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1. Introduction. The numerical approximation of partial differential equations,13

and the analysis of schemes to approximate the solution of classical models in the14

pure and applied sciences, is a well-established topic. In particular, the numerical15

analysis for eigenvalue problems arising from fluid mechanics has paid the attention16

for researchers from several years, and the literature attending this topic is abundant.17

We mention [1, 7, 17, 16, 25, 26, 30, 28, 19] as some references on this topic.18

The common aspect of the above references of the mentioned eigenvalue prob-19

lems are related to the Stokes equations, where the particularity is that the resulting20

eigenvalue problem results to be selfadjoint and hence, symmetric. This is a desirable21

feature since we deal with real eigenvalues and eigenfunctions. Now the task is differ-22

ent, since our research program is devoted to the study of non-selfadjoint eigenvalue23

problems in fluid mechanics, in particular the Oseen eigenvalue problem and hence,24

the well developed theory for the Stokes eigenvalue problem must be extended.25

The Oseen equations are a linearization of the Navier-Stokes equations and a26

complete analysis of the source problem for the Oseen system is available in [20].27

Here is presented the motivation on the need to study the Oseen system, since to28

solve the time dependent Navier-Stokes equations, it is necessary to solve a linear29

system in each step of time which, precisely is an Oseen type of system. With this30

motivation at hand, our task is to analyze numerically the Oseen eigenvalue problem31

with the aid of a virtual element method (VEM).32

The VEM possesses many remarkable features that make it an attractive numeri-33

cal strategy for engineering and mathematical communities in order to solve different34

model problems. In a general view, the most important features of the VEM are35

a solid mathematical background, the capability of combine elements irrespective of36
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2 D. ADAK, F. LEPE AND G. RIVERA

geometric shapes, including nonconvex and oddly shaped elements, arbitrary orders37

of accuracy and regularity, the easy extension to higher dimensions, among others. A38

recent state of art of the VEM and its applications is available in [5].39

In the present work we are interested in the application of a nonconforming virtual40

element method (NCVEM) to solve the nonsymmetric Oseen eigenvalue problem. The41

NCVEM, introduced in [9], has been applied in different elliptic problems such as42

[6, 8, 14, 29, 34, 35] and in particular for eigenvalue problems we mention [3, 2, 15] as43

interesting references with excellent results for the discretization of the corresponding44

spectrums.45

For the Oseen eigenvalue problem, we need an inf-sup stable NCVEM for the46

Stokes source problem which is available in [35]. This family of NCVEM has also47

the capability of holding the incompressibility condition at discrete level, which is a48

desirable feature that also is already available for the conforming VEM [13].49

Recently in [27] and for the best of the author’s knowledge, appears a finite50

element approximation for the Oseen eigenvalue problem as a novel effort to solve51

numerically this problem. Since the problem is non-symmetric, the ad-hoc strategy52

for the analysis is the introduction of the dual eigenvalue problem in order to obtain53

error estimates for the method, following the well known theory of [10]. Clearly for54

the NCVEM approach the strategy is similar but not exactly the same, since the lack55

of conformity carries extra terms due the variational crime that a non conforming56

method naturally involves and must be correctly controlled. Clearly this must be57

done for both, the primal and dual eigenvalue problems.58

The formulation under consideration on this paper is the classic velocity-pressure59

formulation which has the advantage of using the simplest virtual spaces for the60

approximation. On the other hand, despite to the fact that the method is non-61

conforming, the solution operator that we define for our work is defined form L2 to62

L2 and allows us to utilize the classic theory for compact operators to carry out the63

convergence and error analysis of the method similarly as in [15]. Moreover, in our64

contribution we derive an L2 error estimate for the velocity via a duality argument,65

delivering an improvement on the error estimates for this variable.66

Theoretically, we are capable to prove that the proposed NCVEM is spurious free67

according to the theory of [21], which is a consequence of the convergence in norm for68

compact operators. However, in the numerical section, we report that similarly as in69

the continuous VEM framework (see [24, 25] for instance), the stabilization terms of70

the NCVEM may also introduce spurious eigenvalues and must be avoided.71

The paper is organized as follows: In Section 2 we introduce the Oseen eigenvalue72

problem and associated weak formulation. We present the functional framework in73

which the papers is based, namely Hilbert spaces, norms, the variational formulation,74

regularity of the source and spectral problems, and the solution operator in the same75

section. All this must be defined for the primal and dual eigenvalue problems. In76

Section 3, we have recollected the divergence-free nonconforming VEM space and77

discrete formulation of the weak form. The discrete solution operator is also defined78

in the same section. The a priori error estimates for the source problem in L2, and79

broken H1 norms are defined in the Section 4. Eventually, in Section 5, we have proved80

the double order of convergence of the spectrum. In Section 6, we have assessed some81

numerical experiments as an evidence of the theoretical estimates.82

1.1. Notation and Preliminaries. Given any Hilbert space X, we define X :=83

X2, the space of vectors with entries in X. For any scalar field φ and vector field u,84

we introduce the following differential operators: the curl of φ, defined as curlφ =85
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NCVEM FOR THE OSEEN EIGENVALUE PROBLEM 3

(∂2φ,−∂1φ)t where t represents the transpose operator; the gradient of u, defined86

as the matrix (∇u) = (∂jui)i,j=1,2; the rotor of u, defined as rotu = ∂2u1 − ∂1u2;87

the divergence of u, defined as divu = ∂1u1 + ∂2u2. Given A := (Aij),A := (Aij) ∈88

C2×2, we define A : B :=
∑2

i,j=1AijBij as the tensorial product between A and B.89

The entry Bij represent the complex conjugate of Bij . Similarly, given two vectors90

s = (si), r = (ri) ∈ C2, we define the products91

s · r :=

2∑
i=1

siri s⊗ r := srt = (sirj)1≤i,j≤2,92

as the dot and dyadic product in C. Further, we recollect the definition div(A) :=93

(
∑2

j=1 ∂jAij)i=1,2.94

2. The variational formulation. Let us describe the model of our study. From95

now and on, Ω ⊂ R2 represents an open bounded polygonal/polyhedral domain with96

Lipschitz boundary ∂Ω. The equations of the Oseen eigenvalue problem are given as97

follows:98

(2.1)


−ν∆u+ (β · ∇)u+∇p = λu inΩ,

divu = 0 inΩ,∫
Ω

p = 0, inΩ,

u = 0, on ∂Ω,

99

where u is the displacement, p is the pressure and β is a given vector field, representing100

a steady flow velocity and ν > 0 is the kinematic viscosity.101

Through our paper, we assume the existence of two positive numbers ν+ and ν−102

such that ν− < ν < ν+. On the other hand, we assume that β ∈ L∞(Ω,C). For103

the kinematic viscosity and the steady flow velocity we assume the following standard104

assumptions (see [20]):105

• ∥β∥∞,Ω ∼ 1 if ν ≤ ∥β∥∞,Ω,106

• ν ∼ 1 if ∥β∥∞,Ω < ν.107

Regarding the convective term, let us assume that there exists a constant ε1 > 0108

such that β ∈ L2+ε1(Ω,C) that leads to the skew-symmetry of the convective term109

(see [20, Remark 5.6]) which claims that for all v ∈ H1
0(Ω,C), there holds110

(2.2)

∫
Ω

(β · ∇)v · v = 0 ∀v ∈ H1
0(Ω,C).111

Now we introduce the functional spaces and norms for our analysis. Let us define112

the spaces X := H1
0(Ω,C) × L2

0(Ω,C) together with the space Y := H1
0(Ω,C) ×113

H1
0(Ω,C). For the space X we define the norm ∥ · ∥2X := ∥ · ∥21,Ω + ∥ · ∥20,Ω whereas for114

Y the norm will be ∥(v,w)∥2Y = ∥v∥21,Ω + ∥w∥21,Ω, for all (v,w) ∈ Y.115

Let us introduce the following sesquilinear forms a : Y → C and b : X → C116

defined by117

a(w,v) := asym(w,v) + askew(w,v) and b(v, q) := −
∫
Ω

q div v,118

where asym, askew : Y → C are two sesquilinear forms defined by119

asym(w,v) :=

∫
Ω

ν∇w : ∇v and askew(w,v) :=
1

2

(
aβ(w,v)− aβ(v,w)

)
,120
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4 D. ADAK, F. LEPE AND G. RIVERA

where, aβ(w,v) :=
∫
Ω
(β ·∇)w ·v. On the other hand we define the following sesquilin-121

ear form c(w,v) := (w,v)0,Ω as the standard inner product in L2(Ω,C). With these122

sesquilinear forms at hand, we write the following weak formulation for (2.1): Find123

λ ∈ C and (0, 0) ̸= (u, p) ∈ X such that124

(2.3)

{
a(u,v) + b(v, p) = λc(u,v) ∀v ∈ H1

0(Ω,C),
b(u, q) = 0 ∀q ∈ L2

0(Ω,C),
125

where

L2
0(Ω,C) :=

{
q ∈ L2(Ω,C) :

∫
Ω

q = 0

}
.

Observe that the resulting eigenvalue problem is non-symmetric due the presence of126

the sesquilinear form aβ(·, ·). Let us define the kernel K of b(·, ·) as follows127

K := {v ∈ H1
0(Ω,C) : b(v, q) = 0 ∀q ∈ L2

0(Ω,C)}.128

With this space available, it is straightforward to verify using (2.2) that a(·, ·) is129

K-coercive. Moreover, the bilinear form b(·, ·) satisfies the following inf-sup condition130

(2.4) sup
τ∈H1

0(Ω,C)

b(τ , q)

∥τ∥1,Ω
≥ β∥q∥0,Ω ∀q ∈ L2

0(Ω,C).131

Let us introduce the solution operator, which we denote by T and is defined as follows132

(2.5) T : L2(Ω,C) → L2(Ω,C), f 7→ Tf := û,133

where the pair (û, p̂) ∈ X is the solution of the following well-posed source problem134

(2.6)

{
a(û,v) + b(v, p̂) = c(f ,v) ∀v ∈ H1

0(Ω,C),
b(û, q) = 0 ∀q ∈ L2

0(Ω,C),
135

implying that T is well defined due to the Babuška-Brezzi theory. Moreover, from [20,136

Lemma 5.8] we have the following estimates for the velocity and pressure, respectively137

∥∇û∥0,Ω ≤ Cpf

ν
∥f∥0,Ω,138

139

∥p̂∥20,Ω ≤ 1

β

(
∥f∥0,Ω + ν1/2∥∇û∥0,Ω

(
ν1/2 + Cpf

∥β∥0,∞
ν1/2

))
,140

where Cpf > 0 represents the constant of the Poincaré-Friedrichs inequality and β > 0141

is the inf-sup constant given un (2.4).142

It is easy to check that (λ, (u, p)) ∈ C× X solves (2.3) if and only if (κ,u) is an143

eigenpair of T , i.e.,Tu = κu with κ := 1/λ and λ ̸= 0.144

A key point for the analysis is the additional regularity of the solution. To obtain145

this, the assumptions on β are important,. To make matters precise, if the convective146

term is well defined, it is possible to resort to the classic Stokes regularity results147

available on the literature (see [32] for instance). Hence, the following additional148

regularity result for the solutions of the Oseen system holds.149

Theorem 2.1. There exists s > 0 that for all f ∈ L2(Ω,C), the solution (û, p̂) ∈150

X of problem (2.6), satisfies for the velocity û ∈ H1+s(Ω,C), for the pressure p̂ ∈151

Hs(Ω,C), and152

∥û∥1+s,Ω + ∥p̂∥s,Ω ≤ C∥f∥0,Ω, .153
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where C :=
Cpf

β
max

{
1,
Cpf∥β∥∞,Ω

ν

}
and β > 0 is the constant associated to the inf-154

sup condition (2.4). Further, if (u, p) is an eigenfunction satisfying (2.3), then there155

exists r > 0, not necessarily equal to s, such that (u, p) ∈ X ∩(H1+r(Ω,C)×Hr(Ω,C))156

and the following bound holds157

∥û∥1+r,Ω + ∥p̂∥r,Ω ≤ C∥û∥0,Ω.158

Observe that the following compact inclusion H1+s(Ω,C) ↪→ L2(Ω,C), implying159

directly the compactness of T . Finally, we have the following spectral characterization160

for T .161

Lemma 2.2. (Spectral Characterization of T ). The spectrum of T is such that162

sp(T ) = {0} ∪ {κk}k∈N where {κk}k∈N is a sequence of complex eigenvalues that163

converge to zero, according to their respective multiplicities.164

We conclude this section by redefining the spectral problem (2.3) in order to165

simplify the notations for the forthcoming analysis. With this in mind, let us introduce166

the sesquilinear form A : X × X → C defined by167

A((u, p); (v, q)) := a(u,v) + b(v, p)− b(u, q), ∀(v, q) ∈ X ,168

which allows us to rewrite problem (2.3) as follows: Find λ ∈ C and (0, 0) ̸= (u, p) ∈ X169

such that170

(2.7) A((u, p), (v, q)) = λc(u,v) ∀(v, q) ∈ X .171

Since the problem is non-selfadjoint, it is necessary to introduce the adjoint eigen-172

value problem, which reads as follows: Find λ∗ ∈ C and a pair (0, 0) ̸= (u∗, p∗) ∈ X173

such that174

(2.8)

{
a(v,u∗)− b(v, p∗) = λc(v,u∗) ∀v ∈ H1

0(Ω,C),
−b(u∗, q) = 0 ∀q ∈ L2

0(Ω,C).
175

Now we introduce the adjoint of (2.5) defined by176

T ∗ : L2(Ω,C) → L2(Ω,C), f 7→ T ∗f := û∗,177

where û∗ ∈ H1
0(Ω,C) is the adjoint velocity of û and solves the following adjoint178

source problem: Find (û∗, p̂∗) ∈ X such that179

(2.9)

{
a(v, û∗)− b(v, p̂∗) = c(v,f) ∀v ∈ H1

0(Ω,C),
−b(û∗, q) = 0 ∀q ∈ L2

0(Ω,C).
180

Similar to Theorem 2.1, let us assume that the dual source and eigenvalue problems181

are such that the following estimate holds.182

Theorem 2.3. There exist s∗ > 0 such that for all f ∈ L2(Ω,C), the solution183

(û∗, p̂∗) of problem (2.9), satisfies û∗ ∈ H1+s∗(Ω,C) and p̂∗ ∈ Hs∗(Ω,C), and184

∥û∗∥1+s∗,Ω + ∥p̂∗∥s∗,Ω ≤ C∥f∥0,Ω,185

where C > 0 is defined in Theorem 2.1. Further, if (u∗, p∗) is an eigenfunction186

satisfying (2.8), then there exists r∗ > 0, not necessarily equal to s∗, such that187

(u∗, p∗) ∈ X ∩ ((H1+r∗(Ω,C)×Hr∗(Ω,C))) and the following bound holds188

∥û∗∥1+r∗,Ω + ∥p̂∗∥r∗,Ω ≤ C∥û∗∥0,Ω, .189
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6 D. ADAK, F. LEPE AND G. RIVERA

Finally the spectral characterization of T ∗ is given as follows.190

Lemma 2.4. (Spectral Characterization of T ∗). The spectrum of T ∗ is such that191

sp(T ∗) = {0} ∪ {κ∗k}k∈N where {κ∗k}k∈N is a sequence of complex eigenvalues that192

converge to zero, according to their respective multiplicities.193

It is easy to prove that if κ is an eigenvalue of T with multiplicitym, κ∗ is an eigenvalue194

of T ∗ with the same multiplicity m.195

Let us define the sesquilinear form Ã : X × X → C by196

Ã((v, q), (u∗, p∗)) := a(v,u∗)− b(v, p∗) + b(u∗, q),197

which allows us to rewrite the dual eigenvalue problem (2.8) as follows: Find λ∗ ∈ C198

and the pair (0, 0) ̸= (u∗, p∗) ∈ X such that199

Ã((v, q), (u∗, p∗)) = λ∗c(v,u∗) ∀(v, q) ∈ X .200

3. The virtual element method. In order to discretize the Oseen eigenvalue201

problem, we first go over nonconforming virtual element space in this section. The202

original purpose of this space’s development was to approximate the Stokes equation203

numerically. In our research, we utilise the improved version created in [35].204

3.1. Mesh notation and mesh regularity. We consider the family of meshes205

{Th}h>0 such that each mesh Th is a partition of the domain Ω into a finite collection206

of non-overlapping, polygonal elements K with mesh diameter hK , and boundary207

∂K. As usual, we define h := maxK∈Th
hK . Furthermore, E := Eint ∪ Ebdy denotes208

the set of mesh edges of Th where Eint and Ebdy denotes respectively the subsets of209

the interior and boundary mesh edges.210

Consider the polygonal element K ∈ Th. We denote the outward pointing normal211

and the tangent unit vector to the polygonal boundary ∂K by nK and tK , respectively.212

For every edge e ⊂ ∂K, we denote by ne,and te the normal and tangent unit vectors to213

e, respectively. Conventionally, we assume that ne points out of Ω if e is a boundary214

edge, and ne and te form an anti-clockwise oriented pair along every internal edge e.215

Accordingly, it holds that ne := (t2,−t1) whenever te := (t1, t2).216

We define the space of piecewise polynomials of degree k ≥ 0 by217

Pk(Th) := {q ∈ L2(Ω) : q|K ∈ Pk(K) ∀K ∈ Th}.218

Similarly, for all integers l > 0, we define the broken Sobolev space of degree l on Th219

of vector-valued fields, whose components are in Hl(K) for all mesh elements K, as220

Hl(Th) := {φ ∈ L2(Ω) : φ|K ∈ Hl(K) ∀K ∈ Th}.221

We endow this functional space with the broken semi-norm222

|φh|1,h :=
( ∑

K∈Th

|φ|21,K
)1/2

.223

Consider the internal edge e ⊂ ∂K+ ∩∂K−, whereK+,K− ∈ Th, and ne points from224

K+ to K−. We define the jump of a function v through e by JvK|e := v|K+ − v|−K225

and, for boundary edges, we define JvK|e := v|e. For the a priori error analysis, we226

need the following regularity assumptions on the mesh family {Th}h>0.227
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Assumption 1. (Mesh Regularity) There exists a positive constant σ > 0 such228

that for all K ∈ Th it holds that229

• (M1) the ratio between every edge length and the diameter hK is bigger than230

σ;231

• (M2) K is star-shaped with respect to a ball of radius ρK satisfying ρK >232

σhK .233

These mesh assumptions impose some constraints that are admissible for the formula-234

tion of the method discussed in the next subsection. In view of the following analysis,235

it is helpful to define the continuous bilinear forms a(·, ·), b(·, ·) and c(·, ·) on the236

discrete space H1(Th) as a sum of local contributions.237

a(w,v) :=
∑

K∈Th

aKsym(w,v) + aKskew(w,v) ∀w,v ∈ H1(Th),238

b(v, q) :=
∑

K∈Th

bK(v, q) ∀v ∈ H1(Th) and q ∈ L2
0(Ω,C),239

c(w,v) :=
∑

K∈Th

cK(w,v) ∀w,v ∈ L2
0(Ω,C),240

A((u, p), (v, q)) :=
∑

K∈Th

AK((u, p), (v, q)) ∀(u, p), (v, q) ∈ X .241

242

In the same way, we split elementwise the norm L2(Ω,C) by243

∥q∥0,Ω :=

( ∑
K∈Th

∥q∥20,K

)1/2

∀q ∈ L2(Ω,C).244

3.2. Local and global discrete space. In what follows we summarize the key245

ingredients for the discrete analysis, given by [35]. For K ∈ Th, we define the following246

auxiliary finite dimensional space247

(3.1)

S̃(K) := {v ∈ H1(K) : div v ∈ Pk−1(K), rotv ∈ Pk−1(K),v · ne ∈ Pk(e)∀e ⊂ ∂K}.248

We decompose the space S̃(K) in (3.1) into the direct sum of two subspace as follows249

S̃(K) = S̃1(K)⊕ S̃0(K),250

where S̃1(K) := {v ∈ S̃(K) : div v = 0,v · nK |∂K = 0} and251

(3.2) S̃0(K) := {v ∈ S̃(K) : rotv = 0}.252

Additionally, we introduce the space253

(3.3) H̃ := {ϕ ∈ H2(K),∆2ϕ ∈ Pk−1(K), ϕ|e = 0,∆ϕ|e ∈ Pk−1(e)∀e ⊂ ∂K}.254

The local space is constructed as sum of (3.2), and curl of (3.3) as follows255

Ũ = S̃1(K)⊕ curl H̃.256

We define the following operators:257

• (H1) the edge polynomial moments:258

1

|e|

∫
e

v · neqk ∀qk ∈ Pk(e),∀e ⊂ ∂K;259
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8 D. ADAK, F. LEPE AND G. RIVERA

• (H2) the edge polynomial moments:260

1

|e|

∫
e

v · teqk−1 ∀qk−1 ∈ Pk−1(e),∀e ⊂ ∂K;261

• (H3) the elemental polynomial moments:262

1

|K|

∫
K

v · qk−2 ∀qk−2 ∈ ∇Pk−1(K);263

• (H4) the elemental polynomial moments:264

1

|K|

∫
K

v · q⊥
k ∀q⊥

k ∈ (∇Pk+1(K))⊥;265

Here, (∇Pk+1(K))⊥ is the L2-orthogonal complement of ∇Pk+1(K) in Pk(K), where266

Pk(K) is vector valued polynomial space on K of order k. Following [35], we deduce267

that the set of operators above provides a set of the degrees of freedom of the discrete268

space Ũ . Based on the computational aspect, we introduce the elliptic projection269

operator Π∇
K : Ũ → Pk(K) :270

asym(Π
∇
Ku,q) = asym(u,q) ∀q ∈ Pk(K),∫

∂K

Π∇
Ku− u = 0.

(3.4)271

From the definition of the projection operator Π∇
K , we deduce the right-hand side of272

(3.4) are computable from (H1)-(H4). By employing the projection operator Π∇
K , we273

define a local computational space which is subspace of Ũ as follows:274

U(K) := {v ∈ Ũ :

∫
K

(v −Π∇
Kv) · qk = 0 ∀qk ∈ (∇Pk+1(K))⊥/(∇Pk−1(K))⊥

and

∫
e

(v −Π∇
Kv) · neqk = 0 ∀qk ∈ Pk(e)/Pk−1(e), ∀e ⊂ ∂K},

275

where the symbol V/V1 denotes the subspace of space V consisting of polynomials that276

are L2(K)-orthogonal to space V1. Since the projector Π
∇
K is invariant on polynomial277

function space Pk(K), we deduce that Pk(K) ⊂ U(K). Furthermore, (H1) and278

(H3) are a set of degrees of freedom for U(K). For K ∈ Th, the local space U(K) is279

unisolvent with respect to a certain set of bounded linear operators, which are defined280

as follows:281

• the edge polynomial moments:282

1

|e|

∫
e

v · qk−1 ∀qk−1 ∈ Pk−1(e),∀e ⊂ ∂K;283

• the elemental polynomial moments284

1

|K|

∫
K

v · qk−2 ∀qk−2 ∈ Pk−2(K);285
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According to the definition of the virtual space U(K), the term Π∇
Kv is computable286

for all v ∈ U(K). Now we define the global nonconforming virtual space by287
288

Uh :=
{
v ∈ L2(Ω,C) : v|K ∈ U(K)∀K ∈ Th,289 ∫

e

JvKe · qk−1 = 0 ∀qk−1 ∈ Pk−1(e)∀e ∈ E
}
.290

291

Clearly the space Uh is not continuous over Ω since Uh ̸⊂ H1(Ω). In the next lemma,292

we summarize two technical results that will be helpful in the derivation of the a293

priori estimates of the next sections. Further, we highlight that the L2 projection294

operator Π0
K is computable on U(K) [33]. To define the interpolation operator I on295

the space Uh, for each element K ∈ Th, we denote by Σi, the operator associated with296

the i-th local degree of freedom, i = 1, 2, . . . , Ndof. From the above construction, it is297

easily seen that for every smooth enough function v, there exists an unique element298

IKv ∈ Uh(K) such that Σi(v − IKv) = 0 , ∀ i = 1, 2, . . . , Ndof. Then, we define299

the global interpolation I for Uh by setting I|K = IK ∀K ∈ Th. Two technical300

conclusions that will be useful in deriving the a priori estimates of the following301

sections are summarized in the next lemma.302

Lemma 3.1. The following statements hold:303

• For each polygon K ∈ Th and any t such that 1 ≤ t ≤ k + 1, it holds that304

(3.5) ∥v − IKv∥m,K ≤ Cht−m|v|t,K m = 0, 1.305

• For each polygon K ∈ Th and any t such that 1 ≤ t ≤ k + 1, there exists a306

polynomial vπ ∈ Pk(K), such that307

(3.6) ∥v − vπ∥m,K ≤ Cht−m|v|t,K m = 0, 1.308

On the other hand, the discrete pressure space is given by309

Qh := {qh ∈ L2(Ω,C) : qh|K ∈ Pk−1(K), ∀K ∈ Th},310

We also introduce the L2-orthogonal projection Rh : L2(Ω) → Qh and the following311

approximation result holds for 0 ≤ t ≤ 1 (see [12] for instance)312

(3.7) ∥q −Rhq∥0,Ω ≤ Cht∥q∥s,Ω, ∀q ∈ Ht(Ω).313

Let us introduce the operator divh(·) which corresponds to the discretized global form314

of the divergence operator, i.e., (divh v)|K = div(v|K) for all K ∈ Th (and sufficiently315

regular v). From the above construction, we deduce that divh Uh ⊂ Qh, and the316

relation between the virtual interpolation operator and Rh is as follows divh Iv =317

Rh divh v for all v ∈ H1(Ω). Now, let SK(·, ·) be any symmetric positive definite318

bilinear form chosen to satisfy319

(3.8) c0a
K
sym(vh,vh) ≤ SK(vh,vh) ≤ c1a

K
sym(vh,vh),320

for some positive constants c0 and c1 depending only on the constant σ from the mesh321

assumptions M1 and M2. Then, for all wh,vh ∈ Uh, we introduce on each element322

K the local (and computable) bilinear forms323

aKh,sym(wh,vh) := aKsym(Π
∇
Kwh,Π

∇
Kvh) + SK(wh −Π∇

Kwh,vh −Π∇
Kvh);324

aKh,skew(wh,vh) :=
1

2

∫
K

((
β ·Π0

k−1,K∇
)
wh ·Π0

Kvh −
(
β ·Π0

k−1,K∇
)
vh ·Π0

Kwh

)
;325

cKh (w,v) := cK(Π0
Kwh,Π

0
Kvh).326327
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The construction of aKh,sym(·, ·) and cKh (·, ·) guarantees the usual consistency and sta-328

bility properties of the VEM. With this considerations at hand, the following result329

holds true which is direct from [11].330

Lemma 3.2. The local bilinear forms aKh,sym(·, ·) and cKh (·, ·) on each element K331

satisfy:332

• Consistency: for all h > 0 and for all K ∈ Th we have that333

aKh,sym(vh,qk) = aKsym(vh,qk) ∀qk ∈ Pk(K),334

cKh (vh,qk) = cK(vh,qk) ∀qk ∈ Pk(K).335336

• Stability: for all K ∈ Th, there exist positive constants c∗, c
∗ and d∗, inde-337

pendent of h, such that338

c∗a
K
sym(vh,vh) ≤aKh,sym(vh,vh) ≤ c∗aKsym(vh,vh) ∀vh ∈ Uh,339

cKh (vh,vh) ≤ d∗cK(vh,vh) ∀vh ∈ Uh.340341

For the bilinear form bh(·, ·), we do not introduce any approximation and simply set

bh(vh, qh) :=
∑

K∈Th

bK(vh, qh) = −
∑

K∈Th

∫
K

qh div vh, ∀vh ∈ Uh, qh ∈ Qh.

Since bh(vh, qh) is computable in each element K ∈ Th with the aid of the degrees
of freedom defined on U(K). Naturally for all wh,vh ∈ Uh we can introduce the
following bilinear form

ah(wh,vh) :=
∑

K∈Th

aKh (wh,vh) =
∑

K∈Th

aKh,sym(wh,vh) + aKh,skew(wh,vh).

It is easy to check that ah(·, ·) and bh(·, ·) are continuous sesquilinear forms. Indeed,342

for ah(·, ·) we have343

(3.9) |ah(uh,vh)| ≤ |ah,sym(uh,vh)|+ |ah,skew(uh,vh)|,344

where we need to estimate each contribution on the right hand side of the inequality345

above. For the symmetric part we have346

347

(3.10) |ah,sym(uh,vh)| =

∣∣∣∣∣ ∑
K∈Th

aKsym(uh,vh) + SK(uh −Π∇
Kuh,vh −Π∇

Kvh)

∣∣∣∣∣348

≤
∑

K∈Th

ν∥∇Π∇
Kuh∥0,K∥∇Π∇

Kvh∥0,K + c1ν∥∇(Π∇
Kuh−uh)∥0,K∥∇(Π∇

Kvh−vh)∥0,K349

≤ νmax{c̃1, 1}∥uh∥1,h∥vh∥1,h,350351

This manuscript is for review purposes only.



NCVEM FOR THE OSEEN EIGENVALUE PROBLEM 11

where the constant c̃1 is the sum of all the constants c1 involved in (3.8) for each352

element K ∈ Th. Now, for the skew-symmetric part we have353

354

(3.11) |ah,skew(uh,vh)| ≤
1

2

∣∣∣∣∣ ∑
K∈Th

∫
K

(β ·Π0
k−1,K)uhΠ

0
k,Kvh

∣∣∣∣∣355

+
1

2

∣∣∣∣∣ ∑
K∈Th

∫
K

(β ·Π0
k−1,K)vhΠ

0
k,Kuh

∣∣∣∣∣356

≤ 1

2

∑
K∈Th

∥β∥∞,K∥Π0
k−1,K∇uh∥0,ε∥Π0

k,Kvh∥0,K357

+
1

2

∑
K∈Th

∥β∥∞,K∥Π0
k−1,K∇vh∥0,K∥Π0

k,Kuh∥0,K358

≤ ∥β∥∞,ΩCICII∥uh∥1,h∥vh∥1,h,359360

where CI, CII > 0 are the stability constants ofΠ0
k−1,K andΠ0

k,K , respectively. Hence,361

replacing (3.10) and (3.11) in (3.9) we have that362

|ah(uh,vh)| ≤ max{νmax{c̃1, 1}, ∥β∥∞,ΩCICII}∥uh∥1,h∥vh∥1,h,363

which proves the boundedness of ah(·, ·). On the other hand, for bh(·, ·) we have364

365

|bh(vh, qh)| =

∣∣∣∣∣ ∑
K∈Th

∫
K

qh div vh

∣∣∣∣∣ ≤ ∑
K∈Th

∥qh∥0,K∥ div vh∥0,K366

≤
∑

K∈Th

∥qh∥0,K∥∇vh∥0,K ≤ ∥qh∥0,Ω∥vh∥1,h,367

368

proving that bh(·, ·) is also continuous.369

3.3. The discrete eigenvalue problem. The nonconforming virtual element370

discretization of the variational formulation (2.3) reads as follows. Find λ ∈ C and371

(0, 0) ̸= (uh, ph) ∈ Xh such that372

(3.12)

{
ah(uh,vh) + bh(vh, ph) = λhch(uh,vh) ∀vh ∈ Uh,

bh(uh, qh) = 0 ∀qh ∈ Qh,
373

where Xh := Uh×Qh. Thanks to the stability of the bilinear form aKh,sym(·, ·) and the

definition of the bilinear form aKh,skew(·, ·), it is easy to check that ah(·, ·) is coercive,
i.e.

c|vh|21,h ≤ ah(vh,vh) ∀vh ∈ Uh.

On the other hand, given the discrete spaces Uh and Qh , satisfy that divh Uh ⊂ Qh,374

standard arguments (see [18]) guarantee that there exists a positive β0, independent375

of h, such that376

(3.13) sup
vh∈Uh

bh(vh, qh)

|vh|1,h
≥ β0∥qh∥0,Ω ∀qh ∈ Qh.377

The next step is to introduce the discrete solution operator T h : L2(Ω) → Uh ⊂378

L2(Ω), defined by T hf := ûh, where ûh is the solution of the corresponding discrete379
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source problem:380

(3.14)

{
ah(ûh,vh) + bh(vh, p̂h) = ch(f ,vh) ∀vh ∈ Uh,

bh(ûh, qh) = 0 ∀qh ∈ Qh.
381

Since the discrete inf-sup condition is satisfied, the operator T h is well defined. More-
over, we have the following stability result.

ν|ûh|1,h ≤ Cp∥f∥0,Ω,

whereas for the pressure we have

∥p̂h∥0,Ω ≤ 1

β

(
Cp∥f∥0,Ω + ν1/2|ûh|1,h

(
ν1/2 +

Cp∥β∥∞,Ω

ν1/2

))
.

As in the continuous case, we have the following relation between the discrete spectral382

problem and its source problem, i.e., (λh, (uh, ph)) is a solution of Problem (3.12) if383

and only if (κh,uh) is an eigenpair of T h, i.e., T huh = κhuh with κh = 1/λh and384

λh ̸= 0. The discrete version of the spectral problem (2.7) is written as385

Problem 3.3. Find (λh,uh, ph) ∈ R×Uh×Qh such that ∥uh∥0,Ω+∥ph∥0,Ω > 0,386

and387

Ah((uh, ph), (vh, qh)) = λhch(uh,vh), ∀(vh, qh) ∈ Uh ×Qh,388

where
Ah((uh, ph), (vh, qh)) = ah(uh,vh) + bh(vh, ph)− bh(uh, qh).

In Problem 3.3, Ah(·, ·), and ch(·, ·) are the virtual element discretization of A(·, ·), and389

c(·, ·) respectively, whereas (λh, (uh, ph)) is the virtual element approximation of the390

continuous solution (λ, (u, p)). For the exposition’s sake, we first introduce the basic391

notation and the few mesh regularity assumptions that we need for the convergence392

analysis of the virtual element approximation of the next section. Likewise, we define393

the discrete formulation corresponding to the adjoint problem, i.e. Eqn. (2.8). The394

identical arguments as for the primal formulation imply the well-posedness of the395

discrete formulation.396

Remark 3.4. The discrete bilinear form ch(·, ·) is defined neglecting the corre-397

sponding stabilizer. We emphasize that we define the solution operator on L2 which398

does not guarantee the existence of the trace on the boundary, and consequently,399

the edge momentum will not be well-defined. This does not guarantee the existence400

of the associated stabilizer. However, the proposed definition ch(·, ·) needs only L2401

regularity and hence suitable for our strategy.402

As the case continues, it is now necessary to define the adjoint discrete problem, which403

consists in: Find λ∗ ∈ C and (0, 0) ̸= (u∗
h, p

∗
h) ∈ Xh such that404

(3.15)

{
ah(vh,u

∗
h)− bh(vh, p

∗
h) = λ∗hch(vh,u

∗
h) ∀vh ∈ Uh,

−bh(u∗
h, qh) = 0 ∀qh ∈ Qh,

405

Now we define the discrete version of the operator T ∗ is then given by T ∗
h : L2(Ω) →406

Uh ⊂ L2(Ω), defined by T ∗
hf := û∗

h, where û
∗
h is the solution of the corresponding407

discrete source problem:408

(3.16)

{
ah(vh, û

∗
h)− bh(vh, p̂

∗
h) = ch(vh,f) ∀vh ∈ Uh,

−bh(ûh, qh) = 0 ∀qh ∈ Qh.
409
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4. A priori error estimates for the source problem. We are now in a410

position to be able to show that T h converges to T as h becomes zero in the broken411

norm. This is contained in the following result412

Theorem 4.1. Let f ∈ L2(Ω,C) be such that û := Tf and ûh := T hf with413

û ∈ H1+s(Ω,C), s ≥ 1. Then, there exists a positive constant C, independent of h,414

such that415

∥(T − T h)f∥1,h = ∥û− ûh∥1,h ≤ Chmin{k,s}
(
|û|1+s,Ω + |p̂|s,Ω + ∥f∥s−1,Ω

)
.416

where C is a positive constant independent of h.417

Proof. By employing the interpolation operator on the discrete space, i.e., I, we418

split the difference û− ûh = û−Iû+Iû− ûh. An application of the approximation419

properties of the interpolation operator yields the bound of ηh = û−Iû. To estimate420

the other term, i.e., δh := Iû−ûh, we apply the coercivity and the fact that div(Iû−421

ûh) = 0 (see [35]) in order to obtain422

423

(4.1) Cα ∥δh∥21,h ≤ ah(Iû, δh)− ah(ûh, δh)424

= ah(Iû, δh)− ch(f , δh) + bh(δh, p̂h)− bh(ûh, qh) = ah(Iû, δh)− ch(f , δh)425

= ah,skew(Iû, δh)+ ah,sym(Iû−uπ, δh)+ asym(ûπ − û, δh)+ asym(û, δh)− ch(f , δh)426

= ah,skew(Iû, δh)− askew(û, δh)︸ ︷︷ ︸
A1

+ ah,sym(Iû− uπ, δh) + asym(ûπ − u, δh)︸ ︷︷ ︸
A2

427

+ c(f , δh)− ch(f , δh)︸ ︷︷ ︸
A3

+N h((û, p̂), δh)︸ ︷︷ ︸
A4

.428

429

By using the approximation properties of the interpolation operator and polynomial430

representative, we bound the each of (4.1). N h((û, p̂), δh) is the consistency error431

appeared due to non-conforming approximation of the discrete space. In order to432

estimate the Term A1, first we note that433

(4.2) A1 =
∑

K∈Th

aKskew(Iû− û, δh)︸ ︷︷ ︸
B1

+ aKh,skew(Iû, δh)− aKskew(Iû, δh)︸ ︷︷ ︸
B2

 .434

Now, to estimate B1, using Lemma 3.1, we derive as follow.435

436

aKskew(Iû− û, δh)| ≤ C (∥β∥∞,K∥Iû− û∥1,K∥δh∥1,K)437

≤ Ch
min{s,k}
K ∥β∥∞,K |u|1+s,K∥δh∥1,K .438439

To estimate B2, is necessary to note that for each K ∈ Th, u,v ∈ H1(K) and
β ∈ L∞(K), we have:∫

K

(β · ∇)u · v =

∫
K

(∇u)β · v =

∫
K

∇u : (β ⊗ v)t.

For each polygon K ∈ Th, employing the orthogonality property of the L2 projection440
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operator, we obtain441 ∫
K

(
(Π0

k−1,K(∇Iû))β ·Π0
Kδh − (∇Iû)β · δh

)
=

∫
K

( (
Π0

k−1,K(∇Iû)−∇Iû
)
: (β ⊗ (Π0

Kδh − δh))t

+

∫
K

(
Π0

k−1,K(∇Iû)−∇Iû
)
:
(
(β ⊗ δh)t −Π0

k−1,K((β ⊗ δh)t)
)

+

∫
K

(
(∇Iû)β −Π0

K((∇Iû)β)
)
· (Π0

Kδh − δh).

442

Now assuming that∇û ∈ Hs(K), β ∈ W1,∞(K) and δh ∈ H1(K) and approximation443

properties of Π0
K , continuity of L2 inner product, it follows that :444 ∫

K

(
β ·Π0

k−1,K(∇Iû) ·Π0
Kδh − β · (∇Iû) · δh

)
≤ ∥Π0

k−1,K(∇Iû)−∇Iû∥0,K∥β ⊗ (Π0
Kδh − δh)t∥0,K

+ ∥Π0
k−1,K(∇Iû)−∇Iû∥0,K∥(β ⊗ δh)t −Π0

k−1,K((β ⊗ δh)t)∥0,K
+ ∥(∇Iû)β −Π0

K((∇Iû)β∥0,K∥Π0
Kδh − δh∥0,K

≤ Ch
min{s,k}
K ∥β∥W1,∞(K)|û|1+s,K |δh|1,K .

(4.3)445

Borrowing the analogous arguments as previous estimate, we obtain:446

(4.4)

∫
K

(
Π0

k−1,K(∇δh)β ·Π0
KIû− (∇δh)β · Iû

)
≤ C(β)h

min{s,k}
K |û|1+s,K |δh|1,K .447

Thus, from the two estimates above ((4.3), (4.4)), it is obtained that

B2 ≤ Ch
min{s,k}
K ∥β∥W1,∞(K)|û|1+s,K |δh|1,K ,

and finally considering the sum over all elements K448

(4.5) A1 ≤ Chmin{s,k}∥β∥W1,∞(Ω)|û|1+s,Ω|δh|1,h.449

Now our task is to estimate the term A2. To do this task, we begin with the first part450

of this term by using the approximation properties of the interpolation operator and451

polynomial representative (cf. Lemma 3.1) in the following way452

∑
K∈Th

aKh,sym(Iû− ûπ, δh) ≤
∑

K∈Th

aKh,sym(Iû− û, δh) +
∑

K∈Th

aKh,sym(û− ûπ, δh)

≤ Chmin{s,k}|û|1+s,Ω|δh|1,h.

(4.6)

453

Now for the second part of A2, we invoke the polynomial approximation property454

given in Lemma 3.1 in order to obtain455

(4.7)
∑

K∈Th

aKh,sym(ûπ − û, δh) ≤ Chmin{s,k}|û|1+s,Ω|δh|1,h.456

Hence, gathering (4.6) and (4.7) we have A2 ≤ Chmin{s,k}|û|1+s,Ω|δh|1,h. To bound457

A3, we use the approximation properties of the projection operator L2 and, following458

the arguments of [36] we obtain459

(4.8) A3 = c(f , δh)− ch(f , δh) ≤ Chmin{s,k}|f |s−1,Ω|δh|1,h.460
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Now, we focus to bound the consistency error N h(·, ·) as follows461

462

(4.9) N h((û, p̂), δh) :=
∑

K∈Th

aK(û, δh) + bh(δh, p̂)− c(f , δh)463

=
∑

e∈Eint

∫
e

(
∇û− 1

2
(û⊗ β)− p̂I

)
ne · JδhK,464

465

where I is identity matrix of size 2 × 2. For a better representation of the analysis,466

we define γ := ∇û− 1
2 (β ⊗ û)T − p̂I. By employing orthogonality of the polynomial467

projection operator, we rewrite the term as follows468

469

N h((û, p̂), δh) =
∑

e∈Eint

∫
e

(γ −Π0
k−1,Kγ)ne · Jδh −P0δhK470

≤ ∥γ −Π0
k−1,Kγ∥e,0 ∥δh −P0δh∥e,0,471472

where P0 is the projection operator on constant polynomial space. By using trace473

inequality and approximation properties of the L2 projection operator, we derive as474

(4.10) ∥γ −Π0
k−1,Kγ∥e,0 ≤ Chmin{s,k}− 1

2 |γ|s,K .475

By using the approximation property of the L2 projection operator P0, we derive the476

bound as follows:477

(4.11) ∥JδhK∥0,e ≤ Ch1/2|δh|1,K .478

By employing inequalities (4.10), and (4.11), we bound the consistency error as follows479

(4.12) N h((û, p̂), δh) ≤ Chmin{s,k} (|û|1+s,Ω + |p̂|s,Ω) |δh|1,h.480

Upon inserting estimates (4.5),(4.6), (4.7), (4.8), and (4.12) into (4.1), we obtain the481

bound482

(4.13) ∥û− ûh∥1,h ≤ Chmin{s,k} (|û|1+s,Ω + |p̂|s,Ω + |f |s−1,Ω) .483

Further following the analogous arguments as [35, Theorem 13], and the bound of484

polynomial consistency error for the convective term, we derive the estimate for pres-485

sure variable, i.e.,486

(4.14) ∥p̂− p̂h∥0,Ω ≤ Chmin{s,k} (|û|1+s,Ω + |p̂|s,Ω + |f |s−1,Ω) .487

Upon using (4.13) and (4.14) we obtain the desire result.488

4.1. L2 Error estimates for the velocity. In this part, we would like to bound489

the error in L2 norm. To achieve the goal, we first define the dual problem as follows:490

Find (ψ, ξ) ∈ X such that491

−ν∆ψ − div(ψ ⊗ β)−∇ξ = (û− ûh) in Ω,(4.15)492

divψ = 0 in Ω,(4.16)493

(ξ, 1) = 0 in Ω,(4.17)494

ψ = 0 on ∂Ω.(4.18)495496
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The model problem (4.15)-(4.18) is well posed. By applying the classical regularity497

theorem, we derive that498

(4.19) ∥ψ∥2,Ω + ∥ξ∥1,Ω ≤ ∥û− ûh∥0,Ω.499

By multiplying vh = û− ûh in (4.15), we derive that500

(4.20)

∫
Ω

(
− ν∆ψ − div(ψ ⊗ β)−∇ξ

)
(û− ûh) = ∥û− ûh∥20,Ω.501

Now, since ∇ · β = 0, by employing integration by parts, we rewrite (4.20) as follows502

503

(4.21) ∥û− ûh∥20,Ω = â(û− ûh,ψ)− bh(û− ûh, ξ)504

+
∑
e∈E

∫
e

(
−∇ψ − 1

2
(ψ ⊗ β)− ξI

)
ne · Jû− ûhK.505

506

By employing the arguments as (4.12), and classical regularity result (4.19), we bound507

the following term as follows508

509

(4.22)∑
e∈E

∫
e

(
−∇ψ − 1

2
(ψ ⊗ β)− ξI

)
ne · Jû− ûhK ≤ Ch(|ψ|2,Ω + |ξ|1,Ω)∥û− ûh∥1,h510

≤ Chmin{s,k}+1(|û|1+s,Ω + |p̂|s,Ω + |f |s−1,Ω)∥û− ûh∥0,Ω.511

512

Further, using the fact that bh(û− ûh,Rhξ) = 0, we rewrite the terms as follows513

514

(4.23) a(û− ûh,ψ)− bh(û− ũh, ξ)515

= a(û− ûh,ψ − Iψ)− bh(û− ûh, ξ −Rhξ) + a(û− ûh, Iψ).516517

By employing the estimate (4.13), approximation properties of the interpolation op-518

erator, and regularity result (Eqn (4.19)) we find519

520

(4.24) a(û− ûh,ψ − Iψ)− bh(û− ûh, ξ −Rhξ)521

≤ C∥β∥∞,Ω∥û− ûh∥1,h∥ψ − Iψ∥1,h + ∥û− ûh∥1,h∥ξ −Rhξ∥0,Ω522

≤ C∥β∥∞,Ωh
min{s,k}(|û|1+s,Ω + |p̂|s,Ω + |f |s−1,Ω)(|ψ|2,Ω + ∥ξ∥1,Ω)h523

≤ C∥β∥∞,Ωh
min{s,k}+1(|û|1+s,Ω + |p̂|s,Ω + |f |s−1,Ω)∥û− ûh∥0,Ω.524525

Further, with the estimate b(ψ, p̂ − p̂h) = 0, we rewrite the last term of (4.23) as526

follows527

a(û− ûh, Iψ) = a(û, Iψ)− a(ûh, Iψ)

=
(
a(û, Iψ) + b(Iψ, p̂)− c(f , Iψ)

)
+
(
ah(ûh, Iψ)− a(ûh, Iψ)

)
+
(
c(f , Iψ)− ch(f , Iψ)

)
+ b(ψ − Iψ, p̂− p̂h).

(4.25)

528
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Since Iψ ∈ Uh, the term a(û, Iψ) + b(Iψ, p̂)− c(f , Iψ) measures the inconsistency529

due to non-conforming property of the discrete space. By using analogous arguments530

as (4.9), we bound the term531

(4.26) a(û, Iψ)+ b(Iψ, p̂)− c(f , Iψ) ≤ Chmin{s,k}+1(|û|1+s,Ω+ |p̂|s,Ω)∥û− ûh∥0,Ω.532

Upon employing the boundedness of the L2 projection operator, result (4.19), we533

bound the discrete load term as follows534

(4.27) c(f , Iψ)− ch(f , Iψ) ≤ Chmin{s,k}+1|f |s−1,Ω∥û− ûh∥0,Ω.535

Using the approximation properties of the interpolation operator and estimate (4.13),536

we derive that537

(4.28) b(ψ − Iψ, p̂− p̂h) ≤ Chmin{s,k}+1|û|1+s,Ω∥û− ûh∥0,Ω.538

Now, we focus to bound the term (ah(ûh, Iψ)− a(ûh, Iψ)) as follows539

ah(ûh, Iψ)−a(ûh, Iψ) =
∑

K∈Th

[
aKh (ûh −Π0

Kû, Iψ −Π0
1,Kψ)

− aK(ûh −Π0
Kû, Iψ −Π0

1,Kψ) + aKh (Π0
Kû, Iψ)− aK(Π0

Kû, Iψ)

+ aKh (ûh,Π
0
1,Kψ)− aK(ûh,Π

0
1,Kψ)

]
.

(4.29)

540

By using the approximation properties of the projection operator and interpolation541

operator, we bound the term as follows542

(4.30)
∑

K∈Th

aKh (ûh, Iψ)− aK(ûh, Iψ) ≤ Chmin{s,k}+1|û|1+s,Ω∥û− ûh∥0,Ω.543

By inserting the estimates (4.26), (4.27),(4.28), (4.29), (4.30) into (4.25), we obtain544

(4.31) a(û− ûh, Iψ) ≤ Chmin{s,k}+1|û|1+s,Ω∥û− ûh∥0,Ω.545

Using the estimates (4.22), (4.24), and (4.31) into (4.21), we derive546

∥û− ûh∥0,Ω ≤ Chmin{s,k}+1(|û|1+s,Ω + |p̂|s,Ω + |f |s−1,Ω).547

We have the following consequence548

Lemma 4.2. There exists a constant C > 0 independent of mesh size h such that549

∥(T − T h)f∥0,Ω ≤ Chmin{s,k}+1(|û|1+s,Ω + |p̂|s,Ω + |f |s−1,Ω).550

The above statement is state forward due to previous result, and Theorem 2.1. The551

next results establish the convergence of the operator T ∗
h to T ∗ as h goes to zero in552

broken norm and in the L2 norm. The proof can be obtained repeating the same553

arguments as those used in the previous section.554

Theorem 4.3. Let f ∈ L2(Ω,C) ∩Hs∗−1(Ω) be such that û∗ := T ∗f and û∗
h :=555

T ∗
hf . Then, there exists a positive constant C, independent of h, such that556

∥(T ∗ − T ∗
h)f∥1,h = ∥û∗ − û∗

h∥1,h ≤ Chmin{k,s∗}
(
|û∗|1+s∗,Ω + |p̂∗|s∗,Ω + ∥f∥s∗−1,Ω

)
.557
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558

∥(T ∗−T ∗
h)f∥0,Ω = ∥û∗− û∗

h∥0,Ω ≤ Chmin{k,s∗}+1
(
|û∗|1+s∗,Ω+ |p̂∗|s∗,Ω+∥f∥s∗−1,Ω

)
.559

where C is a positive constant independent of h.560

As a consequence of the previous results is that, according to the theory of [21], we561

are in a position to conclude that our numerical method does not introduce spurious562

eigenvalues. This is stated in the following theorem.563

Theorem 4.4. Let V ⊂ C be an open set containing sp(T ). Then, there exists564

h0 > 0 such that sp(T h) ⊂ V for all h < h0.565

5. Spectral approximation and error estimates:. We will obtain conver-566

gence and error estimates for the suggested nonconforming VEM discretization for567

the Oseen eigenvalue problem in this section. More precisely, we shall prove that T h568

gives a valid spectral approximation of T by using the classical theory for compact569

operators (see [10]). The equivalent adjoint operators T ∗
h and T ∗ of T h and T , re-570

spectively, will then have a comparable convergence result established. First, let’s571

review what spectral projectors are. Let µ be an algebraic multiplicity m nonzero572

eigenvalue of T . C sets a circle with a centre at µ in the complex plane, ensuring573

that no other eigenvalue is contained inside C. Furthermore, think about the spectral574

projections E and E∗ in the manner described below:575

E := (2πi)−1

∫
C

(z − T )−1dz E∗ := (2πi)−1

∫
C

(z − T ∗)−1dz,576

where E and E∗ are projections onto the space of generalized eigenvectors R(E)577

and R(E∗), respectively. Now, it is easy to prove that R(E), R(E∗) ∈ Hr+1 × Hr,578

and R(E∗) ∈ Hr∗+1 × Hr∗(see Theorem 2.1 and 2.3). Next, since T h converges579

to T , it means that there exist m eigenvalues (which lie in C) µ(1), . . . , µ(m) of580

T h (repeated according to their respective multiplicities) which will converge to µ581

as h goes to zero. In the same sense, we introduce the following spectral projector582

Eh := (2πi)−1
∫
C
(z−T h)

−1dz, which is a projector onto the invariant subspace R(Eh)583

of T h spanned by the generalized eigenvectors of T h corresponding to µ(1), . . . , µ(m).584

We also recall the definition of gap δ̂ between the closed subspaces X , and Y of L2.585

δ̂(X ,Y) := max{δ(X ,Y), δ(Y ,X )},586

where587

δ(X ,Y) = sup
x∈X ;∥x∥L2=1

δ(x,Y), with δ(x,Y) = inf
y∈Y;∥y∥L2=1

∥x− y∥L2 .588

The following error estimates for the approximation of eigenvalues and eigenfunctions589

hold true.590

Theorem 5.1. There exists a strictly positive constant C such that591

δ̂(R(E), R(Eh)) ≤ Chmin{r,k}+1;(5.1)592

|µ− µ̂h| ≤ Chmin{r,k}+min{r∗,k},(5.2)593594

where µ̂h := 1
m

∑m
j=1 µ

j
h, where r ≥ 1, and r∗ ≥ 1 are the orders of regularity of the595

eigenfunctions of primal and dual problems.596
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Proof. The estimate (5.1) follows from [10, Theorem 7.1], and the fact that ∥T h−597

T ∥0,Ω ≈ O(hmin{r,k}+1) (Lemma 4.2). In what follows we will prove (5.2): assume598

that T (uj) = µuj , for j = 1, 2, . . . ,m. Since A(·, ·) is an inner-product, we can choose599

a dual basis for R(E∗) denoted by (u∗
j ) satisfying600

(5.3) ⟨uj ,u
∗
l ⟩ := A(uj ,u

∗
l ) = δjl,601

where ⟨·, ·⟩ denotes the corresponding duality pairing. Now, from [10, Theorem 7.2],602

we have that603

(5.4) |µ− µ̂h| ≤
1

m

m∑
k=1

∣∣∣⟨(T −T h)uk,u
∗
k⟩
∣∣∣+∥(T −T h)|R(E)∥0,Ω∥(T ∗−T ∗

h)|R(E)∥0,Ω,604

where ⟨·, ·⟩ denotes the corresponding duality pairing. The estimate of the second605

term of (5.4) is quite obvious. In this direction, we need bound of ∥(T −T h)∥0,Ω, and606

∥(T ∗ −T ∗
h)∥0,Ω which are achieved from Lemma 4.2, and Theorem 4.3. However, the607

estimate of ⟨(T − T h)uk,u
∗
k⟩ is not straightforward, and it needs arguments same as608

[4].609

⟨(T − T h)uk,u
∗
k⟩ = A((T − T h)uk, pk − pk,h); (u

∗
k, p

∗
k))

= A((T − T h)uk, pk − pk,h); (u
∗
k, p

∗
k)− (vh, ηh))

+A((Tuk, pk); (vh, ηh))−A((T huk, pk,h); (vh, ηh))

= A((T − T h)uk, pk − pk,h); (u
∗
k, p

∗
k)− (vh, ηh)) + c(uk,vh)

+N h((Tuk, pk),vh)−A((T huk, pk,h), (vh, ηh))

+Ah((T huk, pk,h), (vh, ηh))− ch(uk,vh).

(5.5)

610

In the above estimate, the consistency error N h(·, ·) appears since Uh ̸⊂ H1(Ω). Now,611

we proceed to bound the terms appeared in (5.5). In (5.5), we have mentioned that612

(vh, ηh) ∈ Uh × Qh is any discrete function. However, to achieve optimal rate of613

convergence of the spectrum, choose (vh, ηh) := (Iu∗
k,Rhp

∗
k). Upon employing, the614

approximation properties of the interpolation operator, we bound the term as follows:615

616

(5.6) A((T − T h)uk, pk − pk,h), (u
∗
k, p

∗
k)− (Iu∗

k,Rhp
∗
k))617

≤ C∥(T − T h)uk∥1,h∥u∗
k − Iu∗

k∥1,h + ∥(T − T h)uk∥1,h∥p∗k −Rhp
∗
k∥0,Ω618

+ ∥pk − pk,h∥0,Ω∥u∗
k − Iu∗

k∥1,h.619620

By employing Lemma 3.1, and spectral convergence of the primal problem, we have621

622

(5.7) A((T − T h)uk, pk − pk,h), (u
∗
k, p

∗
k)− (Iu∗

k,Rhp
∗
k))623

≤ Chmin{r,k}+min{r∗,k}
(
|uk|1+r,Ω + |pk|r,Ω + |f |r−1,Ω

)(
|u∗

k|1+r∗,Ω + |p∗k|r∗,Ω
)
.624

625

By employing the polynomial consistency property of the load term and approxima-626

tion property of the L2 projection operator, we have627

c(uk,vh)− ch(uk,vh) =
∑

K∈Th

cK(uk − uk,π, Iuk − uk,π)

+ cKh (uk − uk,π, Iuk − uk,π) ≤ Ch2min{r,k}+2|uk|1+r,Ω.

(5.8)

628
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The difference between continuous and discrete forms can be bounded as follows[4]629

Ah((T huk, pk,h), (Iu∗
k,Rhp

∗
k))−A((T huk, pk,h), (Iu∗

k,Rhp
∗
k))

≤ Chmin{r,k}+min{r∗,k}
(
|uk|1+r,Ω + |pk|r,Ω + |f |r−1,Ω

)(
|u∗

k|1+r∗,Ω + |p∗k|r∗,Ω
)
.

(5.9)

630

In the above estimate, we have added and subtracted Π0
KT huk, and applied the631

approximation properties of the interpolation operator. Now, we are in a situa-632

tion to bound the variational crime associated with the formulation. Recollecting633

N h((µuk, pk),u
∗
k) = 0, we rewrite the term as follows:634

N h((µuk, pk), Iu∗
k) = N h((µuk, pk), Iu∗

k − u∗
k)

≤ Chmin{r,k}
(
|uk|1+r,Ω + |pk|r,Ω

)(
|Iu∗

k − u∗
k|1,h

)
≤ Chmin{r,k}+min{r∗,k}

(
|uk|1+r,Ω + |pk|r,Ω

)
|u∗

k|1+r∗,Ω.

(5.10)635

Upon inserting (5.7), (5.8), (5.9), and (5.10) into (5.5), we obtain an estimate for the636

term ⟨(T − T h)uk,u
∗
k⟩, and consequently double order convergence of the spectrum,637

i.e., (5.4).638

6. Numerical experiments. We end our paper reporting some numerical tests639

to illustrate the performance of our method. The implementation of the method has640

been developed in a Matlab code. The goal is to assess the performance of the method641

on different domains and of course, study the presence of spurious eigenvalues. After642

computing the eigenvalues, the rates of convergence are calculated by using a least-643

square fitting. More precisely, if λh is a discrete complex eigenvalue, then the rate of644

convergence α is calculated by extrapolation with the least square fitting645

(6.1) λh ≈ λextr + Chα,646

where λextr is the extrapolated eigenvalue given by the fitting.647

For the tests we consider the following families of polygonal meshes which satisfy648

the assumptions A1 and A2 (see Figure 1):649

• T 1
h : trapezoidal meshes;650

• T 2
h : squares meshes;651

• T 3
h : structured hexagonal meshes made of convex hexagons;652

• T 4
h : non-structured Voronoi meshes.653

6.1. Test 1: a square domain. In this first test, we have taken Ω = (−1, 1)2,654

β = (1, 0)t. On this type of domain, the eigenfunctions are sufficiently smooth due the655

convexity of the square and the null boundary conditions. Hence, an optimal order656

of convergence is expected with our method. For this test we consider the meshes657

reported in Figure 1. The results are contained in Table 1 where in the column658

”Order” we report the computed order of convergence for the eigenvalues, which has659

been obtained with the least square fitting (6.1), together with extrapolated values660

that we report on the column ”Extr.”661

6.2. Test case 2: L shaped domain. In this example, we consider non-convex662

domain which is called as L shaped domain, defined as ΩL := (−1, 1) × (−1, 1) \663

[−1, 0]× [−1, 0](Figure 3). The eigenfunctions have singularity at (0, 0) therefore the664

convergence order of the corresponding eigenvalues are not optimal. According to665
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Fig. 1. Sample meshes: T 1
h (top left), T 2

h (top right), T 3
h (bottom left), T 4

h (bottom right) for
N = 8 and 10.

the regularity of the eigenfunctions, the rate of convergence r for the eigenvalues is666

such that 1.7 ≤ r ≤ 2. In Table 2, we display the results for the model problem.667

In Figures 4, we have dissected the first three discrete velocity and pressure fields.668

Table 2’s results demonstrate that the approach provides the anticipated convergence669

behavior in the eigenvalue approximation. Because of the geometrical singularity670

of the re-entrant angle, the eigenfunction associated with the first eigenvalue is not671

sufficiently smooth when compared to the eigenfunctions of the other eigenvalues.672

The order of convergence for the first computed eigenvalue reflects this fact.673

6.3. Spurious analysis. The aim of this test is to analyze numerically the674

influence of the stabilization parameter on the computation of the spectrum. It is well675

know that if this parameter is not correctly chosen, may appear spurious eigenvalues.676

We refer to [25, 23, 24, 31] where the VEM reports this phenomenon. It is well known677

that under some configurations of the domain, more precisely, convexity and boundary678

conditions, the arise of spurious eigenvalues when stabilized methods are considered679

compared when the same methods are implemented in domains with null boundary680

Dirichlet conditions. We refer to the reader to [25, 22] where this is discussed. Hence,681

for this experiment we consider the following problem: Given a domain Ω ⊂ R2, let682
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Table 1
The lowest computed eigenvalues λh,i, 1 ≤ i ≤ 4 on different meshes.

Th λh,i N = 16 N = 32 N = 64 N = 128 Order Extr. [27]
λ1,h 13.5455 13.5931 13.6054 13.6085 1.95 13.6097 13.6096

T 1
h λ2,h 22.9603 23.0917 23.1204 23.1274 2.17 23.1291 23.1297

λ3,h 23.2729 23.3893 23.4147 23.4209 2.17 23.4223 23.4230
λ4,h 31.7714 32.1695 32.2658 32.2900 2.04 32.2973 32.2981
λh,1 13.5670 13.5990 13.6069 13.6089 2.00 13.6096 13.6096

T 2
h λh,2 22.9501 23.0917 23.1206 23.1275 2.26 23.1289 23.1297

λh,3 23.2825 23.3948 23.4163 23.4213 2.35 23.4221 234230
λh,4 31.8671 32.1979 32.2735 32.2920 2.11 32.2971 32.2981
λh,1 13.6980 13.6318 13.6151 13.6110 1.99 13.6095 13.6096

T 3
h λh,2 23.3644 23.1976 23.1472 23.1341 1.77 23.1277 23.1297

λh,3 23.7112 23.4960 23.4411 23.4275 1.98 23.4227 23.4230
λh,4 32.8415 32.4460 32.3354 32.3074 1.86 32.2951 32.2981
λh,1 13.6935 13.6276 13.6135 13.6106 2.23 13.6097 13.6096

T 4
h λh,2 23.3782 23.1945 23.1443 23.1334 1.92 23.1280 23.1297

λh,3 23.6837 23.4885 23.4379 23.4268 1.98 23.4219 23.4230
λh,4 32.7775 32.4220 32.3255 32.3051 1.94 32.2951 32.2981

Table 2
The lowest computed eigenvalues λh,i, 1 ≤ i ≤ 4 on different meshes.

Th λh,i N = 16 N = 32 N = 64 N = 128 Order Extr. [27]
λ1,h 31.6764 32.5080 32.8513 32.8855 1.65 32.8949 33.0306

T 5
h λ2,h 36.6099 36.9845 37.0997 37.1058 2.02 37.1073 37.1106

λ3,h 41.8939 42.2468 42.3768 42.3878 1.79 42.3901 42.4023
λ4,h 48.7401 49.1200 49.2219 49.2247 2.19 49.2264 49.2552
λh,1 31.2535 32.3647 32.7931 32.8151 1.76 32.8303 33.0306

T 6
h λh,2 36.1669 36.8918 37.0938 37.1058 2.13 37.1066 37.1106

λh,3 41.8756 42.2558 42.3880 42.3978 1.86 42.4000 42.4023
λh,4 49.4014 49.2980 49.2609 49.2577 1.82 49.2572 49.2552

us assume that its boundary ∂Ω is such that ∂Ω := ΓD ∪ ΓN where |ΓD| > 0.683

(6.2)


−ν∆u+ (β · ∇)u+∇p = λu inΩ,

divu = 0 inΩ,
u = 0 onΓD,

(ν∇u− pI) · n = 0 onΓN ,

684

where I ∈ Cd×d is the identity matrix. Clearly from (6.2) a part of the boundary ∂Ω685

changes from Dirichlet to Neumann leading to a different configuration from prob-686

lem(2.1) and hence, the stabilization term may introduce spuious eigenvalues that687

cannot being observed on a clamped domain. In particular, for the computational688

tests we have considered Ω := (0, 1)2 and β := (1, 0)t as convective term.689

In Tables 3 and 4 we report the computed results for quadrilateral and voronoi690

meshes, respectively. From Table 3 we observe that when the stabilization parameter691

αE is small, more precisely, is such that αE < 1, an important amount of spurious692

eigenvalues arise on the computed spectrum which start to vanish when αE increases.693

This phenomenon is clear for both families of meshes T 1
h and T 2

h . For other families694
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Fig. 2. First, second and third magnitude of the eigenfunctions in the square together with
the associated pressures: first column u1,h, u2,h and u3,h ;second column: p1,h, p2,h and p3,h; for
different family of meshes.

of polygonal meshes the results are similar.695
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Fig. 3. Sample meshes: T 5
h ( left panel), T 6

h ( right panel) for N = 8

Table 3
Computed eigenvalues for different values of αE with T 1

h .

αE=1/32 αE=1/16 αE=1/4 αE=1 αE=4 αE=16 αE=32

1.4756 2.0870 2.4106 2.4592 2.4699 2.4725 2.4729

1.6460 2.9541 5.0781 5.8418 6.1009 6.1942 6.2204

1.7314 3.4238 12.2493 14.9763 15.2397 15.3516 15.3869

1.7403 3.4620 12.9070 21.1375 22.3902 22.6216 22.6584

1.7434 3.4755 13.4713 24.3622 26.5618 27.0429 27.1458

1.7461 3.4866 13.5881 37.6233 43.4899 44.4647 44.6536

1.7465 3.4883 13.7754 40.5498 46.3123 47.5366 47.8232

1.7476 3.4931 13.8329 44.8864 62.6882 64.8430 65.1451

1.7476 3.4931 13.9038 45.6918 62.8106 65.2323 65.6622

1.7482 3.4954 13.9206 51.1740 73.0533 74.6701 75.0219

Table 4
Computed eigenvalues for different values of αE with T 2

h .

αE=1/32 αE=1/16 αE=1/4 αE=1 αE=4 αE=16 αE=32
1.3079 1.9108 2.3682 2.4508 2.4693 2.4738 2.4746

1.4751 2.6176 4.7627 5.7418 6.1175 6.2326 6.2538

1.5773 3.1053 10.8813 14.9485 15.2728 15.3987 15.4251

1.5888 3.1537 11.6653 20.2761 22.3258 22.7300 22.7935

1.5929 3.1711 12.2935 23.3574 26.5470 27.1798 27.2809

1.5965 3.1857 12.5435 36.2960 43.3638 44.5662 44.7522

1.5970 3.1879 12.5978 38.9726 46.2787 47.8972 48.1768

1.5985 3.1940 12.6964 40.1479 61.8863 65.7328 66.2699

1.5986 3.1946 12.7105 41.7956 62.5039 66.1776 66.7132

1.5993 3.1973 12.7546 47.2934 73.3563 75.1252 75.4144

The natural question now is if the refinement of the meshes causes some behavior696

on the spurious eigenvalues. To observe this, in Table 5 we report the computed697
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Fig. 4. First, second and third magnitude of the eigenfunctions in the nonconvex L domain
together with the associated pressures: first column u1,h, u2,h and u3,h ;second column: p1,h, p2,h
and p3,h; for different family of meshes.

eigenvalues for αE = 1/16 and different refinements of the meshes T 1
h and T 2

h .698
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Fig. 5. First, second and third magnitude of the eigenfunctions with N = 32, for different
family of meshes.

Table 5
First ten approximated eigenvalues for T 1

h , T 2
h and αE = 1/16.

T 1
h T 2

h

λi,h N = 8 N = 16 N = 32 N = 64 N = 8 N = 16 N = 32 N = 64

λ1,h 2.0870 2.4062 2.4536 2.4640 1.9108 2.3625 2.4434 2.4675

λ2,h 2.9541 5.0980 5.9016 6.1662 2.6176 4.7627 5.7403 6.2711

λ3,h 3.4238 12.1729 15.0548 15.3446 3.1053 10.7987 14.9670 15.4816

λ4,h 3.4620 12.8841 20.7115 21.9155 3.1537 11.6268 19.7656 22.2157

λ5,h 3.4755 13.5330 24.3679 26.5839 3.1711 12.2229 23.1339 27.1272

λ6,h 3.4866 13.5547 36.9583 42.3002 3.1857 12.5104 35.4604 43.3846

λ7,h 3.4883 13.7505 40.8357 46.9367 3.1879 12.5338 38.5668 48.4105

λ8,h 3.4931 13.7849 43.3386 59.0853 3.1940 12.6514 38.8406 61.7552

λ9,h 3.4931 13.8772 45.3771 61.8600 3.1946 12.6648 41.0988 64.6454

λ10,h 3.4954 13.8772 50.2525 73.6216 3.1973 12.7087 45.7664 75.3587

Table 5 reveals that a refinement strategy is capable to avoid the spurious eigen-699

values from the spectrum. This is an important fact that confirms the good properties700

fo the NCVEM on our eigenvalue context. In fact, we observe that when αE = 1/16701

is considered, the spectrum gets cleaner when the mesh is refined. Moreover, this test702

suggests that αE = 1 is a suitable value to be considered for the approximation as in,703

for instance, [15].704
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7. Conclusion. For the nonsymmetric Oseen eigenvalue problem, we have pre-705

sented a divergence-free, arbitrary-order accurate, nonconforming virtual element ap-706

proach that applies to highly generic shaped polygonal domains. We performed a707

convergence study of the eigenfunctions using a solution operator on the continuous708

space. In addition, we utilized the idea of compact operators to define the discrete709

operator associated to the discrete problem and demonstrate the convergence of the710

approach. In the end, we were able to retrieve the double order of convergence of711

the eigenvalues by taking use of the extra regularity of the eigenfunctions. Our next712

area of interest will be a continuation of the analysis with minimum regularity of the713

eigenfunctions.714
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