u∗k)I∥1,Ω ≲ hs+s∗ |uk|1+s,Ω|u∗k|1,Ω
≲ hs+s∗ |uk|1,Ω|u∗k|1,Ω.

For (II), using (3.9) and the stability of Ph and (u∗k)I , we have

(4.5) (II) = c(Phuk, (u
∗
k)I)− ch(Phuk, (u

∗
k)I)

≤
∑
E∈Th

∥Phuk −ΠEPhuk∥0,E∥(u∗k)I −ΠE(u∗k)I∥0,E ≲ hs+s∗ |uk|1,Ω|u∗k|1,Ω.

For (III), using triangle inequality we have

(III) ≤
∑
E∈Th

|BE
h (T̂huk, (u

∗
k)I)− BE(T̂huk, (u

∗
k)I)|

≤
∑
E∈Th

|aEh (T̂huk, (u∗k)I)− aE(T̂huk, (u
∗
k)I)|︸ ︷︷ ︸

(IV)

+
∑
E∈Th

|bEh (T̂huk, (u∗k)I)− bE(T̂huk, (u
∗
k)I)|︸ ︷︷ ︸

(V)

.

We now need to estimate (IV) and (V). For (IV), using Cauchy-Schwarz inequality
and (3.2) we have

(IV) ≤ Cκ

(∑
E∈Th

aE(Π∇,E T̂huk − T̂huk,Π
∇,E(u∗k)I − (u∗k)I)

+
∑
E∈Th

SE(T̂huk −Π∇,E T̂huk, (u
∗
k)I −Π∇,E(u∗k)I)

)

≲

(∑
E∈Th

|T̂huk −Π∇,E T̂huk|21,E

)1/2(∑
E∈Th

|(u∗k)I −Π∇,E(u∗k)I |21,E

)1/2

≲ |(T̂huk −Π∇T̂huk|1,h|(u∗k)I −Π∇(u∗k)I |1,h.

Now using triangle inequality and the stability of Π∇,E , together with (4.3) and
Lemma 3.1, we obtain

|T̂huk −Π∇T̂huk|1,h ≲ ∥(T − T̂h)uk∥1,Ω + |Tuk −Π∇Tuk|1,h ≲ hs|uk|1+s,Ω.

On the other hand, using triangle inequality, the stability of Π∇,E and Lemmas 3.2
and 3.1, we obtain

|(u∗k)I −Π∇(u∗k)I |1,h ≲ |u∗k − (u∗k)I |1,Ω + |u∗k −Π∇u∗k|1,h ≲ hs
∗
|u∗k|1+s∗,Ω.

Thus, we obtain (III) ≲ hs+s∗ |uk|1,Ω|u∗k|1,Ω. Finally, for (V), we have
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bE(T̂huk, (u
∗
k)I)− bEh (T̂huk, (u

∗
k)I) =

(
ϑ(x) · ∇T̂huk, (u∗k)I

)
0,E

−
(
ϑ(x) · ∇Π∇,E T̂huk,Π

E(u∗k)I

)
0,E

=
(
ϑ(x) · ∇T̂huk, (u∗k)I −ΠE(u∗k)I

)
0,E

+
(
ϑ(x) · (∇T̂huk −∇Π∇,E T̂ uk),Π

E(u∗k)I

)
0,E

=
(
ϑ(x) · ∇T̂huk −ΠE(ϑ(x) · ∇T̂huk), (u∗k)I −ΠE(u∗k)I

)
0,E

+
(
∇T̂huk −∇Π∇,E T̂huk, ϑ(x)Π

E(u∗k)I − ϑ(x)(u∗k)I

)
0,E

+
(
∇T̂huk −∇Π∇,E T̂huk, ϑ(x)(u

∗
k)I −ΠE(ϑ(x)(u∗k)I)

)
0,E

.

Similar to the estimate in (IV), using the Cauchy-Schwarz and triangle inequalities
on the above estimate, together with Lemmas 3.1 and 4.1 and the stability of the
interpolant, we obtain

(V) ≲ ∥ϑ(x) · ∇T̂huk −Π(ϑ(x) · ∇T̂huk)∥0,Ω∥(u∗k)I −Π(u∗k)I∥0,Ω
|T̂huk −Π∇T̂huk|1,h (∥(u∗k)I −Π(u∗k)I∥0,Ω
+∥ϑ(x)(u∗k)I −Π(ϑ(x)(u∗k)I)∥0,Ω) ≤ Cϑh

s+s∗ |uk|1,Ω|u∗k|1,Ω,

allowing us to conclude that

(4.6) (III) ≲ hs+s∗ |uk|1,Ω|u∗k|1,Ω,

where the hidden constant depends on κ and ϑ. Hence, combining (4.4), (4.5) and
(4.6), we conclude the proof.

Remark 4.3. The estimation for the eigenvalue error |λ − λ̂h| by means of λ̂ :=
1

m

∑m
k=1 λ

(k)
h , where λ

(k)
h = 1/µ

(k)
h is analogous to the estimation shown above.

Now we need an error estimates in L2 norm.
The following result is based on a classical duality argument.

Lemma 4.4. Let f ∈ E be such that û := Tf and ûh := T̂hf , and let f∗ ∈ E∗ be
such that û∗ := T ∗f and û∗h := T̂ ∗

hf . Then, the following results hold:
1. There exists s > 0 such that

∥û− ûh∥0,Ω ≲ hs
(
∥û− ûh∥1,Ω + |û−Π∇ûh|1,h

+∥ϑ(x) · ∇ûh −Π(ϑ(x) · ∇ûh)∥0,Ω) ,

2. There exists s∗ > 0 such that

∥û∗ − û∗h∥0,Ω ≲ hs
∗ (

∥û∗ − û∗h∥1,Ω + |û∗ −Π∇û∗h|1,h
+∥ϑ(x) · ∇û∗h −Π(ϑ(x) · ∇û∗h)∥0,Ω) ,

where the hidden constants on each estimate depends on κ and ϑ, but not on h.

Proof. Since the proof for the primal and dual estimates are based in the same
arguments, we only present the proof for the primal estimate. Let us consider the
following auxilliary problem: find w ∈ V such that

(4.7) B(v, w) = c(v, û− ûh), ∀v ∈ V.
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Observe that the solution w of (4.7) satisfies ∥w∥1+s,Ω ≲ ∥û− ûh∥0,Ω. Then, replacing
v = û− ûh in (4.7) and adding and subtracting wI , we obtain

(4.8) ∥û − ûh∥20,Ω = c(û − ûh, û − ûh) = B(û− ûh, w − wI)︸ ︷︷ ︸
(I)

+B(û− ûh, wI)︸ ︷︷ ︸
(II)

,

being wI ∈ Vh the interpolant of w. Now our task is to estimate the contributions
on the right hand side in the above equation. For (I), using the Cauchy-Schwarz
inequality and the additional regularity for w, we obtain

(4.9) (I) ≤ Cκ,ϑ|w − wI |1,Ω|û− ûh|1,Ω ≲ hs∥û− ûh∥0,Ω∥û− ûh∥1,Ω.

On the other hand, for (II) we have

(4.10) (II) = B(û− ûh, wI) = c(f, wI)−B(ûh, wI)

= c(f, wI)− ch(Phf, wI)︸ ︷︷ ︸
(III)

+Bh(ûh, wI)− B(ûh, wI)︸ ︷︷ ︸
(IV)

.

Now, for (III) we use the same arguments in the proof of [17, Lemma 4.10] and the
additional regularity of w, in order to obtain

(4.11) (III) ≲ hs (∥û− ûh∥1,Ω + |û−Πûh|1,h) ∥û− ûh∥0,Ω.

On the other hand, to estimate (IV), we proceeding as in Theorem 4.2. Then,
applying triangle inequality, Lemmas 3.1 and 3.2 and the stability of the interpolant,
we obtain

(4.12) |aEh (ûh, wI)− aE(ûh, wI)| ≤ Cκ|ûh −Π∇ûh|1,E |wI −Π∇wI |1,E
≲
(
∥û− ûh∥1,E + |û−Π∇ûh|1,E

) (
|w − wI |1,E + |w −Π∇w|1,E

)
≲ hs

(
∥û− ûh∥1,E + |û−Π∇ûh|1,E

)
|w|1+s,E ,

and

(4.13)

|bEh (ûh, wI)− bE(ûh, wI)| ≤ Cϑ∥ϑ(x) · ∇ûh −ΠE(ϑ(x) · ∇ûh)∥0,E∥wI −ΠEwI∥0,E
+ |ûh −Π∇,E ûh|1,E∥ϑ(x)wI − ϑ(x)ΠEwI∥0,E
+ |ûh −Π∇,E ûh|1,E∥ϑ(x)wI −ΠE(ϑ(x)wI)∥0,E

≲ hs
(
∥û− ûh∥1,E + |û−Π∇,E ûh|1,E

+∥ϑ(x) · ∇ûh −ΠE(ϑ(x) · ∇ûh)∥0,E
)
|w|1+s,E .

Therefore, gathering (4.12) and (4.13), using the additional regularity of w and sum-
ming over all polygons, we conclude that

(4.14) (IV) ≲ hs
(
∥û− ûh∥1,Ω + |û−Π∇ûh|1,h

+∥ϑ(x) · ∇ûh −Π(ϑ(x) · ∇ûh)∥0,Ω) ∥û− ûh∥0,Ω.

Finally, combining the estimates (4.9)-(4.14) with (4.8), we conclude the proof. Sim-
ilar arguments can be used for the second estimate.
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Now, we are in position to define a solution operator on the space L2(Ω,C) as

T̃ : L2(Ω,C) → L2(Ω,C), which is defined by T̃ f̃ := ũ, where ũ is solution of (3.6).

Observe that T̃ is compact but not self-adjoint. Hence, we need to introduce the dual
solution operator T̃ ∗ : L2(Ω,C) → L2(Ω,C), which is defined by T̃ ∗f̃∗ := ũ∗, where

ũ∗ is solution of (3.7). Moreover, the spectra of T̃ and T coincide. Now, we will

establish the convergence of T̂h to T̃ , and T̂ ∗
h to T̃ ∗.

Lemma 4.5. The following results hold:
1. There exists s > 0 such that

∥(T̃ − T̂h)f∥0,Ω ≲ hs∥f∥0,Ω ∀f ∈ L2(Ω,C),

2. There exists s∗ > 0 such that

∥(T̃ ∗ − T̂ ∗
h )f∥0,Ω ≲ hs

∗
∥f∥0,Ω ∀f ∈ L2(Ω,C),

where the hidden constants in each estimate depends on κ and ϑ, but not on
h.

Proof. The result for the first estimate follows by repeating the arguments on the
proof of Lemma 4.1, but the term (I) is estimated by using the arguments in the proof
of [17, Lemma 4.11]. Analogous arguments can be used for the second estimate.

Now, we establish the following estimates for the error of the primal and dual eigen-
functions.

Lemma 4.6. Let uh be an eigenfunction of T̂h associated with the eigenvalue µ
(i)
h ,

1 ≤ i ≤ m, with ∥uh∥0,Ω = 1, and let u∗h be an eigenfunction of T̂ ∗
h associated to the

eigenvalue µ
(i)∗
h . The following results hold:

1. There exists an eigenfunction u ∈ L2(Ω,C) of T associated to the eigenvalue
µ and s > 0 such that

∥u− uh∥0,Ω ≲ hs
(
∥û− ûh∥1,Ω + |û−Π∇ûh|1,h

+∥ϑ(x) · ∇ûh −Π(ϑ(x) · ∇ûh)∥0,Ω) ,

2. There exists an eigenfunction u∗ ∈ L2(Ω,C) of T ∗ associated to the eigenvalue
µ∗ and s∗ > 0 such that

∥u∗ − u∗h∥0,Ω ≲ hs
(
∥û∗ − û∗h∥1,Ω + |û∗ −Π∇û∗h|1,h

+∥ϑ(x) · ∇û∗h −Π(ϑ(x) · ∇û∗h)∥0,Ω) ,

where the hidden constants in each estimate depends on κ and ϑ, but not on h.

Proof. Applying Lemma 4.5 and [5, Theorem 7.1], we have spectral convergence

of T̃h to T̃ . Now, due to the relation between the eigenfunctions of T and Th with
those of T̃ and T̂h, we have uh ∈ Eh and there exists u ∈ E such that

∥u− uh∥0,Ω ≲ sup
f̃∈Ẽ:∥f̃∥0,Ω=1

∥(T̃ − T̂h)f̃∥0,Ω,

where Ẽ is an eigenspace of T̃ . On the other hand, using Lemma 4.4, for all f̃ ∈ Ẽ, if
f ∈ E is such that f = f̃ , then
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∥(T̃ − T̂h)f̃∥0,Ω = ∥(T − T̂h)f∥0,Ω ≲ hs
(
∥û− ûh∥1,Ω + |û−Π∇ûh|1,h

+∥ϑ(x) · ∇ûh −Π(ϑ(x) · ∇ûh)∥0,Ω) .

This concludes the proof for the first estimate. Similar arguments can be used in
order to obtain the second estimate.

We now present the following results, which establish error estimates for the eigen-
functions in L2 norm for the primal and dual eigenfunctions.

Theorem 4.7. The following results hold:
1. There exists s > 0 such that

∥u− uh∥0,Ω ≲ hs
(
∥u− uh∥1,Ω + |u−Π∇uh|1,h + |λ− λh|∥uh∥1,Ω

+∥ϑ(x) · ∇uh −Π(ϑ(x) · ∇uh)∥0,Ω) ,

2. There exists s∗ > 0 such that

∥u∗ − u∗h∥0,Ω ≲ hs
∗ (

∥u∗ − u∗h∥1,Ω + |u∗ −Π∇u∗h|1,h + |λ− λh|∥u∗h∥1,Ω
+∥ϑ(x) · ∇u∗h −Π(ϑ(x) · ∇u∗h)∥0,Ω) ,

where the hidden constants in each estimate depends on κ and ϑ, but not on h.

Proof. We focus our proof on the error for the primal eigenfunctions, since similar
arguments can be used for the error of dual eigenfunctions. Invoking Lemma 4.6, we
have

∥u− uh∥0,Ω ≲ hs
(
∥û− ûh∥1,Ω + |û−Π∇ûh|1,h

+∥ϑ(x) · ∇ûh −Π(ϑ(x) · ∇ûh)∥0,Ω) .

Our task is to estimate each contribution of the right hand side. Let û ∈ V be the
solution of the problem B(û, v) = c(u, v) for all v ∈ V .

Since u is solution of (2.1), we obtain û = u/λ. On the other hand, let ûh ∈ Vh
be the solution of the discrete problem Bh(ûh, vh) = ch(Phu, vh), for all vh ∈ Vh.
Recalling that uh solves problem (3.4), observe that the problem Bh(ûh−uh/λh, vh) =
ch(Phu− uh, vh) is well-posed for all vh ∈ Vh and its solution satisfies

∥ûh − uh/λh∥1,Ω ≲ ∥Ph∥∥u− uh∥0,Ω ≲ ∥u− uh∥0,Ω.

On the other hand, adding and substracting uh/λ and uh/λh, and using triangle
inequality we obtain

(4.15) ∥û− ûh∥1,Ω ≲
∥u− uh∥1,Ω

λ
+

|λ− λh|
|λλh|

∥uh∥1,Ω + ∥u− uh∥0,Ω

≲ ∥u− uh∥1,Ω + |λ− λh|∥uh∥1,Ω.

Now, we need to control |û − Π∇ûh|1,h. To do this task, adding and substracting
uh/λh and ûh, and using triangle inequality we have

(4.16) |û−Π∇ûh|1,h ≤ ∥û− ûh∥1,Ω + |ûh − uh/λh|1,Ω +
|uh −Π∇uh|1,h

λh

≲ ∥u− uh∥1,Ω + |λ− λh|∥uh∥1,Ω + |u−Π∇uh|1,h.
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Finally, proceeding analogously to the previous estimate, we obtain

(4.17) ∥ϑ(x) · ∇ûh −Π(ϑ(x) · ∇ûh)∥0,Ω ≲ ∥ûh − uh/λh∥1,Ω

+
∥ϑ(x) · ∇uh −Π(ϑ(x) · ∇uh)∥0,Ω

λh
+ ∥Π(ϑ(x) · ∇uh/λh − ϑ(x) · ∇ûh)∥0,Ω

≲ ∥u− uh∥1,Ω + ∥ϑ(x) · ∇uh −Π(ϑ(x) · ∇uh)∥0,Ω.

Hence, combining (4.15), (4.16), (4.17), and invoking Lemma 4.6 for the primal op-
erators, we conclude the proof.

5. A posteriori error analysis. The aim of this section is to introduce a suit-
able residual-based error estimator for the convection-diffusion eigenvalue problem,
which results to be fully computable, in the sense that it depends only on quanti-
ties available from the VEM solution. Let us introduce the following definitions and
notations. For any polygon E ∈ Th, we denote by EE the set of edges of E and
Eh := ∪E∈Th

EE . We decompose Eh = EΩ ∪ E∂Ω, where E∂Ω := {ℓ ∈ Eh : ℓ ⊂ ∂Ω} and
EΩ := E\E∂Ω. For each inner edge ℓ ∈ EΩ and for any sufficiently smooth function v, we
define the jump of its normal derivative on ℓ by [[∂v/∂n]]ℓ := ∇(v|E)·nE+∇(v|E′)·nE′ ,
where E and E′ are the two elements in Th sharing the edge ℓ, and nE and nE′ are
the respective outer unit normal vectors. As a consequence of the mesh regularity
assumptions, we have that each polygon E ∈ Th admits a sub-triangulation T E

h ob-
tained by joining each vertex of E with the midpoint of the ball with respect to which
E is starred. Let Th :=

⋃
E∈Th

T E
h . Since we are also assuming A2,

{
Th
}
0<h≤1

is a

shape-regular family of triangulations of Ω. Finally, let us remark that through all
this analysis, we will focus only on eigenvalues with simple multiplicity and hence, on
their respective associated eigenfunctions.

In order to obtain the error equations for the primal and dual problems, let us
define the errors eh := u− uh, e

∗
h := u∗ − u∗h. We have the following result.

Lemma 5.1. Let v ∈ V . For the primal eigenvalue problem, the following identity
holds true

B(eh, v) = λc(u, v)− λhc(uh, v)

−
∑
E∈Th

[
aE(uh −Π∇,Euh, v) + bE(uh −Π∇,Euh, v)− λhc

E(uh −ΠEuh, v)
]

+
∑
E∈Th

∫
E

[
∇ · (κ(x)∇Π∇,Euh)− (ϑ(x) · ∇Π∇,Euh) + λhΠ

Euh
]
v

+
∑
E∈Th

∑
ℓ∈EE

∫
ℓ

(
1

2

[[
∂(κ(x)∇Π∇,Euh)

∂n

]]
ℓ

)
v.

Moreover, for the dual eigenvalue problem, for v ∈ V ∗ we have
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B(e∗h, v) = λc(u∗, v)− λhc(u∗h, v)

−
∑
E∈Th

[
aE(u∗h −Π∇,Eu∗h, v)− bE(u∗h −Π∇,Eu∗h, v)− λhc

E(u∗h −ΠEu∗h, v)
]

+
∑
E∈Th

∫
E

[
∇ · (κ(x)∇Π∇,Eu∗h) + (ϑ(x) · ∇Π∇,Eu∗h) + λhΠEu∗h

]
v

+
∑
E∈Th

∑
ℓ∈EE

∫
ℓ

(
1

2

[[
∂(κ(x)∇Π∇,Eu∗h)

∂n

]]
ℓ

)
v.

Proof. We only prove the estimate for the primal problem since similar arguments
are used for the dual error equation. Let (λ, u) ∈ C × V be an eigenpair that solves
(2.1). Therefore, using integration by parts and adding and subtracting the projection
Π∇,E , we have

B(eh, v) = B(u, v)− B(uh, v) = λc(u, v)−
∑
E∈Th

[
aE(uh, v) + bE(uh, v)

]
= λc(u, v)− λhc(uh, v)−

∑
E∈Th

[
aE(Π∇,Euh, v) + bE(Π∇,Euh, v)− λhc

E(ΠEuh, v)
]

−
∑
E∈Th

[
aE(uh −Π∇,Euh, v) + bE(uh −Π∇,Euh, v)− λhc

E(uh −ΠEuh, v)
]

= λc(u, v)− λhc(uh, v)−
∑
E∈Th

[
aE(uh −Π∇,Euh, v) + bE(uh −Π∇,Euh, v)

−λhcE(uh −ΠEuh, v)
]
+
∑
E∈Th

∫
E

{[
∇ · (κ(x)∇Π∇,Euh)− (ϑ(x) · ∇Π∇,Euh)

+λhΠ
Euh

]
v
}
+
∑
E∈Th

∑
ℓ∈EE

∫
ℓ

(
1

2

[[
∂(κ(x)∇Π∇,Euh)

∂n

]]
ℓ

)
v.

This concludes the proof.

Remark 5.2. Observe that ∇ · (κ(x)∇Π∇,Euh) = 0 on each polygon E ∈ TE , so
we will omit this term from now on.

In order to define our a posteriori error estimator, we introduce the local terms
ΘE , Θ

∗
E , RE , R

∗
E and the local error indicators ηE and η∗E as follows:

Θ2
E := aEh (uh −Π∇,Euh, uh −Π∇,Euh), Θ∗2

E := aEh (u
∗
h −Π∇,Eu∗h, u

∗
h −Π∇,Eu∗h),

R2
E := h2E∥ΥE∥20,E , R∗2

E := h2E∥Υ∗
E∥20,E ,

η2E := Θ2
E +R2

E +
∑
ℓ∈EE

hE∥Jℓ∥20,ℓ, η∗2E := Θ∗2
E +R∗2

E +
∑
ℓ∈EE

hE∥J∗
ℓ ∥20,ℓ,

where ΥE := (−(ϑ(x) · ∇Π∇,Euh) + λhΠ
Euh)|E and Υ∗

E := ((ϑ(x) · ∇Π∇,Eu∗h) +

λhΠEu∗h)|E and the edge residuals are defined by

Jℓ :=


1

2

[[
∂(κ(x)∇Π∇,Euh)

∂n

]]
ℓ

∀ℓ ∈ EΩ,

0 ∀ℓ ∈ E∂Ω,
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J∗
ℓ :=


1

2

[[
∂(κ(x)∇Π∇,Eu∗h)

∂n

]]
ℓ

∀ℓ ∈ EΩ,

0 ∀ℓ ∈ E∂Ω,

which are clearly computable. With these ingredients at hand, we define the global
error estimators η and η∗ by

(5.1) η :=

(∑
E∈Th

η2E

)1/2

and η∗ :=

(∑
E∈Th

η∗2E

)1/2

.

5.1. Reliability. Our task is to prove that the global error estimators are reliable
and efficient. We begin with the reliability analysis proving the following estimate for
the error of the eigenfunctions.

Lemma 5.3. For the primal and dual problems, the following error estimates hold

∥u− uh∥1,Ω ≲ η + |λ− λh|+ ∥u− uh∥0,Ω,
∥u∗ − u∗h∥1,Ω ≲ η∗ + |λ− λh|+ ∥u∗ − u∗h∥0,Ω,

where the hidden constants depends on κ, ϑ but not on h.

Proof. Given v ∈ V and denoting by vI ∈ Vh its interpolant, we have the following
identity

B(eh, v) = λc(u, v)− λhc(uh, v) +
∑
E∈Th

λhc
E(uh −ΠEuh, v)︸ ︷︷ ︸

T1

+
∑
E∈Th

B(uh −Π∇,Euh, v)︸ ︷︷ ︸
T2

+
∑
E∈Th

{
−B(Π∇,Euh, v − vI) + λhc

E(ΠEuh, v − vI)
}

︸ ︷︷ ︸
T3

+
∑
E∈Th

{
λhc

E(ΠEuh, vI)− B(Π∇,Euh, vI)
}

︸ ︷︷ ︸
T4

,

where our task is to estimate each of the contributions on the right hand side. For
T1, using the triangle and Cauchy-Schwarz inequalities we obtain

T1 = λc(u, v)− λhc(uh, v) +
∑
E∈Th

λhc
E(uh −ΠEuh, v)

= (λ− λh)c(u, v) + λhc(u− uh, v) +
∑
E∈Th

λhc
E(uh −ΠEuh, v)

≤ ∥v∥1,Ω (|λ− λh|∥u∥0,Ω + |λh|∥u− uh∥0,Ω

+|λh|

(∑
E∈Th

cE(uh −ΠEuh, uh −ΠEuh)

)1/2
 ,

where in the last inequality we have used the obvious inequality ∥v∥0,Ω ≤ ∥v∥1,Ω. For
T2, applying once again the Cauchy-Schwarz inequality we have
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(5.2)

T2 =
∑
E∈Th

B(uh −Π∇,Euh, v) =
∑
E∈Th

aE(uh −Π∇,Euh, v) + bE(uh −Π∇,Euh, v)

≤ Cκ,ϑ

∑
E∈Th

|uh −Π∇,Euh|1,E(|v|1,E + ∥v∥0,E)

≤ Cκ,ϑ

(∑
E∈Th

aEh (uh −Π∇,Euh, uh −Π∇,Euh)

)1/2

∥v∥1,Ω,

where in the last inequality we have used the stability of aE(·, ·). For T3, using
integration by parts and the Cauchy-Schwarz inequality, we have

(5.3) T3 =
∑
E∈Th

{
−B(Π∇,Euh, v − vI) + λhc

E(ΠEuh, v − vI)
}

=
∑
E∈Th

∫
E

[
−(ϑ(x) · ∇Π∇,Euh) + λhΠ

Euh
]
(v − vI) +

∑
E∈Th

∑
ℓ∈EE

∫
ℓ

Jℓ(v − vI)

≤
∑
E∈Th

∥ΥE∥0,E∥v − vI∥0,E +
∑
E∈Th

∑
ℓ∈EE

∥Jℓ∥0,ℓ∥v − vI∥0,ℓ

≲

(∑
E∈Th

h2E∥ΥE∥20,E

)1/2

+

(∑
E∈Th

∑
ℓ∈EE

hE∥Jℓ∥20,ℓ

)1/2
 ∥v∥1,Ω,

where in the last inequality we have used a trace inequality and Lemma 3.2. Finally,
for T4 we have

(5.4) T4 =
∑
E∈Th

{
λh
(
cE(ΠEuh, vI)− cEh (uh, vI)

)
+ Bh(uh, vI)− B(Π∇,Euh, vI)

}
= T5 + T6,

where the terms T5 and T6 are defined by

T5 := λh
∑
E∈Th

SE
0 (uh −ΠEuh, vI −ΠEvI),

T6 :=
∑
E∈Th

λhc
E(ΠEuh, vI −ΠEvI) + Bh(uh, vI)− B(Π∇,Euh, vI),

which must be correctly estimated. To accomplish this task, we begin with T5, where
using the Cauchy-Schwarz inequality and (3.3) we obtain

(5.5) T5 ≤ |λh|
∑
E∈Th

SE
0 (uh −ΠEuh, uh −ΠEuh)

1/2SE
0 (vI −ΠEvI , vI −ΠEvI)

1/2

≤ |λh|

(∑
E∈Th

cE(uh −ΠEuh, uh −ΠEuh)

)1/2

∥v∥0,Ω,

where last inequality have been obtained as consequence of the stability of the inter-
polant vI . Now for the term T6, using integration by parts, Cauchy-Schwarz inequality,
(3.2), (3.9), and Lemma 3.2, we obtain
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(5.6) T6 =
∑
E∈Th

λhc
E(ΠEuh, vI −ΠEvI) + Bh(uh, vI)− B(Π∇,Euh, vI)

=
∑
E∈Th

{
−aE(Π∇,Euh, vI −ΠEvI)− bE(Π∇,Euh, vI −ΠEvI)

+cE(λhΠ
Euh, vI −ΠEvI)

}
+
∑
E∈Th

SE(uh −Π∇,Euh, vI −Π∇,EvI)

=
∑
E∈Th

∫
E

[
−(ϑ(x) · ∇Π∇,Euh) + λhΠ

Euh
]
(vI −ΠEvI)

+
∑
E∈Th

∑
ℓ∈EE

∫
ℓ

Jℓ(vI −ΠEvI) +
∑
E∈Th

SE(uh −Π∇,Euh, vI −Π∇,EvI)

≲
∑
E∈Th

∥ΥE∥0,E∥vI −ΠEvI∥0,E +
∑
E∈Th

∑
ℓ∈EE

∥Jℓ∥0,ℓ∥vI −ΠEvI∥0,E

+

(∑
E∈Th

aEh (uh −Π∇,Euh, uI −Π∇,Euh)

)1/2

∥v∥1,Ω,

≲

(∑
E∈Th

h2E∥ΥE∥20,E∥

)1/2

∥v∥1,Ω +

(∑
E∈Th

∑
ℓ∈EE

hE∥Jℓ∥20,ℓ

)1/2

∥v∥1,Ω

+

(∑
E∈Th

aEh (uh −Π∇,Euh, uI −Π∇,Euh)

)1/2

∥v∥1,Ω.

Hence, gathering (8), (5.2), (5.3), (5.4), (5.5) and (5.6) and invoking the inf-sup
condition (2.3), we conclude the proof for the estimate of ∥u− uh∥1,Ω. The proof for
the estimate ∥u∗ − u∗h∥1,Ω follows the same arguments.

Now, we prove similar estimates for the projection errors u−Πuh and u−Π∇uh,
and the same estimates for the dual projection errors. This upper bounds are neces-
sary to estimate the eigenvalue error in terms of η and η∗.

Lemma 5.4. The following estimate holds

∥u− uh∥1,Ω + ∥u−Πuh∥0,Ω + |u−Π∇uh|1,h ≲ η + |λ− λh|+ ∥u− uh∥0,Ω,
∥u∗ − u∗h∥1,Ω + ∥u∗ −Πu∗h∥0,Ω + |u∗ −Π∇u∗h|1,h ≲ η + |λ− λh|+ ∥u∗ − u∗h∥0,Ω,

where the hidden constants depends on κ, ϑ but not on h.

Proof. Let E ∈ Th. Then, from the triangle inequality we have

∥u−ΠEuh∥0,E+|u−Π∇,Euh|1,E ≤ 2∥u−uh∥1,E+∥uh−ΠEuh∥0,E+∥uh−Π∇,Euh∥1,E .

Then, using (3.8), we obtain

(5.7) ∥uh −ΠEuh∥0,E + ∥uh −Π∇,Euh∥1,E ≲ ΘE ≤ ηE .

The proof follows from (5.7), summing over all polygons and Lemma 5.3. The proof
is analogous for the second estimate.

Now, we have the following result for the error of the eigenvalues.

This manuscript is for review purposes only.



20 D. AMIGO, F. LEPE AND G. RIVERA

Lemma 5.5. The following estimate holds

|λ− λh| ≲ η2 + η∗2 + |λ− λh|2 + ∥u− uh∥20,Ω + ∥u∗ − u∗h∥20,Ω,

where the hidden constant depends on κ, ϑ, but not of h.

Proof. First, we have the following identity

(λh − λ)c(uh, u
∗
h) = B(u− uh, u

∗ − u∗h)− λc(u− uh, u
∗ − u∗h)

+ λh [c(uh, u
∗
h)− ch(uh, u

∗
h)] + [Bh(uh, u

∗
h)− B(uh, u

∗
h)] .

Observe that the term c(uh, u
∗
h) is needed to be lower bounded. The existence of such

lower bound for c(uh, u
∗
h) follows from [25, Theorem 3.2], i.e., there exists C > 0 such

that c(uh, u
∗
h) > C. Then, taking modulus and applying triangle inequality, we have

(5.8)
|λ− λh| ≲ |B(u− uh, u

∗ − u∗h)|︸ ︷︷ ︸
T̂1

+ |c(u− uh, u
∗ − u∗h)|︸ ︷︷ ︸

T̂2

+ |Bh(uh, u
∗
h)− B(uh, u

∗
h)|︸ ︷︷ ︸

T̂3

+ |c(uh, u∗h)− ch(uh, u
∗
h)|︸ ︷︷ ︸

T̂4

,

where the hidden constant depends precisely on such C > 0. Our task is to estimate
the four terms in the right-hand side. For T̂1, using Cauchy-Schwarz inequality we
obtain

(5.9) T̂1 ≤ Cκ,ϑ∥u− uh∥1,Ω∥u∗ − u∗h∥1,Ω ≲ ∥u− uh∥21,Ω + ∥u∗ − u∗h∥21,Ω.

Analogously for T2, applying the Cauchy-Schwarz inequality we have

(5.10) T̂2 ≤ ∥u− uh∥0,Ω∥u∗ − u∗h∥0,Ω ≲ ∥u− uh∥20,Ω + ∥u∗ − u∗h∥20,Ω.

For T̂3, applying triangle inequality, Cauchy-Schwarz inequality, and the boundedness
of SE(·, ·), we have

(5.11) T̂3 ≤

∣∣∣∣∣ ∑
E∈Th

aE(Π∇,Euh − uh,Π
∇,Eu∗h − u∗h)

∣∣∣∣∣
+

∣∣∣∣∣ ∑
E∈Th

SE(uh −Π∇,Euh, u
∗
h −Π∇,Eu∗h)

∣∣∣∣∣
+

∣∣∣∣∣ ∑
E∈Th

bE(Π∇,Euh − uh,Π
Eu∗h)− bE(uh, u

∗
h −ΠEu∗h)

∣∣∣∣∣
≤ Cκ,ϑ

(
|uh −Π∇uh|1,h|u∗h −Π∇u∗h|1,h + |uh −Π∇uh|1,h∥Πuh∥0,Ω

+|uh|1,Ω∥u∗h −Πu∗h∥0,Ω)
≲ |uh −Π∇uh|21,h + |u∗h −Π∇u∗h|21,h + |uh −Π∇uh|21,h + ∥u∗h −Πu∗h∥20,Ω,

where in the last inequality we have used the Archimedean property on R. Finally,
for T̂4, using Cauchy-Schwarz inequality and the boundedness of SE

0 (·, ·), we obtain

(5.12) T̂4 ≲ ∥uh −Πuh∥0,Ω∥u∗h −Πu∗h∥0,Ω ≲ ∥uh −Πuh∥20,Ω + ∥u∗h −Πu∗h∥20,Ω.
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Therefore, gathering (5.8), (5.9), (5.10), (5.11) and (5.12) and using triangle inequal-
ity, we obtain

|λ−λh| ≲ ∥u−uh∥21,Ω+∥u∗−u∗h∥21,Ω+|u−Π∇uh|21,h+|u∗−Π∇u∗h|21,h+∥u−Πuh∥20,Ω
+ ∥u∗ −Πu∗h∥20,Ω + ∥u− uh∥20,Ω + ∥u∗ − u∗h∥20,Ω.

Thus, invoking Lemma 5.4, we conclude the proof.

Remark 5.6. It is important to mention that the additional terms accompanying
the estimators on the right-hand side of Lemmas 5.4 and 5.5 are high-order terms, as
we have proved in Theorems 4.2 and 4.7.

5.2. Efficiency. Now our aim is to prove that our proposed estimator is locally
efficient. To do this task, the usual way to prove this feature is through the use of
bubble functions. Hence, we present in the following results standard estimates for
bubble functions on two dimensions that will be useful in what follows (see [3, 23, 10]).

Lemma 5.7 (Interior bubble functions). For any E ∈ Th, let ψE be the corre-
sponding interior bubble function. Then, there exists a constant C > 0 independent
of hE such that

C−1∥q∥20,E ≤
∫
E

ψEq
2 ≤ ∥q∥20,E ∀q ∈ Pk(E),

C−1∥q∥0,E ≤ ∥ψEq∥0,E + hE∥∇(ψEq)∥0,E ≤ C∥q∥0,E ∀q ∈ Pk(E).

Lemma 5.8 (Edge bubble functions). For any E ∈ Th and ℓ ∈ EE, let ψℓ be the
corresponding edge bubble function. Then, there exists a constant C > 0 independent
of hE such that

C−1∥q∥20,ℓ ≤
∫
ℓ

ψℓq
2 ≤ ∥q∥20,ℓ ∀q ∈ Pk(ℓ).

Moreover, for all q ∈ Pk(ℓ), there exists an extension of q ∈ Pk(E) (again denoted by
q) such that

h
−1/2
E ∥ψℓq∥0,E + h

1/2
E ∥∇(ψℓq)∥0,E ≲ ∥q∥0,ℓ.

We begin with by estimating the volumetric terms ∥ΥE∥0,E , ∥Υ∗
E∥0,E .

Lemma 5.9. The following estimates hold

∥ΥE∥0,E ≲ h−1
E

(
|u− uh|1,E +ΘE + hE(∥uh −ΠEuh∥0,E + ∥λu− λhuh∥0,E)

)
,

∥Υ∗
E∥0,E ≲ h−1

E

(
|u∗ − u∗h|1,E +Θ∗

E + hE(∥u∗h −ΠEu∗h∥0,E + ∥λu∗ − λhu
∗
h∥0,E)

)
,

where the hidden constants depends on κ, ϑ but not on hE.

Proof. Let ψE be the interior bubble function defined in Lemma 5.7. Let us
define the function v := ΥEψE which vanishes on the boundary of E and also may be
extended by zero to the whole domain Ω, implying that v ∈ H1

0 (Ω). Then, according
to Lemma 5.1, for each E ∈ Th we have

BE(eh,ΥEψE) = λcE(u,ΥEψE)− λhc
E(uh,ΥEψE)− aE(uh −Π∇,Euh,ΥEψE)

− bE(uh −Π∇,Euh,ΥEψE) + λhc
E(uh −ΠEuh,ΥEψE) +

∫
E

Υ2
EψE .
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Then, we have

∥ΥE∥20,E ≲
∫
E

Υ2
EψE = BE(eh,ΥEψE)− λcE(u,ΥEψE) + λhc

E(uh,ΥEψE)

aE(uh −Π∇,Euh,ΥEψE) + bE(uh −Π∇,Euh,ΥEψE)− λhc
E(uh −ΠEuh,ΥEψE)

≤ Cκh
−1
E (|u− uh|1,E + |uh −Π∇,Euh|1,E)∥ΥE∥0,E + |λh|∥uh −ΠEuh∥0,E∥ΥE∥0,E

+ Cϑ(|u− uh|1,E + |uh −Π∇,Euh|1,E)∥ΥE∥0,E + ∥λu− λhuh∥0,E∥ΥE∥0,E
≲ h−1

E ∥ΥE∥0,E
(
|u− uh|1,E + 2ΘE + hE(|u− uh|1,E + ∥uh −ΠEuh∥0,E

+∥λu− λhuh∥0,E)) ,

where in the last inequality we have used (5.7). This concludes the proof for the first
estimate. Analogous arguments are used for the estimate involving the dual problem.

The following result gives an estimate for the primal and dual consistency terms
ΘE and Θ∗

E , respectively.

Lemma 5.10. The following estimates holds

ΘE ≲ ∥u− uh∥1,E + |u−Π∇,Euh|1,E , and Θ∗
E ≲ ∥u∗ − u∗h∥1,E + |u∗ −Π∇,Eu∗h|1,E ,

where the hidden constants are independent of hE.

Proof. Observe that Θ2
E = SE(uh −Π∇,Euh, uh −Π∇,Euh). Then, using triangle

inequality and the boundedness of SE(·, ·), we have

Θ2
E ≲ |uh −Π∇,Euh|21,E ≤ (∥u− uh∥1,E + |u−Π∇,Euh|1,E)2.

The same arguments are used for the second estimate. This concludes the proof.

Now we prove an estimate for the jumps terms ∥Jℓ∥0,ℓ and ∥J∗
ℓ ∥0,ℓ.

Lemma 5.11. The following estimates holds

h
1/2
E′ ∥Jℓ∥0,ℓ ≲

∑
E′∈ωℓ

(
∥eh∥1,E′ + |u−Π∇,E′

uh|1,E′ + hE′∥uh −ΠE′
uh∥0,E′

+ hE′∥λu− λhuh∥0,E′) ,

h
1/2
E′ ∥J∗

ℓ ∥0,ℓ ≲
∑

E′∈ωℓ

(
∥e∗h∥1,E′ + |u∗ −Π∇,E′

u∗h|1,E′ + hE′∥u∗h −ΠE′
u∗h∥0,E′

+ hE′∥λu∗ − λhu
∗
h∥0,E′) ,

where ωℓ := {E′ ∈ Th : ℓ ∈ EE′} and the hidden constants depend on κ, ϑ but not on
hE′ .

Proof. Let ℓ ∈ EE′ ∩ EΩ. Let us define v := Jℓψℓ, where ψℓ is the edge bubble
function satisfying Lemma 5.8. Observe that v may be extended by zero to the whole
domain Ω and, just for simplicity, we denote this extension by v. We remark that
v ∈ V . Invoking Lemma 5.1, we have
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B(eh, Jℓψℓ) = λc(u, Jℓψℓ)− λhc(uh, Jℓψℓ)−
∑

E′∈ωℓ

(
aE

′
(uh −Π∇,E′

uh, Jℓψℓ)

+bE
′
(uh −Π∇,E′

uh, Jℓψℓ)− λhc
E′
(uh −ΠE′

uh, Jℓψℓ)
)

+
∑

E′∈ωℓ

(∫
E′

ΥE′Jℓψℓ +

∫
ℓ

J2
ℓ ψℓ

)
.

Then, applying Lemma 5.8, we have

(5.13) ∥Jℓ∥20,ℓ ≲
∫
ℓ

J2
ℓ ψ = B(eh, Jℓψℓ)− c(λu− λhuh, Jℓψℓ)−

∑
E′∈ωℓ

∫
E′

ΥE′Jℓψℓ

+
∑

E′∈ωℓ

(
aE

′
(uh −Π∇,E′

uh, Jℓψℓ) + bE
′
(uh −Π∇,E′

uh, Jℓψℓ)

−λhcE
′
(uh −ΠE′

uh, Jℓψℓ)
)

≤ Cκ

∑
E′∈ωℓ

(
|eh|1,E′ + |uh −Π∇,E′

uh|1,E′

)
|Jℓψℓ|1,E′ +

∑
E′∈ωℓ

∥ΥE′∥0,E′∥Jℓψℓ∥0,E′

+ Cϑ

∑
E′∈ωℓ

(
|eh|1,E′ + |uh −Π∇,E′

uh|1,E′

)
∥Jℓψℓ∥0,E′

+
∑

E′∈ωℓ

∥uh −ΠEuh∥0,E′∥Jℓψℓ∥0,E′ +
∑

E′∈ωℓ

∥λu− λhuh∥0,E′∥Jℓψℓ∥0,E′ .

Now we have the following set of inequalities:

(
|eh|1,E′ + |uh −Π∇,E′

uh|1,E′

)
|Jℓψℓ|1,E′ ≲ h

−1/2
E′ (∥eh∥1,E′ +ΘE′) ∥Jℓ∥0,ℓ;(

|eh|1,E′ + |uh −Π∇,E′
uh|1,E′

)
∥Jℓψℓ∥0,E′ ≲ h

1/2
E′ (∥eh∥1,E′ +ΘE′) ∥Jℓ∥0,ℓ;

∥uh −ΠEuh∥0,E′∥Jℓψℓ∥0,E′ ≲ h
1/2
E ∥uh −ΠEuh∥0,E′∥Jℓ∥0,ℓ;

∥λu− λhuh∥0,E′∥Jℓψℓ∥0,E′ ≲ h
1/2
E ∥λu− λhuh∥0,E′∥Jℓ∥0,ℓ;

∥ΥE′∥0,E′∥Jℓψℓ∥0,E′ ≲ h
−1/2
E′ (∥eh∥1,E +ΘE′) + h

1/2
E′ (∥eh∥1,E′ +ΘE′

+∥λu− λhuh∥0,E′ + ∥uh −ΠEuh∥0,E′
)
,

where in the last inequality we have employed Lemma 5.9. Hence, combining (5.13)
with the above estimates and using Lemma 5.10, we conclude the proof for the first
estimate. Similar arguments can be used to prove the second estimate.

Now, we prove estimates for the local error indicators ηE and η∗E . To do this task
is necessary to have estimates for the local volumetric terms, consistency terms and
the edge residuals. All estimates has been obtained in the previous results.

Corollary 5.12 (Local efficiency). The following estimate for the local error
indicators ηE and η∗E holds
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η2E ≲
∑

E′∈ωE

(
∥eh∥21,E′ + |u−Π∇,E′

uh|21,E′ + ∥uh −ΠE′
uh∥20,E′

+h2E′∥λu− λhuh∥20,E′

)
,

η∗2E ≲
∑

E′∈ωE

(
∥e∗h∥21,E′ + |u∗ −Π∇,E′

u∗h|21,E′ + ∥u∗h −ΠE′
u∗h∥20,E′

+h2E′∥λu∗ − λhu
∗
h∥20,E′

)
,

where ωE := {E′ ∈ Th : E′ and E share an edge}.
Proof. The results follows directly from Lemmas 5.9 - 5.11.

6. Numerical experiments. In the following section we report numerical ev-
idence to support our theoretical results. Particulalry we present the results related
to the a posteriori error estimates, in order to assess the bevahior of the a posteri-
ori estimators defined in (5.1), since as we will observe on the forthcominng results,
the a priori error is analyzed with the uniform refinement that we compare with the
adaptive one. With this aim, we have implemented in a MATLAB code a lowest or-
der VEM scheme on arbitrary polygonal meshes and the mesh refinement algorithm
described in [8], which consists in splitting each element of the mesh into n quadri-
laterals (n being the number of edges of the polygon) by connecting the barycenter
of the element with the midpoint of each edge, which will be named as Adaptive
VEM. Notice that although this process is initiated with a mesh of triangles, the
successively created meshes will contain other kind of convex polygons, as it can be
seen in Figure 1. The schemes are based on the strategy of refining those elements
E ∈ Th that satisfy

ηE ≥ 0.5 max
E′∈Th

{ηE′}.

Fig. 1. Example of refined elements for the VEM strategy.

We have tested the method by using different families of meshes (see Figure 2):
• tria: triangular meshes;
• quad: squares meshes;
• hexa: structured hexagonal meshes made of convex hexagons;
• voro: non-structured Voronoi meshes.

6.1. Test 1: L-shaped domain. For the first test, we will consider the non-
convex domain Ω := (−1, 1) × (−1, 1) \ [0, 1] × [−1, 0], which is a L-shaped domain,
with boundary condition u = 0. Here κ(x) = 1 and ϑ(x) = (3, 0). We will use as
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Fig. 2. Sample meshes: tria (top left), quad (top right), hexa (bottom left), voro (bottom right).

approximation of the first lowest eigenvalue λ1 = |ϑ(x)|+9.6397238 (see [14] for more
details). In Figures 3 and 4 we present the adaptively refined meshes obtained with
VEM procedure for different initial meshes.

Fig. 3. Test 1: Adaptively refined meshes obtained with VEM scheme at refinement steps 0,
1 and 8 initiated with an hexagonal mesh (Adaptive VEMH).

According to [14] and as seen in Figure 5, using quasi-uniform meshes, the con-
vergence rate for the eigenvalues should be |λ1−λh,1| = O(h4/3) = O(N−2/3) , where
N denotes the number of degrees of freedom. Then, the proposed a posteriori esti-
mator should be able to recover the optimal order 1 , when the adaptive refinement
is performed near the singularity point. In Figure 5 we present error curves where we
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Fig. 4. Test 1: Adaptively refined meshes obtained with VEM scheme at refinement steps 0,
1 and 8 initiated with an voronoi mesh (Adaptive VEMV).

observe that the uniform refinement leads to a convergence rate close to that predicted
by the theory, while the adaptive VEM schemes allows us to recover the optimal or-
der of convergence 1. Clearly, when we perform the refinements with triangles, the
estimator works analogously as in then finite element method and it is clear that with
triangles the geometrical singularities are identified in order to perform the necessary
refinements.
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Fig. 5. Test 1. Error curves of |λ1 − λh,1| for uniformly refined meshes (“Uniform VEM”),
adaptively refined meshes for VEM with triangles (“Adaptive VEMT”), adaptively refined meshes
for VEM with hexagons (“Adaptive VEMH”) and adaptively refined meshes for VEM with voronoi
(“Adaptive VEMV”).

We report in Table 1, the estimators η2 and the effectivity indexes eff(η) :=
|λ1 − λh1|

η2
at each step of the adaptive VEM scheme. We include in the table the
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terms R2 :=
∑

E∈Th
R2

E which arise from the volumetric residuals, Θ2 :=
∑

E∈Th
Θ2

E .

which arise from the inconsistency of the VEM, and J2
h :=

∑
E∈Th

{∑
ℓ∈Th

J2
ℓ

}
which

arise from the edge residuals. In the same way, Table 2 shows the analogous to Table
1, but associated to the dual estimator.

Table 1
Components of the error estimator and effectivity indexes on the adaptively refined meshes with

VEMH.

N λh1 R2 Θ2 J2
h η2 eff(η)

548 11.914 2.0790e+00 9.0613e-02 3.9921e+00 6.1617e+00 3.3487e-04
831 11.906 1.4377e+00 7.0345e-02 2.5901e+00 4.0982e+00 3.3412e-04
1475 11.897 4.8131e-01 3.4615e-02 9.7827e-01 1.4942e+00 4.0159e-04
1935 11.896 3.4110e-01 2.2026e-02 6.7937e-01 1.0425e+00 5.2545e-04
2456 11.897 3.1849e-01 1.7953e-02 5.9370e-01 9.3015e-01 6.6679e-04
4802 11.893 1.5318e-01 1.1243e-02 3.0325e-01 4.6767e-01 6.4188e-04
7236 11.892 9.6737e-02 6.9575e-03 1.9345e-01 2.9714e-01 6.5600e-04
11269 11.891 7.0837e-02 4.9896e-03 1.3640e-01 2.1223e-01 6.7467e-04
19984 11.891 3.8875e-02 3.4400e-03 7.8216e-02 1.2053e-01 6.6959e-04
31615 11.890 2.3515e-02 2.2224e-03 4.9141e-02 7.4879e-02 7.0400e-04

From Tables 1 and 2 we observe that the effectivity indexes are bounded and far
from zero. Also, the volumetric and edge residual terms are, roughly speaking, of the
same order, none of them being asymptotically negliglible.

Table 2
Components of the error estimator and effectivity indexes on the adaptively refined meshes with

VEMH.

N λh1 R∗2 Θ∗2 J∗2
h η∗2 eff(η∗)

548 11.914 2.5045e+00 8.1576e-02 3.8235e+00 6.4095e+00 3.2193e-04
831 11.906 1.3928e+00 5.2504e-02 1.8218e+00 3.2671e+00 4.1911e-04
1475 11.897 5.8009e-01 2.8127e-02 8.9549e-01 1.5037e+00 3.9905e-04
1935 11.896 4.2274e-01 1.8788e-02 6.9178e-01 1.1333e+00 4.8334e-04
2456 11.897 3.4216e-01 1.4299e-02 5.0855e-01 8.6501e-01 7.1700e-04
4802 11.893 1.7841e-01 8.2262e-03 2.7103e-01 4.5767e-01 6.5591e-04
7236 11.892 1.1455e-01 5.9439e-03 1.9062e-01 3.1112e-01 6.2652e-04
11269 11.891 7.9144e-02 3.9980e-03 1.2025e-01 2.0339e-01 7.0399e-04
19984 11.891 4.4065e-02 2.6448e-03 6.8238e-02 1.1495e-01 7.0211e-04
31615 11.890 2.7508e-02 1.7239e-03 4.5678e-02 7.4909e-02 7.0372e-04

Finally, Figure 6 shows the eigenfunctions corresponding to the first lowest eigen-
value for the primal and dual problem at different levels of refinement.

6.2. Test 2: H-shaped domain. For the following tests, we consider a two
dimensional domain with for geometrical singularities, which we call the H-shaped
domain. This domain may represent, for instance, the union of two pools containing
fluids. Let us represent the H-shaped domain by Ω and its geometry is defined by
More precisely, the geometry of this domain is given by

Ω :=
{
(0, 3/2)× (0, 3)

}
\
{
{[1/2, 1]× [0, 5/4]} ∪ {[1/2, 1]× [15/8, 3]}

}
.
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Fig. 6. Test 1. First eigenfunction for the primal problem (left) and the dual problem (right).

As in the L-shaped domain, the presence of four singularities will lead, once again,
to singular eigenfunctions with non sufficient regularity which is reflected on the con-
vergence order on the computed a priori estimates. Hence, our proposed estimators
must be capable of identify these singularities of the geometry and perform and adap-
tive refinement, with different polygonal meshes, in order to recover optimal order of
convergence. In the forthcoming snapshots we present the adaptive refinement of our
estimator using different meshes.

Fig. 7. Test 2: Adaptively refined meshes obtained with VEM scheme at refinement steps 0,
1 and 8 initiated with a square mesh (Adaptive VEMSQ).

From Figures 7 and 8 we are able to observe that the refinements are precisely as
we expect. On the other hand when polygonal meshes are considered, the estimator
works perfectly when the refinements begin, in particular when squares and voronoi
meshes are considered as we observe on Figures 7 and 8 .

In Tables 3 and 4 we present the same information as in Tables 1 and 2 for this
test. Similar conclusions to those of the previous test can be drawn from these tables.

Figure 9 shows a logarithmic plot of the errors between the calculated approx-
imations of the second smallest positive eigenvalue and the ‘’exact” one, versus the
number of degrees of freedom N of the meshes. The exact value of the second eigen-
value is obtained by using the least squares fit. The figure shows the results obtained
with “uniform” meshes and with adaptively refined meshes and shows how the optimal
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Fig. 8. Test 2: Adaptively refined meshes obtained with VEM scheme at refinement steps 0,
1 and 8 initiated with a voronoi mesh (Adaptive VEMV).

Table 3
Components of the error estimator and effectivity indexes on the adaptively refined meshes with

VEMV.

N λh1 R2 Θ2 J2
h η2 eff(η)

1286 19.748e+01 4.3111e+00 3.7424e-01 4.5192e-02 4.7305e+00 1.6444e-03
1567 19.717e+01 2.6490e+00 2.7764e-01 3.6748e-02 2.9633e+00 1.6740e-03
2307 19.692e+01 1.1729e+00 1.7112e-01 2.3501e-02 1.3675e+00 2.1471e-03
3041 19.682e+01 8.4430e-01 1.2692e-01 2.1386e-02 9.9260e-01 2.5003e-03
4108 19.675e+01 6.3121e-01 7.6930e-02 7.6026e-03 7.1575e-01 2.7884e-03
5920 19.664e+01 3.9877e-01 5.4853e-02 4.7708e-03 4.5839e-01 3.0739e-03
8338 19.657e+01 2.6452e-01 4.1996e-02 3.2092e-03 3.0972e-01 3.1830e-03
10493 19.655e+01 2.0562e-01 3.5491e-02 2.6566e-03 2.4377e-01 3.4499e-03
16770 19.651e+01 1.3207e-01 2.4200e-02 2.0860e-03 1.5835e-01 3.1906e-03
17141 19.651e+01 1.2889e-01 2.3274e-02 2.0754e-03 1.5424e-01 3.2878e-03

Table 4
Components of the error estimator and effectivity indexes on the adaptively refined meshes with

VEMV.

N λh1 R∗2 Θ∗2 J∗2
h η∗2 eff(η∗)

1286 19.748 4.1233e+00 4.2172e-01 8.2429e+00 1.2788e+01 6.0830e-04
1567 19.717 2.2769e+00 2.7066e-01 5.4508e+00 7.9983e+00 6.2019e-04
2307 19.692 1.0692e+00 1.5419e-01 2.8333e+00 4.0566e+00 7.2381e-04
3041 19.682 7.9111e-01 1.0782e-01 2.0435e+00 2.9424e+00 8.4348e-04
4108 19.675 5.7602e-01 7.0627e-02 1.4768e+00 2.1234e+00 9.3988e-04
5920 19.664 3.4994e-01 5.1348e-02 1.0383e+00 1.4396e+00 9.7878e-04
8338 19.657 2.3910e-01 3.8194e-02 7.4518e-01 1.0225e+00 9.6419e-04
10493 19.655 1.9210e-01 3.1877e-02 6.1777e-01 8.4175e-01 9.9905e-04
16770 19.651 1.1519e-01 2.0240e-02 3.9690e-01 5.3233e-01 9.4912e-04
17141 19.651 1.1363e-01 1.9662e-02 3.9010e-01 5.2339e-01 9.6888e-04

order of convergence is recovered.
We end the report of results related of the H-shaped domain with plots of the

second computed eigenfunctions for the primal and dual eigenvalue problems. On
this case, the eigenfunctions have been obtained with a voronoi mesh as we observe
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Fig. 9. Test 1. Error curves of |λ2 − λh,2| for uniformly refined meshes (“Uniform VEM”),
adaptively refined meshes for VEM with triangles (“Adaptive VEMT”), adaptively refined meshes
for VEM with squares (“Adaptive VEMSQ”) and adaptively refined meshes for VEM with voronoi
(“Adaptive VEMV”).

in Figure 10. We notice the similarity between the solution of the primal and dual
eigenvalue problems, where the singularities emerge due the geometrical definition of
the domain.

Fig. 10. Test 2. Second eigenfunction for the primal problem (left) and the dual problem (right).
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