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In this paper, we analyze a Virtual Element Method (VEM) for solving a non-self-adjoint
fourth-order eigenvalue problem derived from the transmission eigenvalue problem. We
write a variational formulation and propose a C1-conforming discretization by means
of the VEM. We use the classical approximation theory for compact non-self-adjoint
operators to obtain optimal order error estimates for the eigenfunctions and a double
order for the eigenvalues. Finally, we present some numerical experiments illustrating
the behavior of the virtual scheme on different families of meshes.
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1. Introduction

In this work, we study a Virtual Element Method (VEM) for an eigenvalue prob-
lem arising in scattering theory. The VEM, introduced in Refs. 5 and 7, is a gen-
eralization of the Finite Element Method (FEM) which is characterized by the
capability of dealing with very general polygonal/polyhedral meshes, and it also
permits to easily implement highly regular discrete spaces. Indeed, by avoiding the
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explicit construction of the local basis functions, the VEM can easily handle general
polygons/polyhedrons without complex integrations on the element (see Ref. 7 for
details on the coding aspects of the method). The VEM has been developed and
analyzed for many problems, see for instance Refs. 2, 3, 6, 9, 11, 13, 16, 18, 20–22,
30, 32, 37, 50 and 55. Regarding VEM for spectral problems, we mention Refs. 14,
38, 39, 46, 47 and 48. We note that there are other methods that can make use
of arbitrarily shaped polygonal/polyhedral meshes, we cite as a minimal sample of
them.8,28,36,53

Due to their important role in many application areas, there has been a growing
interest in recent years towards developing numerical schemes for spectral problems
(see Ref. 17). In particular, we are going to analyze a virtual element approximation
of the transmission eigenvalue problem. The motivation for considering this problem
is that it plays an important role in inverse scattering theory.24,34 This is due to
the fact that transmission eigenvalues can be determined from the far-field data of
the scattered wave and used to obtain estimates for the material properties of the
scattering object.23,25

In recent years, various numerical methods have been proposed to solve this
eigenvalue problem, see, for example, Refs. 26, 27, 31, 35, 40, 44, 45 and 51. In
particular, the transmission eigenvalue problem is often solved by reformulating it
as a fourth-order eigenvalue problem. In Ref. 26, a C1 FEM using Argyris elements
has been proposed, a complete analysis of the method including error estimates
is proved using the theory for compact non-self-adjoint operators. However, the
construction of H2-conforming finite elements is difficult in general, since they
usually involve a large number of degrees of freedom (see Ref. 33). More recently,
in Ref. 40, a discontinuous Galerkin method has been proposed and analyzed to
solve the fourth-order transmission eigenvalue problem; moreover, in Ref. 31, a C0

linear FEM has been introduced to solve the spectral problem.
The purpose of the present paper is to introduce and analyze a C1-VEM for solv-

ing a fourth-order spectral problem derived from the transmission eigenvalue prob-
lem. We consider a variational formulation of the problem written inH2(Ω)×H1(Ω)
as in Refs. 26 and 40, where an auxiliary variable is introduced to transform the
problem into a linear eigenvalue problem. Here, we exploit the capability of VEM
to build highly regular discrete spaces (see Refs. 12 and 20) and propose a conform-
ing H2(Ω) ×H1(Ω) discrete formulation, which makes use of a very simple set of
degrees of freedom, namely 4 degrees of freedom per vertex of the mesh. Then, we
use the classical spectral theory for non-self-adjoint compact operators (see Refs. 4
and 49) to deal with the continuous and discrete solution operators, which appear
as the solution of the continuous and discrete source problems, and whose spectra
are related with the solutions of the transmission eigenvalue problem. Under rather
mild assumptions on the polygonal meshes (made by possibly non-convex elements),
we establish that the resulting VEM scheme provides a correct approximation of
the spectrum and prove optimal-order error estimates for the eigenfunctions and
a double order for the eigenvalues. Finally, we note that differently from the FEM
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where building globally conforming H2(Ω) approximation is complicated, here the
virtual space can be built with a rather simple construction due to the flexibility of
the VEM. In a summary, the advantages of the present virtual element discretiza-
tion are the possibility to use general polygonal meshes and to build conforming
H2(Ω) approximations.

The paper is structured as follows: In Sec. 2, we introduce the variational for-
mulation of the transmission eigenvalue problem, define a solution operator and
establish its spectral characterization. In Sec. 3, we introduce the virtual element
discrete formulation, describe the spectrum of a discrete solution operator and
establish some auxiliary results. In Sec. 4, we prove that the numerical scheme pro-
vides a correct spectral approximation and establish optimal-order error estimates
for the eigenvalues and eigenfunctions using the standard theory for compact and
non-self-adjoint operators. Finally, we report some numerical tests that confirm the
theoretical analysis developed in Sec. 5.

In this paper, we will employ standard notations for Sobolev spaces, norms and
seminorms. In addition, we will denote by C a generic constant independent of the
mesh parameter h, which may take different values in different occurrences. When
the constant depends on the index of refraction, we will write Cn.

2. The Transmission Eigenvalue Problem

Let Ω ⊂ R2 be the polygonal domain. We denote by ν the outward unit normal
vector to ∂Ω and by ∂ν the normal derivative. Let n be a real value function in
L∞(Ω) such that n− 1 is strictly positive (or strictly negative) almost everywhere
in Ω. The transmission eigenvalue problem reads as follows.

Find the so-called transmission eigenvalue k ∈ C and a non-trivial pair of func-
tions (w1, w2) ∈ L2(Ω) × L2(Ω), such that (w1 − w2) ∈ H2(Ω) and

∆w1 + k2n(x)w1 = 0 in Ω, (2.1)

∆w2 + k2w2 = 0 in Ω, (2.2)

w1 = w2 on ∂Ω, (2.3)

∂νw1 = ∂νw2 on ∂Ω. (2.4)

Now, we rewrite the problem above in the following equivalent form in the new
variable u := (w1 − w2) ∈ H2

0 (Ω) (see Ref. 26).
Find (k, u) ∈ C ×H2

0 (Ω) such that

(∆ + k2n)
1

n− 1
(∆ + k2)u = 0 in Ω. (2.5)

The variational formulation of problem (2.5) can be stated as follows: Find
(k, u) ∈ C ×H2

0 (Ω), u �= 0 such that∫
Ω

1
n− 1

(∆u + k2u)(∆v + k2nv) = 0 ∀ v ∈ H2
0 (Ω), (2.6)
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where v denotes the complex conjugate of v. Now, expanding the previous expres-
sion, we obtain the following quadratic eigenvalue problem:∫

Ω

1
n− 1

∆u∆v + τ

∫
Ω

1
n− 1

u∆v + τ

∫
Ω

1
n− 1

∆unv + τ2

∫
Ω

1
n− 1

unv = 0

(2.7)

for all v ∈ H2
0 (Ω), where τ := k2. It is easy to show that k = 0 is not an eigenvalue

of the problem (see Ref. 26). Moreover, for the sake of simplicity, we will assume
that the index of refraction function n(x) is a real constant. Nevertheless, this
assumption does not affect the generality of the forthcoming analysis.

For the theoretical analysis, it is convenient to transform problem (2.7) into a
linear eigenvalue problem. With this aim, let φ be the solution of the problem: Find
φ ∈ H1

0 (Ω) such that

∆φ = τ
n

n− 1
u in Ω, (2.8)

φ = 0 on ∂Ω. (2.9)

Therefore, by testing problem (2.8)–(2.9) with functions in H1
0 (Ω), we arrive at

the following weak formulation of the problem.

Problem 1. Find (λ, u, φ) ∈ C ×H2
0 (Ω) ×H1

0 (Ω) with (u, φ) �= 0 such that

a((u, φ), (v, ψ)) = λb((u, φ), (v, ψ)) ∀ (v, ψ) ∈ H2
0 (Ω) ×H1

0 (Ω),

where λ = −τ and the sesquilinear forms a(·, ·) and b(·, ·) are defined by

a((u, φ), (v, ψ)) :=
1

n− 1

∫
Ω

D2u : D2v +
∫

Ω

∇φ · ∇ψ,

b((u, φ), (v, ψ)) :=
n

n− 1

∫
Ω

∆uv +
1

n− 1

∫
Ω

u∆v −
∫

Ω

∇φ · ∇v +
n

n− 1

∫
Ω

uψ,

for all (u, φ), (v, ψ) ∈ H2
0 (Ω)×H1

0 (Ω). Moreover, “:” denotes the usual scalar product
of 2 × 2 matrices D2u := (∂iju)1≤i,j≤2 denotes the Hessian matrix of u.

Remark 2.1. In the definition of a(·, ·) (cf. Problem 1), we have considered
a∆(u, v) :=

∫
ΩD

2u : D2v instead of a∗(u, v) :=
∫
Ω ∆u∆v; since, we are consid-

ering functions in H2
0 (Ω), both are equivalent (see Ref. 33). This fact will facilitate

the presentation and the analysis of the VEM method. In particular, we will use
a∆
K(u, v) to construct the projector Π∆

2 (cf. (3.1a)–(3.1b)) which will be used to
write the discrete scheme. However, once the projector Π∆

2 is built, it can be used
to discretize the a∗K(u, v) as well (see Appendix of Ref. 15).

We endow H2
0 (Ω)×H1

0 (Ω) with the corresponding product norm, which we will
simply denote with ‖(·, ·)‖.

Now, we note that the sesquilinear forms a(·, ·) and b(·, ·) are bounded forms
(with constants which depend on the index of refraction). Moreover, we have that
a(·, ·) is elliptic.
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Lemma 2.1. There exists a constant Cn > 0, such that

a((v, ψ), (v, ψ)) ≥ Cn‖(v, ψ)‖2 ∀(v, ψ) ∈ H2
0 (Ω) ×H1

0 (Ω).

Proof. The result follows immediately from the fact that
{
‖D2v‖2

0,Ω+‖∇ψ‖2
0,Ω

}1/2

is a norm on H2
0 (Ω) × H1

0 (Ω), equivalent with the norm ‖(·, ·)‖ (see Chap. 6 of
Ref. 52).

We define the solution operator associated with Problem 1:

T : H2
0 (Ω) ×H1

0 (Ω) → H2
0 (Ω) ×H1

0 (Ω),

(f, g) 	→ T (f, g) = (ũ, φ̃)

as the unique solution (as a consequence of Lemma 2.1) of the corresponding source
problem:

a((ũ, φ̃), (v, ψ)) = b((f, g), (v, ψ)) ∀(v, ψ) ∈ H2
0 (Ω) ×H1

0 (Ω). (2.10)

The linear operator T is then well defined and bounded. Note that (λ, u, φ) ∈
C × H2

0 (Ω) × H1
0 (Ω) solves Problem 1 if and only if (µ, u, φ), with µ := 1

λ , is an
eigenpair of T , i.e. T (u, φ) = µ(u, φ).

We observe that no spurious eigenvalues are introduced into the problem since,
if µ �= 0, (0, φ) is not an eigenfunction of the problem.

The following is an additional regularity result for the solution of the source
problem (2.10) and consequently, for the generalized eigenfunctions of T .

Lemma 2.2. There exist s, t ∈ (1/2, 1] and Cn > 0 such that for all (f, g) ∈
H2

0 (Ω) × H1
0 (Ω), the solution (ũ, φ̃) of problem (2.10) satisfies ũ ∈ H2+s(Ω), φ̃ ∈

H1+t(Ω) and

‖ũ‖2+s,Ω + ‖φ̃‖1+t,Ω ≤ Cn‖(f, g)‖.

Proof. The estimate for φ̃ follows from the classical regularity result for the Laplace
problem with its right-hand side in L2(Ω). The estimate for ũ follows from the
classical regularity result for the biharmonic problem with its right-hand side in
H−1(Ω) (cf. Ref. 42).

Remark 2.2. The constant s in the lemma above is the Sobolev regularity for the
biharmonic equation with the right-hand side in H−1(Ω) and homogeneous Dirich-
let boundary conditions. The constant t is the Sobolev exponent for the Laplace
problem with homogeneous Dirichlet boundary conditions. These constants only
depend on the domain Ω. If Ω is convex, then s = t = 1. Otherwise, the lemma
holds for all s < s0 and t < t0, where s0, t0 ∈ (1/2, 1] depend on the largest reentrant
angle of Ω.

Hence, because of the compact inclusions H2+s(Ω) ↪→ H2
0 (Ω) and H1+t(Ω) ↪→

H1
0 (Ω), we can conclude that T is a compact operator. So, we obtain the following

spectral characterization result.
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Lemma 2.3. The spectrum of T satisfies sp(T ) = {0} ∪ {µk}k∈N, where {µk}k∈N

is a sequence of complex eigenvalues which converges to 0 and their corresponding
eigenspaces lie in H2+s(Ω)×H1+t(Ω). In addition, µ = 0 is an infinite multiplicity
eigenvalue of T .

Proof. The proof is obtained from the compactness of T and Lemma 2.2.

3. The Virtual Element Discretization

In this section, we will write the C1-VEM discretization of Problem 1. With this
aim, we start with the mesh construction and the assumptions considered to intro-
duce the discrete virtual element spaces.

Let {Th}h be a sequence of decompositions of Ω into polygonsK. We will denote
by hK the diameter of the element K and by h the maximum of the diameters of
all the elements of the mesh, i.e. h := maxK∈Th

hK . In what follows, we denote by
NK the number of vertices of K by e a generic edge of {Th}h and for all e ∈ ∂K,
we denote with νeK the unit normal vector that points outside of K.

In addition, we will make the following assumptions as in Refs. 5 and 14: there
exists a positive real number CT such that, for every h and every K ∈ Th,

A1: the ratio between the shortest edge and the diameter hK of K is larger than
CT ;

A2: K ∈ Th is star-shaped with respect to every point of a ball of radius CT hK .

In order to introduce the method, we first define two preliminary discrete spaces
as follows: For each polygon K ∈ Th (meaning open simply connected set whose
boundary is a non-intersecting line made of a finite number of straight line seg-
ments), we define the following finite-dimensional spaces:

W̃K
h :=

{
vh ∈ H2(K) : ∆2vh ∈ P2(K), vh|∂K ∈ C0(∂K), vh|e ∈ P3(e)∀ e ∈ ∂K,

∇vh|∂K ∈ C0(∂K)2, ∂νvh|e ∈ P1(e)∀ e ∈ ∂K
}

and

Ṽ Kh :=
{
ψh ∈ H1(K) : ∆ψh ∈ P1(K), ψh|∂K ∈ C0(∂K), ψh|e ∈ P1(e)∀ e ∈ ∂K

}
,

where ∆2 represents the biharmonic operator and we have denoted by Pk(S) the
space of polynomials of degree up to k defined on the subset S ⊆ R2.

The following conditions hold:

• for any vh ∈ W̃K
h , the trace on the boundary of K is continuous and on each

edge is a polynomial of degree 3;
• for any vh ∈ W̃K

h , the gradient on the boundary is continuous and on each
edge its normal (respectively, tangential) component is a polynomial of degree 1
(respectively, 2);
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• for any ψh ∈ Ṽ Kh , the trace on the boundary of K is continuous and on each edge
is a polynomial of degree 1;

• P2(K) × P1(K) ⊆ W̃K
h × Ṽ Kh .

Next, with the aim to choose the degrees of freedom for both spaces, we will
introduce three sets of linear operators D1, D2 and D3. The first two sets (D1,D2)
are provided by linear operators from W̃K

h into R and the set D3 by linear operators
from Ṽ Kh into R. For all (vh, ψh) ∈ W̃K

h × Ṽ Kh , they are defined as follows:

• D1 contains linear operators evaluating vh at the NK vertices of K,
• D2 contains linear operators evaluating ∇vh at the NK vertices of K,
• D3 contains linear operators evaluating ψh at the NK vertices of K.

Note that, as a consequence of definition of the discrete spaces, the output values
of the three sets of operators D1, D2 and D3 are sufficient to uniquely determine
vh and ∇vh on the boundary of K, and ψh on the boundary of K, respectively.

In order to construct the discrete scheme, we need some preliminary definitions.
First, we split the forms a(·, ·) and b(·, ·), introduced in the previous section, as
follows:

a((u, φ), (v, ψ)) =
∑
K∈Th

1
n− 1

a∆
K(u, v) + a∇K(φ, ψ)

∀ (u, φ), (v, ψ) ∈ H2
0 (Ω) ×H1

0 (Ω),

b((u, φ), (v, ψ)) =
∑
K∈Th

bK((u, φ), (v, ψ)) ∀(u, φ), (v, ψ) ∈ H2
0 (Ω) ×H1

0 (Ω)

with

a∆
K(u, v) :=

∫
K

D2u : D2v ∀u, v ∈ H2(K),

a∇K(φ, ψ) :=
∫
K

∇φ · ∇ψ ∀φ, ψ ∈ H1(K)

and for all (u, φ), (v, φ) ∈ H2(K) ×H1(K),

bK((u, φ), (v, ψ)) :=
n

n− 1

∫
K

∆uv +
1

n− 1

∫
K

u∆v −
∫
K

∇φ · ∇v +
n

n− 1

∫
K

uψ.

Now, we define the projector Π∆
2 : H2(K) → P2(K) ⊆ W̃K

h for each v ∈ H2(K) as
the solution of

a∆
K

(
Π∆

2 v, q
)

= a∆
K(v, q) ∀ q ∈ P2(K), (3.1a)((

Π∆
2 v, q

))
K

= ((v, q))K ∀ q ∈ P1(K), (3.1b)

where ((·, ·))K is defined as follows:

((u, v))K =
NK∑
i=1

u(Pi)v(Pi) ∀u, v ∈ C0(∂K),
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where Pi, 1 ≤ i ≤ NK , are the vertices of K. We note that the bilinear form a∆
K(·, ·)

has a non-trivial kernel, given by P1(K). Hence, the role of condition (3.1b) is to
select an element of the kernel of the operator. We observe that operator Π∆

2 is well
defined on W̃K

h and, most important, for all v ∈ W̃K
h , the polynomial Π∆

2 v can be
computed using only the values of the operators D1 and D2 calculated on v. This
follows easily with an integration by parts (see Ref. 3).

In a similar way, we define the projector Π∇
1 : H1(K) → P1(K) ⊆ Ṽ Kh for each

ψ ∈ H1(K) as the solution of

a∇K
(
Π∇

1 ψ, q
)

= a∇K(ψ, q) ∀ q ∈ P1(K), (3.2a)(
Π∇

1 ψ, 1
)
∂K

= (ψ, 1)∂K . (3.2b)

We observe that operator Π∇
1 is well defined on Ṽ Kh , and, as before, for all ψ ∈ Ṽ Kh ,

the polynomial Π∇
1 ψ can be computed using only the values of the operators D3

calculated on ψ, which follows by an integration by parts (see Ref. 1).
Now, we introduce our local virtual spaces (see Refs. 1 and 3):

WK
h :=

{
vh ∈ W̃K

h :
∫
K

(
Π∆

2 vh
)
q =

∫
K

vhq ∀ q ∈ P2(K)
}

and

V Kh :=
{
ψh ∈ Ṽ Kh :

∫
K

(
Π∇

1 ψh
)
q =

∫
K

ψhq ∀ q ∈ P1(K)
}
.

It is clear that WK
h × V Kh ⊆ W̃K

h × Ṽ Kh . Thus, the linear operators Π∆
2 and Π∇

1

are well defined on WK
h and V Kh , respectively.

In Lemma 2.1 of Ref. 3, it has been established that the sets of operators D1

and D2 constitute a set of degrees of freedom for the space WK
h . Moreover, the

set of operators D3 constitutes a set of degrees of freedom for the space V Kh (see
Ref. 1).

We also have that P2(K) × P1(K) ⊆ WK
h × V Kh . This will guarantee the good

approximation properties for the spaces.
To continue the construction of the discrete scheme, we will need to consider

new projectors. First, we define the projector Π∇
2 : H2(K) → P2(K) for each

w ∈ H2(K) as the solution of

a∇K
(
Π∇

2 w, q
)

= a∇K(w, q) ∀ q ∈ P2(K), (3.3a)(
Π∇

2 w, 1
)
0,K

= (w, 1)0,K . (3.3b)

Moreover, we consider the L2(Ω) orthogonal projectors onto Pl(K), l = 1, 2 as
follows: we define Π0

l : L2(Ω) → Pl(K) for each p ∈ L2(Ω) by∫
K

(Π0
l p)q =

∫
K

pq ∀ q ∈ Pl(K). (3.4)

Now, due to the particular property appearing in definition of the space WK
h ,

it can be seen that the right-hand side in (3.4) is computable using Π∆
2 vh, and
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thus Π0
2vh depends only on the values of the degrees of freedom for vh and ∇vh.

Actually, it is easy to check that on the space WK
h , the projectors Π0

2 and Π∆
2 are

the same operators. In fact,∫
K

(Π0
2vh)q =

∫
K

vhq =
∫
K

(Π∆
2 vh)q ∀ q ∈ P2(K). (3.5)

By definition of V Kh , we have that Π0
1 and Π∇

1 are the same operators in V Kh .
Now, for every decomposition Th of Ω into simple polygons K, we introduce the

global virtual space denoted by Zh as follows:

Zh := Wh × Vh,

where

Wh := {vh ∈ H2
0 (Ω) : vh|K ∈WK

h } and Vh := {ψh ∈ H1
0 (Ω) : ψh|K ∈ V Kh }.

A set of degrees of freedom for Zh is given by all pointwise values of vh and ψh
on all vertices of Th together with all pointwise values of ∇vh on all vertices of Th,
excluding the vertices on ∂Ω (where the values vanishes). Thus, the dimension of
Zh is four times the number of interior vertices of Th.

In what follows, we discuss the construction of the discrete version of the local
forms. With this aim, we consider s∆K(·, ·) and s∇K(·, ·) any hermitian positive definite
forms satisfying:

c0a
∆
K(vh, vh) ≤ s∆K(vh, vh) ≤ c1a

∆
K(vh, vh) ∀ vh ∈WK

h with Π∆
2 vh = 0, (3.6)

c2a
∇
K(ψh, ψh) ≤ s∇K(ψh, ψh) ≤ c3a

∇
K(ψh, ψh) ∀ψh ∈ V Kh with Π∇

1 ψh = 0. (3.7)

We define the discrete sesquilinear forms ah(·, ·) : Zh × Zh → C and bh(·, ·) :
Zh × Zh → C by

ah((uh, φh), (vh, ψh)) :=
∑
K∈Th

1
n− 1

a∆
h,K(uh, vh) + a∇h,K(φh, ψh)

∀(uh, φh), (vh, ψh) ∈ Zh,

bh((uh, φh), (vh, ψh)) :=
∑
K∈Th

bh,K((uh, φh), (vh, ψh)) ∀(uh, φh), (vh, ψh) ∈ Zh,

where a∆
h,K(·, ·), a∇h,K(·, ·) and bh,K(·, ·) are local forms on WK

h ×WK
h , V Kh × V Kh

and ZKh := WK
h × V Kh , respectively, defined by

a∆
h,K(uh, vh) := a∆

K

(
Π∆

2 uh,Π
∆
2 vh

)
+ s∆K

(
uh−Π∆

2 uh, vh−Π∆
2 vh

)
∀uh, vh ∈WK

h ,

a∇h,K(φh, ψh) := a∇K
(
Π∇

1 φh,Π
∇
1 ψh

)
+ s∇K

(
φh−Π∇

1 φh, ψh−Π∇
1 ψh

)
∀φh, ψh ∈ V Kh ,
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bh,K((uh, φh), (vh, ψh)) :=
n

n− 1

∫
K

Π0
2(∆uh)Π

0
2vh +

1
n− 1

∫
K

Π0
2uhΠ

0
2(∆vh)

−
∫
K

∇Π∇
1 φh · ∇Π∇

2 vh +
n

n− 1

∫
K

Π0
2uhΠ

0
1ψh

∀(uh, φh), (vh, ψh) ∈ ZKh .

The construction of the local sesquilinear forms guarantees the usual consistency
and stability properties, as is stated in the following proposition. Since the proof
follows standard arguments in the VEM literature, it is omitted.

Proposition 3.1. The local forms a∆
h,K(·, ·) and a∇h,K(·, ·) on each element K sat-

isfy the following:

• Consistency: for all h > 0 and for all K ∈ Th, we have that

a∆
h,K(vh, q) = a∆

K(vh, q) ∀ q ∈ P2(K), ∀ vh ∈WK
h , (3.8)

a∇h,K(ψh, q) = a∇K(ψh, q) ∀ q ∈ P1(K), ∀ψh ∈ V Kh . (3.9)

• Stability and boundedness : There exist positive constants αi, i = 1, 2, 3, 4, inde-
pendent of K, such that

α1a
∆
K(vh, vh) ≤ a∆

h,K(vh, vh) ≤ α2a
∆
K(vh, vh) ∀ vh ∈ WK

h , (3.10)

α3a
∇
K(ψh, ψh) ≤ a∇h,K(ψh, ψh) ≤ α4a

∇
K(ψh, ψh) ∀ψh ∈ V Kh . (3.11)

Now, we are in a position to write the virtual element discretization of
Problem 1.

Problem 2. Find (λh, uh, ψh) ∈ C × Zh, (uh, φh) �= 0 such that

ah((uh, φh), (vh, ψh)) = λhbh((uh, φh), (vh, ψh)). (3.12)

It is clear that by virtue of (3.10) and (3.11), the hermitian form ah(·, ·) is
bounded. Moreover, we will show in the following lemma that ah(·, ·) is also uni-
formly elliptic.

Lemma 3.1. There exists constant Cn > 0, independent of h, such that

ah((vh, ψh), (vh, ψh)) ≥ Cn‖(vh, ψh)‖2 ∀ (vh, ψh) ∈ Zh.

Proof. The result is deduced from Lemma 2.1, (3.10) and (3.11).

Now, we introduce the discrete solution operator Th which is given by

Th : H2
0 (Ω) ×H1

0 (Ω) → H2
0 (Ω) ×H1

0 (Ω),

(f, g) 	→ Th(f, g) = (ũh, φ̃h),



December 10, 2018 12:19 WSPC/103-M3AS 1850061

A VEM for the transmission eigenvalue problem 2813

where (ũh, φ̃h) ∈ Zh is the unique solution of the corresponding discrete source
problem

ah((ũh, φ̃h), (vh, ψh)) = bh((f, g), (vh, ψh)) ∀(vh, ψh) ∈ Zh. (3.13)

Because of Lemma 3.1, the linear operator Th is well defined and bounded
uniformly with respect to h. Once more, as in the continuous case, (λh, uh, φh) ∈
C × Zh solves Problem 2 if and only if (µh, uh, φh), with µh := 1

λh
, is an eigenpair

of Th, i.e. Th(uh, φh) = µh(uh, φh).
We end this section with the following remark.

Remark 3.1. In the first and second terms in the definition of bh,K(·, ·), we have
employed the projector Π0

2(∆·) which is a projector of high order. This definition
will be useful in the forthcoming analysis of the VEM method. However, this is
not the only possibility to discretize bK(·, ·), we can also consider the following
alternative definition:

b̃h,K((uh, φh), (vh, ψh))

:=
n

n− 1

∫
K

Π0
1(∆uh)Π

0
2vh +

1
n− 1

∫
K

Π0
2uhΠ

0
1(∆vh)

−
∫
K

∇Π∇
1 φh · ∇Π∇

2 vh +
n

n− 1

∫
K

Π0
2uhΠ

0
1ψh ∀(uh, φh), (vh, ψh) ∈ ZKh ,

where the projector Π0
1(∆·) has been used. The VEM discretization in given this

case is as follows.

Problem 3. Find (λh, uh, ψh) ∈ C × Zh, (uh, φh) �= 0 such that

ah((uh, φh), (vh, ψh)) = λhb̃h((uh, φh), (vh, ψh)). (3.14)

We are going to analize in detail the VEM method (3.12) and summarize the
results for the VEM discretization (3.14) (see Remark 4.3).

4. Spectral Approximation and Error Estimates

To prove that Th provides a correct spectral approximation of T , we will resort to
the classical theory for compact operators (see Ref. 4). First, we recall the following
approximation result which is derived by interpolation between Sobolev spaces (see
for instance Theorem I.1.4 of Ref. 41 from the analogous result for integer values of
s). In its turn, the result for integer values is stated in Proposition 4.2 of Ref. 5 and
follows from the classical Scott–Dupont theory (see Ref. 19 and Proposition 3.1 of
Ref. 3).

Proposition 4.1. There exists a constant C > 0, such that for every v ∈ Hδ(K),
there exists vπ ∈ Pk(K), k ≥ 0 such that

|v − vπ |�,K ≤ Chδ−�K |v|δ,K , 0 ≤ δ ≤ k + 1, 
 = 0, . . . , [δ]

with [δ] denoting the largest integer equal or smaller than δ ∈ R.
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For the analysis, we will introduce the broken seminorms:

|ψ|21,h :=
∑
K∈Th

|ψ|21,K and |v|22,h :=
∑
K∈Th

|v|22,K ,

which are well defined for every (ψ, v) ∈ [L2(Ω)]2 such that (ψ, v)|K ∈ H1(K) ×
H2(K) for all polygon K ∈ Th.

In what follows, we derive several auxiliary results which will be used in the
following to prove convergence and error estimates for the spectral approximation.

Proposition 4.2. Assume that A1–A2 are satisfied, let ψ ∈ H1+t(Ω) with t ∈
(0, 1]. Then, there exist ψI ∈ Vh and C > 0 such that

‖ψ − ψI‖1,Ω ≤ Cht|ψ|1+t,Ω.

Proof. This result has been proved in Theorem 11 of Ref. 29 (see also Proposi-
tion 4.2 of Ref. 47).

Proposition 4.3. Assume A1–A2 are satisfied, let v ∈ H2+s(Ω) with s ∈ (0, 1].
Then, there exist vI ∈ Wh and C > 0 such that

‖v − vI‖2,Ω ≤ Chs|v|2+s,Ω.

Proof. This result has been established in Proposition 3.1 of Ref. 3.

Now, we establish a result which will be useful to prove the convergence of the
operator Th to T as h goes to zero.

Lemma 4.1. There exists Cn independent of h such that for all (f, g) ∈ H2
0 (Ω) ×

H1
0 (Ω), if (ũ, φ̃) := T (f, g) and (ũh, φ̃h) := Th(f, g), then

‖(T − Th)(f, g)‖ ≤ Cnh‖(f, g)‖ + |ũ− ũI |2,Ω + |ũ− ũπ|2,h

+ |φ̃− φ̃I |1,Ω + |φ̃− φ̃π |1,h

for all (ũI , φ̃I) ∈ Zh and for all (ũπ, φ̃π) ∈ [L2(Ω)]2 such that (ũπ, φ̃π)|K ∈ P2(K)×
P1(K).

Proof. Let (f, g) ∈ H2
0 (Ω) ×H1

0 (Ω), for any (ũI , φ̃I) ∈ Wh × Vh, we have,

‖(T − Th)(f, g)‖ ≤ ‖(ũ, φ̃) − (ũI , φ̃I)‖ + ‖(ũI , φ̃I) − (ũh, φ̃h)‖. (4.1)

Now, we define (vh, ψh) = (ũh − ũI , φ̃h − φ̃I) ∈ Zh, then from the ellipticity of
ah(·, ·) and the definition of T and Th, we have

β‖(vh, ψh)‖2 ≤ ah((vh, ψh), (vh, ψh))

= ah((ũh, φ̃h), (vh, ψh)) − ah((ũI , φ̃I), (vh, ψh))
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= bh((f, g), (vh, ψh)) −
∑
K∈Th

{
1

n− 1
a∆
h,K(ũI , vh) + a∇h,K(φ̃I , ψh)

}

= bh((f, g), (vh, ψh)) −
∑
K∈Th

{
1

n− 1
{
a∆
h,K(ũI − ũπ, vh)

+ a∆
h,K(ũπ, vh)

}
+ a∇h,K(φ̃I − φ̃π, ψh) + a∇h,K(φ̃π , ψh)

}

= bh((f, g), (vh, ψh)) −
∑
K∈Th

{
1

n− 1
{
a∆
h,K(ũI − ũπ, vh)

+ a∆
K(ũπ − ũ, vh) + a∆

K(ũ, vh)
}

+ a∇h,K(φ̃I − φ̃π, ψh)

+ a∇K(φ̃π − φ̃, ψh) + a∇K(φ̃, ψh)
}

=
∑
K∈Th

{bh,K((f, g), (vh, ψh)) − bK((f, g), (vh, ψh))}

︸ ︷︷ ︸
E1

− 1
n− 1

∑
K∈Th

{
a∆
h,K(ũI − ũπ, vh) + a∆

K

(
ũπ − ũ, vh

)}
︸ ︷︷ ︸

E2

−
∑
K∈Th

{
a∇h,K

(
φ̃I − φ̃π, ψh

)
+ a∇K

(
φ̃π − φ̃, ψh

)}
︸ ︷︷ ︸

E3

, (4.2)

where we have used the consistency properties (3.8)–(3.9). We now bound each
term Ei|K , i = 1, 2, 3.

First, the term E1|K can be written as follows:

bh,K((f, g), (vh, ψh)) − bK((f, g), (vh, ψh))

=
n

n− 1




∫
K

Π0
2(∆f)Π0

2vh −
∫
K

∆fvh︸ ︷︷ ︸
E11




+
1

n− 1




∫
K

Π0
2fΠ0

2(∆vh) −
∫
K

f∆vh︸ ︷︷ ︸
E12
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−




∫
K

∇Π∇
1 g · ∇Π∇

2 vh −
∫
K

∇g · ∇vh︸ ︷︷ ︸
E13




+
n

n− 1




∫
K

(Π0
2f)(Π0

1ψh) −
∫
K

fψh︸ ︷︷ ︸
E14


. (4.3)

Now, we will bound each term E1i|K i = 1, 2, 3, 4. The term E11 can be bounded
as follows. Using the definition of Π0

2 and Proposition 4.1, we have

E11 =
∫
K

∆f
(
vh − Π0

2vh
)
≤ |f |2,K

∥∥vh − Π0
2vh

∥∥
0,K

= |f |2,K inf
q∈P2(K)

‖vh − q‖0,K ≤ Ch2
K |f |2,K |vh|2,K .

For the term E12, we repeat the same arguments to obtain

E12 ≤ Ch2
K |f |2,K |vh|2,K .

Now, we bound E13. From the definition of Π∇
2 , we have

E13 =
∫
K

∇Π∇
1 g · ∇vh −

∫
K

∇g · ∇vh =
∫
K

∇
(
Π∇

1 g − g
)
· ∇vh

=
∫
K

∇
(
Π∇

1 g − g
)
· ∇(vh − ṽπ) ≤

∣∣Π∇
1 g − g

∣∣
1,K

|vh − ṽπ |1,K

≤ ChK |g|1,K |vh|2,K ,
where we have used the definition and the stability of Π∇

1 with ṽπ ∈ P1(K) such
that Proposition 4.1 holds true.

For the term E14, we first use the definition of Π0
2, the definition and the stability

of Π0
1 with respect to f̂π ∈ P1(K) such that Proposition 4.1 holds true, thus, we

have

E14 =
∫
K

fΠ0
1ψh −

∫
K

fψh =
∫
K

(f − f̂π)
(
Π0

1ψh − ψh
)

≤ Ch2
K |f |2,K

∥∥Π0
1ψh − ψh

∥∥
0,K

≤ Ch2
K |f |2,K inf

q∈P1(K)
‖ψh − q‖0,K ≤ Ch3

K |f |2,K |ψh|1,K .

Therefore, using the Cauchy–Schwarz inequality, we can deduce from (4.3) that

E1 ≤ Cnh‖(f, g)‖‖(vh, ψh)‖.
Now, for the terms E2 and E3, we use the Cauchy–Schwarz inequality and the

stability of a∆
h,K(·, ·) and a∇h,K(·, ·) to obtain

E2 + E3 ≤ Cn
{
|ũ− ũI |2,Ω + |ũ− ũπ|2,h

}
+ |φ̃− φ̃I |1,Ω + |φ̃− φ̃π|1,h.
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Finally, from (4.2), we have

β‖(vh, ψh)‖ ≤ Cn
{
h‖(f, g)‖ + |ũ− ũI |2,Ω + |ũ− ũπ|2,h

+ |φ̃− φ̃I |1,Ω + |φ̃− φ̃π |1,h
}
.

Therefore, the proof follows from (4.1) and the previous inequality.

For the convergence and error analysis of the proposed virtual element scheme
for the transmission eigenvalue problem, we first establish that Th → T in norm as
h → 0. Then, we prove a similar convergence result for the adjoint operators T ∗

and T ∗
h of T and Th, respectively.

Lemma 4.2. There exist Cn and s̃ ∈ (0, 1], independent of h, such that

‖T − Th‖ ≤ Cnh
s̃.

Proof. Let (f, g) ∈ H2
0 (Ω) ×H1

0 (Ω) such that ‖(f, g)‖ = 1, let (ũ, φ̃) and (ũh, φ̃h)
be the solution of problems (2.10) and (3.13), respectively, so that (ũ, φ̃) := T (f, g)
and (ũh, φ̃h) := Th(f, g). From Lemma 4.1 and Poincaré inequality, we have

‖(T − Th)(f, g)‖ ≤ Cnh‖(f, g)‖ + ‖ũ− ũI‖2,Ω + |ũ− ũπ|2,h

+ ‖φ̃− φ̃I‖1,Ω + |φ̃− φ̃π|1,h

≤ Cn(h‖(f, g)‖ + hs‖f‖2,Ω + ht‖g‖1,Ω)

≤ Cnh
s̃‖(f, g)‖,

where we have used the Propositions 4.1–4.3, and Lemma 2.2, with s̃ := min{s, t}.
Thus, we conclude the proof.

Let T ∗ and T ∗
h : H2

0 (Ω) ×H1
0 (Ω) → H2

0 (Ω) ×H1
0 (Ω) the adjoint operators of T

and Th, respectively, defined by T ∗(f, g) := (ũ∗, φ̃∗) and T ∗
h (f, g) := (ũ∗h, φ̃

∗
h), where

(ũ∗, φ̃∗) and (ũ∗h, φ̃
∗
h) are the unique solutions of the following problems:

a((v, ψ), (ũ∗, φ̃∗)) = b((v, ψ), (f, g)) ∀(v, ψ) ∈ H2
0 (Ω) ×H1

0 (Ω), (4.4)

ah((vh, ψh), (ũ∗h, φ̃
∗
h)) = bh((vh, ψh), (f, g)) ∀(vh, ψh) ∈ Zh. (4.5)

It is simple to prove that if µ is an eigenvalue of T with multiplicity m, µ is an
eigenvalue of T ∗ with the same multiplicity m.

Now, we will study the convergence in norm of T ∗
h to T ∗ as h goes to zero. With

this aim, first we establish an additional regularity result for the solution (ũ∗, φ̃∗)
of problem (4.4).

Lemma 4.3. There exist s, t ∈ (1/2, 1] and Cn such that for all (f, g) ∈ H2
0 (Ω) ×

H1
0 (Ω), the solution (ũ∗, φ̃∗) of problem (4.4) satisfies ũ∗ ∈ H2+s(Ω), φ̃∗ ∈ H1+t(Ω),
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and

‖ũ∗‖2+s,Ω + ‖φ̃∗‖1+t,Ω ≤ Cn‖(f, g)‖.

Proof. The result follows repeating the same arguments used in the proof of
Lemma 2.2.

Remark 4.1. We note that the constants s and t in Lemma 4.3 are the same as
in Lemma 2.2.

Now, we are in a position to establish the following result.

Lemma 4.4. There exist Cn and s̃ ∈ (0, 1], independent of h, such that∥∥T ∗ − T ∗
h

∥∥ ≤ Cnh
s̃.

Proof. It is essentially identical to that of Lemmas 4.1 and 4.2.

Our final goal is to show convergence and obtain error estimates. With this aim,
we will apply to our problem the theory from Refs. 4 and 49 for non-self-adjoint
compact operators.

We first recall the definition of spectral projectors. Let µ be a nonzero eigenvalue
of T with algebraic multiplicity m and let Γ be an open disk in the complex plane
centered at µ, such that µ is the only eigenvalue of T lying in Γ and ∂Γ∩sp(T ) = ∅.
The spectral projectors E and E∗ are defined as follows:

• The spectral projector of T relative to µ: E := (2πi)−1
∫
∂Γ(z − T )−1dz;

• The spectral projector of T ∗ relative to µ: E∗ := (2πi)−1
∫
∂Γ(z − T ∗)−1dz.

E and E∗ are projections onto the space of generalized eigenvectors R(E) and
R(E∗), respectively. It is simple to prove that R(E), R(E∗) ∈ H2+s(Ω) ×H1+t(Ω)
(see Ref. 26).

Now, since Th → T in norm, there exist m eigenvalues (which lie in Γ)
µ

(1)
h , . . . , µ

(m)
h of Th (repeated according to their respective multiplicities) which

will converge to µ as h goes to zero.
In a similar way, we introduce the following spectral projector Eh :=

(2πi)−1
∫
∂Γ

(z−Th)−1dz, which is a projector onto the invariant subspace R(Eh) of
Th spanned by the generalized eigenvectors of Th corresponding to µ(1)

h , . . . , µ
(m)
h .

We recall the definition of the gap δ̂ between two closed subspaces X and Y of
a Hilbert space V :

δ̂(X ,Y) := max{δ(X ,Y), δ(Y,X )},

where

δ(X ,Y) := sup
x∈X :‖x‖V=1

δ(x,Y) with δ(x,Y) := inf
y∈Y

‖x− y‖V .
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Let Ph := P2
h × P1

h : H2
0 (Ω) ×H1

0 (Ω) → Zh ⊆ H2
0 (Ω) ×H1

0 (Ω) be the projector
defined by

a(Ph(u, φ) − (u, φ), (vh, ψh)) = a∆(P2
hu− u, vh) + a∇(P1

hφ− φ, ψh)

= 0 ∀(vh, ψh) ∈ Zh.

We note that the form a(·, ·) is the inner product of H2
0 (Ω)×H1

0 (Ω). Therefore, we
have

|(u, φ) − P(u, φ)|H2
0 (Ω)×H1

0 (Ω) = inf
(vh,ψh)∈Zh

|(u, φ) − (vh, ψh)|H2
0 (Ω)×H1

0 (Ω) (4.6)

and

|P(u, φ)|H2
0 (Ω)×H1

0 (Ω) ≤ |(u, φ)|H2
0 (Ω)×H1

0 (Ω) ∀(u, φ) ∈ H2
0 (Ω) ×H1

0 (Ω). (4.7)

The following error estimates for the approximation of eigenvalues and eigen-
functions hold true.

Theorem 4.1. There exists a strictly positive constant Cn such that

δ̂(R(E), R(Eh)) ≤ Cnh
min{s,t}, (4.8)

|µ− µ̂h| ≤ Cnh
2 min{s,t}, (4.9)

where µ̂h := 1
m

∑m
k=1 µ

(k)
h and with the constants s and t as in Lemmas 2.2 and 4.3

(see also Remark 2.2).

Proof. As a consequence of Lemma 4.2, Th converges in norm to T as h goes to
zero. Then, the proof of (4.8) follows as a direct consequence of Theorem 7.1 from
Ref. 4 and the fact that, for (f, g) ∈ R(E), ‖(f, g)‖H2+s(Ω)×H1+t(Ω) ≤ ‖(f, g)‖,
because of Lemma 2.2.

In what follows, we will prove (4.9): assume that T (uk, φk) = µ(uk, φk), k =
1, . . . ,m. Since a(·, ·) is an inner product in H2

0 (Ω) ×H1
0 (Ω), we can choose a dual

basis for R(E∗) denoted by (u∗k, φ
∗
k) ∈ H2

0 (Ω) ×H1
0 (Ω) satisfying

a
(
(uk, φk),

(
u∗l , φ

∗
l

))
= δk,l.

Now, from Theorem 7.2 of Ref. 4, we have that

|µ− µ̂h| ≤
1
m

m∑
k=1

∣∣〈(T − Th)(uk, φk),
(
u∗k, φ

∗
k

)〉∣∣
+Cn‖(T − Th)|R(E)‖

∥∥(
T ∗ − T ∗

h

)
|R(E∗)

∥∥,
where 〈·, ·〉 denotes the corresponding duality pairing.

Thus, in order to obtain (4.9), we need to bound the two terms on the right-hand
side above.
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The second term can be easily bounded from Lemmas 4.2 and 4.4. In fact, we
have

‖(T − Th)|R(E)‖
∥∥(
T ∗ − T ∗

h

)∣∣
R(E∗)

‖ ≤ Cnh
2min{s,t}. (4.10)

Next, we manipulate the first term as follows: adding and subtracting (vh, ψh) ∈
Zh and using the definition of T and Th, we obtain〈

(T − Th)(uk, φk),
(
u∗k, φ

∗
k

)〉
= a

(
(T − Th)(uk, φk),

(
u∗k, φ

∗
k

))
= a

(
(T − Th)(uk, φk),

(
u∗k, φ

∗
k

)
− (vh, ψh)

)
+ a(T (uk, φk), (vh, ψh))

− a(Th(uk, φk), (vh, ψh))

= a
(
(T − Th)(uk, φk),

(
u∗k, φ

∗
k

)
− (vh, ψh)

)
+ b((uk, φk), (vh, ψh))

− a(Th(uk, φk), (vh, ψh)) + ah(Th(uk, φk), (vh, ψh)) − bh((uk, φk), (vh, ψh))

=
{
a
(
(T − Th)(uk, φk),

(
u∗k, φ

∗
k

)
− (vh, ψh)

)}
+

{
b((uk, φk), (vh, ψh)) − bh((uk, φk), (vh, ψh))

}
+

{
ah(Th(uk, φk), (vh, ψh)) − a(Th(uk, φk), (vh, ψh))

}
∀(vh, ψh) ∈ Zh.

(4.11)

Now, we estimate each bracket in (4.11) separately. First, to bound the second
bracket, we use the additional regularity of (uk, φk) ∈ R(E) ⊂ H2+s(Ω)×H1+t(Ω)
and repeating the same steps used to derive (4.3) (in this case with (uk, φk) instead
of (f, g)), we have

bh,K((uk, φk), (vh, ψh)) − bK((uk, φk), (vh, ψh)) = E11 + E12 + E13 + E14.

Now, we will bound each term E1i, i = 1, 2, 3, 4, as in the proof of Lemma 4.1, but
in this case, exploiting the additional regularity and the estimates in Lemmas 2.2
and 4.3 for (uk, φk) ∈ R(E) and

(
u∗k, φ

∗
k

)
∈ R(E∗), respectively.

In particular, the terms E11, E12 and E14 can be bound exactly as in the proof
of Lemma 4.1. However, for the term E13, we proceed as follows:

E13 =
∫
K

∇Π∇
1 φk · ∇vh −

∫
K

∇φk · ∇vh =
∫
K

∇
(
Π∇

1 φk − φk
)
· ∇vh

=
∫
K

∇
(
Π∇

1 φk − φk
)
· ∇

(
vh − ṽπh

)
≤

∣∣Π∇
1 φk − φk

∣∣
1,K

∣∣vh − ṽπh
∣∣
1,K

= inf
qh∈P1(K)

|φk − qh|1,K
∣∣vh − ṽπh

∣∣
1,K

≤ Ch1+t
K |φk|1+t,K |vh|2,K

≤ Ch
2min{s,t}
K |φk|1+t,K |vh|2,K ,

where we have used the definition of Π∇
1 with ṽπh ∈ P1(K) such that Proposition 4.1

holds true and the fact that φk ∈ H1+t(Ω) together with Proposition 4.1 again.



December 10, 2018 12:19 WSPC/103-M3AS 1850061

A VEM for the transmission eigenvalue problem 2821

Therefore taking sum and using the additional regularity for φk, together with
Lemma 2.2, we obtain for all (vh, ψh) ∈ Zh that

{b((uk, φk), (vh, ψh)) − bh((uk, φk), (vh, ψh))} ≤ Cnh
2min{s,t}‖(uk, φk)‖‖(vh, ψh)‖.

(4.12)

Now, we estimate the third bracket in (4.11). Let (wh, ξh) := Th(uk, φk) and
ΠK
h be defined by

(
ΠK
h (v, ψ)

)
|K := (Π∆

2 v,Π
∇
1 ψ) for all K ∈ Th and for all (v, ψ) ∈

H2
0 (Ω)×H1

0 (Ω), where Π∆
2 and Π∇

1 have been defined in (3.1a)–(3.1b) and (3.2a)–
(3.2b), respectively. Hence, we have

ah((wh, ξh), (vh, ψh)) − a((wh, ξh), (vh, ψh))

=
∑
K∈Th

{ah,K((wh, ξh), (vh, ψh)) − aK((wh, ξh), (vh, ψh))}

=
∑
K∈Th

{
ah,K

(
(wh, ξh) −

(
Π∆

2 wh,Π
∇
1 ξh

)
, (vh, ψh) −

(
Π∆

2 vh,Π
∇
1 ψh

))

+ aK
((

Π∆
2 wh,Π

∇
1 ξh

)
− (wh, ξh), (vh, ψh) −

(
Π∆

2 vh,Π
∇
1 ψh

))}
≤ Cn

∑
K∈Th

{∣∣(wh, ξh) − (
Π∆

2 wh,Π
∇
1 ξh

)∣∣
H2(K)×H1(K)

×
∣∣(vh, ψh) − (

Π∆
2 vh,Π

∇
1 ψh

)∣∣
H2(K)×H1(K)

}
= Cn

∑
K∈Th

{
|Th(uk, φk) − ΠK

h Th(uk, φk)|H2(K)×H1(K)

×
∣∣(vh, ψh) − ΠK

h (vh, ψh)
∣∣
H2(K)×H1(K)

}
, (4.13)

for all (vh, ψh) ∈ Zh, where we have used (3.8)–(3.9), Cauchy–Schwarz inequality
and (3.10)–(3.11). Now, using the triangular inequality, we have that∣∣Th(uk, φk) − ΠK

h Th(uk, φk)
∣∣
H2(K)×H1(K)

≤ |Th(uk, φk) − T (uk, φk)|H2(K)×H1(K)

+
∣∣ΠK

h Th(uk, φk) − ΠK
h T (uk, φk)

∣∣
H2(K)×H1(K)

+
∣∣ΠK

h T (uk, φk) − T (uk, φk)
∣∣
H2(K)×H1(K)

.

Thus, from (4.13), the above estimate, the stability of ΠK
h and the additional reg-

ularity for (uk, φk) together with Lemma 2.2, we have

ah(Th(uk, φk), (vh, ψh)) − a(Th(uk, φk), (vh, ψh))

≤ Cnh
min{s,t}‖(uk, φk)‖

×
∑
K∈Th

∣∣(vh, ψh) − ΠK
h (vh, ψh)

∣∣
H2(K)×H1(K)

∀(vh, ψh) ∈ Zh. (4.14)
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Finally, we take (vh, ψh) := P
(
u∗k, φ

∗
k

)
∈ Zh in (4.11). Thus, on the one hand,

we bound the first bracket in (4.11) as follows:

a
(
(T − Th)(uk, φk),

(
u∗k, φ

∗
k

)
− (vh, ψh)

)
= a

(
(T − Th)(uk, φk),

(
u∗k, φ

∗
k

)
− P

(
u∗k, φ

∗
k

))
≤ |(T − Th)(uk, φk)|H2

0 (Ω)×H1
0 (Ω)

∣∣(u∗k, φ∗k) − P
(
u∗k, φ

∗
k

)∣∣
H2

0 (Ω)×H1
0 (Ω)

= |(T − Th)(uk, φk)|H2
0 (Ω)×H1

0 (Ω) inf
(rh,sh)∈Zh

∣∣(u∗k, φ∗k) − (rh, sh)
∣∣
H2

0 (Ω)×H1
0 (Ω)

≤ |(T − Th)(uk, φk)|H2
0 (Ω)×H1

0 (Ω)

∣∣(u∗k, φ∗k) − ((
u∗k

)
I
,
(
φ∗k

)
I

)∣∣
H2

0 (Ω)×H1
0 (Ω)

≤ Ch2min{s,t}∥∥(
u∗k, φ

∗
k

)∥∥,
where we have used (4.6), Propositions 4.2 and 4.3, the additional regularity for(
u∗k, φ

∗
k

)
, Lemmas 4.3 and 4.2.

On the other hand, from (4.14), we have that∣∣(vh, ψh) − ΠK
h (vh, ψh)

∣∣
H2(K)×H1(K)

=
∣∣P(

u∗k, φ
∗
k

)
− ΠK

h P
(
u∗k, φ

∗
k

)∣∣
H2(K)×H1(K)

≤
∣∣P(

u∗k, φ
∗
k

)
−

(
u∗k, φ

∗
k

)∣∣
H2(K)×H1(K)

+
∣∣(u∗k, φ∗k) − ΠK

h

(
u∗k, φ

∗
k

)∣∣
H2(K)×H1(K)

+
∣∣ΠK

h

((
u∗k, φ

∗
k

)
− P

(
u∗k, φ

∗
k

))∣∣
H2(K)×H1(K)

.

Then, using again (4.6), Propositions 4.2 and 4.3, the additional regularity for(
u∗k, φ

∗
k

)
, Lemmas 4.3 and 4.2, we obtain from (4.14) that

ah(Th(uk, φk), (vh, ψh)) − a(Th(uk, φk), (vh, ψh))

≤ Cnh
2min{s,t}‖(uk, φk)‖

∥∥(
u∗k, φ

∗
k

)∥∥. (4.15)

Thus, from (4.11), (4.12) and (4.15), we obtain∣∣〈(T − Th)(uk, φk),
(
u∗k, φ

∗
k

)〉∣∣ ≤ Cnh
2 min{s,t}. (4.16)

Therefore, the proof follows from estimates (4.10) and (4.16).

Remark 4.2. The error estimate for the eigenvalue µ of T yields analogous esti-
mate for the approximation of the eigenvalue λ = 1/µ of Problem 1 by means of
λ̂h := 1

m

∑m
k=1 λ

(k)
h , where λ(k)

h = 1/µ(k)
h .

Now, we state in the following remark the approximation properties of
Problem 3.

Remark 4.3. A result analogous to Theorem 4.1 can be proven for the alternative
discretization of Problem 1 proposed in Remark 3.1. We do not include proofs to
avoid repeating step-by-step those of Sec. 4. However, we will present a numerical
test to confirm the error estimates in this case.
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5. Numerical Results

In this section, we present a series of numerical experiments to solve the trans-
mission eigenvalue problem with the Virtual Element schemes (3.12) and (3.14).
However, to complete the choice of the VEM, we had to fix the forms s∆K(·, ·) and
s∇K(·, ·) satisfying (3.6) and (3.7), respectively. For s∆K(·, ·), we consider the same
definition as in Ref. 48:

s∆K(uh, vh) := σK

NK∑
i=1

[
uh(Pi)vh(Pi) + h2

Pi
∇uh(Pi) · ∇vh(Pi)

]
∀uh, vh ∈ WK

h ,

where P1, . . . , PNK are the vertices of K, hPi corresponds to the maximum diameter
of the elements with Pi as a vertex and σK > 0 is a multiplicative factor to take
into account the magnitude of the parameter and the h-scaling, for instance, in the
numerical tests, we have picked σK > 0 as the mean value of the eigenvalues of the
local matrix a∆

K

(
Π∆

2 ϕi,Π∆
2 ϕj

)
, i, j = 1, . . . , dimWK

h and {ϕi} dimWK
h

i=1 is a basis of
WK
h . This ensures that the stabilizing term scales as a∆

K(vh, vh). Now, a choice for
s∇K(·, ·) is given by

s∇K(φh, ψh) :=
NK∑
i=1

φh(Pi)ψh(Pi) ∀φh, ψh ∈ V Kh ,

which corresponds to the identity matrix of dimension NK . A proof of (3.6)
and (3.7) for the above choices could be derived following the arguments in Ref. 10.
Finally, we mention that the previous definitions are in accordance with the analysis
presented in Refs. 47 and 48 in order to avoid spectral pollution.

We have implemented in a MATLAB code the proposed VEM on arbitrary
polygonal meshes, by following the ideas presented in Ref. 7. Moreover, we compare
our results with those existing in the literature, for example, Refs. 26, 31, 35 and 45.
We have considered three different domains, namely, a square domain, a circular
domain centered at the origin and an L-shaped domain.

5.1. Test 1: Square domain

The goal of this test is to assess and compare the performance of the VEM dis-
cretizations (3.12) and (3.14). With this aim, we have taken Ω := (0, 1)2 and index
of refraction n = 4 and n = 16. We have tested the methods by using different
families of meshes (see Fig. 1):

• T 1
h : triangular meshes;

• T 2
h : rectangular meshes;

• T 3
h : hexagonal meshes;

• T 4
h : non-structured hexagonal meshes made of convex hexagons.

The refinement parameter N used to label each mesh is the number of elements
on each edge of the domain.
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Fig. 1. Sample meshes: T 1
h (top left), T 2

h (top right), T 3
h (bottom left) and T 4

h (bottom right)
for N = 8.

We report in Tables 1 and 2 the lowest transmission eigenvalues kih, i = 1, 2, 3, 4
computed by the scheme (3.12) with two different families of meshes and N =
32, 64, 128, and with the index of refraction n = 4 and n = 16, respectively. The
tables include computed orders of convergence as well as more accurate values
extrapolated by means of a least-squares fitting. Moreover, we compare the per-
formance of the proposed method with those presented in Refs. 35 and 45. With
this aim, we include in the last row of Tables 1 and 2 the results reported in that
references, for the same problem.

It can be seen from Tables 1 and 2 and that the eigenvalue approximation order
of method (3.12) is quadratic (as predicted by the theory for convex domains).

On the other hand, in Table 3, we report the five lowest transmission eigenvalues
computed with the VEM (3.14). The table includes orders of convergence as well
as accurate values extrapolated by means of a least-squares fitting.

It can be seen from Table 3 that the computed lowest transmission eigenval-
ues converge with an optimal quadratic order as predicted by the theory (see
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Table 1. Test 1: Lowest transmission eigenvalues kih, i = 1, 2, 3, 4 computed on different meshes

and with index of refraction n = 4.

Meshes kih k1h k2h k3h k4h

N = 32 4.2835 − 1.1367i 4.2835 + 1.1367i 5.3373 5.4172
N = 64 4.2745 − 1.1446i 4.2745 + 1.1446i 5.4375 5.4599

T 3
h N = 128 4.2724 − 1.1467i 4.2724 + 1.1467i 5.4661 5.4719

Order 2.10& 1.89 2.10& 1.89 1.81 1.84
Extrapolated 4.2717 − 1.1475i 4.2717 + 1.1475i 5.4775 5.4765

N = 32 4.2870 − 1.1341i 4.2870 + 1.1341i 5.3245 5.4178
N = 64 4.2753 − 1.1438i 4.2753 + 1.1438i 5.4329 5.4602

T 4
h N = 128 4.2726 − 1.1465i 4.2726 + 1.1465i 5.4647 5.4719

Order 2.12& 1.86 2.12& 1.86 1.77 1.85
Extrapolated 4.2718 − 1.1475i 4.2718 + 1.1475i 5.4779 5.4765

Ref. 45 4.2717 − 1.1474i 4.2717 + 1.1474i 5.4761 5.4761

Table 2. Test 1: Lowest transmission eigenvalues kih, i = 1, 2, 3, 4 computed on different
meshes and with index of refraction n = 16.

Meshes kih k1h k2h k3h k4h

N = 32 1.8805 2.4467 2.4467 2.8691
N = 64 1.8798 2.4449 2.4449 2.8671

T 1
h N = 128 1.8796 2.4444 2.4444 2.8666

Order 2.01 2.00 2.00 2.01
Extrapolated 1.8796 2.4442 2.4442 2.8664

N = 32 1.8764 2.4318 2.4318 2.8645
N = 64 1.8788 2.4410 2.4410 2.8658

T 2
h N = 128 1.8794 2.4434 2.4434 2.8663

Order 1.95 1.95 1.95 1.61
Extrapolated 1.8796 2.4443 2.4443 2.8665

Ref. 35 (Argyris method) 1.8651 2.4255 2.4271 2.8178
Ref. 35 (Continuous method) 1.9094 2.5032 2.5032 2.9679
Ref. 35 (Mixed method) 1.8954 2.4644 2.4658 2.8918
Ref. 45 1.8796 2.4442 2.4442 2.8664

Table 3. Test 1: Lowest transmission eigenvalues kih, i = 1, 2, 3, 4 computed
on different meshes and with index of refraction n = 16.

Meshes kih k1h k2h k3h k4h

N = 32 1.8823 2.4504 2.4504 2.8749
N = 64 1.8803 2.4458 2.4458 2.8686

T 1
h N = 128 1.8798 2.4446 2.4446 2.8670

Order 1.99 1.99 1.99 1.99
Extrapolated 1.8796 2.4442 2.4442 2.8664

N = 32 1.8815 2.4421 2.4421 2.8811
N = 64 1.8801 2.4438 2.4438 2.8702

T 2
h N = 128 1.8797 2.4441 2.4441 2.8674

Order 1.91 2.15 2.15 1.96
Extrapolated 1.8796 2.4442 2.4442 2.8664
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Remark 4.3). It can be observed that the two methods agree perfectly well (see
Tables 2 and 3).

5.2. Test 2: Circular domain

In this test, we have taken as domain the circle Ω := {(x, y) ∈ R2 : x2 + y2 <

1/2}. We have used polygonal meshes created with PolyMesher54 (see Fig. 2). The
refinement parameter N is the number of elements intersecting the boundary.

We report in Table 4 the five lowest transmission eigenvalues computed with
the VEM (3.12). The table includes orders of convergence as well as accurate values
extrapolated by means of a least-squares fitting. Once again, the last rows show the
values obtained by extrapolating those computed with different methods presented
in Refs. 26, 31 and 35.

Once more, a quadratic order of convergence can be clearly appreciated from
Table 4.

We show in Fig. 2 the eigenfunctions corresponding to the four lowest transmis-
sion eigenvalues.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Fig. 2. Test 2: Eigenfunctions u1h (top left), u2h (top right), u3h (bottom left) and u4h (bottom
right).



December 10, 2018 12:19 WSPC/103-M3AS 1850061

A VEM for the transmission eigenvalue problem 2827

Table 4. Test 2: Computed lowest transmission eigenvalues kih, i = 1, 2, 3, 4, 5 with index of

refraction n = 16.

k1h k2h k3h k4h k5h

N = 32 1.9835 2.6032 2.6037 3.2115 3.2117
N = 64 1.9869 2.6105 2.6106 3.2225 3.2227
N = 128 1.9877 2.6123 2.6123 3.2255 3.2256
Order 1.98 1.97 2.01 1.86 1.90
Extrapolated 1.9880 2.6129 2.6129 3.2267 3.2267

Ref. 26 1.9881 — — — —
Ref. 31 1.9879 2.6124 2.6124 3.2255 3.2255
Ref. 35 (Argyris method) 2.0076 2.6382 2.6396 3.2580 3.2598
Ref. 35 (Continuous method) 2.0301 2.6937 2.6974 3.3744 3.3777
Ref. 35 (Mixed method) 1.9912 2.6218 2.6234 3.2308 3.2397

5.3. Test 3: L-shaped domain

Finally, we have considered an L-shaped domain: Ω := (−1/2, 1/2)2\([0, 1/2] ×
[−1/2, 0]). We have used uniform triangular meshes as those shown in Fig. 3. The
meaning of the refinement parameter N is the number of elements on each edge.
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Fig. 3. Test 3: Eigenfunctions u1h (top left), u2h (top right), u3h (bottom left) and u4h (bottom
right).
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Table 5. Test 3: Computed lowest transmission eigenvalues kih,

i = 1, 2, 3, 4 with index of refraction n = 16.

kih k1h k2h k3h k4h

N = 32 2.9690 3.1480 3.4216 3.5744
N = 64 2.9590 3.1417 3.4136 3.5683
N = 128 2.9551 3.1400 3.4113 3.5667
Order 1.37 1.94 1.76 2.00
Extrapolated 2.9527 3.1395 3.4103 3.5662

Ref. 26 2.9553 — — —

We report in Table 5 the four lowest transmission eigenvalues computed with the
virtual scheme (3.12). The table includes orders of convergence as well as accurate
values extrapolated by means of a least-squares fitting. Once again, we compare
the performance of the proposed virtual scheme with the one presented in Ref. 26
for the same problem, using triangular meshes.

In this numerical test, according to Refs. 42 and 43, we have that for the Laplace
problem, the Lemma 2.2 holds for all t < t0, where t0 := π/ω with ω being the
largest interior angle of Ω (in this test, ω = 3π/2). On the other hand, for the
biharmonic equation, the Lemma 2.2 holds for all s < s0 := α − 1, where α > 1 is
the smallest positive root of the following characteristic equation:

sin2(α− 1)ω = (α− 1)2 sin2 ω.

As a consequence, for the first transmission eigenvalue, since the singularity of
the solution in the L-shaped domain, the method converges with order close to
min{1.089, 1.333}, which corresponds to the Sobolev regularity for the biharmonic
equation and Laplace equation, respectively. Moreover, the method converges with
larger orders for the rest of the transmission eigenvalues.

Finally, Fig. 3 shows the eigenfunctions corresponding to the four lowest trans-
mission eigenvalues with index of refraction n = 16.
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4. I. Babuška and J. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis,
Vol. II, eds. P. G. Ciarlet and J. L. Lions (North-Holland, 1991), pp. 641–787.

5. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo,
Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23
(2013) 199–214.

6. L. Beirão da Veiga, F. Brezzi and L. D. Marini, Virtual elements for linear elasticity
problems, SIAM J. Numer. Anal. 51 (2013) 794–812.

7. L. Beirão da Veiga, F. Brezzi, L. D. Marini and A. Russo, The hitchhiker’s guide to
the virtual element method, Math. Models Methods Appl. Sci. 24 (2014) 1541–1573.

8. L. Beirão da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference
Method for Elliptic Problems, Vol. 11 (Springer, 2014).

9. L. Beirão da Veiga, C. Lovadina and D. Mora, A virtual element method for elastic
and inelastic problems on polytope meshes, Comput. Methods Appl. Mech. Eng. 295
(2015) 327–346.

10. L. Beirão da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual
element method, Math. Models Methods Appl. Sci. 27 (2017) 2527–2594.

11. L. Beirão da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the
Stokes problem on polygonal meshes, ESAIM Math. Model. Numer. Anal. 51 (2017)
509–535.

12. L. Beirão da Veiga and G. Manzini, A virtual element method with arbitrary regu-
larity, IMA J. Numer. Anal. 34 (2014) 759–781.

13. L. Beirão da Veiga, D. Mora and G. Rivera, Virtual elements for a shear-deflection
formulation of Reissner-Mindlin plates, Math. Comp. 88 (2019) 149–178, doi: https://
doi.org/10.1090/mcom/3331.

14. L. Beirão da Veiga, D. Mora, G. Rivera and R. Rodŕıguez, A virtual element method
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