Erwan Hingant

Profesor Asistente

Address
Departamento de Matemática,
Facultad de Ciencias,
Universidad del Bío-Bío,
Casilla 5-C, Concepción, Chile.
Contact
Ph.: +56 41 311 1096
Mail: ehingant [at] ubiobio.cl
Academical background
Post-Doc at Universidade Federal de Campina Grande, Brasil (2016)
Post-Doc at CI2MA, Universidad de Concepción, Chile (2012-2015)
PhD in Applied Mathematics, Université CLaude Bernard Lyon 1, France (2012)
Recents / Preprints
E. Hingant and R. Yvinec, The Becker-Döring process: law of large numbers and non-equilibrium potential, Submitted (2018).
Published articles
J. Deschamps, E. Hingant and R. Yvinec, Quasi steady state approximation of the small clusters in Becker-Döring equations leads to boundary conditions in the Lifshitz-Slyozov limit, Comm. Math. Sci. 15 (2017), no. 5, 1353-1384.
R. Yvinec, S. Bernard, E. Hingant and L. Pujo-Menjouet, First passage times in homogeneous nucleation: dependence on the total number of particles, J. of Chemical Physics 144 (2016), no. 4, e034106.
E. Hingant and M. SepĂșlveda, Derivation and mathematical study of a sorption-coagulation equation, Nonlinearity 28 (2015), no. 10, 3623-3661.
M. Helal, E. Hingant, L. Pujo-Menjouet and G. F. Webb, Alzheimer's disease: analysis of a mathematical model incorporating the role of prions, J. of Mathematical Biology 69 (2014), no. 5, 1207-1235.
E. Hingant et al., A micellar on-pathway intermediate step explains the kinetics of prion amyloid formation, PLoS Computational Biology 10 (2014), e1003735.
I. S. Ciuperca, E. Hingant, L. I. Palade and L. Pujo-Menjouet, Fragmentation and monomers lengthening of rod-like polymers, a relevant model for prion proliferation, Discrete Contin. Dyn. Syst. Ser. B 17 (2012), no. 3, 775-799.
M. T. Alvarez-Martinez et al., Dynamics of polymerization shed light on the mechanisms that lead to multiple amyloid structures of the prion protein, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1814 (2011), no. 10, 1305-1317.
Book chapter
E. Hingant and R. Yvinec, Deterministic and stochastic Becker-Döring equations: past and recent mathematical developments, In: Holcman D. (ed.) Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology (2017), Springer.
Proceedings / Actas
J. Deschamps, E. Hingant and R. Yvinec, From Becker-Döring to Lifshitz-Slyozov: deriving the non-local boundary condition of a non-linear transport equation, ITM Web of Conferences 5 (2015), 17.
Workshop on Multiscale and Hybrid Modelling in Cell and Cell Population Biology, UPMC, Paris, March 16-17, 2015, V. Volpert and J. Clairambault (Eds.)
Reports / Unpublished notes / Others
StoBeDo v0.1 (2016). A program to simulate the stochastic Becker-Döring equations, written in python, with R. Yvinec, disponible on Github.
Boundary value for a nonlinear transport equation emerging from a stochastic coagulation-fragmentation type model, with J. Deschamps and R. Yvinec, preprint arXiv:1412.5025 (2015).
Contributions à la modélisation mathématiques et numériques de problèmes issus de la biologie: Applications aux prions et Alzheimer, manuscript of Ph.D. thesis in applied mathematics (2012), UniversitĂ© Claude Bernard Lyon 1, France.
A numerical scheme for rod-like polymers with fragmentation and monomers lengthening, Preprint hal-00653394 (2011), Chap. 6 of the Ph.D. thesis.