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A NONCOFORMING VIRTUAL ELEMENT APPROXIMATION FOR
THE OSEEN EIGENVALUE PROBLEM*

DIBYENDU ADAK', FELIPE LEPEf, AND GONZALO RIVERAS$

Abstract. In this paper we analyze a nonconforming virtual element method to approximate the
eigenfunctions and eigenvalues of the two dimensional Oseen eigenvalue problem. The spaces under
consideration leads to a divergence-free method which is capable to capture properly the divergence
at discrete level and the eigenvalues and eigenfunctions. Under the compact theory for operators we
prove convergence and error estimates for the method. By employing the theory of compact operators
we recovered the double order of convergence of the spectrum. Finally, we present numerical tests
to assess the performance of the proposed numerical scheme.
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1. Introduction. The numerical approximation of partial differential equations,
and the analysis of schemes to approximate the solution of classical models in the
pure and applied sciences, is a well-established topic. In particular, the numerical
analysis for eigenvalue problems arising from fluid mechanics has paid the attention
for researchers from several years, and the literature attending this topic is abundant.
We mention [1, 7, 17, 16, 25, 26, 30, 28, 19] as some references on this topic.

The common aspect of the above references of the mentioned eigenvalue prob-
lems are related to the Stokes equations, where the particularity is that the resulting
eigenvalue problem results to be selfadjoint and hence, symmetric. This is a desirable
feature since we deal with real eigenvalues and eigenfunctions. Now the task is differ-
ent, since our research program is devoted to the study of non-selfadjoint eigenvalue
problems in fluid mechanics, in particular the Oseen eigenvalue problem and hence,
the well developed theory for the Stokes eigenvalue problem must be extended.

The Oseen equations are a linearization of the Navier-Stokes equations and a
complete analysis of the source problem for the Oseen system is available in [20].
Here is presented the motivation on the need to study the Oseen system, since to
solve the time dependent Navier-Stokes equations, it is necessary to solve a linear
system in each step of time which, precisely is an Oseen type of system. With this
motivation at hand, our task is to analyze numerically the Oseen eigenvalue problem
with the aid of a virtual element method (VEM).

The VEM possesses many remarkable features that make it an attractive numeri-
cal strategy for engineering and mathematical communities in order to solve different
model problems. In a general view, the most important features of the VEM are
a solid mathematical background, the capability of combine elements irrespective of
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2 D. ADAK, F. LEPE AND G. RIVERA

geometric shapes, including nonconvex and oddly shaped elements, arbitrary orders
of accuracy and regularity, the easy extension to higher dimensions, among others. A
recent state of art of the VEM and its applications is available in [5].

In the present work we are interested in the application of a nonconforming virtual
element method (NCVEM) to solve the nonsymmetric Oseen eigenvalue problem. The
NCVEM, introduced in [9], has been applied in different elliptic problems such as
[6, 8, 14, 29, 34, 35] and in particular for eigenvalue problems we mention [3, 2, 15] as
interesting references with excellent results for the discretization of the corresponding
spectrums.

For the Oseen eigenvalue problem, we need an inf-sup stable NCVEM for the
Stokes source problem which is available in [35]. This family of NCVEM has also
the capability of holding the incompressibility condition at discrete level, which is a
desirable feature that also is already available for the conforming VEM [13].

Recently in [27] and for the best of the author’s knowledge, appears a finite
element approximation for the Oseen eigenvalue problem as a novel effort to solve
numerically this problem. Since the problem is non-symmetric, the ad-hoc strategy
for the analysis is the introduction of the dual eigenvalue problem in order to obtain
error estimates for the method, following the well known theory of [10]. Clearly for
the NCVEM approach the strategy is similar but not exactly the same, since the lack
of conformity carries extra terms due the variational crime that a non conforming
method naturally involves and must be correctly controlled. Clearly this must be
done for both, the primal and dual eigenvalue problems.

The formulation under consideration on this paper is the classic velocity-pressure
formulation which has the advantage of using the simplest virtual spaces for the
approximation. On the other hand, despite to the fact that the method is non-
conforming, the solution operator that we define for our work is defined form L? to
L2 and allows us to utilize the classic theory for compact operators to carry out the
convergence and error analysis of the method similarly as in [15]. Moreover, in our
contribution we derive an L2 error estimate for the velocity via a duality argument,
delivering an improvement on the error estimates for this variable.

Theoretically, we are capable to prove that the proposed NCVEM is spurious free
according to the theory of [21], which is a consequence of the convergence in norm for
compact operators. However, in the numerical section, we report that similarly as in
the continuous VEM framework (see [24, 25] for instance), the stabilization terms of
the NCVEM may also introduce spurious eigenvalues and must be avoided.

The paper is organized as follows: In Section 2 we introduce the Oseen eigenvalue
problem and associated weak formulation. We present the functional framework in
which the papers is based, namely Hilbert spaces, norms, the variational formulation,
regularity of the source and spectral problems, and the solution operator in the same
section. All this must be defined for the primal and dual eigenvalue problems. In
Section 3, we have recollected the divergence-free nonconforming VEM space and
discrete formulation of the weak form. The discrete solution operator is also defined
in the same section. The a priori error estimates for the source problem in L2, and
broken H' norms are defined in the Section 4. Eventually, in Section 5, we have proved
the double order of convergence of the spectrum. In Section 6, we have assessed some
numerical experiments as an evidence of the theoretical estimates.

1.1. Notation and Preliminaries. Given any Hilbert space X, we define X :=
X2, the space of vectors with entries in X. For any scalar field ¢ and vector field u,
we introduce the following differential operators: the curl of ¢, defined as curly =
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NCVEM FOR THE OSEEN EIGENVALUE PROBLEM 3

(020, —01)* where t represents the transpose operator; the gradient of u, defined
as the matrix (Vu) = (0ju;)i j=12; the rotor of u, defined as rotu = Gru1 — Orug;
the divergence of u, defined as divu = 01u; + Jous. Given A := (A;5), A = (4;;) €
C?%2, we define A : B := Z?,j:l A;;Bij as the tensorial product between A and B.
The entry B;; represent the complex conjugate of B;;. Similarly, given two vectors
s = (s;),r = (r;) € C?, we define the products

2
o = ot (e
S-Tr:= E SiT; SQr :=sT" = (57)1<i,j<2,
=1

as the dot and dyadic product in C. Further, we recollect the definition div(A) :=
2
(225=105445)i=1,2-

2. The variational formulation. Let us describe the model of our study. From
now and on, ) C R? represents an open bounded polygonal /polyhedral domain with
Lipschitz boundary 9€2. The equations of the Oseen eigenvalue problem are given as
follows:

—vAu+ (B-Vu+Vp = Adu inQ,

divu = 0 in €,
(2.1) / p = 0, inQ,
Q
u = 0, ondQ,

where wu is the displacement, p is the pressure and 3 is a given vector field, representing
a steady flow velocity and v > 0 is the kinematic viscosity.

Through our paper, we assume the existence of two positive numbers v and v~
such that v~ < v < vT. On the other hand, we assume that 3 € L>(,C). For
the kinematic viscosity and the steady flow velocity we assume the following standard
assumptions (see [20]):

* 1Bl ~1if v < (|8l 0,
o v~ 1if B, <v.

Regarding the convective term, let us assume that there exists a constant ¢; > 0
such that B € L*¢1(Q, C) that leads to the skew-symmetry of the convective term
(see [20, Remark 5.6]) which claims that for all v € H}(Q, C), there holds

(2.2) /Q(B~V)'v-'v:0 Yo € H(Q,C).

Now we introduce the functional spaces and norms for our analysis. Let us define
the spaces X = H{(Q,C) x L3(Q,C) together with the space J := H{(Q,C) x
H{ (2, C). For the space X we define the norm || - |3 == || - |7 o + || - [|§ o, whereas for
Y the norm will be |[(v, w)[]3, = [[v]]3  + |[w]|? g, for all (v,w) € V.

Let us introduce the following sesquilinear forms @ : JJ — Cand b : X — C
defined by

a(w, ) 1= agym (W, V) + askew(w,v) and b(v,q) := —/ q divwv,
Q

where agym, Gskew : V — C are two sesquilinear forms defined by

Asym (W, V) 1= /QVV'U) Vo and  aggew(w, v) 1= %(aﬁ(w,v) - aﬁ(v,w)>,
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4 D. ADAK, F. LEPE AND G. RIVERA

where, a® (w,v) := [,(8-V)w-v. On the other hand we define the following sesquilin-
ear form c(w,v) := (w,v)oq as the standard inner product in L(2,C). With these
sesquilinear forms at hand, we write the following weak formulation for (2.1): Find
A € Cand (0,0) # (u,p) € X such that

a(u,v) +b(v,p) = Ac(u,v) Vo€ HLY(Q,C),
(2:3) { w0 b(Z,Z) — o v;eLg%Q,(C),

where

L2(Q,C) := {qeLQ(Q,C) : /quo}.

Observe that the resulting eigenvalue problem is non-symmetric due the presence of
the sesquilinear form a®(-,-). Let us define the kernel K of b(-,-) as follows

K= {ve HY(Q,C) : b(v,q) =0 Vg e L2(Q,C)}.

With this space available, it is straightforward to verify using (2.2) that a(:,-) is
KC-coercive. Moreover, the bilinear form b(-, -) satisfies the following inf-sup condition

b(r,
(2.4) sup 20D glaloa Ve L2Q,C).
T€HL(Q,0) 7110

Let us introduce the solution operator, which we denote by T' and is defined as follows

(2.5) T :L%(Q,C) — L*(Q,C), f—=Tf =1,
where the pair (u,p) € X is the solution of the following well-posed source problem
(2.6) a(@,v) +b(v,p) = c(f,v) YveHQC),

' bag) = 0 Vgel3(Q,0),

implying that T is well defined due to the Babuska-Brezzi theory. Moreover, from [20,
Lemma 5.8] we have the following estimates for the velocity and pressure, respectively

~ C
IVaifon < =22 £]

0,2,

1p]

1 Iy
50 < 3 (||f||0,sz + 12| Voo (V1/2 + Cypy H,BVl'?éoo)) :

where Cpy > 0 represents the constant of the Poincaré-Friedrichs inequality and 5 > 0
is the inf-sup constant given un (2.4).

It is easy to check that (), (u,p)) € C x X solves (2.3) if and only if (k,u) is an
eigenpair of T, i.e.,Tu = ku with x := 1/ and X # 0.

A key point for the analysis is the additional regularity of the solution. To obtain
this, the assumptions on 3 are important,. To make matters precise, if the convective
term is well defined, it is possible to resort to the classic Stokes regularity results
available on the literature (see [32] for instance). Hence, the following additional
regularity result for the solutions of the Oseen system holds.

THEOREM 2.1. There exists s > 0 that for all f € L?(Q,C), the solution (4,p) €
X of problem (2.6), satisfies for the velocity u € H**(Q,C), for the pressure p €
H*(Q2,C), and

[wllits.a + [IPlls0 < Cllfllog; -
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NCVEM FOR THE OSEEN EIGENVALUE PROBLEM 5

Cpf 1 Cpf|ﬁ||oo,ﬂ}
v

where C' 1= 5 max and B > 0 is the constant associated to the inf-

sup condition (2.4). Further, if (u,p) is an eigenfunction satisfying (2.3), then there
exists r > 0, not necessarily equal to s, such that (u,p) € XN(HM"(,C) xH" (22, C))
and the following bound holds

[all14r0 + [IPllro < Cllufoq-

Observe that the following compact inclusion H!*#(Q2, C) — L2(£2, C), implying
directly the compactness of T'. Finally, we have the following spectral characterization
for T

LEMMA 2.2. (Spectral Characterization of T ). The spectrum of T is such that
sp(T) = {0} U {kr}tren where {kr}lren is a sequence of complex eigenvalues that
converge to zero, according to their respective multiplicities.

We conclude this section by redefining the spectral problem (2.3) in order to

simplify the notations for the forthcoming analysis. With this in mind, let us introduce
the sesquilinear form A : X x X — C defined by

A((u,p); (v,q)) := a(u,v) + b(v,p) — b(u,q), V(v,q) € X,
which allows us to rewrite problem (2.3) as follows: Find A € C and (0,0) # (u,p) € X
such that
(2.7) A((w,p), (v,9)) = Ac(u,v) V(v,q) € X.

Since the problem is non-selfadjoint, it is necessary to introduce the adjoint eigen-
value problem, which reads as follows: Find A* € C and a pair (0,0) # (u*,p*) € X
such that

(2.8) { a(v,u*) —b(v,p*) = Ae(v,u*) Vo€ H}(Q,C),

—b(u*,q) = 0 Vg € L(Q,C).
Now we introduce the adjoint of (2.5) defined by

T : L*(Q,C) — L*(Q,0), f=T f=q",

where u* € H}(Q,C) is the adjoint velocity of % and solves the following adjoint
source problem: Find (u”,p*) € X such that

{ a(v, @) —b(v,p*) = c(v,f) YveH{Q,C),

(29) batg) = 0 V¥gel3(,0)

Similar to Theorem 2.1, let us assume that the dual source and eigenvalue problems
are such that the following estimate holds.

THEOREM 2.3. There exist s* > 0 such that for all f € L?(Q,C), the solution
(@W*,p*) of problem (2.9), satisfies u* € H'**" (Q,C) and p* € H* (22, C), and

18714500 + 1P [ls.0 < CII

where C' > 0 is defined in Theorem 2.1. Further, if (u*,p*) is an eigenfunction
satisfying (2.8), then there exists r* > 0, not necessarily equal to s*, such that
(u*,p*) € XN ((HY(Q,C) x H" (Q,C))) and the following bound holds

0,925

e < Ol

187|140 + [1P” 0.2, -

This manuscript is for review purposes only.



190
191
192
193
194
195

196

224
225
226
227

6 D. ADAK, F. LEPE AND G. RIVERA

Finally the spectral characterization of T™ is given as follows.

LEMMA 2.4. (Spectral Characterization of T*). The spectrum of T™ is such that
sp(T™) = {0} U {k} }ren where {K} }ren is a sequence of complex eigenvalues that
converge to zero, according to their respective multiplicities.

It is easy to prove that if  is an eigenvalue of T' with multiplicity m, x* is an eigenvalue
of T* with the same multiplicity m.
Let us define the sesquilinear form A : X x X — C by

A((v,q), (u”,p")) = a(v,u”) = b(v,p") + b(u’, q),

which allows us to rewrite the dual eigenvalue problem (2.8) as follows: Find \* € C
and the pair (0,0) # (u*,p*) € X such that

A((v,q), (u*,p*)) = Nc(v,u*) V(v,q) € X.

3. The virtual element method. In order to discretize the Oseen eigenvalue
problem, we first go over nonconforming virtual element space in this section. The
original purpose of this space’s development was to approximate the Stokes equation
numerically. In our research, we utilise the improved version created in [35].

3.1. Mesh notation and mesh regularity. We consider the family of meshes
{Tr}n>0 such that each mesh Ty, is a partition of the domain 2 into a finite collection
of non-overlapping, polygonal elements K with mesh diameter hg, and boundary
OK. As usual, we define h := maxge7;, hx. Furthermore, £ := & U Epgy denotes
the set of mesh edges of 7;, where &ne and Epqy denotes respectively the subsets of
the interior and boundary mesh edges.

Consider the polygonal element K € 7;,. We denote the outward pointing normal
and the tangent unit vector to the polygonal boundary 0K by ny and tx, respectively.
For every edge e C 0K, we denote by n.,and t. the normal and tangent unit vectors to
e, respectively. Conventionally, we assume that n. points out of € if e is a boundary
edge, and n. and t. form an anti-clockwise oriented pair along every internal edge e.
Accordingly, it holds that n. := (t2, —t1) whenever t. := (t1,12).

We define the space of piecewise polynomials of degree k > 0 by

Pr(Th) = {q € L*(Q) : qlx € P(K) VK € Tp}.

Similarly, for all integers [ > 0, we define the broken Sobolev space of degree [ on Tj,
of vector-valued fields, whose components are in H!(K) for all mesh elements K, as

H(T;) = {p e L*(Q) : p|x € H(K) VK € Tp}.
We endow this functional space with the broken semi-norm
1/2
enlini=( D lelix)
KeTh

Consider the internal edge e C 0KT NOK~, where KT, K~ € T, and n, points from
K* to K. We define the jump of a function v through e by [v]|c := v|g+ — V|
and, for boundary edges, we define [v]|. := v|.. For the a priori error analysis, we
need the following regularity assumptions on the mesh family {73 }rn>0.

This manuscript is for review purposes only.
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NCVEM FOR THE OSEEN EIGENVALUE PROBLEM 7

ASSUMPTION 1. (Mesh Regularity) There exists a positive constant o > 0 such
that for all K € Ty, it holds that
e (M1) the ratio between every edge length and the diameter hy is bigger than
o;
e (M2) K is star-shaped with respect to a ball of radius px satisfying px >
O'hK.

These mesh assumptions impose some constraints that are admissible for the formula-
tion of the method discussed in the next subsection. In view of the following analysis,
it is helpful to define the continuous bilinear forms a(-,-), b(-,-) and ¢(-,-) on the
discrete space H!(7;,) as a sum of local contributions.

a(w,v) = Z agm(w,v) +aX . (w,v) Yw,v € HY(Ty),
KeT
b(v,q) := Z b5 (v, q) Yv € H'(7;,) and ¢ € L3(Q,C),
Keﬂl
c(w,v) = Z K(w,v)  Vw,v e L3(Q,0),
KeTh

S A ((u,p), (0,0)  Y(u,p), (v.q) € X.

KeTy

A((u, p), (v,9)) :

In the same way, we split elementwise the norm L?(Q, C) by

lq

1/2
0.0 = ( > QIIS,K> Vg € L*(Q,C).

KeTy,

3.2. Local and global discrete space. In what follows we summarize the key
ingredients for the discrete analysis, given by [35]. For K € T, we define the following
auxiliary finite dimensional space

(3.1)
g(K) ={v e HY(K) : divv € Pr_1(K),r0tv € Pr_1(K),v -n. € Py(e)Ve C OK}.

We decompose the space S (K) in (3.1) into the direct sum of two subspace as follows

S(K) = 81(K) & 8(K),

where 81(K) := {v € §(K) : diveo = 0,v - ng|sx = 0} and

(3.2) So(K) := {v € 8(K) : rot v = 0}.

Additionally, we introduce the space

(33)  H:={pecHY(K), A% c Pr_1(K),dl. = 0,Ad|. € Pp_i(e)Ve C IK}.
The local space is constructed as sum of (3.2), and curl of (3.3) as follows
U=358(K)®curlH.

We define the following operators:
e (H1) the edge polynomial moments:

1
e|/v ‘Neqr Vi € Pr(e),Ve C 0K

This manuscript is for review purposes only.
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8 D. ADAK, F. LEPE AND G. RIVERA

e (H2) the edge polynomial moments:
1
Tl /U “teqr—1 Yqr-1 € Pr_1(e), Ve C OK;
e

e (H3) the elemental polynomial moments:

1
m/‘KU'Qk72 VQr—2 € VPr_1(K);

e (H4) the elemental polynomial moments:

1
7|K|/ v~q$ VqéE(VPkH(K))L;
K

Here, (VPy41(K))* is the L2-orthogonal complement of VP 1(K) in Py (K), where
Pr(K) is vector valued polynomial space on K of order k. Following [35], we deduce
that the set of operators above provides a set of the degrees of freedom of the discrete

space U. Based on the computational aspect, we introduce the elliptic projection
operator Ty, : U — P (K) :

Asym(TLu, Q) = asym(u,q)  Vq € Pi(K),
34
(384) HZu —u=0.
oK
From the definition of the projection operator IT},, we deduce the right-hand side of
(3.4) are computable from (H1)-(H4). By employing the projection operator II}., we
define a local computational space which is subspace of U as follows:

U(K) = o et [ (o-TT50) ac =0 Ya € (VP (K))“ (TP (K))*
and [ (0= TEf0) mea =0 Vo € Pule)/Proa(e), Ve © 0K,

where the symbol V/V; denotes the subspace of space V consisting of polynomials that
are L?(K)-orthogonal to space V;. Since the projector HX is invariant on polynomial
function space Py (K), we deduce that Py(K) C U(K). Furthermore, (H1) and
(H3) are a set of degrees of freedom for U(K). For K € Tj, the local space U(K) is
unisolvent with respect to a certain set of bounded linear operators, which are defined
as follows:

e the edge polynomial moments:

1
el /’U “Qi—1 Vdr—1 € Pr—1(e),Ve C OK;

e the elemental polynomial moments

1
|K|/ vV-Qr_2 Vqir—2 € Pr_o(K);
K

This manuscript is for review purposes only.
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According to the definition of the virtual space U(K), the term IT},v is computable
for all v € U(K). Now we define the global nonconforming virtual space by

Uy, = {v e L*(,C) :v|x EU(K)VK €Ty,
/[['Uﬂe “qi—1 =0 Vqi_1 € Pk_1(€)V€ c 5} .

Clearly the space U}, is not continuous over (2 since Uy, ¢ H(Q2). In the next lemma,
we summarize two technical results that will be helpful in the derivation of the a
priori estimates of the next sections. Further, we highlight that the L? projection
operator IT% is computable on U(K) [33]. To define the interpolation operator Z on
the space Uy, for each element K € Ty, we denote by ¥;, the operator associated with
the i-th local degree of freedom, i = 1,2,..., N9°f. From the above construction, it is
easily seen that for every smooth enough function v, there exists an unique element
Ixv € Up(K) such that ¥;(v — Zgv) =0, Vi = 1,2,..., N Then, we define
the global interpolation Z for Uy by setting Z|x = Zx VK € T,. Two technical
conclusions that will be useful in deriving the a priori estimates of the following
sections are summarized in the next lemma.

LEMMA 3.1. The following statements hold:
e For each polygon K € T and any t such that 1 <t < k+1, it holds that

(3.5) v — Zgvl|lmx < CR™v|ix m=0,1.

e For each polygon K € T and any t such that 1 <t < k41, there exists a
polynomial v, € Pi(K), such that

(3.6) lv —vrllmx < Cht_m|v|t,K m=0,1.

On the other hand, the discrete pressure space is given by

Qn = {gn € LX(2,C) : gnlx € Pra(K), VK €Tp},

We also introduce the L2-orthogonal projection Ry, : L2(2) — Qy, and the following
approximation result holds for 0 < ¢ < 1 (see [12] for instance)

(3.7) lg = Rudllog < Chllalls.0, Vg € H(Q).

Let us introduce the operator divy(-) which corresponds to the discretized global form
of the divergence operator, i.e., (divy, v)|x = div(v|k) for all K € T}, (and sufficiently
regular v). From the above construction, we deduce that div, U, C Qp, and the
relation between the virtual interpolation operator and Ry is as follows divy Zv =
Ry divy v for all v € HY(Q). Now, let SE(-,-) be any symmetric positive definite
bilinear form chosen to satisfy

(3.8) coagm(vhmh) < 8K (v, vp) < clagm(vhwh),

for some positive constants ¢y and ¢; depending only on the constant ¢ from the mesh
assumptions M1 and M2. Then, for all wy, v, € U}, we introduce on each element
K the local (and computable) bilinear forms

aﬁsym(wh,vh) = agm(ﬂzwh, HX’U}L) + S’K(wh — Hlv(wh,vh — Hz'uh);
1
a’ﬁskew(wh>’uh) = B /K ((ﬂ ) H271,KV) Wwp - H?(Uh - (5 ) H271,Kv) Vh - H%wh) )

K (w,v) = & (% wy,, M%vy).

This manuscript is for review purposes only.
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10 D. ADAK, F. LEPE AND G. RIVERA

The construction of aﬁsym(~, -) and ¢ (-, ) guarantees the usual consistency and sta-
bility properties of the VEM. With this considerations at hand, the following result
holds true which is direct from [11].

LEMMA 3.2. The local bilinear forms afsym(~, ) and cE(-,-) on each element K
satisfy:
e Consistency: for all h > 0 and for all K € T}, we have that
af (Vs k) = b, (vn,qe)  Var € Pr(K),
ch (vn,qi) = (vn,qr)  Var € Pr(K).

o Stability: for all K € Ty, there exist positive constants c., ¢* and d*, inde-
pendent of h, such that

Cy gm(vh,vh) <ay, Sym('vh,'vh) <c agm(vh,vh) Yo, € Uy,
cK (v, vp) < d*c (vn, o) Yoy, € Up,.

For the bilinear form by (-, -), we do not introduce any approximation and simply set

br(vn, qn) =Y V(vn,qn) == Y / qpdiven,  Vvp € Un, qn € Qn-
KeTh KeTh

Since by, (vp, qn) is computable in each element K € 7T;, with the aid of the degrees
of freedom defined on U(K). Naturally for all wp,v, € U we can introduce the
following bilinear form

an(wp,vn) = Y ap (wp,vp) = > af o (Wh, vn) + O e (Wi, ).
KeTy, KeT

It is easy to check that ap(-,-) and by (-, ) are continuous sesquilinear forms. Indeed,
for ap(-, ) we have

(3.9 lan(un, vr)| < |ansym(Wh, Vh)| + |ah skew (Wh, V1),

where we need to estimate each contribution on the right hand side of the inequality
above. For the symmetric part we have

(3.10) |ansym(un,vn)l = | > alf(wn,vn) + S5 (un — uy, v, — Mvy)
KeTy,

< > vV unlo x| VITZ0k o,k + 1|V (T wn —wn) o,k |V (TEwn —vi) o,
KeTh

< vmax{cy, 1}|up| 1,nl|vnl1,n,
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where the constant ¢; is the sum of all the constants ¢; involved in (3.8) for each
element K € Tj,. Now, for the skew-symmetric part we have

1
(3.11)  Jan skew (wn, va)| < 5

Z /K(ﬂ'ngq,K)“hHg,K”h

KeTy,

Z /K(ﬁ'ng—l,K)vhng,Kuh

KeTn

Ll
2

1
<5 Y 1Blloo s IRy s Vaun oo | TIR scvnllo,x

KeTy,

1 0 0
T3 Z 1800, M1 & VU llo,x [T grwn
KeTh

lo,K

< 1B, CrCrtl|ur |1 mllve 1,5,

where Ct, Cy1 > 0 are the stability constants of 1'[2_17 i and 1'[27 x, respectively. Hence,
replacing (3.10) and (3.11) in (3.9) we have that

lan(wn, vi)| < max{v max{ci, 1}, [|Bco,0C1Cu }|unll1,nllvnll1,ns

which proves the boundedness of ap(+,-). On the other hand, for by(-,-) we have

Z /th div vy,

KeTy,

|bn (vn, qn)| = < Y lanllo.xll divono.x

KeTy

< > lanlloxlIVorllox < llgnllo.cllonlin,
KeT

proving that by (+,-) is also continuous.

3.3. The discrete eigenvalue problem. The nonconforming virtual element
discretization of the variational formulation (2.3) reads as follows. Find A € C and
(0,0) # (un,pn) € & such that

Anch(un,vy) Yo € Up,
0 Yan € Qn,

1 e

where &}, :=Uj, x Qp. Thanks to the stability of the bilinear form aﬁsym(-, -) and the
definition of the bilinear form ajf g, (-, ), it is easy to check that ap(-,-) is coercive,
ie.

C|’Uh|%h < ah(vh,vh) Vv, € Uy,.
On the other hand, given the discrete spaces U, and Qy, , satisfy that divy U, C Qp,

standard arguments (see [18]) guarantee that there exists a positive [y, independent
of h, such that

br(Vh, qn)

3.13
( ) v, EU, |vh‘1,h

> Bollanllo,e  Yan € Qn.

The next step is to introduce the discrete solution operator T, : L?(Q) — U C
L2(Q), defined by T, f := %y, where %y, is the solution of the corresponding discrete
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source problem:

(3.14) ap(bp,vp) +op(vn,0r) = cn(f,vn) You € Uy,
‘ br(tn,qn) = 0 Van € Qp.

Since the discrete inf-sup condition is satisfied, the operator T, is well defined. More-
over, we have the following stability result.

viuplin < Cpllfllo.;

whereas for the pressure we have

~ 1 ~ C 6 00,92
IPnllo.0 < B <Cp||f||o,ﬂ + V1/2|’U«h|1,h <’/1/2 + p|1|j1/|2)> :

As in the continuous case, we have the following relation between the discrete spectral
problem and its source problem, i.e., (Ap, (up,pn)) is a solution of Problem (3.12) if
and only if (kp,up) is an eigenpair of Ty, i.e., Thup = kpup with k, = 1/, and
An, # 0. The discrete version of the spectral problem (2.7) is written as

PROBLEM 3.3. Find (An, un,prn) € RxUp x Qp such that ||[upllo.o+ ||lpnllo.a > 0,
and

Ap((wn,pn), (Vh, qn)) = Ancn(wn,vr), V(vn,qn) € Up X Qp,

where
An((uh,pn), (Vh, qn)) = an(un, ) + ba(vn, pr) — ba(un, qn).

In Problem 3.3, A, (-, ), and ¢, (+, ) are the virtual element discretization of A(-,-), and
¢(+,-) respectively, whereas (Ap, (up,pr)) is the virtual element approximation of the
continuous solution (A, (u,p)). For the exposition’s sake, we first introduce the basic
notation and the few mesh regularity assumptions that we need for the convergence
analysis of the virtual element approximation of the next section. Likewise, we define
the discrete formulation corresponding to the adjoint problem, i.e. Eqn. (2.8). The
identical arguments as for the primal formulation imply the well-posedness of the
discrete formulation.

Remark 3.4. The discrete bilinear form ¢ (-, -) is defined neglecting the corre-
sponding stabilizer. We emphasize that we define the solution operator on L? which
does not guarantee the existence of the trace on the boundary, and consequently,
the edge momentum will not be well-defined. This does not guarantee the existence
of the associated stabilizer. However, the proposed definition cy(+,-) needs only L2
regularity and hence suitable for our strategy.

As the case continues, it is now necessary to define the adjoint discrete problem, which
consists in: Find A\* € C and (0,0) # (u},p},) € &) such that

(315) { ah(”h,“;';,) - bh(vh,pZ) = TZCh(vhvu;‘l) V’Uh S uh7
—bn(uj,qn) = 0 Yan € Qn,

Now we define the discrete version of the operator T is then given by T}, : L%(Q) —

U, C L?(Q), defined by T f := wuj,, where @y, is the solution of the corresponding
discrete source problem:

(3.16) an(Vp,ap) —bp(vp,pr) = cn(vn, f) Yo, €Uy,
‘ —bp(dn,qn) = 0 Van € Qp.
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NCVEM FOR THE OSEEN EIGENVALUE PROBLEM 13

4. A priori error estimates for the source problem. We are now in a
position to be able to show that T';, converges to T as h becomes zero in the broken
norm. This is contained in the following result

THEOREM 4.1. Let f € L3(,C) be such that 4 := Tf and uy, := Thpf with
u € H'T5(Q,C), s > 1. Then, there exists a positive constant C, independent of h,
such that

(T —Th)f|

wn = @ =@l < O (jal o+ [Floa + 1] 10).

where C' is a positive constant independent of h.

Proof. By employing the interpolation operator on the discrete space, i.e., Z, we
split the difference u —uj, = u —Zu +Zu — uy. An application of the approximation
properties of the interpolation operator yields the bound of n;, = u—Zu. To estimate
the other term, i.e., 8, := Zu—uy, we apply the coercivity and the fact that div(Zu —
up) = 0 (see [35]) in order to obtain

(4.1)  Cq [16nl3 5 < an(ZT,85) — an(@p, )

= an(Tu,6p) — cn(f,0n) + b (0n,Dn) — b (Un, qn) = an(Zu, 1) — cn(f, 6n)
= ah,skew(Ia; 6h) + ah,sym(Ia — U, 6h) + Gsym (afr - ay 6h) + Gsym (a7 Jh) - Ch(f7 (sh)

= ah,skew(Ia» Jh) - askew(aa 5h) + a/h,sym(:Za — Ung, Jh) + asym(ﬁw —u, (sh)

Aq As
+ c(f,0n) —cn(f,0n) + Ni((w, D), n) -

A3 A4

By using the approximation properties of the interpolation operator and polynomial
representative, we bound the each of (4.1). N, ((w,D),dy) is the consistency error
appeared due to non-conforming approximation of the discrete space. In order to
estimate the Term Aq, first we note that

(42) Al = Z agl({ew (I’Z\L - 1/]’7 (sh) + CLhK,skew (Iﬁ? ah) - a’gl((ew(za7 dh)
K€7-h

Bl BQ

Now, to estimate Bj, using Lemma 3.1, we derive as follow.

oy (T8 =, 0)| < C ([|Blloo,x 178 — |15 | On]]1.x)

< OR8] o e w14, 10 11,1

To estimate Bs, is necessary to note that for each K € T, u,v € H(K) and
B € L>*(K), we have:

/K(,@'V)U"UZ/K(VU)ﬁ-’UZ/KVu:(ﬂ@’u)t.

For each polygon K € Ty, employing the orthogonality property of the L? projection
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operator, we obtain
/K (100, 1 (VZ0)3 - 8y, — (VTR)B - 5 )
_ /K (M (VI®) ~ VTa) : (8® (1158, - 5)))"
+ [ (O (V78) - VZ8) 5 (B9 607 ~ T (B 81))

+ / (VIw)B - T (VT@)B)) - (T1%5), — 61).
K

Now assuming that Va € H*(K), 8 € W1*°(K) and §), € H'(K) and approximation
properties of IT%, continuity of L? inner product, it follows that :

[ (-1, (V19 148, - 5 (VIa) -6,

K

< |-y x (VI@) — VTalo k|8 © (T 6n — 81)* o,k

U3 ), (VT8) - VTalok]| (89 61)° T, (B © 64)")]
+ [[(VZ%)B — T ((VZ)Bllo,xc | TX5 0 — O llo.xc
< Chr}r{lin{&k}||/6HW1’°°(K)‘a|l+s,K|6h|1,K-

Borrowing the analogous arguments as previous estimate, we obtain:

0,K

(4.4) / (ng,K(VJh)ﬂ'H%Ia—(V‘Sh)ﬁ'fﬁ) < BN @l g i lOn ]k
K
Thus, from the two estimates above ((4.3), (4.4)), it is obtained that

B, < C'h?n{s’k}||ﬁ||w1,oo(K)|17|1+s,K|5h

1,K»
and finally considering the sum over all elements K
(4.5) Ay < OR8] 45,0180 10-

Now our task is to estimate the term As. To do this task, we begin with the first part
of this term by using the approximation properties of the interpolation operator and
polynomial representative (cf. Lemma 3.1) in the following way

(4.6)
Z aiIL{,Sym(Ia - aﬂa 6h) < Z aiIL{,Sym(Ia - aﬂ (Sh) + Z ahK,sym(a - aﬂ'v 6h)
KeTy KeTh KeTh

< Chmin{s’k}|a‘1+s,Q|6h|17h'

Now for the second part of As, we invoke the polynomial approximation property
given in Lemma 3.1 in order to obtain

(4.7) D7l (@in — 6, 8) < CR™™MFHG| L 0[d)]10-
KeTn

Hence, gathering (4.6) and (4.7) we have Ay < Ch™™5*}z|y ; 0|6p]1.4. To bound
As, we use the approximation properties of the projection operator L? and, following
the arguments of [36] we obtain

(4.8) Az = c(f,0n) — cn(f,0n) < CROBERY £ 61841
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Now, we focus to bound the consistency error N (-, -) as follows

(4.9) Nu((@,p),8n) :== Y a"(@,63) + ba(6n, D) — c(f,8n)

KeTh

=Y [(va-j@eo-)n. o

€
e€Eint

where I is identity matrix of size 2 x 2. For a better representation of the analysis,
we define v := Vi — $(8 ® u)” — pL. By employing orthogonality of the polynomial
projection operator, we rewrite the term as follows

Nu((@,D),6n) = > [ (v =TI_y g¥)me - [81 — Podn]

e€Eint ¥ €
< v =1 kYleo 185 — Podnlle.o,

where Py is the projection operator on constant polynomial space. By using trace
inequality and approximation properties of the L? projection operator, we derive as

(4.10) Iy =TI g lleo < CRMMSR=2y| .

By using the approximation property of the L? projection operator Py, we derive the
bound as follows:

(4.11) 1[8n]ll0.c < ChY/?(84]1.x.
By employing inequalities (4.10), and (4.11), we bound the consistency error as follows
(4.12) Nu((@;D),81) < CR™™ K ([ad] 1.0 + [Pls0) 8410

Upon inserting estimates (4.5),(4.6), (4.7), (4.8), and (4.12) into (4.1), we obtain the
bound

(4.13) @ =@l < OO ([ 1.0 + [Plsg + [ fls-r0) -

Further following the analogous arguments as [35, Theorem 13], and the bound of
polynomial consistency error for the convective term, we derive the estimate for pres-
sure variable, i.e.,

(4.14) 1P = Bhllo.e < CH™™ (@] ps0 + [Blsg + | Ffls-10).-

Upon using (4.13) and (4.14) we obtain the desire result.

4.1. L2 Error estimates for the velocity. In this part, we would like to bound
the error in L2 norm. To achieve the goal, we first define the dual problem as follows:
Find (#,€) € & such that

(4.15) —vAY —div(p @ B) —VE= (u—up) inQ,
(4.16) divep =0 in Q,

(4.17) (£,1)=0 inQ,

(4.18) ¥ =0 on 0.
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The model problem (4.15)-(4.18) is well posed. By applying the classical regularity
theorem, we derive that

(4.19)

By multiplying v, = 4 — Uy, in (4.15), we derive that
@) [ (A - div© ) - VE) @ ) = - @l
Q
Now, since V - 8 = 0, by employing integration by parts, we rewrite (4.20) as follows

(421) @ —anlf o =a(@ — n, ) — b (a — U, )

+Z/( ¢_,¢®5) rSI)ne-[[a—ah]].

ecf

By employing the arguments as (4.12), and classical regularity result (4.19), we bound
the following term as follows

(4.22)
S [ (-7 5@ 8) — ) o[- @l < Chlllan + €)@~ @l

ecf
< CRMMEMH (G 0 + [Ploo + [Fls—10) 1T — @allo.o-

Further, using the fact that by (u — up, Rp€) = 0, we rewrite the terms as follows
(4.23)  a(u —up, ) — bp(u —up, §)
= a(ﬁ' - ﬁ'h7,¢] - Id)) - bh(ﬁ' - ﬁ'h7£ - Rh&) + a’(a - ahdI,d))
By employing the estimate (4.13), approximation properties of the interpolation op-
erator, and regularity result (Eqn (4.19)) we find
(424) a(u — un, ¥ — I9) — bp(u — Un, § — Rié)
< ClIBllso.elle —anllinll — el + |8 — Ballipll€ — Rl
< C)Blloooh™™ M (Gl 1150 + [Plso + | Fls—1.0) (1Bl2,0 + [€]10)R
< ClIBloe, ™™ (A 145 0 + [Plsg + [ Fls-1,0) @ = @nlo0-

Further, with the estimate b(¢,p — pn) = 0, we rewrite the last term of (4.23) as
follows

(4.25)
a(@ — @ To) = a(@, Top) — al@n, Teh)

= (al@ ) + (T, ) — o £. T9) ) + (an (@n T4) — a(itn, Tp))
+ (e(F,Tw) = en(F,T9)) +b(t — T, 5~ ).
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Since Zv € Uy, the term a(u, Zvp) + b(Zvp,p) — ¢(f,Z1)) measures the inconsistency
due to non-conforming property of the discrete space. By using analogous arguments
as (4.9), we bound the term

(4.26) a(@, Tep) +b(Zep, p) — o( £, Tep) < CR™M™MMIHN (|14 0 + [pls.0) |8 — Bnllo.0-

Upon employing the boundedness of the L2 projection operator, result (4.19), we
bound the discrete load term as follows

(4.27) (£, Zp) — en(F,Zp) < CR™SRIFL £ ol|T — o0

Using the approximation properties of the interpolation operator and estimate (4.13),
we derive that

(4.28) bW =T, p = pi) < Ch™™ ol — oo,
Now, we focus to bound the term (ap(Un,Z%) — a(up,Zv)) as follows

(4.29)

an(@n T9)—a(@n T9) = Y |af (@ — W, Ty — 117 o)
KeTh

— " (ty, — I3, Top — IOy o)) + ap, (I, Zop) — o (TN, Zop)
o+ aff (n, T19 ) — 0 (i, TIS )]

By using the approximation properties of the projection operator and interpolation
operator, we bound the term as follows

(4.30) > ak (@, Ip) — o (an, Top) < CR™™MH @G ola — @llo -
KeTy

By inserting the estimates (4.26), (4.27),(4.28), (4.29), (4.30) into (4.25), we obtain
(4.31) a(@ — @y, Tp) < CAR™ERFLG] L ollt — Tnllo.q-

Using the estimates (4.22), (4.24), and (4.31) into (4.21), we derive

1@ — oo < CR™M M (@)1 0 + Plag + [ fls-10)-

We have the following consequence

LEMMA 4.2. There exists a constant C > 0 independent of mesh size h such that

(T = Th)flloe < CR™™ (@] o + [Plag + | Fls-1.0)-

The above statement is state forward due to previous result, and Theorem 2.1. The
next results establish the convergence of the operator T}, to T™ as h goes to zero in
broken norm and in the L? norm. The proof can be obtained repeating the same
arguments as those used in the previous section.

THEOREM 4.3. Let f € L2(Q,C)NH* ~1(Q) be such that u* :=T*f and uj, :=
T} f. Then, there exists a positive constant C, independent of h, such that

(T™ = T3)f

R e e el (P

et IFle-10):

This manuscript is for review purposes only.



Qo
en)

o Ot Ot Ot Ot

o

ot
oo
DN

589
590

591

18 D. ADAK, F. LEPE AND G. RIVERA

1T =T} Floo = " ~@jllo.0 < CR™™EH (Ja7 |1y o 0+ 570+ £

5*71,Q> .

As a consequence of the previous results is that, according to the theory of [21], we
are in a position to conclude that our numerical method does not introduce spurious
eigenvalues. This is stated in the following theorem.

where C' is a positive constant independent of h.

THEOREM 4.4. Let V. C C be an open set containing sp(T'). Then, there exists
ho > 0 such that sp(Th) CV for all h < hg.

5. Spectral approximation and error estimates:. We will obtain conver-
gence and error estimates for the suggested nonconforming VEM discretization for
the Oseen eigenvalue problem in this section. More precisely, we shall prove that T'j,
gives a valid spectral approximation of T by using the classical theory for compact
operators (see [10]). The equivalent adjoint operators T} and T of T}, and T, re-
spectively, will then have a comparable convergence result established. First, let’s
review what spectral projectors are. Let p be an algebraic multiplicity m nonzero
eigenvalue of T'. C sets a circle with a centre at p in the complex plane, ensuring
that no other eigenvalue is contained inside C'. Furthermore, think about the spectral
projections E and E* in the manner described below:

E = (2mi)~! /C(z —T) 'dz E* = (2mi)~! /C(z —T*) "z,

where E and E* are projections onto the space of generalized eigenvectors R(FE)
and R(E*), respectively. Now, it is easy to prove that R(E), R(E*) € H™1 x H",
and R(E*) € H” ! x H" (see Theorem 2.1 and 2.3). Next, since T'), converges
to T', it means that there exist m eigenvalues (which lie in C) u(1),...,u(m) of
T}, (repeated according to their respective multiplicities) which will converge to p
as h goes to zero. In the same sense, we introduce the following spectral projector
By, = (2mi)~" [(2—T})~'dz, which is a projector onto the invariant subspace R(E,)
of T, spanned by the generalized eigenvectors of T'j, corresponding to u(1),. .., u(m).
We also recall the definition of gap 5 between the closed subspaces X, and Y of L2.

~

0(X,Y) :=max{6(X,Y), (Y, X)},

where

0(X,Y) = sup 0(x,Y), withd(x,Y)= inf IIx — yllLz-
xEX;||x||L2=1 YEVllyllp2=1

The following error estimates for the approximation of eigenvalues and eigenfunctions
hold true.

THEOREM 5.1. There exists a strictly positive constant C such that

(5.1) 3(R(E), R(Ey)) < Chmin{rk}+1,
(52) |u _ //J\h‘ < thmin{7",]6]»—i-min{7n*7k}7
where [ip, = % 27:1 Hi; where v > 1, and r* > 1 are the orders of regqularity of the

etgenfunctions of primal and dual problems.
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Proof. The estimate (5.1) follows from [10, Theorem 7.1], and the fact that || T —

T|jo.0 =~ O(h™{rk+1) (Lemma 4.2). In what follows we will prove (5.2): assume
that T'(u;) = pu;, for j =1,2,...,m. Since A(:,-) is an inner-product, we can choose
a dual basis for R(E£*) denoted by (u}) satisfying

(5.3) (g, up) == Aluy,up) = 65,

where (-,-) denotes the corresponding duality pairing. Now, from [10, Theorem 7.2],
we have that

-~ 1 G * * *
(5.4) |p—pn| < EZ’((T*Th)Ukvuw (T =Tw)|ree) ol (T" =Th) k) llo.0;

k=1

where (-,-) denotes the corresponding duality pairing. The estimate of the second
term of (5.4) is quite obvious. In this direction, we need bound of ||(T'—T',)||o,q, and
(T —T})llo,e which are achieved from Lemma 4.2, and Theorem 4.3. However, the
estimate of ((T' — Ty )us, u},) is not straightforward, and it needs arguments same as
[4].
(5.5)
(T = Th)ur, ug) = A(T — Th)uk, px — Pr.n); (g, Pk))
= A((T — Th)wk, k. — pr,n); (U, pr) — (Vn, 1))
+ A((Twr, pr); (vn, 1)) — AT hk, pr,n); (Vh; 1))

= A((T — Th)ur, pr — pr.n); (U, ) — (Vs mn)) + c(ur, vn)

+ Nu((Tug, pr), va) — AT hur, Pi.p)s (Vn, 10))

+ An((Thuk, i), (Vns M) — cn(ur, vn).
In the above estimate, the consistency error N'j,(+, -) appears since Uy, ¢ H'(Q). Now,
we proceed to bound the terms appeared in (5.5). In (5.5), we have mentioned that
(vp,mn) € Up x Qp is any discrete function. However, to achieve optimal rate of

convergence of the spectrum, choose (vp,n) = (Zu}, Rpp;). Upon employing, the
approximation properties of the interpolation operator, we bound the term as follows:

(5.6) A((T — Th)uk, px — Prh), (ur, pr) — (Zur, Rupy))
< CIT = Th)ugllnlluy, — Zupllin + (T — Th)urll,ullpr — Rapilloo

+ Pk = pr.nlloollwr — Tugllyn.

By employing Lemma 3.1, and spectral convergence of the primal problem, we have

(5.7) AT — Tr)ur, pk — Pr.n)s (ug, pi) — (Zug, Rupy))
< Chmin{r,k}-‘rmin{r*,k} (|Uk|1+r,Q + ‘pk|r,Q + |‘f‘r_179> <|u;§|1+7_*7g + |pz

T*,Q) .

By employing the polynomial consistency property of the load term and approxima-
tion property of the L2 projection operator, we have

(5.8)

c(ug,vp) — cnlug, vp) = Z ™ (wr, — wpm, T — g )
KeTh

+ ChK(uk - uk,’n’aIuk - Uk,ﬂ) < Ch? min{r,k}+2|uk|1+r’ﬂ.
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The difference between continuous and discrete forms can be bounded as follows[4]

(5.9)
An(Thwg, prn), (Zug, Rupi)) — A(Thwr, pr.n), (Zug, Rupy))

< O pin{rk}+min{r®,k} (‘Uk|1+T,Q 4 |pk|r,Q + ‘f|r_179) (|u2|1+r*,9 + ‘p“,_*’g)_

In the above estimate, we have added and subtracted H%Thuk, and applied the
approximation properties of the interpolation operator. Now, we are in a situa-
tion to bound the variational crime associated with the formulation. Recollecting
N ((puk, pr), u}) = 0, we rewrite the term as follows:

N((pur, pr), Tug) = Ny (@, pr), Tuj, — ug)
(5.10) < ORI (gl + il ) (1Tuf — wiln )

< C«hmin{r,k}+min{r*,k} (‘ukll-i-hﬂ + |pk|r,Q> ‘uZ|1+T*7Q'

Upon inserting (5.7), (5.8), (5.9), and (5.10) into (5.5), we obtain an estimate for the
term (T — T'p)u, uj,), and consequently double order convergence of the spectrum,
Le., (5.4). 0

6. Numerical experiments. We end our paper reporting some numerical tests
to illustrate the performance of our method. The implementation of the method has
been developed in a Matlab code. The goal is to assess the performance of the method
on different domains and of course, study the presence of spurious eigenvalues. After
computing the eigenvalues, the rates of convergence are calculated by using a least-
square fitting. More precisely, if \j is a discrete complex eigenvalue, then the rate of
convergence « is calculated by extrapolation with the least square fitting

(61) >\h ~ >\cxtr + Cha,

where Aextr is the extrapolated eigenvalue given by the fitting.
For the tests we consider the following families of polygonal meshes which satisfy
the assumptions A1 and A2 (see Figure 1):
° ’Thlz trapezoidal meshes;
e 7,2: squares meshes;
e 7.2: structured hexagonal meshes made of convex hexagons;
e 7;%: non-structured Voronoi meshes.

6.1. Test 1: a square domain. In this first test, we have taken Q = (—1,1)2,
B = (1,0)*. On this type of domain, the eigenfunctions are sufficiently smooth due the
convexity of the square and the null boundary conditions. Hence, an optimal order
of convergence is expected with our method. For this test we consider the meshes
reported in Figure 1. The results are contained in Table 1 where in the column
”Order” we report the computed order of convergence for the eigenvalues, which has
been obtained with the least square fitting (6.1), together with extrapolated values
that we report on the column ”Extr.”

6.2. Test case 2: L shaped domain. In this example, we consider non-convex
domain which is called as L shaped domain, defined as Qp := (=1,1) x (=1,1) \
[-1,0] x [-1,0](Figure 3). The eigenfunctions have singularity at (0, 0) therefore the
convergence order of the corresponding eigenvalues are not optimal. According to
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Fic. 1. Sample meshes: T} (top left), T2 (top right), T,;3 (bottom left), T,* (bottom right) for
N =8 and 10.

the regularity of the eigenfunctions, the rate of convergence r for the eigenvalues is
such that 1.7 < r < 2. In Table 2, we display the results for the model problem.
In Figures 4, we have dissected the first three discrete velocity and pressure fields.
Table 2’s results demonstrate that the approach provides the anticipated convergence
behavior in the eigenvalue approximation. Because of the geometrical singularity
of the re-entrant angle, the eigenfunction associated with the first eigenvalue is not
sufficiently smooth when compared to the eigenfunctions of the other eigenvalues.
The order of convergence for the first computed eigenvalue reflects this fact.

6.3. Spurious analysis. The aim of this test is to analyze numerically the
influence of the stabilization parameter on the computation of the spectrum. It is well
know that if this parameter is not correctly chosen, may appear spurious eigenvalues.
We refer to [25, 23, 24, 31] where the VEM reports this phenomenon. It is well known
that under some configurations of the domain, more precisely, convexity and boundary
conditions, the arise of spurious eigenvalues when stabilized methods are considered
compared when the same methods are implemented in domains with null boundary
Dirichlet conditions. We refer to the reader to [25, 22] where this is discussed. Hence,
for this experiment we consider the following problem: Given a domain  C R?, let
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TABLE 1
The lowest computed eigenvalues Ay, ;, 1 < i < 4 on different meshes.

Tn | Mi | N=16 | N=32 [ N=64 | N =128 | Order | Extr. [27]

A | 13.5455 | 13.5931 | 13.6054 | 13.6085 | 1.95 | 13.6097 | 13.6096
T | Ao | 22,9603 | 23.0917 | 23.1204 | 23.1274 | 2.17 | 23.1291 | 23.1297
A3 | 23.2729 | 23.3893 | 23.4147 | 23.4209 | 2.17 | 23.4223 | 23.4230
Asn | 3L7714 | 32.1695 | 32.2658 | 32.2900 | 2.04 | 32.2973 | 32.2981
An1 | 13.5670 | 13.5990 | 13.6069 | 13.6089 | 2.00 | 13.6096 | 13.6096
T2 | Ano | 229501 | 23.0917 | 23.1206 | 23.1275 | 2.26 | 23.1289 | 23.1297
Ans | 23.2825 | 23.3048 | 23.4163 | 23.4213 | 2.35 | 23.4221 | 234230
Ana | 31.8671 | 32.1979 | 32.2735 | 32.2920 | 2.11 | 32.2971 | 32.2981
An1 | 13.6980 | 13.6318 | 13.6151 | 13.6110 | 1.99 | 13.6095 | 13.6096
T3 | Ano | 23.3644 | 23.1976 | 23.1472 | 23.1341 | 1.77 | 23.1277 | 23.1297
Ans | 237112 | 23.4960 | 23.4411 | 23.4275 | 1.98 | 23.4227 | 23.4230
Ana | 32.8415 | 32.4460 | 32.3354 | 32.3074 | 1.86 | 32.2951 | 32.2981
An1 | 13.6935 | 13.6276 | 13.6135 | 13.6106 | 2.23 | 13.6097 | 13.6096
TA | Ango | 23.3782 | 23.1945 | 23.1443 | 23.1334 | 1.92 | 23.1280 | 23.1297
Ans | 23.6837 | 23.4885 | 23.4379 | 23.4268 | 1.98 | 23.4219 | 23.4230
Ana | 32.7775 | 32.4220 | 32.3255 | 32.3051 | 1.94 | 32.2951 | 32.2981

TABLE 2
The lowest computed eigenvalues Ay, ;, 1 < i < 4 on different meshes.

Tn | i | N=16 | N=32 | N=64 | N =128 | Order | Extr. [27]

A1p | 316764 | 32.5080 | 32.8513 | 32.8855 1.65 32.8949 | 33.0306
'ThS Agp | 36.6099 | 36.9845 | 37.0997 | 37.1058 2.02 37.1073 | 37.1106
As.p | 41.8939 | 42.2468 | 42.3768 | 42.3878 1.79 42.3901 | 42.4023
Aa,p | 48.7401 | 49.1200 | 49.2219 | 49.2247 2.19 49.2264 | 49.2552
Ana | 31.2535 | 32.3647 | 32.7931 | 32.8151 1.76 32.8303 | 33.0306
Thﬁ An2 | 36.1669 | 36.8918 | 37.0938 | 37.1058 2.13 37.1066 | 37.1106
A3 | 41.8756 | 42.2558 | 42.3880 | 42.3978 1.86 42.4000 | 42.4023
Ana | 49.4014 | 49.2980 | 49.2609 | 49.2577 1.82 49.2572 | 49.2552

us assume that its boundary 99 is such that 9Q := T'p UT'y where |T'p| > 0.

—vAu+ (B-Vu+Vp = dlu inQ,

divuy = 0 inQ,
(6.2) u = 0 onl'p,
(vWWu—pI)-n = 0 only,

where I € C?*4 is the identity matrix. Clearly from (6.2) a part of the boundary 92
changes from Dirichlet to Neumann leading to a different configuration from prob-
lem(2.1) and hence, the stabilization term may introduce spuious eigenvalues that
cannot being observed on a clamped domain. In particular, for the computational
tests we have considered € := (0,1)% and 3 := (1,0)* as convective term.

In Tables 3 and 4 we report the computed results for quadrilateral and voronoi
meshes, respectively. From Table 3 we observe that when the stabilization parameter
ag is small, more precisely, is such that ap < 1, an important amount of spurious
eigenvalues arise on the computed spectrum which start to vanish when ag increases.
This phenomenon is clear for both families of meshes 7,' and 7'};2 For other families
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FiG. 2. First, second and third magnitude of the eigenfunctions in the square together with
the associated pressures: first column uy p, uz p and uzp ;second column: py n, P2,n and p3 p; for
different family of meshes.

695 of polygonal meshes the results are similar.
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FiG. 3. Sample meshes: Th5 ( left panel), 7'}? ( Tight panel) for N =8

TABLE 3
Computed etgenvalues for different values of o with Thl

aE:1/32 OéEzl/].G OéE:1/4 aE:1 OéE:4 OAE:16 aE:32
1.4756 2.0870 2.4106 2.4592 2.4699 2.4725 2.4729
1.6460 2.9541 5.0781 5.8418 6.1009 6.1942 6.2204
1.7314 3.4238 12.2493 | 14.9763 | 15.2397 | 15.3516 | 15.3869
1.7403 3.4620 12.9070 | 21.1375 | 22.3902 | 22.6216 | 22.6584
1.7434 3.4755 13.4713 | | 24.3622 | 26.5618 | 27.0429 | 27.1458
1.7461 3.4866 13.5881 | | 37.6233 | 43.4899 | 44.4647 | 44.6536
1.7465 3.4883 13.7754 | | 40.5498 | 46.3123 | 47.5366 | 47.8232
1.7476 3.4931 13.8329 | | 44.8864 | 62.6882 | 64.8430 | 65.1451
1.7476 3.4931 13.9038 | | 45.6918 | 62.8106 | 65.2323 | 65.6622
1.7482 3.4954 13.9206 | | 51.1740 | 73.0533 | 74.6701 | 75.0219

TABLE 4
Computed eigenvalues for different values of g with Thz

aE:1/32 OéE:1/16 OéE=1/4 aE:1 OéE=4 OéE:16 OéE=32
1.3079 1.9108 2.3682 2.4508 2.4693 2.4738 2.4746
1.4751 2.6176 4.7627 5.7418 | 6.1175 6.2326 | 6.2538
1.5773 3.10563 10.8813 | 14.9485 | 15.2728 | 15.3987 | 15.4251
1.5888 3.1537 11.6653 | 20.2761 | 22.3258 | 22.7300 | 22.7935
1.5929 3.1711 12.2935 | | 23.3574 | 26.5470 | 27.1798 | 27.2809
1.5965 3.1857 12.5435 | | 36.2960 | 43.3638 | 44.5662 | 44.7522
1.5970 3.1879 12.5978 | | 38.9726 | 46.2787 | 47.8972 | 48.1768
1.5985 3.1940 12.6964 | | 40.1479 | 61.8863 | 65.7328 | 66.2699
1.5986 3.1946 12.7105 | | 41.7956 | 62.5039 | 66.1776 | 66.7132
1.5993 3.1973 12.7546 | | 47.2934 | 73.3563 | 75.1252 | 75.4144

696 The natural question now is if the refinement of the meshes causes some behavior
697 on the spurious eigenvalues. To observe this, in Table 5 we report the computed
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FiG. 4. First, second and third magnitude of the eigenfunctions in the nonconvexr L domain
together with the associated pressures: first column uy p, uzp and ugp ;second column: pyp, P2.n
and p3 p; for different family of meshes.

698 eigenvalues for ap = 1/16 and different refinements of the meshes 7;} and T;2.
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Fic. 5. First, second and third magnitude of the eigenfunctions with N = 32, for different
family of meshes.

TABLE 5
First ten approzimated eigenvalues for 'Thl, 'Th2 and agp = 1/16.

T T
Nn | N=8 [ N=16 [ N=32[N=64| N=8 | N=16 | N=32 [ N=64
Ain | 20870 | 24062 | 2.4536 | 2.4640 | 1.9108 | 2.3625 | 2.4434 | 2.4675
Aos | [2:9541] | 5.0080 | 5.9016 | 6.1662 | 2.6176 | 4.7627 | 5.7403 | 6.2711
A | [3.4238] | [12.1729] | 15.0548 | 15.3446 | [3.1053] | 10.7987 | 14.9670 | 15.4816
Aun | [34620] | 12.8841 | 20.7115 | 21.9155 | [3.1537] | [11.6268] | 19.7656 | 22.2157
Xss | [34755] | [13.5330] | 24.3679 | 26.5839 | [3.1711] | [12.2229] | 23.1339 | 27.1272
Xon | [3.4866] | 13.5547 | 36.9583 | 42.3002 | [3.1857] | [12.5104] | 35.4604 | 43.3846
Arn | [3.4883] | [13.7505] | 40.8357 | 46.9367 | [3.1879] | [12.5338] | [38.5668] | 48.4105
Aen | [3.4931] | [13.7849] | 43.3386 | 59.0853 | [3.1940] | [12.6514] | [38.8406] | 61.7552
Nos | [3:4931] | [13.8772] | 45.3771 | 61.8600 | [3.1946] | [12.6648] | 41.0988 | 64.6454
Mo | [3.4954] | [13.8772] | 50.2525 | 73.6216 | [3.1073] | [12.7087] | 45.7664 | 75.3587

Table 5 reveals that a refinement strategy is capable to avoid the spurious eigen-
values from the spectrum. This is an important fact that confirms the good properties
fo the NCVEM on our eigenvalue context. In fact, we observe that when ag = 1/16
is considered, the spectrum gets cleaner when the mesh is refined. Moreover, this test
suggests that g = 1 is a suitable value to be considered for the approximation as in,
for instance, [15].
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7. Conclusion. For the nonsymmetric Oseen eigenvalue problem, we have pre-

sented a divergence-free, arbitrary-order accurate, nonconforming virtual element ap-
proach that applies to highly generic shaped polygonal domains. We performed a
convergence study of the eigenfunctions using a solution operator on the continuous
space. In addition, we utilized the idea of compact operators to define the discrete
operator associated to the discrete problem and demonstrate the convergence of the
approach. In the end, we were able to retrieve the double order of convergence of
the eigenvalues by taking use of the extra regularity of the eigenfunctions. Our next
area of interest will be a continuation of the analysis with minimum regularity of the
eigenfunctions.
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