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VIRTUAL ELEMENTS FOR THE TRANSMISSION EIGENVALUE
PROBLEM ON POLYTOPAL MESHES\ast 

DAVID MORA\dagger AND IV\'AN VEL\'ASQUEZ\ddagger 

Abstract. The transmission eigenvalue problem is a challenging model in the inverse scattering
theory and has important applications in this topic. The aim of this paper is to analyze a C1 virtual
element method on polytopal meshes in \BbbR d (d = 2, 3) for solving a quadratic and non-self-adjoint
fourth-order eigenvalue problem derived from the transmission eigenvalue problem. Optimal order
error estimates for the eigenfunctions and a double order for the eigenvalues are obtained by using
the approximation theory for compact non-self-adjoint operators. Finally, a set of numerical tests
illustrating the good performance of the virtual scheme are presented.
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1. Introduction. The transmission eigenvalue problem can be stated as follows
(see, for instance, [21, 37]). Find \kappa \in \BbbC and w1, w2 \in L2(\Omega ) with w1  - w2 \in H2(\Omega )
such that

\Delta w1 + \kappa 2nw1 = 0 in \Omega ,(1.1a)

\Delta w2 + \kappa 2w2 = 0 in \Omega ,(1.1b)

w1  - w2 = 0 on \Gamma ,(1.1c)

\partial \nu w1  - \partial \nu w2 = 0 on \Gamma .(1.1d)

The system (1.1a)--(1.1b) together with the boundary conditions (1.1c)--(1.1d)
corresponds to the scattering problem for an isotropic inhomogeneous medium for the
Helmholtz equation, where \Omega \subseteq \BbbR d (d = 2, 3) is a bounded simply connected Lipschitz
domain with boundary \Gamma := \partial \Omega . Here, \nu denotes the outward unit normal vector to
\Gamma , \partial \nu denotes the normal derivative, and n is the index of refraction.

The transmission eigenvalue problem (1.1a)--(1.1d) is a nonlinear and non-self-
adjoint eigenvalue problem which plays an important role in inverse scattering theory
(see [14, 13]). For instance, the transmission eigenvalues can be determined from
the far-field data of the scattered wave and used to obtain estimates for the mate-
rial properties of the scattering object. The numerical solution of the transmission
eigenvalue problem has attracted interests from many researchers in the last years.
For instance, several conforming and nonconforming finite element methods, mixed
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A2426 DAVID MORA AND IV\'AN VEL\'ASQUEZ

formulations, among others, have been proposed. We cite as a minimal sample of
them [15, 16, 17, 18, 22, 25, 36, 39, 42].

The transmission eigenvalue problem is often solved by reformulating it as a
fourth-order eigenvalue problem. More precisely, by introducing a new unknown u :=
w1  - w2 \in H2

0 (\Omega ), the model problem (1.1a)--(1.1d) can be rewritten as follows:

(\Delta + \kappa 2n)
1

n - 1
(\Delta + \kappa 2)u = 0 in \Omega .(1.2)

In [16] it has been introduced and analyzed as a conforming C1  - C0 variational
formulation in two dimensions (2D), using Argyris and Lagrange finite element spa-
ces. A complete analysis of the method including error estimates is proved using the
theory for compact non-self-adjoint operators. In [41] it has been written as a weak
formulation in H2(\Omega )\times L2(\Omega ) for the transmission eigenvalue problem which is based
on a linearization technique. The authors have proposed a conforming C1  - C1 finite
element discretization in 2D and three dimensions (3D), and error estimates have been
obtained. We recall that the construction of C1-conforming finite elements is difficult
in general, since they usually involve a large number of degrees of freedom. They
are often viewed as prohibitively expensive due to their high polynomial degree and
complexity [20]. For instance, the minimal polynomial degree of the 3DC1 is 9; thus,
a conforming C1 finite element method (FEM) on a tetrahedral mesh will require 220
degrees of freedom per element.

The aim of the present paper is to introduce and analyze a virtual element method
in 2D and 3D to solve the fourth-order transmission eigenvalue problem. The vir-
tual element method (VEM) is a new technology introduced in [5] as a generaliza-
tion of FEM which is characterized by the capability of dealing with very general
polygonal/polyhedral meshes, including ``hanging nodes"" and nonconvex elements
(see [12, 23, 24, 29, 30, 34] and refereneces therein). It also permits to easily imple-
ment highly regular conforming discrete spaces which make the method very feasible
to solve fourth-order problems. For instance, in 2D the method has been applied in
a wide range of problems: [2, 3, 7, 8, 11, 31]. In the three-dimensional case, in [6] it
has recently been introduced as a C1 VEM to solve a fourth-order partial differen-
tial equation. Regarding the approximation by VEM of the transmission eigenvalue
problem, in [32] it has been recently presented as a C1-conforming VEM to solve the
spectral problem on general polygonal meshes (only the two-dimensional case). Opti-
mal order error estimates for the eigenfunctions and a double order for the eigenvalues
are derived.

In this paper, we study a new VEM method to solve the transmission eigenvalue
problem in 2D and 3D. More precisely, the goal of this work is to introduce and
analyze a C1 virtual element discretization on polytopal meshes to approximate the
fourth-order transmission eigenvalue problem. Since (1.2) is a nonlinear equation
regarding the parameter \kappa 2, we introduce a new unknown, which leads to a linear
non-self-adjoint variational formulation of the problem written in H2

0 (\Omega ) \times L2(\Omega )
as in [40, 41]. Then, a solution operator is introduced whose spectra is related to
the solutions of the transmission eigenvalue problem. Next, we use the fact that
H2

0 (\Omega ) \subset L2(\Omega ) to propose a conforming discrete formulation based on the virtual
element spaces introduced in [2] and [6]. Then, we employ the spectral theory for non-
self-adjoint compact operators presented in [33] and rather mild assumptions on the
polygonal/polyhedral meshes to obtain that the resulting C1-VEM scheme provides a
correct approximation of the spectrum. In addition, optimal order error estimates for
the eigenfunctions and a double order for the eigenvalues are also obtained. Finally,
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VEM FOR THE TRANSMISSION EIGENVALUE PROBLEM A2427

we remark that the proposed conforming VEM for three-dimensional transmission
eigenvalue problem on tetrahedral meshes employs 16 degrees of freedom per element.
This makes the method highly attractive, in terms of computational cost, compared
with a conforming FEM.

The paper is organized as follows. In section 2, we introduce the weak formulation
associated to the transmission eigenvalue problem and formulate its spectral charac-
terization with a suitable solution operator. In section 3, we present the definitions
of the two-dimensional and three-dimensional C1 virtual element spaces. Then, a
virtual element discrete formulation and its spectral characterization are presented in
section 4. In addition, we prove that the numerical scheme provides a correct spectral
approximation and establish optimal order error estimates for the eigenvalues and
eigenfunctions. Finally, in section 5, we report some numerical tests that confirm the
theoretical analysis developed.

Throughout the article we will use standard notations for Sobolev spaces, norms,
and seminorms. Moreover, we will denote by C a generic constant independent of the
mesh parameter h, which may take different values in different occurrences.

2. The continuous spectral formulation. In this section we introduce a con-
tinuous variational formulation associated to the fourth-order transmission eigenvalue
problem (cf. (1.2)) and its spectral characterization. With this aim, we multiply the
identity (1.2) by w \in H2

0 (\Omega ), and we arrive at the following quadratic eigenvalue
problem: find \kappa \in \BbbC and 0 \not = u \in H2

0 (\Omega ) such that

\int 
\Omega 

1

n - 1
\Delta u\Delta w + \kappa 2

\int 
\Omega 

\Delta u
\Bigl( n

n - 1
w
\Bigr) 
+ \kappa 2

\int 
\Omega 

1

n - 1
u\Delta w + \kappa 4

\int 
\Omega 

n

n - 1
uw = 0

(2.1)

\forall w \in H2
0 (\Omega ).

One of the main difficulties of the variational formulation (2.1) is the nonlinearity
with respect to the parameter \kappa 2. For the theoretical analysis it is convenient to
transform the above variational problem into a linear eigenvalue problem. To do
that, in this work we will consider the following auxiliary variable denoted by z and
defined as follows (see [40]):

z := \kappa 2u in \Omega .(2.2)

In this work, we suppose that n(\bfitx ) =: n \in W 1,\infty (\Omega ), satisfying either one of the
following assumptions for all \bfitx \in \Omega :

1 < n\ast \leq n(\bfitx ) \leq n\ast < \infty ,

0 < n\ast \leq n(\bfitx ) \leq n\ast < 1.
(2.3)

Now, we denote by \BbbH the product space \BbbH := H2
0 (\Omega )\times L2(\Omega ), endowed with the

following product norm

| | (w, v)| | \BbbH :=
\bigl( 
| | D2w| | 20,\Omega + | | v| | 20,\Omega 

\bigr) 1/2
,

where D2w denotes the Hessian matrix of w. Moreover, it is clear that the above
norm is equivalent with the usual norm in H2

0 (\Omega )\times L2(\Omega ).
Using (2.2) we arrive at the following weak formulation of the transmission eigen-

value problem.
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A2428 DAVID MORA AND IV\'AN VEL\'ASQUEZ

Problem 1. Find (\lambda , (u, z)) \in \BbbC \times \BbbH with (u, z) \not = 0 such that

A((u, z), (w, v)) := a1(u,w) + a2(z, v) = \lambda B((u, z), (w, v)) \forall (w, v) \in \BbbH ,(2.4)

where \lambda :=  - \kappa 2 and a1(\cdot , \cdot ), a2(\cdot , \cdot ), B(\cdot , \cdot ) are sesquilinear forms defined as follows:

a1 : H2
0 (\Omega )\times H2

0 (\Omega ) \rightarrow \BbbC , a1(u,w) :=

\int 
\Omega 

1

n - 1
\Delta u\Delta w,(2.5)

a2 : L2(\Omega )\times L2(\Omega ) \rightarrow \BbbC , a2(z, v) :=

\int 
\Omega 

zv,(2.6)

and

B : \BbbH \times \BbbH \rightarrow \BbbC , B((u, z), (w, v)) :=

\int 
\Omega 

\Delta u
\Bigl( n

n - 1
w
\Bigr) 
+

\int 
\Omega 

1

n - 1
u\Delta w(2.7)

+

\int 
\Omega 

n

n - 1
zw  - 

\int 
\Omega 

uv.

Our goal is to introduce and analyze a conforming virtual element discretization
in 2D and 3D to solve Problem 1. We observe that (2.4) has been considered in [41]
where a conforming FEM has been analized and in [40] where a nonconforming C0

interior penalty Galerkin (IPG) finite element discretization has been presented.
It is easy to check that the forms A(\cdot , \cdot ) and B(\cdot , \cdot ) satisfy the following bounds.

Lemma 2.1. There exist positive constants \alpha 0 and C that depend on the index of
refraction n such that

A((w, v), (w, v)) \geq \alpha 0| | (w, v)| | 2\BbbH ,(2.8)

| A((u, z), (w, v))| \leq C| | (u, z)| | \BbbH | | (w, v)| | \BbbH ,(2.9)

| B((u, z), (w, v))| \leq C| | (u, z)| | \BbbH | | (w, v)| | \BbbH (2.10)

for all (u, z), (w, v) \in \BbbH .

According to Lemma 2.1, we are in a position to introduce the solution operator.

\scrS : \BbbH  - \rightarrow \BbbH 
(f, g) \mapsto  - \rightarrow \scrS (f, g) = (\widetilde u, \widetilde z)

defined as the unique solution (see Lemma 2.1) of the following source problem:

A((\widetilde u, \widetilde z), (w, v)) = B((f, g), (w, v)) \forall (w, v) \in \BbbH .(2.11)

Thus, we have that the linear operator \scrS is well defined and bounded. Moreover,
we have that (\lambda , (u, z)) solves Problem 1 if and only if (\mu , (u, z)) is an eigenpair of \scrS ;
i.e., \scrS (u, z) = \mu (u, z), with \mu := 1/\lambda .

We observe that no spurious eigenvalues are introduced into the problem. In fact,
if \mu \not = 0, then (0, z) is not an eigenfunction of the problem.

The following is an additional regularity result associated to the solution of the
source problem (2.11).

Lemma 2.2. There exist s \in (0, 1] and a positive constant C depending on the
index of refraction n such that for all (f, g) \in \BbbH , the solution (\widetilde u, \widetilde z) of (2.11) satisfies
(\widetilde u, \widetilde z) \in H2+s(\Omega )\times H2

0 (\Omega ) and

| | \widetilde u| | 2+s,\Omega + | | \widetilde z| | 2,\Omega \leq C| | (f, g)| | \BbbH .
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VEM FOR THE TRANSMISSION EIGENVALUE PROBLEM A2429

Proof. The estimate for \widetilde u follows from the classical regularity result for the bi-
harmonic problem with its right-hand side in H - 1(\Omega ) (see, for instance, [9, 27, 35]).
On the other hand, from (2.11) we have that \widetilde z = f \in H2

0 (\Omega ). We conclude the
proof.

Now, from Lemma 2.2 and the fact that the inclusion H2+s(\Omega ) \times H2
0 (\Omega ) \lhook \rightarrow \BbbH 

is compact, we obtain that the operator \scrS is compact. As consequence, we have the
following spectral characterization result.

Lemma 2.3. The spectrum of \scrS satisfies sp(\scrS ) = \{ 0\} \cup \{ \mu k\} k\in \BbbN , where \{ \mu k\} k\in \BbbN 
is a sequence of complex eigenvalues which converges to 0 and their corresponding
eigenspaces lie in [H2+s(\Omega )]2 and

| | u| | 2+s,\Omega + | | z| | 2+s,\Omega \leq C| | (u, z)| | \BbbH .

In addition, \mu = 0 is an infinite multiplicity eigenvalue of \scrS .
Proof. The proof follows from the compactness of \scrS , Lemma 2.2, and the identity

(2.2).

Since Problem 1 is non-self-adjoint, we need to deal with the adjoint operator \scrS \ast ,
which is defined as

\scrS \ast : \BbbH  - \rightarrow \BbbH 
(f, g) \mapsto  - \rightarrow \scrS \ast (f, g) = (\widetilde u\ast , \widetilde z\ast ),

which is defined as the unique solution (see Lemma 2.1) of the following source problem

A((w, v), (\widetilde u\ast , \widetilde z\ast )) = B((w, v), (f, g)) \forall (w, v) \in \BbbH .(2.12)

It is simple to prove that if \mu is an eigenvalue of \scrS with multiplicity m, \=\mu is an
eigenvalue of \scrS \ast with the same multiplicity m. In addition, a result analogous to
Lemma 2.2 can be proven in this case.

Lemma 2.4. There exist s \in (0, 1] and a positive constant C depending on the
index of refraction n such that for all (f, g) \in \BbbH , the solution (\widetilde u\ast , \widetilde z\ast ) of (2.12)
satisfies (\widetilde u\ast , \widetilde z\ast ) \in H2+s(\Omega )\times H2

0 (\Omega ) and

| | \widetilde u\ast | | 2+s,\Omega + | | \widetilde z\ast | | 2,\Omega \leq C| | (f, g)| | \BbbH .

3. Virtual element spaces. In this section, we will introduce a virtual element
discretization to solve the transmission eigenvalue problem. We start by presenting
the virtual element spaces in 2D and 3D to be used in the proposed method.

3.1. The two-dimensional case. We begin with the mesh construction and the
assumptions considered to introduce the discrete virtual element spaces (see, e.g., [1,
5]). Let \{ \Omega h\} h be a sequence of decompositions of \Omega into general polygonal elements
P . We will denote by hP the diameter of the element P and by h the maximum of
the diameters of all the elements of the mesh, i.e., h := maxP\in \Omega h

hP . In addition, we
denote by NP and NP

v the number of polygons in \Omega h and the number of vertices of
P , respectively. Moreover, we denote by e a generic edge of \{ \Omega h\} h and for all e \in \partial P ,
we define a unit normal vector \nu eP that points outside of P .

For the analysis of the scheme, we will make the following assumptions (see, for
instance, [5]): there exists a positive real number C\Omega such that, for every h and every
P \in \Omega h,
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A2430 DAVID MORA AND IV\'AN VEL\'ASQUEZ

A2D
1 : P \in \Omega h is star-shaped with respect to every point of a ball of radius C\Omega hP ;

A2D
2 : the ratio between the shortest edge and the diameter hP of P is larger than

C\Omega .
Now, for all m \in \BbbN , we will denote by \BbbP m(\scrO ) the space of polynomials of degree

up to m defined on the subset \scrO \subseteq \BbbR 2.
We introduce on each element P \in \Omega h the following finite dimensional space\widetilde V 2D

h (P ) introduced in [19]:

\widetilde V 2D
h (P ) :=

\bigl\{ 
wh \in H2(P ) : \Delta 2wh \in \BbbP 2(P ), wh| \partial P \in C0(\partial P ), wh| e \in \BbbP 3(e) \forall e \in \partial P,

\nabla wh| \partial P \in [C0(\partial P )]2, \partial \nu e
P
wh| e \in \BbbP 1(e) \forall e \in \partial P

\bigr\} 
.

Moreover, in \widetilde V 2D
h (P ) we define the following sets of linear operators. For all wh \in \widetilde V 2D

h (P ) we consider

D\bfone 
2D: evaluation of wh at the NP

v vertices of P ;
D\bftwo 

2D: evaluation of \nabla wh at the NP
v vertices of P .

In order to introduce the local virtual space, we define the projector \Pi \Delta ,2D
P :\widetilde V 2D

h (P ) \rightarrow \BbbP 2(P ) as follows:\left\{     
\int 
P

D2(w  - \Pi \Delta ,2D
P w) : D2q = 0 \forall w \in \widetilde V 2D

h (P ) \forall q \in \BbbP 2(P ),

\widehat \Pi \Delta ,2D
P w = \widehat w; \widehat \nabla \Pi \Delta ,2D

P w = \widehat \nabla w,

(3.1)

where \widehat w is defined as \widehat w := 1
NP

v

\sum NP
v

i=1 w( vi)\forall w \in C0(\partial P ) and vi, 1 \leq i \leq NP
v , are

the vertices of P . We refer to [11, 19] to prove that the operator \Pi \Delta ,2D
P is computable

from the output values of the sets D\bfone 
2D and D\bftwo 

2D.
We introduce on each element P \in \Omega h the following local virtual space V 2D

h (P )
(see, for instance, [2]):

V 2D
h (P ) :=

\biggl\{ 
wh \in \widetilde V 2D

h (P ) :

\int 
P

(\Pi \Delta ,2D
P wh)q =

\int 
P

whq \forall q \in \BbbP 2(P )

\biggr\} 
.

Now, since V 2D
h (P ) \subseteq \widetilde V 2D

h (P ) the projector \Pi \Delta ,2D
P is well defined and computable

in V 2D
h (P ). In addition, \BbbP 2(P ) \subseteq V 2D

h (P ), which guarantees the good approximation

properties of the space. Moreover, the sets of linear operators D\bfone 
2D and D\bftwo 

2D con-
stitutes a set of degrees of freedom for V 2D

h (P ); we refer to [2, Lemma 2.3] for further
details.

Now, we introduce the global virtual space by combining the local spaces V 2D
h (P )

and incorporating the homogeneous boundary conditions. For every decomposition
\Omega h of \Omega into simple polygons P , we define

V 2D
h :=

\bigl\{ 
wh \in H2

0 (\Omega ) : wh| P \in V 2D
h (P )

\bigr\} 
.

A set of degrees of freedom for V 2D
h is given by all pointwise values of wh on all

vertices of \Omega h together with all pointwise values of\nabla wh on all vertices of \Omega h, excluding
the vertices on the boundary (where the values vanishes). Thus, the dimension of V 2D

h

is three times the number of interior vertices.

3.2. The three-dimensional case. In this section, we introduce the C1 local
virtual space, which has been recently introduced in [6]. Let \Omega h be a discretization
of \Omega composed by polyhedrons P such that
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VEM FOR THE TRANSMISSION EIGENVALUE PROBLEM A2431

A3D
1 : each element P is star shaped with respect to a ball BP whose radius is

uniformly comparable with the polyhedron diameter, hP ,
A3D

2 : each face f is star shaped with respect to a disc Bf whose radius is uniformly
comparable with the face diameter, hf ,

A3D
3 : given a polyhedron P all its edge lengths and face diameters are uniformly

comparable with respect to its diameter hP .
Now, we recall the definitions of the auxiliary local virtual spaces V \nabla 

h (f), V \Delta 
h (f)

and \widetilde V 3D
h (P ) (see [6]), which are needed to define the local virtual space V 3D

h (P ) (cf.
(3.2)) in 3D. For each face f and polyhedron P , we introduce.

V \nabla 
h (f) :=

\Biggl\{ 
wh \in H1(f) : \Delta \tau wh \in \BbbP 0(f), wh| \partial f \in C0(\partial f), wh| e \in \BbbP 1(e) \forall e \in \partial f

\int 
f

\Pi \nabla 
f wh =

\int 
f

wh

\Biggr\} 
,

V \Delta 
h (f) :=

\Biggl\{ 
wh \in H2(f) : \Delta 2

\tau wh \in \BbbP 1(f), wh| \partial f \in C0(\partial f), wh| e \in \BbbP 3(e) \forall e \in \partial f,

\nabla \tau wh| \partial f \in [C0(\partial f)]2, \partial \nu e
f
wh| e \in \BbbP 1(e) \forall e \in \partial f,\int 

f

\Pi \Delta 
f whp1 =

\int 
f

whp1 \forall p1 \in \BbbP 1(f)

\Biggr\} 
,

and

\widetilde V 3D
h (P ) :=

\Biggl\{ 
wh \in H2(P ) : \Delta 2wh \in \BbbP 2(P ), wh| SP

\in C0(SP ),\nabla wh| SP
\in [C0(SP )]

3,

wh| f \in V \Delta 
h (f), \partial \nu f

P
wh| f \in V \nabla 

h (f)\forall f \in \partial P

\Biggr\} 
,

where \Delta \tau and \nabla \tau are the Laplace and gradient operators in the local face coordinates
and \partial \nu denotes the normal derivative on each edge or face. In addition, \Pi \nabla 

f : H1(f) \rightarrow 
\BbbP 1(f) is the standard orthogonal projector introduced in [1, 5], in this case defined on
each face f of P ; \Pi \Delta 

f : V \Delta 
h (f) \rightarrow \BbbP 2(f) is the projection operator defined on each face

f of P as the one defined in (3.1) (see [6]) and SP denotes the skeleton (the union of
all edges) of the polyhedron P .

Now, for all wh \in \widetilde V 3D
h (P ) we consider the following sets of linear operators:

D\bfone 
3D: evaluation of wh at the NP

v vertices of P ;
D\bftwo 

3D: evaluation of \nabla wh at the NP
v vertices of P .

Next, we consider the projection operator \Pi \Delta ,3D
P : \widetilde V 3D

h (P ) \rightarrow \BbbP 2(P ) defined by\left\{       
\int 
P

D2(\Pi \Delta ,3D
P wh  - wh) : D

2q = 0 \forall q \in \BbbP 2(P ),\int 
\partial P

(\Pi \Delta ,3D
P wh  - wh)q = 0 \forall q \in \BbbP 1(P ).

The above projection operator is computable and uniquely determined by the values
of the linear operators D\bfone 

3D and D\bftwo 
3D.
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We are in a position to introduce the local virtual space V 3D
h (P ):

V 3D
h (P ) :=

\Biggl\{ 
wh \in \widetilde V 3D

h (P ) :

\int 
P

\Pi \Delta ,3D
P whq =

\int 
P

whq \forall q \in \BbbP 2(P )

\Biggr\} 
.(3.2)

Now, we introduce the global virtual space by combining the local spaces V 3D
h (P )

and incorporating the homogeneous boundary conditions. For every decomposition
\Omega h of \Omega into polyhedrons P , we define.

V 3D
h :=

\bigl\{ 
wh \in H2

0 (\Omega ) : wh| P \in V 3D
h (P )

\bigr\} 
.(3.3)

A set of degrees of freedom for V 3D
h is given by all pointwise values of wh on all

vertices of \Omega h together with all pointwise values of\nabla wh on all vertices of \Omega h, excluding
the vertices on the boundary (where the values vanishes). Thus, the dimension of V 3D

h

is four times the number of interior vertices.
The virtual space (3.3) has been recently considered in [6] to obtain optimal error

estimates for fourth-order PDEs in 3D. Here, we will consider the same space to
propose a VEM scheme for the transmission eigenvalue problem.

4. Discrete spectral problem. In this section, we will introduce a virtual
element discretization to approximate the spectrum of the transmission eigenvalue
problem stated in Problem 1. Due to the discrete analysis holds both in the two- and
three-dimensional cases, in what follows, we will omit the superscripts 2D and 3D
used in section 3. Moreover, for simplicity, we assume that the index of refraction n
is piecewise constant with respect to the decomposition \Omega h; i.e., n is constant on each
polygon/polyhedron P \in \Omega h.

Now, for all m \in \BbbN \cup \{ 0\} and P \in \Omega h, we define the following projectors:

\Pi m
P : L2(P ) \rightarrow \BbbP m(P );

\int 
P

(v  - \Pi m
P v)q = 0 \forall q \in \BbbP m(P ),(4.1)

\Pi 0
P\Delta : H2(P ) \rightarrow \BbbP 0(P );

\int 
P

(\Delta w  - \Pi 0
P\Delta w)q = 0 \forall q \in \BbbP 0(P ).(4.2)

We refer to [2, 6, 8] to check that for all wh \in Vh(P ) the scalar functions \Pi 2
Pwh and

\Pi 0
P\Delta wh are computable from the degrees of freedom D\bfone and D\bftwo .

Next, we decompose the continuous sesquilinear forms (2.5)--(2.6) in an element
by element contribution:

a1(u,w) :=
\sum 

P\in \Omega h

aP1 (u,w) \forall (u,w) \in H2
0 (\Omega ),

a2(z, v) :=
\sum 

P\in \Omega h

aP2 (z, v) \forall (z, v) \in L2(\Omega ).

Now, in order to propose the discrete scheme, we need to introduce some defini-
tions. First, we consider s\Delta ,P (\cdot , \cdot ) and s0,P (\cdot , \cdot ) any Hermitian positive definite forms
satisfying

\alpha \ast a
P
1 (wh, wh) \leq s\Delta ,P (wh, wh) \leq \alpha \ast aP1 (wh, wh) \forall wh \in Vh(P ) \Pi \Delta 

Pwh = 0,(4.3)

\beta \ast a2(vh, vh) \leq s0,P (vh, vh) \leq \beta \ast a2(vh, vh) \forall vh \in Vh(P ),(4.4)

where, \alpha \ast , \beta \ast and \alpha \ast , \beta \ast are positive constants independent of the element P .
Next, we define the discrete versions of the sesquilinear forms presented in (2.5)--

(2.7) as follows:
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a1h : Vh \times Vh \rightarrow \BbbC ; a1h(uh, wh) :=
\sum 

P\in \Omega h

aP1h(uh, wh),

a2h : Vh \times Vh \rightarrow \BbbC ; a2h(zh, vh) :=
\sum 

P\in \Omega h

aP2h(zh, vh),

Bh : \BbbH h \times \BbbH h \rightarrow \BbbC ; Bh((uh, zh), (wh, vh)) :=
\sum 

P\in \Omega h

BP
h ((uh, zh), (wh, vh)),

where \BbbH h := Vh \times Vh and

aP1h : Vh(P )\times Vh(P ) \rightarrow \BbbC , aP2h : Vh(P )\times Vh(P ) \rightarrow \BbbC , BP
h : \BbbH P

h \times \BbbH P
h \rightarrow \BbbC ,

are local sesquilinear forms given by

aP1h(uh, wh) := aP1 (\Pi 
\Delta 
P uh,\Pi 

\Delta 
Pwh) + s\Delta ,P (uh  - \Pi \Delta 

P uh, wh  - \Pi \Delta 
Pwh),(4.5)

aP2h(zh, vh) := aP2 (\Pi 
2
P zh,\Pi 

2
P vh) + s0,P (zh  - \Pi 2

P zh, vh  - \Pi 2
P vh),(4.6)

BP
h ((uh, zh), (wh, vh)) :=

\int 
P

n

n - 1
\Pi 0

P\Delta uh\Pi 
2
Pwh +

\int 
P

1

n - 1
\Pi 2

Puh\Pi 
0
P\Delta wh

+

\int 
P

n

n - 1
\Pi 2

P zh\Pi 
2
Pwh  - 

\int 
P

\Pi 2
Puh\Pi 

2
P vh,(4.7)

where \BbbH P
h := Vh(P )\times Vh(P ).

The following result establishes properties of consistency and stability for the
local sesquilinear forms aP1h(\cdot , \cdot ) and aP2h(\cdot , \cdot ).

Proposition 4.1. The local forms aP1h(\cdot , \cdot ) and aP2h(\cdot , \cdot ) satisfy the following prop-
erties:

\bullet Consistency: For all h > 0 and for all P \in \Omega h we have that

aP1h(q, wh) = aP1 (q, wh) \forall q \in \BbbP 2(P ) \forall wh \in Vh(P ),(4.8)

aP2h(q, vh) = aP2 (q, vh) \forall q \in \BbbP 2(P ) \forall vh \in Vh(P ).(4.9)

\bullet Stability and boundedness: There exist positive constants \alpha 1, \alpha 2, \beta 1, \beta 2 de-
pending on the index of refraction n and independent of P , such that

\alpha 1a
P
1 (wh, wh) \leq aP1h(wh, wh) \leq \alpha 2a

P
1 (wh, wh) \forall wh \in Vh(P );(4.10)

\beta 1a
P
2 (vh, vh) \leq aP2h(vh, vh) \leq \beta 2a

P
2 (vh, vh) \forall vh \in Vh(P ).(4.11)

Proof. The proof follows standard arguments in the VEM literature; it is omit-
ted.

Now, for all (uh, zh), (wh, vh) \in \BbbH h, we introduce the discrete sesquilinear form

Ah : \BbbH h \times \BbbH h \rightarrow \BbbC ; Ah((uh, zh), (wh, vh)) := a1h(uh, wh) + a2h(zh, vh).(4.12)

As consequence of Proposition 4.1 we have the following result, which is the
discrete version of Lemma 2.1.

Lemma 4.1. There exist positive constants C and \alpha that depend on the index of
refraction n such that for all (uh, zh), (wh, vh) \in \BbbH h we have

Ah((wh, vh), (wh, vh)) \geq \alpha | | (wh, vh)| | 2\BbbH ,(4.13)

| Ah((uh, zh), (wh, vh))| \leq C| | (uh, zh)| | \BbbH | | (wh, vh)| | \BbbH ,(4.14)

| Bh((uh, zh), (wh, vh))| \leq C| | (uh, zh)| | \BbbH | | (wh, vh)| | \BbbH .(4.15)
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A2434 DAVID MORA AND IV\'AN VEL\'ASQUEZ

Proof. It is straightforward to prove the estimates (4.13)--(4.15) from Proposi-
tion 4.1.

Now, we are in a position to write the virtual element discretization of Problem 1.

Problem 2. Find (\lambda h, (uh, zh)) \in \BbbC \times \BbbH h with (uh, zh) \not = 0 such that

Ah((uh, zh), (wh, vh)) = \lambda hBh((uh, zh), (wh, vh)) \forall (wh, vh) \in \BbbH h.(4.16)

In order to characterize the spectrum of Problem 2 we introduce the discrete
version of the solution operator \scrS :

\scrS h : \BbbH  - \rightarrow \BbbH h \subseteq \BbbH 
(f, g) \mapsto  - \rightarrow \scrS h(f, g) = (\widetilde uh, \widetilde zh),

defined as the unique solution (as a consequence of Lemma 4.1 and the Lax--Milgram
theorem) of the following source problem

Ah((\widetilde uh, \widetilde zh), (wh, vh)) = Bh((f, g), (wh, vh)) \forall (wh, vh) \in \BbbH h.(4.17)

We have that operator \scrS h is well defined and uniformly bounded. Once more,
as in the continuous case, we have that (\lambda , (uh, zh)) solves Problem 2 if and only if
(\mu h, (uh, zh)) is an eigenpair of \scrS h, i.e., \scrS h(uh, zh) = \mu h(uh, zh), with \mu h := 1/\lambda h.

4.1. Convergence and error estimates. The aim of this section is to prove the
convergence properties and to obtain error estimates of the proposed virtual element
scheme stated in Problem 2 for the transmission eigenvalue problem. With this aim,
we first establish that \scrS h \rightarrow \scrS in norm as h \rightarrow 0. Then, we will establish a similar
convergence result for the corresponding adjoint operators \scrS \ast 

h and \scrS \ast of \scrS h and \scrS ,
respectively.

First, we recall the following result on star-shaped polygons/polyhedrons, which
is derived by interpolation between Sobolev spaces (see, for instance, [26, Theorem
I.1.4] from the analogous result for integer values of s). We mention that this result
has been stated in [5, Proposition 4.2] for integer values and follows from the classical
Scott-Dupont theory (see [10] and [2, Proposition 3.1]).

Proposition 4.2. There exists a positive constant C such that for all w \in H\delta (P )
there exists w\pi \in \BbbP k(P ), k \geq 0 such that

| w  - w\pi | \ell ,P \leq Ch\delta  - \ell 
P | w| \delta ,P 0 \leq \delta \leq k + 1, \ell = 0, . . . , [\delta ],

with [\delta ] denoting largest integer equal or smaller than \delta \in \BbbR .
The following is an interpolation result in the virtual space Vh (see [2, 6]).

Proposition 4.3. Assume A1--A2 in the two-dimensional case or A1--A3 in the
three-dimensional case are satisfied; let w \in H\varepsilon (\Omega ) with \varepsilon \in [2, 3]. Then, there exist
wI \in Vh and C > 0, independent of h, such that

\| w  - wI\| \ell ,\Omega \leq Ch\varepsilon  - \ell | w| \varepsilon ,\Omega , \ell = 0, 1, 2.

Remark 4.1. In the two-dimensional case, the above result can be found in [2,
Proposition 3.1]. In the three-dimensional case, the result can be obtained by repeat-
ing the arguments in [6, Proposition 5.2 and Corollary 5.3] and using a Cl\'ement-type
interpolant.

The following lemma shows that \scrS h converges in norm to \scrS as h goes to zero.
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Lemma 4.2. There exist s \in (0, 1] and a positive constant C > 0 that depends
on the index of refraction n, both independent of the mesh size h such that for all
(f, g) \in \BbbH , if (\widetilde u, \widetilde z) = \scrS (f, g) and (\widetilde uh, \widetilde zh) = \scrS h(f, g); then

| | (\scrS  - \scrS h) (f, g)| | \BbbH \leq Chs| | (f, g)| | \BbbH .

Proof. Let (f, g) \in \BbbH . As a consequence of Lemma 2.2, there exists s \in (0, 1]
such that (\widetilde u, \widetilde z) \in H2+s(\Omega )\times H2(\Omega ). Let (\widetilde uI , \widetilde zI) \in \BbbH h be such that Proposition 4.3
holds true. By using the triangular inequality, we have

| | (\scrS  - \scrS h)(f, g)| | \BbbH = | | (\widetilde u, \widetilde z) - (\widetilde uh, \widetilde zh)| | \BbbH 
\leq | | (\widetilde u, \widetilde z) - (\widetilde uI , \widetilde zI)| | \BbbH + | | (\widetilde uI , \widetilde zI) - (\widetilde uh, \widetilde zh)| | \BbbH .(4.18)

Now, we define (wh, vh) := (\widetilde uh  - \widetilde uI , \widetilde zh  - \widetilde zI) \in \BbbH h, using the ellipticity of the
sesquilinear form Ah(\cdot , \cdot ) (cf. (2.8)) and the definition of the operators \scrS and \scrS h; for
all \widetilde u\pi , \widetilde z\pi \in \BbbP 2(P ), we get

\alpha | | (wh, vh)| | 2\BbbH \leq Ah((wh, vh), (wh, vh))=Ah((\widetilde uh, \widetilde zh), (wh, vh)) - Ah((\widetilde uI , \widetilde zI), (wh, vh))

= Bh((f, g), (wh, vh)) - 
\sum 

P\in \Omega h

\Bigl\{ 
aP1h(\widetilde uI , wh) + aP2h(\widetilde zI , vh)\Bigr\} 

= Bh((f, g), (wh, vh)) - 
\sum 

P\in \Omega h

\Bigl\{ 
\{ aP1h(\widetilde uI  - \widetilde u\pi , wh) + aP1 (\widetilde u\pi  - \widetilde u,wh)\} 

+ \{ aP2h(\widetilde zI  - \widetilde z\pi , vh) + aP2 (\widetilde z\pi  - \widetilde z, vh)\} + \{ aP1 (\widetilde u,wh) + aP2 (\widetilde z, vh)\} \Bigr\} 
=

\sum 
P\in \Omega h

\{ BP
h ((f, g), (wh, vh)) - BP ((f, g), (wh, vh))\} \underbrace{}  \underbrace{}  

G1,P

 - 
\sum 

P\in \Omega h

\{ aP1h(\widetilde uI  - \widetilde u\pi , wh) + aP1 (\widetilde u\pi  - \widetilde u,wh)\} \underbrace{}  \underbrace{}  
G2,P

 - 
\sum 

P\in \Omega h

\{ aP2h(\widetilde zI  - \widetilde z\pi , vh) + aP2 (\widetilde z\pi  - \widetilde z, vh)\} \underbrace{}  \underbrace{}  
G3,P

=:
\sum 

P\in \Omega h

G1,P  - 
\sum 

P\in \Omega h

G2,P  - 
\sum 

P\in \Omega h

G3,P ,(4.19)

where we have used the consistency properties (4.8) and (4.9).
In what follows, we will bound the terms G1,P , G2,P , and G3,P . Indeed, for the

termG1,P we use the definitions of B(\cdot , \cdot ) and Bh(\cdot , \cdot ) (cf. (2.7) and (4.7), respectively)
to obtain

G1,P =

\int 
P

\Bigl\{ n

n - 1
\Pi 0

P\Delta f\Pi 2
Pwh  - n

n - 1
\Delta fwh

\Bigr\} 
\underbrace{}  \underbrace{}  

G11,P

+

\int 
P

\Bigl\{ 1

n - 1
\Pi 2

P f\Pi 
0
P\Delta wh  - 1

n - 1
f\Delta wh

\Bigr\} 
\underbrace{}  \underbrace{}  

G12,P

+

\int 
P

\Bigl\{ n

n - 1
\Pi 2

P g\Pi 
2
Pwh  - n

n - 1
gwh

\Bigr\} 
\underbrace{}  \underbrace{}  

G13,P

+

\int 
P

\Bigl\{ 
\Pi 2

P f\Pi 
2
P vh  - fvh

\Bigr\} 
\underbrace{}  \underbrace{}  

G14,P

=: G11,P +G12,P +G13,P +G14,P .(4.20)
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Now, let us bound each term on the right-hand side of (4.20). We start with the term
G11,P : We add and subtract the term n

n - 1\Delta f\Pi 2
Pwh, and we get

G11,P =

\int 
P

n

n - 1

\Bigl( 
\Pi 0

P\Delta f  - \Delta f
\Bigr) 
\Pi 2

Pwh +

\int 
P

n

n - 1
\Delta f

\Bigl( 
\Pi 2

Pwh  - wh

\Bigr) 
.

Next, adding and subtracting the term
\int 
P

n
n - 1 (\Pi 

0
P\Delta f  - \Delta f)wh and using the defini-

tion of \Pi 2
P in the last equality we obtain

G11,P =

\int 
P

n

n - 1

\Bigl( 
\Pi 0

P\Delta f  - \Delta f
\Bigr) \Bigl( 

\Pi 2
Pwh  - wh

\Bigr) 
+

\int 
P

n

n - 1
\Delta f

\Bigl( 
\Pi 2

Pwh  - wh

\Bigr) (4.21)

+

\int 
P

\Bigl( 
\Pi 0

P\Delta f  - \Delta f
\Bigr) \Bigl( n

n - 1
wh  - \Pi 0

P

\Bigl( n

n - 1
wh

\Bigr) \Bigr) 
.

Now, using the Cauchy--Schwarz inequality and the fact that n/(n - 1) \in L\infty (\Omega ) we
have from (4.21) the following estimates:

G11,P \leq | | n/(n - 1)| | L\infty (P )

\Bigl\{ 
| | \Pi 0

P\Delta f  - \Delta f | | 0,P | | \Pi 2
Pwh  - wh| | 0,P

+ | | \Delta f | | 0,P | | \Pi 0
Pwh  - wh| | 0,P + | | \Pi 0

P\Delta f  - \Delta f | | 0,P \| wh  - \Pi 2
Pwh\| 0,P

\Bigr\} 
\leq C| | n/(n - 1)| | L\infty (P )| | \Delta f | | 0,P

\Bigl\{ 
h2
P | wh| 2,P + hP | wh| 1,P

\Bigr\} 
\leq ChP | | n/(n - 1)| | L\infty (P )| f | 2,P

\Bigl\{ 
| wh| 2,P + | wh| 1,P

\Bigr\} 
.(4.22)

For the term G12,P , we add and subtract 1
n - 1f\Pi 

0
P\Delta wh; then we use the definition

of \Pi 0
P to obtain

G12,P =

\int 
P

\Bigl\{ 1

n - 1

\Bigl( 
\Pi 2

P f  - f
\Bigr) 
\Pi 0

P\Delta wh +
1

n - 1
f
\Bigl( 
\Pi 0

P\Delta wh  - \Delta wh

\Bigr) \Bigr\} 
=

\int 
P

\Bigl\{ 1

n - 1

\Bigl( 
\Pi 2

P f  - f
\Bigr) 
\Pi 0

P\Delta wh

\Bigr\} 
+

\int 
P

\Bigl\{ \Bigl( 1

n - 1
f  - \Pi 0

P

\bigl( 1

n - 1
f
\bigr) \Bigr) \Bigl( 

\Pi 0
P\Delta wh  - \Delta wh

\Bigr) \Bigr\} 
.

Once again, by the Cauchy--Schwarz inequality and the fact that 1/(n - 1) \in L\infty (\Omega ),
we get

G12,P \leq | | 1/(n - 1)| | L\infty (P )

\Bigl\{ 
| | \Pi 2

P f  - f | | 0,P | | \Pi 0
P\Delta wh| | 0,P

+ \| f  - \Pi 0
P f\| 0,P | | \Pi 0

P\Delta wh  - \Delta wh| | 0,P
\Bigr\} 

\leq C| | 1/(n - 1)| | L\infty (P )

\Bigl\{ 
h2
P | f | 2,P | | \Delta wh| | 0,P + ChP | f | 1,P | | \Delta wh| | 0,P

\Bigr\} 
\leq ChP | | 1/(n - 1)| | L\infty (P )

\Bigl\{ 
| f | 2,P + | f | 1,P

\Bigr\} 
| wh| 2,P .(4.23)

Now, to bound the term G13,P , we use the fact that n is piecewise constant, the
definition of \Pi 2

P , the Cauchy--Schwarz inequality, and n/(n - 1) \in L\infty (\Omega ) to have
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G13,P =

\int 
P

\Bigl\{ n

n - 1
\Pi 2

P g\Pi 
2
Pwh  - n

n - 1
gwh

\Bigr\} 
=

\int 
P

n

n - 1

\Bigl\{ 
g(\Pi 2

Pwh  - wh)
\Bigr\} 

=

\int 
P

n

n - 1

\Bigl\{ 
(g  - \Pi 2

P g)(\Pi 
2
Pwh  - wh)

\Bigr\} 
\leq C| | n/(n - 1)| | L\infty (P )| | g  - \Pi 2

P g| | 0,P | | \Pi 2
Pwh  - wh| | 0,P

\leq Ch2
P | | n/(n - 1)| | L\infty (P )| | g| | 0,P | wh| 2,P .(4.24)

For the term G14,P , we use the definition of \Pi 2
P and the Cauchy--Schwarz inequal-

ity to obtain

G14,P =

\int 
P

(f  - \Pi 2
P f)(vh  - \Pi 2

P vh) \leq | | f  - \Pi 2
P f | | 0,P | | vh  - \Pi 2

P vh| | 0,P

\leq Ch2
P | f | 2,P | | vh| | 0,P .(4.25)

Now, taking sum over P in the terms (4.22), (4.23), (4.24), and (4.25) and apply-
ing the Cauchy--Schwarz inequality for sequences we obtain

\sum 
P\in \Omega h

G1,P \leq Chmax\{ | | n/(n - 1)| | L\infty (\Omega ), | | 1/(n - 1)| | L\infty (\Omega )\} | | (f, g)| | \BbbH | | (wh, vh)| | \BbbH .
(4.26)

On the other hand, to bound the term
\sum 

P\in \Omega h
G2,P , we use the Cauchy--Schwarz

inequality and the stability and boundedness properties of aP1 (\cdot , \cdot ) (cf. (4.10)) to get\sum 
P\in \Omega h

G2,P =
\sum 

P\in \Omega h

\Bigl\{ 
aP1h(\widetilde uI  - \widetilde u\pi , wh) + aP1 (\widetilde u\pi  - \widetilde u,wh)

\Bigr\} 
\leq 

\sum 
P\in \Omega h

\Bigl\{ 
aP1h(\widetilde uI  - \widetilde u\pi , \widetilde uI  - \widetilde u\pi )

1/2aP1h(wh, wh) + aP1 (\widetilde u\pi  - \widetilde u, \widetilde u\pi  - \widetilde u)1/2aP1 (wh, wh)
1/2

\Bigr\} 
\leq 

\sum 
P\in \Omega h

\Bigl\{ 
| \widetilde uI  - \widetilde u\pi | 2,P | wh| 2,P + | \widetilde u\pi  - \widetilde u| 2,P | wh| 2,P

\Bigr\} 
\leq 

\sum 
P\in \Omega h

\Bigl\{ 
| \widetilde uI  - \widetilde u| 2,P + 2| \widetilde u - \widetilde u\pi | 2,P

\Bigr\} 
| wh| 2,P .

Next, from Propositions 4.3 and 4.2 and Lemma 2.2, we have\sum 
P\in \Omega h

G2,P \leq Chs| | (f, g)| | \BbbH | | (wh, vh)| | \BbbH .(4.27)

To bound the expression
\sum 

P\in \Omega h
G3,P , we use the Cauchy--Schwarz inequality,

and we add and subtract the term \widetilde z to obtain\sum 
P\in \Omega h

G3,P =
\sum 

P\in \Omega h

\Bigl\{ 
aP2h(\widetilde zI  - \widetilde z\pi , vh) + aP2 (\widetilde z\pi  - \widetilde z, vh)\Bigr\} 

\leq 
\sum 

P\in \Omega h

\Bigl\{ 
| | \widetilde zI  - \widetilde z| | 0,P + 2| | \widetilde z  - \widetilde z\pi | | 0,P\Bigr\} | | vh| | 0,P .

Hence, applying Proposition 4.2 and Proposition 4.3 (with \varepsilon = 2 and \ell = 0) and
Lemma 2.2 in the above inequality we deduce\sum 

P\in \Omega h

G3,P \leq Ch2| | (f, g)| | \BbbH | | (wh, vh)| | \BbbH .(4.28)
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A2438 DAVID MORA AND IV\'AN VEL\'ASQUEZ

Now, by combining (4.19) with (4.26), (4.27), and (4.28), we obtain

| | (\widetilde uI , \widetilde zI) - (\widetilde uh, \widetilde zh)| | \BbbH = | | (wh, vh)| | \BbbH \leq C

\alpha 
hs| | (f, g)| | \BbbH .(4.29)

Finally, the proof follows from (4.18) and (4.29) and Lemma 2.2.

Now, let \scrS \ast 
h : \BbbH \rightarrow \BbbH be the adjoint operator of \scrS h. This operator is defined

by \scrS \ast 
h(f, g) := (\~u\ast 

h, \~z
\ast 
h), where (\~u\ast 

h, \~z
\ast 
h) is the unique solution of the following source

problem:

Ah((wh, vh), (\~u
\ast 
h, \~z

\ast 
h)) = Bh((wh, vh), (f, g)) \forall (wh, vh) \in \BbbH h.(4.30)

Now, we will show the convergence in norm of the operator \scrS \ast 
h (cf. (4.30)) to \scrS \ast 

(cf. (2.12)) as h goes to zero.

Lemma 4.3. There exist a positive constant C that depends on the index of refrac-
tion n and s \in (0, 1], both independent of the mesh size h, such that for all (f, g) \in \BbbH ,
if (\widetilde u\ast , \widetilde z\ast ) = \scrS \ast (f, g) and (\widetilde u\ast 

h, \widetilde z\ast h) = \scrS \ast 
h(f, g), then

| | (\scrS \ast  - \scrS \ast 
h) (f, g)| | \BbbH \leq Chs| | (f, g)| | \BbbH .

Proof. The proof is obtained using the same arguments as those used to prove
Lemma 4.2.

In what follows, we will establish convergence and obtain error estimates of our
discrete scheme. To do that, we will apply the abstract spectral theory from [4, 33]
for non-self-adjoint compact operators.

We first recall the definition of the spectral projectors. Let \mu be a nonzero ei-
genvalue of \scrS with algebraic multiplicity m, and let \scrD be an open disk in the com-
plex plane centered at \mu such that \mu is the only eigenvalue of \scrS lying in \scrD and
\partial \scrD \cap sp(\scrS ) = \emptyset . The spectral projectors \scrE and \scrE \ast are defined as follows:

\bullet the spectral projector of \scrS relative to \mu : \scrE := (2\pi i) - 1
\int 
\partial \scrD (z  - \scrS ) - 1dz;

\bullet the spectral projector of \scrS \ast relative to \mu : \scrE \ast := (2\pi i) - 1
\int 
\partial \scrD (z  - \scrS \ast ) - 1dz.

Moreover, \scrE and \scrE \ast are projections onto the space of generalized eigenvectors R(\scrE )
and R(\scrE \ast ), respectively. It is easy to check that R(\scrE ), R(\scrE \ast ) \in [H2+s(\Omega )]2 (see
Lemma 2.3).

As a consequence of the convergence in norm of \scrS h to \scrS (cf. Lemma 4.2), there

exist m eigenvalues (which lie in \scrD ) \mu 
(1)
h , . . . , \mu 

(m)
h of \scrS h (repeated according to their

respective multiplicities) which will converge to \mu as h goes to zero.
Analogously, we introduce the following spectral projector \scrE h := (2\pi i) - 1

\int 
\partial \scrD (z - 

\scrS h)
 - 1dz, which is a projector onto the invariant subspace R(\scrE h) of \scrS h spanned by

the generalized eigenvectors of \scrS h corresponding to \mu 
(1)
h , . . . , \mu 

(m)
h .

On the other hand, we recall the definition of the gap \widehat \delta between two closed
subspaces \BbbX and \BbbY of a Hilbert space \BbbH :\widehat \delta (\BbbX ,\BbbY ) := max \{ \delta (\BbbX ,\BbbY ), \delta (\BbbY ,\BbbX )\} ,

where

\delta (\BbbX ,\BbbY ) := sup
\bfx \in \BbbX : \| \bfx \| \BbbH =1

\delta (x,\BbbY ), with \delta (x,\BbbY ) := inf
\bfy \in \BbbY 

\| x - y\| \BbbH .

The following theorem establishes the error estimates for the approximation of
eigenvalues and eigenfunctions.
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VEM FOR THE TRANSMISSION EIGENVALUE PROBLEM A2439

Theorem 4.1. There exists a strictly positive constant C that depends on the
index of refraction such that \widehat \delta (R(\scrE ), R(\scrE h)) \leq Chs,(4.31)

| \mu  - \^\mu h| \leq Ch2s,(4.32)

where \^\mu h := 1
m

\sum m
k=1 \mu 

(k)
h and s \in (0, 1] as in Lemma 2.3.

Proof. The estimate (4.31) follows as a direct consequence of [4, Theorem 7.1] by
combining the convergence in norm of \scrS h to \scrS as h goes to zero stated in Lemma 4.2
and the fact that for (f, g) \in R(\scrE ), | | (f, g)| | [H2+s(\Omega )]2 \leq C| | (f, g)| | \BbbH (cf. Lemma 2.3).

Now, to prove the estimate (4.32), we will use [4, Theorem 7.2]. With this end,
we assume that \scrS (uk, zk) = \mu (uk, zk), k = 1, . . . ,m. Next, since A(\cdot , \cdot ) is an inner
product in \BbbH , we can choose a dual basis for R(\scrE \ast ) denoted by (u\ast 

k, z
\ast 
k) \in \BbbH satisfying

A((uk, zk), (u
\ast 
l , z

\ast 
l )) = \delta k,l.

From [4, Theorem 7.2], we have the following estimate:

| \mu  - \^\mu h| \leq 
1

m

m\sum 
k=1

| \langle (\scrS  - \scrS h)(uk, zk), (u
\ast 
k, z

\ast 
k)\rangle | (4.33)

+ C| | (\scrS  - \scrS h)| R(\scrE )| | \BbbH | | (\scrS \ast  - \scrS \ast 
h)| R(\scrE \ast )| | \BbbH ,

where \langle \cdot , \cdot \rangle denotes the corresponding duality pairing.
In what follows, we focus on finding upper bounds for the two terms on the right-

hand side above. Indeed, the second term can be easily bounded from Lemmas 4.2
and 4.3 as follows:

| | (\scrS  - \scrS h)| R(\scrE )| | \BbbH | | (\scrS \ast  - \scrS \ast 
h)| R(\scrE \ast )| | \BbbH \leq Ch2s.(4.34)

Now, we bound the first term on the right-hand side of (4.33) as follows: Adding
and subtracting (wh, vh) \in \BbbH h and using the definition of \scrS and \scrS h, we obtain

\langle (\scrS  - \scrS h)(uk, zk), (u
\ast 
k, z

\ast 
k)\rangle = A((\scrS  - \scrS h)(uk, zk), (u

\ast 
k, z

\ast 
k))

=
\Bigl\{ 
A((\scrS  - \scrS h)(uk, zk), (u

\ast 
k, z

\ast 
k) - (wh, vh))

\Bigr\} 
+
\Bigl\{ 
B((uk, zk), (wh, vh)) - Bh((uk, zk), (wh, vh))

\Bigr\} 
+
\Bigl\{ 
Ah(\scrS h(uk, zk), (wh, vh)) - A(\scrS h(uk, zk), (wh, vh))

\Bigr\} 
(4.35)

for all (wh, vh) \in \BbbH h. For the first and the third bracket on the right-hand side above,
we can repeat the same steps used in the proof of Theorem 4.1 in [32] to obtain that

A((\scrS  - \scrS h)(uk, zk), (u
\ast 
k, z

\ast 
k) - (wh, vh)) \leq Ch2s| | (u\ast 

k, z
\ast 
k)| | \BbbH (4.36)

and

Ah(\scrS h(uk, zk), (wh, vh)) - A(\scrS h(uk, zk), (wh, vh)) \leq Ch2s| | (uk, zk)| | \BbbH | | (u\ast 
k, z

\ast 
k)| | \BbbH .

(4.37)

Finally, for the second bracket on the right-hand side of (4.35), we use the addi-
tional regularity of (uk, zk) \in R(\scrE ) \subset [H2+s(\Omega )]2, and repeating the same steps used
to obtain (4.20) (in this case with (uk, zk) \in [H2+s(\Omega )]2 instead of (f, g) \in \BbbH ), we get
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A2440 DAVID MORA AND IV\'AN VEL\'ASQUEZ

Bh((uk, zk), (wh, vh)) - B((uk, zk), (wh, vh)) \leq Ch2s| | (uk, zk)| | \BbbH | | (u\ast 
k, z

\ast 
k)| | \BbbH .(4.38)

Next, from (4.35), (4.36), (4.37), and (4.38), we have

| \langle (\scrS  - \scrS h)(uk, zk), (u
\ast 
k, z

\ast 
k)\rangle | \leq Ch2s.(4.39)

Therefore, the estimate (4.32) is obtained from (4.34) and (4.39). The proof is
complete.

5. Numerical examples. We report in this section the results of some numer-
ical tests carried out with the discrete scheme presented in Problem 2 in the two-
dimensional case, which confirm the theoretical results proved above. The numerical
method has been implemented in a MATLAB code.

In order to compare our results with those presented in the literature of the trans-
mission eigenvalue problem, we have chosen three configurations for the computational
domain \Omega :

Square domain: \Omega \bfS := (0, 1)\times (0, 1),(5.1)

L-shaped domain: \Omega \bfL := ( - 1/2, 1/2)2\setminus ([0, 1/2]\times [ - 1/2, 0]),(5.2)

Circular domain: \Omega \bfC := \{ (x, y) \in \BbbR 2 : x2 + y2 < 1/4\} .(5.3)

On the other hand, we have tested the method by using different families of
polygonal meshes (see Figure 5.1):

\bullet \Omega s
h: rectangular meshes;

\bullet \Omega t
h: triangular meshes;

\bullet \Omega dh
h non-structured hexagonal meshes made of convex hexagons;

\bullet \Omega v
h: Voronoi meshes which have been partitioned with NP number of poly-

gons.

Fig. 5.1. Sample meshes: \Omega s
h (top left), \Omega t

h (top right), \Omega dh
h (bottom left), and \Omega v

h (bottom right).
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VEM FOR THE TRANSMISSION EIGENVALUE PROBLEM A2441

We have used successive refinements of an initial mesh (see Figure 5.1). The
refinement parameters N and NP used to label each mesh are the number of elements
on each edge of \Omega \bfS or \Omega \bfL , and the number of polygons inside of the computational
domain, respectively.

On the other hand, to complete the choice of the VEM scheme, we had to fix the
forms s\Delta ,P (\cdot , \cdot ) and s0,P (\cdot , \cdot ) satisfying (4.3) and (4.4), respectively. In particular, we
have considered the form

sP (uh, wh) :=

NP
v\sum 

i=1

[uh( vi)wh( vi) + h2
vi
\nabla uh( vi) \cdot \nabla wh( vi)] \forall uh, wh \in Vh(P ),

where v1, . . . , vNP
v
are the vertices of P and h vi

corresponds to the maximum diame-

ter of the elements with vi as a vertex. Thus, we take s\Delta ,P (\cdot , \cdot ) and s0,P (\cdot , \cdot ) in terms
of sP (\cdot , \cdot ), properly scaled to satisfy (4.3) and (4.4), respectively (see [2, 19, 31, 32]
for further details).

5.1. Test 1: Square domain \Omega \bfS . In this numerical test, we have computed
the four lowest transmission eigenvalues \kappa ih, i = 1, 2, 3, 4, with three different choice
of the index of refraction on the square domain \Omega \bfS (cf. (5.1)).

We report in Tables 5.1 and 5.2 the lowest transmission eigenvalues \kappa ih, i =
1, 2, 3, 4, computed with the discrete virtual scheme (4.16) with indexes of refraction
n = 16 and n = 4, respectively. We compare the performance of the proposed method
with those presented in [22, 28, 32], so we have included in the last row of Tables 5.1
and 5.2 the results reported in these references for the same problem. The table
also includes the estimated orders of convergence for each eigenvalue as well as more
accurate values of the transmission eigenvalues extrapolated from the computed ones
by means of a least-squares fitting of the model

\kappa ih \approx \kappa i + Cih
\alpha i .

Namely, we have computed approximate eigenvalues \kappa ihj
on several meshes with mesh

size hj , and we find values of \kappa i, Ci, and \alpha i that minimize\sum 
j

\bigl( 
\kappa ihj

 - \kappa i  - Cih
\alpha i
j

\bigr) 2
.

This minimization problem is nonlinear in \alpha but linear in the other two parameters.
Then, for each \alpha , it is easy to compute the minimum in the other parameters. Thus,
we obtain a function of one variable, \alpha , that we minimize by a standard procedure.
Finally, the fitted parameters \kappa i and \alpha i are the extrapolated transmission eigenvalue
(Extrap.) and the estimated order of convergence (Order), respectively.

We can appreciate from Tables 5.1 and 5.2 that the order of convergence of the
proposed virtual element scheme (4.16) is quadratic (as predicted by the theory for
convex domains). Moreover, we show in Figure 5.2 the eigenfunctions corresponding
to the four lowest transmission eigenvalues with an index of refraction n = 16.

Now, we test the properties of the virtual scheme by considering a nonconstant
index of refraction n. More precisely, we consider the following index of refraction
n(x, y) := 8 + x - y \forall (x, y) \in (0, 1)2.D
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Table 5.1
Test 1: Lowest transmission eigenvalues \kappa ih, i = 1, 2, 3, 4, computed on different families of

meshes, on the square domain \Omega \bfS and with an index of refraction n = 16.

\Omega \bfS \kappa 1h \kappa 2h \kappa 3h \kappa 4h

N = 32 1.8864 2.4547 2.4608 2.8910
N = 64 1.8813 2.4469 2.4484 2.8726

\Omega t
h N = 128 1.8800 2.4449 2.4453 2.8680

Order 2.00 2.00 2.00 2.00
Extrap. 1.8796 2.4442 2.4442 2.8664
N = 32 1.8936 2.4667 2.4773 2.9083
N = 64 1.8831 2.4499 2.4528 2.8771

\Omega dh
h N = 128 1.8805 2.4457 2.4464 2.8691

Order 1.98 1.97 1.95 1.97
Extrap. 1.8796 2.4442 2.4442 2.8664
NP = 1024 1.8883 2.4611 2.4617 2.8948
NP = 4096 1.8816 2.4483 2.4484 2.8728

\Omega v
h NP = 16384 1.8801 2.4452 2.4452 2.8680

Order 2.15 2.10 2.10 2.18
Extrap. 1.8797 2.4443 2.4443 2.8666

[22] [Argyris method] 1.8651 2.4255 2.4271 2.8178
[32] [VEM] 1.8796 2.4442 2.4442 2.8664

Table 5.2
Test 1: Lowest transmission eigenvalues \kappa ih, i = 1, 2, 3, 4, computed on different families of

meshes, on the square domain \Omega \bfS and with an index of refraction n = 4.

\Omega \bfS \kappa 1h \kappa 2h \kappa 3h \kappa 4h

N = 32 4.2558-1.1841i 4.2558+1.1841i 5.6065 5.6065
N = 64 4.2676-1.1567i 4.2676+1.1567i 5.5063 5.5063

\Omega s
h N = 128 4.2707-1.1497i 4.2707+1.1497i 5.4835 5.4835

Order 1.99 1.99 2.14 2.14
Extrap. 4.2717-1.1474i 4.2717+1.1474i 5.4768 5.4768
N = 32 4.2516-1.1937i 4.2516+1.1937i 5.6458 5.7298
N = 64 4.2664-1.1595i 4.2664+1.1595 5.5164 5.5343

\Omega dh
h N = 128 4.2704-1.1505i 4.2704+1.1505i 5.4861 5.4905

Order 1.91 1.91 2.09 2.16
Extrap. 4.2718-1.1473i 4.27181.1473i 5.4767 5.4779
NP = 1024 4.2573-1.1791i 4.2573+1.1791i 5.6053 5.6063
NP = 4096 4.2682-1.1554i 4.2682+1.1554i 5.5056 5.5059

\Omega v
h NP = 16384 4.2708-1.1494i 4.2708+1.1494i 5.4834 5.4834

Order 1.99 1.99 2.17 2.16
Extrap. 4.2716-1.1474i 4.2716+1.1474i 5.4771 5.4769

[28] [Multigrid FEM] 4.2717-1.1474i 4.2717+1.1474i 5.4761 5.4761
[32] [VEM] 4.2718-1.1475i 4.2718+1.1475i 5.4779 5.4765

With this aim, we report in Table 5.3 the four lowest transmission eigenvalues on
a square domain \Omega \bfS with the family of meshes \Omega t

h and N = 32, 64, 128. The table
includes orders of convergences as well as accurate values extrapolated by means of
a least-squares fitting. We compare the performance of the proposed method with
those presented in [18]. Once again, it can be clearly observed from Table 5.3 that
the eigenvalue approximation order of our method is quadratic.

5.2. Test 2: L-shaped domain \Omega \bfL . In this numerical test we consider an
L-shaped domain \Omega \bfL (cf. (5.2)). We take the index of refraction n = 16, and we
compute the four lowest transmission eigenvalues \kappa ih, i = 1, 2, 3, 4.
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VEM FOR THE TRANSMISSION EIGENVALUE PROBLEM A2443

Fig. 5.2. Test 1: Eigenfunctions u1h (top left), u2h (top right), u3h (bottom left), and u4h

(bottom right) associated to the eigenvalues \kappa 1h, \kappa 2h, \kappa 3h, and \kappa 4h, respectively.

Table 5.3
Test 1: Lowest transmission eigenvalues kih, i = 1, 2, 3, 4, 5 computed on the mesh \Omega t

h and with
an index of refraction n(x, y) := 8 + x - y \forall (x, y) \in (0, 1)2.

\Omega \bfS \kappa 1h \kappa 2h \kappa 3h \kappa 4h \kappa 5h

N = 32 2.8329 3.5512 3.5571 4.1374 4.5322
N = 64 2.8248 3.5418 3.5434 4.1225 4.5093

\Omega t
h N = 128 2.8228 3.5395 3.5401 4.1189 4.5036

Order 2.03 2.03 2.03 2.05 2.02
Extrap. 2.8222 3.5387 3.5390 4.1178 4.5017

[18] 2.822052 3.538328 3.538691 4.117093 4.501074

We show in Table 5.4 the lowest transmission eigenvalues \kappa ih computed by the
discrete scheme (4.16). In this case we have employed a family of uniform triangular
meshes \Omega t

h (see bottom left picture in Figure 5.1). We compare our results with those
reported in [16, 32]. The table includes orders of convergence, as well as accurate
values extrapolated by means of a least-squares fitting.

It can be seen from Table 5.4 that for the first eigenvalue, where the associated
eigenfunction presents a singularity, the method converges with order close to 1.54,
which corresponds to the Sobolev regularity for the biharmonic equation (see [27]).
Instead, the method presents an optimal order of convergence for the second, third,
and fourth transmission eigenvalues where the associated eigenfunctions are smoother.
Moreover, the results obtained by our virtual scheme agree perfectly well with those
reported in [16, 32].

Finally, Figure 5.3 illustrates the eigenfunctions corresponding to the four lowest
transmission eigenvalues computed in this test.
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Table 5.4
Test 2: Lowest transmission eigenvalues \kappa ih, i = 1, 2, 3, 4 computed on meshes \Omega t

h and with an
index of refraction n = 16.

\Omega \bfL \kappa 1h \kappa 2h \kappa 3h \kappa 4h

N = 32 2.9706 3.1472 3.4237 3.5779
N = 64 2.9589 3.1414 3.4141 3.5691

\Omega t
h N = 128 2.9549 3.1400 3.4114 3.5670

Order 1.53 1.96 1.82 2.00
Extrap. 2.9528 3.1394 3.4103 3.5662

[16] [Argyris method] 2.9553 - -
[32] [VEM] 2.9527 3.1395 3.4103 3.5662

Fig. 5.3. Test 2: Eigenfunctions u1h (top left), u2h (top right), u3h (bottom left), and u4h

(bottom right) associated to the eigenvalues \kappa 1h, \kappa 2h, \kappa 3h and \kappa 4h, respectively.

5.3. Test 3: Circular domain \Omega \bfC . We end this section by computing the
four lowest transmission eigenvalues \kappa ih, i = 1, 2, 3, 4 on the circular domain \Omega \bfC (cf.
(5.3)). We considered a constant index of refraction n = 16 in order to compare our
resutls with those showed in [16, 18, 22, 32]. We have employed a family of polygonal
meshes (see Figure 5.1) created with PolyMesher [38].

Table 5.5 reports the four lowest transmission eigenvalues \kappa ih, i = 1, 2, 3, 4 com-
puted with the virtual method (4.16). The table also includes computed orders of
convergence as well as more accurate values extrapolated by means of a least-squares
fitting.

Once again, it can be seen from Table 5.5 that the computed transmission eigen-
values converge with an optimal quadratic order as predicted by the theory. Finally,
in Figure 5.4, we present the eigenfunctions corresponding to the four lowest trans-
mission eigenvalues computed in this numerical test.
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Table 5.5
Test 3: Lowest transmission eigenvalues \kappa ih, i = 1, 2, 3, 4 computed on the circular domain \Omega \bfC 

and with an index of refraction n = 16.

\Omega \bfC \kappa 1h \kappa 2h \kappa 3h \kappa 4h

NP = 1024 1.9961 2.6301 2.6308 3.2611
NP = 4096 1.9900 2.6173 2.6173 3.2349

\Omega v
h NP = 16384 1.9885 2.6140 2.6140 3.2287

Order 2.03 1.97 2.03 2.08
Extrap. 1.9880 2.6129 2.6129 3.2268

[16] [Argyris method] 1.9881 - - -
[18] [C0-FEM] 1.9879 2.6124 2.6124 3.2255
[22] [Continuous method] 2.0301 2.6937 2.6974 3.3744
[32] [VEM] 1.9880 2.6129 2.6129 3.2267

Fig. 5.4. Test 3: Eigenfunctions u1h (top left), u2h (top right), u3h (bottom left), and u4h

(bottom right) associated to the eigenvalues \kappa 1h, \kappa 2h, \kappa 3h, and \kappa 4h, respectively.
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