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Abstract

In this paper, we develop a virtual element method (VEM) of high order to solve the fourth order plate buckling eigenvalue
problem on polygonal meshes. We write a variational formulation based on the Kirchhoff–Love model depending on the
transverse displacement of the plate. We propose a C1 conforming virtual element discretization of arbitrary order k ≥ 2 and
we use the so-called Babuška–Osborn abstract spectral approximation theory to show that the resulting scheme provides a
correct approximation of the spectrum and prove optimal order error estimates for the buckling modes (eigenfunctions) and a
double order for the buckling coefficients (eigenvalues). Finally, we report some numerical experiments illustrating the behavior
of the proposed scheme and confirming our theoretical results on different families of meshes.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we analyze a conforming C1 virtual element approximation of an eigenvalue problem arising in
Structural Mechanics: the elastic stability of plates, in particular the so-called buckling problem. This problem has
attracted much interest since it is frequently encountered in several engineering applications such as car or aircraft
design. In particular, we will focus on thin plates which are modeled by the Kirchhoff–Love equations.

The buckling problem for plates can be formulated as a spectral problem of fourth order whose solution is
related with the limit of elastic stability of the plate (i.e., eigenvalues-buckling coefficients and eigenfunctions-
buckling modes). This problem has been studied with several finite element methods, for instance, conforming and
non-conforming discretizations, mixed formulations. We cite as a minimal sample of them [1–8].

The aim of the present paper is to introduce and analyze a virtual element method (VEM) to solve the fourth
order plate buckling problem. The VEM has been introduced in [9] and has been applied successfully in a large
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range of problems in fluid and solid mechanics; see for instance [10–27]. Regarding VEM for spectral problems,
we mention the following recent works [28–34].

One important advantage of VEM is the possibility of easily implement highly regular discrete spaces to solve
fourth order partial differential equations by using conforming subspaces [11,23,35]. It is very well known that
the construction of conforming finite elements to H 2 is difficult in general, since they generally involve a large
number of degrees of freedom (see [36]). Here, we follow the VEM approach presented in [23,35] to build global
discrete spaces of C1 of arbitrary order that are simple in terms of degrees of freedom and coding aspects to solve
an eigenvalue problem modeling the plate buckling problem on general polygonal meshes.

More precisely, we will propose a C1 Virtual Element Method of arbitrary order k ≥ 2 to approximate the
buckling coefficients and modes of the plate buckling problem on general polygonal meshes. Based on the transverse
displacements of the midplane of a thin plate subjected to a symmetric stress tensor field, we propose and analyze a
variational formulation in H 2. We characterize the continuous spectrum of the problem through a certain continuous,
compact and self-adjoint operator. Then, we exploit the ability of VEM in order to construct highly regular discrete
spaces and propose a conforming discretization of the buckling eigenvalue problem in H 2 which is an extension of
the discrete virtual space introduced in [11,35]. We construct projection operators in order to write bilinear forms that
are fully computable. In particular, to discretize the right hand side of the eigenvalue problem we propose a simple
bilinear form which does not need any stabilization. This makes possible to use directly the so-called Babuška–
Osborn abstract spectral approximation theory (see [37]) to show that under standard shape regularity assumptions
the resulting virtual element scheme provides a correct approximation of the spectrum and prove optimal order
error estimates for the eigenfunctions and a double order for the eigenvalues. The proposed VEM method provides
an attractive and competitive alternative to solve the fourth order plate buckling eigenvalue problem in terms of
its computational cost. For instance, in the lowest order configuration (k = 2), the computational cost is almost
3Nv , where Nv denotes the number of vertices in the polygonal mesh. For k = 3, the computational cost is almost
3Nv+Ne, where Ne denotes the number of edges in the polygonal mesh. Moreover, the resulting eigenvalue problem
can be solved with standard eigensolvers (the matrix on the left hand side is symmetric and positive definite). The
same happens for conforming finite element methods, but in our case at a lower computational cost. On the other
hand, we observe that mixed finite element methods (like Ciarlet–Raviart) lead to a degenerate generalized matrix
eigenvalue problem (the matrix resulting is indefinite) which need to be solved with more sofisticated tools.

This paper is structured as follows: In Section 2, we present the variational formulation for the plate buckling
eigenvalue problem. We define a solution operator whose spectrum allows us to characterize the spectrum of the
buckling problem. In Section 3 we introduce the virtual element discretization of arbitrary degree k ≥ 2, describe
the spectrum of a discrete solution operator and prove some auxiliary results. In Section 4, we prove that the
numerical scheme presented in this work provides a correct spectral approximation and establish optimal order
error estimates for the eigenvalues and eigenfunctions. Finally, in Section 5 we report some numerical tests that
confirm the theoretical analysis developed.

Throughout the article we will use standard notations for Sobolev spaces, norms and seminorms. Moreover, we
will denote by C a generic constant independent of the mesh parameter h, which may take different values in
different occurrences.

2. Presentation of the continuous spectral problem

Let Ω ⊆ R2 be a polygonal bounded domain corresponding to the mean surface of a plate in its reference
configuration. The plate is assumed to be homogeneous, isotropic, linearly elastic, and sufficiently thin as to be
modeled by Kirchhoff–Love equations. The buckling eigenvalue problem of a clamped plate, which is subjected to
a plane stress tensor field η : Ω → R2×2 with η ̸= 0 reads as follows:{

∆2u = −λ div(η∇u) in Ω ,

u = ∂νu = 0 on Γ .
(2.1)

The unknowns of this eigenvalue problem are the deflection of the plate u (buckling modes) and the eigenvalue λ

(scaled buckling coefficients). We have denoted by ∂ν the normal derivative. To simplify the notation we have taken
the Young modulus and the density of the plate, both equal to 1. In addition, the stress tensor field is assumed to
satisfy the following equilibrium equations:

ηt
= η in Ω ,

div η = 0 in Ω .
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In the remaining of this section and in Section 3, it is enough to consider η ∈ L∞(Ω )2×2. However, we will
assume some additional regularity which will be used in the proof of Theorem 4.4. In addition, we do not need to
assume η to be positive definite. Let us remark that, in practice, η is the stress distribution on the plate subjected
to in-plane loads, which does not need to be positive definite [38].

2.1. The continuous formulation

In this section we will present and analyze a variational formulation associated with the spectral problem. We
will also introduce the so-called solution operator whose spectra will be related to the solutions of the continuous
spectral problem (2.1).

In order to write the variational formulation of the spectral problem, we introduce the following symmetric
bilinear forms in H 2

0 (Ω ):

a(u, v) :=

∫
Ω

D2u : D2v, b(u, v) :=

∫
Ω

(η∇u) · ∇v,

where “:” denotes the usual scalar product of 2 × 2-matrices, D2v := (∂i jv)1≤i, j≤2 denotes the Hessian matrix of
v. It is easy to see that a(·, ·) is an inner-product in H 2

0 (Ω ).
The variational formulation of the eigenvalue problem (2.1) is given as follows:

Problem 1. Find (λ, u) ∈ R × H 2
0 (Ω ), u ̸= 0, such that

a(u, v) = λb(u, v) ∀v ∈ H 2
0 (Ω ). (2.2)

The following result establishes that the bilinear form a(·, ·) is elliptic in H 2
0 (Ω ).

Lemma 2.1. There exists a constant α0 > 0, depending on Ω , such that

a(v, v) ≥ α0 ∥v∥
2
2,Ω ∀v ∈ H 2

0 (Ω ).

Proof. The result follows immediately from the fact that ∥D2v∥0,Ω is a norm on H 2
0 (Ω ), equivalent with the usual

norm. □

Remark 2.1. We have that λ ̸= 0 in problem (2.2). Moreover, it is easy to prove, using the symmetry of η, that
all the eigenvalues are real (not necessarily positive). We also have that b(u, u) ̸= 0.

Next, in order to analyze the variational eigenvalue problem (2.2), we introduce the following solution
operator:

T : H 2
0 (Ω ) −→ H 2

0 (Ω ),

f ↦−→ T f := w,

where w ∈ H 2
0 (Ω ) is the unique solution (as a consequence of Lemma 2.1) of the following source problem:

a(w, v) = b( f, v) ∀v ∈ H 2
0 (Ω ). (2.3)

We have that the linear operator T is well defined and bounded. Notice that (λ, u) ∈ R × H 2
0 (Ω ) solves

problem (2.2) if and only if T u = µu with µ ̸= 0 and u ̸= 0, in which case µ :=
1
λ

. In addition, using the
symmetry of η, we can deduce that T is self-adjoint with respect to the inner product a(·, ·) in H 2

0 (Ω ). Indeed,
given f, g ∈ H 2

0 (Ω ),

a(T f, g) = b( f, g) = b(g, f ) = a(T g, f ) = a( f, T g).

On the other hand, the following is an additional regularity result for the solution of problem (2.3) and
consequently, for the eigenfunctions of T .
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Lemma 2.2. There exists sΩ > 1/2 such that the following results hold:

(i) For all f ∈ H 1(Ω ), there exists a positive constant C > 0 such that any solution w of the source problem (2.3)
satisfies w ∈ H 2+s̃(Ω ) with s̃ := min{sΩ , 1} and

∥w∥2+s̃,Ω ≤ C∥ f ∥1,Ω .

(ii) If (λ, u) is an eigenpair of the spectral problem (2.2), there exist s > 1/2 and a positive constant C depending
only on Ω such that u ∈ H 2+s(Ω ) and

∥u∥2+s,Ω ≤ C∥u∥2,Ω .

Proof. The proof follows from the classical regularity result for the biharmonic problem with its right-hand side
in L2(Ω ) (cf. [39]). □

Therefore, because of the compact inclusion H 2+s(Ω ) ↪→ H 2
0 (Ω ), T is a compact operator. Thus, we finish this

section with the following spectral characterization result.

Lemma 2.3. The spectrum of T satisfies sp(T ) = {0} ∪ {µk}k∈N, where {µk}k∈N is a sequence of real eigenvalues
which converges to 0. The multiplicity of each eigenvalue is finite.

Remark 2.2. The buckling eigenvalue problem (2.1) can be analyzed with other types of boundary conditions. For
instance, if the plate is considered to be clamped on part Γc, simply supported on part Γs and free on Γ f :

Γ := Γc ∪ Γs ∪ Γ f .

We assume that Γc,Γs and Γ f are finite sums of connected components and that Γc,Γs are given such that rigid-body
motions are avoided. Thus, in this case, the deflection of the plate, belong to the Sobolev space:

W := {w ∈ H 2(Ω ) : w = 0 on Γc ∪ Γs, ∂νw = 0 on Γc}.

In this case, the theoretical and numerical analysis presented in the next sections can be developed with the same
arguments as those applied for a clamped plate. We mention that numerical verification of test cases involving other
types of boundary conditions will be addressed in Section 5, where we observe optimal convergence.

3. Spectral approximation

In this section, we will write a VEM discretization of the spectral problem (2.2). With this aim, we start with
the mesh construction and the assumptions considered to introduce the discrete virtual element spaces.

Let {Th}h be a sequence of decompositions of Ω into polygons K we will denote by hK the diameter of the
element K and h the maximum of the diameters of all the elements of the mesh, i.e., h := maxK∈Th hK . In what
follows, we denote by NK the number of vertices of K , by e a generic edge of {Th}h and for all e ∈ ∂K , we define
a unit normal vector νe

K that points outside of K .
In addition, we will make the following assumptions as in [9,28]: there exists a positive real number CT such

that, for every h and every K ∈ Th ,

A1: K ∈ Th is star-shaped with respect to every point of a ball of radius CT hK ;
A2: the ratio between the shortest edge and the diameter hK of K is larger than CT .

In order to introduce the discretization, for every integer k ≥ 2 and for every polygon K , we define the following
finite dimensional space:

Ṽ K
h :=

{
vh ∈ H 2(K ) : ∆2vh ∈ Pk−2(K ), vh |∂K ∈ C0(∂K ), vh |e ∈ Pr (e) ∀e ∈ ∂K ,

∇vh |∂K ∈ C0(∂K )2, ∂νe
K
vh |e ∈ Ps(e) ∀e ∈ ∂K

}
,

where r := max{3, k} and s := k − 1.
This space has been recently considered in [23] to obtain optimal error estimates for fourth order PDEs and it

can be seen as an extension of the C1 virtual space introduced in [35] to solve the bending problem of thin plates.
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Here, we will consider the same space together with an enhancement technique (cf. [40]) to build a computable
right hand of the buckling eigenvalue problem.

It is easy to see that any vh ∈ Ṽ K
h satisfies the following conditions:

• the trace (and the trace of the gradient) on the boundary of K is continuous;
• Pk(K ) ⊆ Ṽ K

h .

In Ṽ K
h we define the following five sets of linear operators. For all vh ∈ Ṽ K

h :

D1: evaluation of vh at the NK vertices of K ;
D2: evaluation of ∇vh at the NK vertices of K ;
D3: For r > 3, the moments

∫
e q(ξ )vh(ξ )dξ ∀q ∈ Pr−4(e), ∀ edge e;

D4: For s > 1, the moments
∫

e q(ξ )∂νe
K
vh(ξ )dξ ∀q ∈ Ps−2(e), ∀ edge e;

D5: For k ≥ 4, the moments
∫

K q(x)vh(x)dx ∀q ∈ Pk−4(K ), ∀ polygon K .

In order to construct the discrete scheme, we need some preliminary definitions. First, we note that bilinear form
a(·, ·), introduced in the previous section, can be split as follows:

a(u, v) =

∑
K∈Th

aK (u, v), u, v ∈ H 2
0 (Ω ),

with

aK (u, v) :=

∫
K

D2u : D2v, u, v ∈ H 2(K ).

Now, we define the projector Π k,D
K : H 2(K ) → Pk(K ) ⊆ Ṽ K

h as the solution of the following local problems (in
each element K ):

aK
(
Π k,D

K v, q
)

= aK (v, q) ∀q ∈ Pk(K ) ∀v ∈ H 2(K ), (3.1a)

Π̂ k,D
K v = v̂, ∇̂Π k,D

K v = ∇̂v, (3.1b)

where v̂ is defined as follows:

v̂ :=
1

NK

NK∑
i=1

v(vi ) ∀v ∈ C0(∂K )

and vi , 1 ≤ i ≤ NK , are the vertices of K .
We observe that bilinear form aK (·, ·) has a non-trivial kernel given by P1(K ). Hence, the role of condition (3.1b)

is to select an element of the kernel of the operator.
It is easy to see that operator Π k,D

K is well defined on Ṽ K
h . Moreover, the following result states that for all

v ∈ Ṽ K
h the polynomial Π k,D

K v can be computed using the output values of the sets D1–D5.

Lemma 3.1. The operator Π k,D
K : Ṽ K

h → Pk(K ) is explicitly computable for every v ∈ Ṽ K
h , using only the

information of the linear operators in D1–D5.

Proof. For all vh ∈ Ṽ K
h we integrate twice by parts on the right-hand side of (3.1a). We obtain

a(vh, q) =

∫
K

D2vh : D2q

=

∫
K
∆2qvh −

∫
∂K

div(D2q) · νK vh +

∫
∂K

D2qνK · ∇vh . (3.2)

It is easy to see that since ∆2q ∈ Pk−4(K ) hence the first integral on the right-hand side of (3.2) is computable
using the output values of the set D5. We also note that the boundary integrals of (3.2) only depend on the boundary
values of vh and ∇vh , so they are computable using the output values of the sets D1–D4. On the other hand, the
kernel part of Π k,D

K (cf. (3.1b)) is computable using the output values of the sets D1–D2. □
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We introduce our local virtual space:

V K
h :=

{
vh ∈ Ṽ K

h :

∫
K

(Π k,D
K vh)q =

∫
K

vhq ∀q ∈ P∗

k−3(K ) ∪ P∗

k−2(K )
}

,

where P∗

ℓ(K ) denotes homogeneous polynomials of degree ℓ with the convention that P∗

−1(K ) = {0}.
Note that V K

h ⊆ Ṽ K
h . Thus, the linear operator Π k,D

K is well defined on V K
h and computable only using the output

values of the sets D1–D5. We also have that Pk(K ) ⊆ V K
h . This will guarantee the good approximation properties

of the space.
Moreover, it has been established in [23] that the set of linear operators D1–D5 constitutes a set of degrees of

freedom for V K
h .

Now, we consider the L2(K ) orthogonal projector onto Pk−2(K ) as follows: we define Π k−2
K : L2(K ) → Pk−2(K )

for each v ∈ L2(K ) by∫
K

(Π k−2
K v)q =

∫
K

vq ∀q ∈ Pk−2(K ). (3.3)

Next, due to the particular property appearing in definition of the space V K
h , it can be seen that the right hand side

in (3.3) is computable using Π k,D
K v, and the degrees of freedom given by D5 and thus Π k−2

K v depends only on the
values of the degrees of freedom given by D1–D5 when v ∈ V K

h .
In order to discretize the right hand side of the buckling eigenvalue problem, we will consider the following

projector onto Pk−1(K )2: we define Π k−1
K : H 1(K ) → Pk−1(K )2 for each v ∈ H 1(K ) by∫

K
(Π k−1

K ∇v) · q =

∫
K

∇v · q ∀q ∈ Pk−1(K )2.

In addition, we observe that the for any vh ∈ V K
h , the vector function Π k−1

K ∇vh can be explicitly computed from
the degrees of freedom D1–D5. In fact, in order to compute Π k−1

K ∇vh , for all K ∈ Th we must be able to calculate
the following:∫

K
∇vh · q ∀q ∈ Pk−1(K )2.

From an integration by parts, we have∫
K

∇vh · q = −

∫
K

vh div q +

∫
∂K

vh(q · νK ) ∀q ∈ Pk−1(K )2,

= −

∫
K
Π k−2

K vh div q +

∫
∂K

vh(q · νK ) ∀q ∈ Pk−1(K )2.

The first term on the right-hand side above depends only on the Π k−2
K vh and this depends on the values of the

degrees of freedom D1–D5 (cf. (3.3)). The second term can also be computed since q is a polynomial of degree
k − 1 on each edge and therefore is uniquely determined by the values of D1–D5.

Now, we are ready to define our global virtual space to solve the plate buckling eigenvalue problem, this is
defined as follows:

Vh :=

{
vh ∈ H 2

0 (Ω ) : vh |K ∈ V K
h

}
. (3.4)

In what follows, we discuss the construction of the discrete version of the local forms. With this aim, we consider
s D

K (·, ·) any symmetric positive definite and computable bilinear form to be chosen as to satisfy:

c0aK (vh, vh) ≤ s D
K (vh, vh) ≤ c1aK (vh, vh) ∀vh ∈ V K

h with Π k,D
K vh = 0. (3.5)

Then, we set

ah(uh, vh) :=

∑
K∈Th

ah,K (uh, vh), uh, vh ∈ Vh,

bh(uh, vh) :=

∑
K∈Th

bh,K (uh, vh), uh, vh ∈ Vh,
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where, ah,K (·, ·) is the local bilinear form on V K
h × V K

h defined by

ah,K (uh, vh) := aK
(
Π k,D

K uh,Π
k,D
K vh

)
+ s D

K

(
uh − Π k,D

K uh, vh − Π k,D
K vh

)
. (3.6)

Notice that the bilinear form s D
K (·, ·) has to be actually computable for uh, vh ∈ V K

h .
On the other hand, we will propose on each element K the following local, computable and nonstabilized

approximation for the bilinear form b(·, ·) (cf. Section 2.1):

bh,K (uh, vh) :=

∫
K

ηΠ k−1
K ∇uh · Π k−1

K ∇vh . (3.7)

Proposition 3.1. The local bilinear form ah,K (·, ·) on each element K satisfy

• Consistency: for all h > 0 and for all K ∈ Th , we have that

ah,K (p, vh) = aK (p, vh) ∀p ∈ Pk(K ), ∀vh ∈ V K
h , (3.8)

• Stability and boundedness: There exist two positive constants α1, α2, independent of K , such that:

α1aK (vh, vh) ≤ ah,K (vh, vh) ≤ α2aK (vh, vh) ∀vh ∈ V K
h . (3.9)

3.1. The discrete eigenvalue problem

Now, we are in a position to write the virtual element discretization of Problem 1 as follows.

Problem 2. Find (λh, uh) ∈ R × Vh , uh ̸= 0, such that

ah(uh, vh) = λhbh(uh, vh) ∀vh ∈ Vh . (3.10)

We observe that by virtue of (3.9), the bilinear form ah(·, ·) is bounded. Moreover, as shown in the following
lemma, it is also uniformly elliptic.

Lemma 3.2. There exists a constant α > 0, independent of h, such that

ah(vh, vh) ≥ α ∥vh∥
2
2,Ω ∀vh ∈ Vh .

Proof. Thanks to (3.9) and Lemma 2.1, it is easy to check that the above inequality holds with α :=

α0 min {α1, 1}. □

In order to analyze the discrete problem, we introduce the solution operator associated to Problem 2 as
follows:

Th : H 2
0 (Ω ) −→ H 2

0 (Ω ),

f ↦−→ Th f := wh,

with wh the unique solution of the following source problem

ah(wh, vh) = bh( f, vh) ∀vh ∈ Vh . (3.11)

Note that the ellipticity of ah(·, ·) established in Lemma 3.2, the boundedness of the right hand side (cf. (3.7))
and Lax–Milgram Lemma guarantee that Th is well defined. Moreover, as in the continuous case, (λh, uh) ∈ R× Vh

solves problem (3.10) if and only if Thuh = µhuh with µh ̸= 0 and uh ̸= 0, in which case µh :=
1
λh

.

Remark 3.1. The same arguments leading to Remark 2.1 allow us to show that any solution of (3.10) satisfies
λh ̸= 0. Moreover, bh(uh, uh) ̸= 0 also holds true.

Moreover from the definition of ah(·, ·) and bh(·, ·) we can check that Th is self-adjoint with respect to inner
product ah(·, ·). Therefore, we can describe the spectrum of the solution operator Th .
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Now, we are in position to write the following characterization of the spectrum of the solution operator.

Theorem 3.1. The spectrum of Th consists of Mh := dim(Vh) eigenvalues, repeated according to their respective
multiplicities. The spectrum decomposes as follows: sp(Th) = {0} ∪ {µh}

κ
k=1, where κ = Mh − dim Zh with

Zh := {uh ∈ Vh : bh(uh, vh) = 0 ∀vh ∈ Vh}. The eigenvalues µh are all real and non-zero.

4. Convergence and error estimates

In this section we will establish convergence and error estimates of the proposed VEM discretization. With this
aim, we will prove that Th provides a correct spectral approximation of T using the classical theory for compact
operators (see [37]).

We start with the following approximation result, on star-shaped polygons, which is derived by interpolation
between Sobolev spaces (see for instance [41, Theorem I.1.4] from the analogous result for integer values of s).
We mention that this result has been stated in [9, Proposition 4.2] for integer values and follows from the classical
Scott–Dupont theory (see [42] and [11, Proposition 3.1]):

Proposition 4.1. There exists a constant C > 0, such that for every v ∈ H δ(K ) there exists vπ ∈ Pk(K ), k ≥ 0
such that

|v − vπ |ℓ,K ≤ Chδ−ℓ
K |v|δ,K 0 ≤ δ ≤ k + 1, ℓ = 0, . . . , [δ],

with [δ] denoting largest integer equal to or smaller than δ ∈ R.

In what follows, we write several auxiliary results which will be useful in the forthcoming analysis. First, we
write standard error estimations for the projector Π k−1

K .

Lemma 4.1. There exists C > 0 independent of h such that for all v ∈ H δ(K )2

∥v − Π k−1
K v∥0,K ≤ Chδ

K |v|δ,K 0 ≤ δ ≤ k.

Now, we present an interpolation result in the virtual space Vh (see [11,43]).

Proposition 4.2. Assume A1–A2 are satisfied, then for all v ∈ H s(Ω ) there exist vI ∈ Vh and C > 0 independent
of h such that

∥v − vI ∥l,K ≤ Chs−l
K |v|s,K , l = 0, 1, 2, 2 ≤ s ≤ k + 1.

Now, in order to prove the convergence of our method, we introduce the following broken H s-seminorm
(s = 1, 2):

|v|s,h :=

( ∑
K∈Th

|v|
2
s,K

)1/2
,

which is well defined for every v ∈ L2(Ω ) such that v|K ∈ H s(K ) for all polygon K ∈ Th .
Now, with these definitions we have the following results.

Lemma 4.2. There exists C > 0 such that, for all f ∈ H 2
0 (Ω ), if w = T f and wh = Th f , then

∥(T − Th) f ∥2,Ω = ∥w − wh∥2,Ω ≤ C
(

h∥ f ∥2,Ω + ∥w − wI ∥2,Ω + |w − wπ |2,h

)
,

for all wI ∈ Vh and for all wπ ∈ L2(Ω ) such that wπ |K ∈ Pk(K ) ∀K ∈ Th .

Proof. Let f ∈ H 2
0 (Ω ), and w = T f and wh = Th f . For wI ∈ Vh , we set vh := wh − wI . Thus

∥(T − Th) f ∥2,Ω ≤ ∥w − wI ∥2,Ω + ∥vh∥2,Ω . (4.1)
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Now, thanks to Lemma 3.2, the definition of ah,K (·, ·) and those of T and Th , we have

α∥vh∥
2
2,Ω ≤ ah(vh, vh) = ah(wh, vh) − ah(wI , vh) = ah(wh, vh) −

∑
K∈Th

ah,K (wI , vh)

= ah(wh, vh) −

∑
K∈Th

{
ah,K (wI − wπ , vh) + ah,K (wπ , vh)

}
= ah(wh, vh) −

∑
K∈Th

{
ah,K (wI − wπ , vh) + aK (wπ − w, vh) + aK (w, vh)

}
= ah(wh, vh) − a(w, vh) −

∑
K∈Th

{
ah,K (wI − wπ , vh) + aK (wπ − w, vh)

}
. (4.2)

We bound each term on the right hand side of (4.2). The first term can be estimated as follows

ah(wh, vh) − a(w, vh) = bh( f, vh) − b( f, vh)

=

∑
K∈Th

{∫
K

{
ηΠ k−1

K ∇ f · Π k−1
K ∇vh − η∇ f · ∇vh

}}

=

∑
K∈Th

{∫
K

{
ηΠ k−1

K ∇ f · Π k−1
K ∇vh − η∇ f · Π k−1

K ∇vh + η∇ f · Π k−1
K ∇vh − η∇ f · ∇vh

}}

=

∑
K∈Th

{∫
K

{
η

(
Π k−1

K ∇ f − ∇ f
)
· Π k−1

K ∇vh + η∇ f ·
(
Π k−1

K ∇vh − ∇vh
)}}

≤

∑
K∈Th

C
{
∥Π k−1

K ∇ f − ∇ f ∥0,K ∥Π k−1
K ∇vh∥0,K + ∥∇ f ∥0,K ∥Π k−1

K ∇vh − ∇vh∥0,K

}
≤ Ch∥ f ∥2,Ω∥vh∥2,Ω ,

where we have used Lemma 4.1 in the last inequality. Notice that the constant C > 0 depends on ∥η∥∞.
Next, using the stability of ah,K (·, ·), the Cauchy–Schwarz and triangular inequalities in the second term on the

right hand side of (4.2), we have

α ∥vh∥
2
2,Ω ≤ C

(
h∥ f ∥2,Ω + ∥w − wI ∥2,Ω + |w − wπ |2,h

)
∥vh∥2,Ω .

Thus, the result follows from the previous bounds together with (4.2). □

Now we are in a position to prove that the operator Th converges in norm to T .

Theorem 4.1. For all f ∈ H 2
0 (Ω ), there exist s̃ ∈ ( 1

2 , 1] and C > 0 independent of h such that

∥(T − Th) f ∥2,Ω ≤ Ch s̃
∥ f ∥2,Ω .

Proof. The proof is obtained from Lemma 4.2 and Propositions 4.1 and 4.2 and Lemma 2.2. □

Next, we will use the classical theory for compact operators (see [37] for instance) in order to prove convergence
and error estimates for eigenfunctions and eigenvalues. Indeed, an immediate consequence of Theorem 4.1 is that
isolated parts of sp(T ) are approximated by isolated parts of sp(Th). It means that if µ is a nonzero eigenvalue of
T with algebraic multiplicity m, hence there exist m eigenvalues µ

(1)
h , . . . , µ

(m)
h of Th (repeated according to their

respective multiplicities) that will converge to µ as h goes to zero.
Now, let us denote by E and Eh the eigenspace associated to the eigenvalue µ and the spanned of the eigenspaces

associated to µ
(1)
h , . . . , µ

(m)
h , respectively.

We also recall the definition of the gap δ̂ between two closed subspaces X and Y of a Hilbert space V:

δ̂(X ,Y) := max {δ(X ,Y), δ(Y,X )} ,

where

δ(X ,Y) := sup
x∈X : ∥x∥V=1

δ(x,Y), with δ(x,Y) := inf
y∈Y

∥x − y∥V .
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We also define

γh := sup
f ∈E :∥ f ∥2,Ω=1

∥(T − Th) f ∥2,Ω .

The following error estimates for the approximation of eigenvalues and eigenfunctions hold true which is obtained
from Theorems 7.1 and 7.3 from [37].

Theorem 4.2. There exists a strictly positive constant C such that

δ̂(E, Eh) ≤ Cγh,⏐⏐⏐µ − µ
( j)
h

⏐⏐⏐ ≤ Cγh ∀ j = 1, . . . , m.

Moreover, employing the additional regularity of the eigenfunctions, we immediately obtain the following bound.

Theorem 4.3. There exist s > 1/2 and C > 0 independent of h such that

∥(T − Th) f ∥2,Ω ≤ Chmin{s,k−1}
∥ f ∥2,Ω ∀ f ∈ E, (4.3)

and as a consequence,

γh ≤ Chmin{s,k−1}. (4.4)

Proof. The inequality (4.3) can be obtained by repeating the same steps like in the proof of Theorem 4.1 and
Lemma 2.2. Estimate (4.4) follows from the definition of γh and (4.3). □

Remark 4.1. The error estimate obtained for the eigenpair (µ, u) of T in Theorem 4.2 implies similar estimates
for the eigenpair (λ := 1/µ, u) of Problem 1 by means of the discrete eigenvalues λ

( j)
h = 1/µ

( j)
h , 1 ≤ j ≤ m.

Now, in what follows we will prove a double order of convergence for the eigenvalue approximation. To prove
this, we are going to assume that η is a smooth enough tensor.

Theorem 4.4. There exists a positive constant independent of h such that

|λ − λ
( j)
h | ≤ Ch2 min{s,k−1}

∀ j = 1, . . . , m.

Proof. Let uh ∈ Eh be an eigenfunction corresponding to one of the eigenvalues λ
( j)
h , j = 1, . . . , m, with

∥uh∥2,Ω = 1. From Theorem 4.2, we have that there exists u ∈ E satisfying

∥u − uh∥2,Ω ≤ Cγh . (4.5)

It is easy to see that from the symmetry of the bilinear forms in the continuous and discrete spectral problems
(cf. Problems 1 and 2), we have

a(u − uh, u − uh) − λb(u − uh, u − uh) = a(uh, uh) − λb(uh, uh)

= a(uh, uh) − ah(uh, uh) + λ
( j)
h bh(uh, uh) − λb(uh, uh)

= a(uh, uh) − ah(uh, uh) + (λ( j)
h − λ)bh(uh, uh) + λ[bh(uh, uh) − b(uh, uh)],

and therefore we have the following identity

(λ(i)
h − λ)bh(uh, uh) = a(u − uh, u − uh) − λb(u − uh, u − uh)

+ (ah(uh, uh) − a(uh, uh)) + λ [b(uh, uh) − bh(uh, uh)] . (4.6)

Now, we will bound each term on the right hand side of (4.6). For the first and second term we deduce

a(u − uh, u − uh) = |u − uh |
2
2,Ω ≤ Cγ 2

h ,

and

b(u − uh, u − uh) =

∫
Ω

ηΠ k−1
K ∇(u − uh) · Π k−1

K ∇(u − uh) ≤ ∥η∥∞∥u − uh∥
2
2,Ω ≤ Cγ 2

h .
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Thus, we obtain

|a(u − uh, u − uh) − λb(u − uh, u − uh)| ≤ Cγ 2
h . (4.7)

Next, to bound the third term, we consider uπ ∈ L2(Ω ) such that uπ |K ∈ Pk(K ) for all K ∈ Th and Proposition 4.1
holds true. Hence, using the properties (3.8) and (3.9) of ah,K (·, ·), we have

|ah(uh, uh) − a(uh, uh)| =

⏐⏐⏐ ∑
K∈Th

{
ah,K (uh − uπ , uh) − aK (uh − uπ , uh)

}⏐⏐⏐
≤

∑
K∈Th

(1 + α2)aK (uh − uπ , uh − uπ )

≤ C
∑

K∈Th

|uh − uπ |
2
2,K .

Then, adding and subtracting u, using the triangular inequality, Proposition 4.1 and (4.5), we get

|ah(wh, wh) − a(wh, wh)| ≤ C
{
γ 2

h + h2 min{s,k−1}
}
. (4.8)

On the other hand, the fourth term can be treated as follows:

b(uh, uh) − bh(uh, uh) =

∑
K∈Th

{∫
K

η∇uh · ∇uh −

∫
K

ηΠ k−1
K ∇uh · Π k−1

K ∇uh

}
.

=

∑
K∈Th

{∫
K

η∇uh · (∇uh − Π k−1
K ∇uh)  

E1

+

∫
K

(∇uh − Π k−1
K ∇uh) · ηΠ k−1

K ∇uh  
E2

}
.

Now, we bound the terms E1 and E2. We start with E1:

E1 =

∫
K

(η∇uh − Π k−1
K (η∇u)) · (∇uh − Π k−1

K ∇uh)

=

∫
K

(
η∇uh − η∇u + η∇u − Π k−1

K (η∇u)
)

·

(
∇uh − ∇u + ∇u − Π k−1

K ∇u + Π k−1
K (∇u − ∇uh)

)
≤ Ch2 min{s,k−1},

where in the last inequality we have used the triangular inequality, the approximation properties for Π k−1
K (cf.

Lemma 4.1), the additional regularity for the stress tensor η and the additional regularity for the eigenfunctions and
finally (4.5) together with (4.4).

For the term E2, we repeat the same arguments used to bound E1, we obtain that

E2 ≤ Ch2 min{s,k−1}. (4.9)

On the other hand, from Problem 2, Lemma 3.2 and the fact λ
( j)
h → λ when h → 0, we have

|bh(uh, uh)| = |
1

λ
( j)
h

ah(uh, uh)| ≥
α

|λ
( j)
h |

∥uh∥
2
2,Ω =

α

|λ
( j)
h |

= C > 0.

Thus, the proof follows from the above bound together with estimates (4.6)–(4.9). □

5. Numerical results

In this section, we report some numerical experiments to approximate the buckling coefficients considering
different configurations of the problem, in order to confirm the theoretical results presented in this work for the
cases k = 2 and k = 3. With this purpose, we have implemented in a MATLAB code the proposed discretization,
following the arguments presented in [44].

To complete the construction of the discrete bilinear form, we have taken the symmetric form s D
K (·, ·) as the

euclidean scalar product associated to the degrees of freedom, properly scaled to satisfy (3.5) (see [11,23,33] for
further details).

On the other hand, we have tested the method by using different families of meshes (see Figs. 1 and 8):
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Fig. 1. Sample meshes: T 1
h (top left), T 2

h (top right), T 3
h (bottom left) and T 4

h (bottom right), for N = 8.

• T 1
h : trapezoidal meshes which consist of partitions of the domain into N × N congruent trapezoids, all similar

to the trapezoid with vertices (0, 0), (1/2, 0), (1/2, 2/3) and (0, 1/3);
• T 2

h : hexagonal meshes;
• T 3

h : triangular meshes;
• T 4

h : distorted concave rhombic quadrilaterals;
• T 5

h : Voronoi meshes which have been partitioned with NP number of polygons.

We have used successive refinements of an initial mesh (see Fig. 1). The refinement parameter N used to label
each mesh is the number of elements on each edge of the plate.

We have chosen four configurations for the computational domain Ω :

ΩS := (0, 1) × (0, 1); (5.10)

ΩL := (0, 1) × (0, 1)\[1/2, 1) × [1/2, 1); (5.11)

ΩC := {(x, y) ∈ R2
: x2

+ y2 < 1/4}; (5.12)

ΩH := (−5, 5) × (−5, 5)\{(x, y) ∈ R2
: x2

+ y2 < 9}. (5.13)

In order to compare our results for the buckling problem, we introduce a non-dimensional buckling coefficient,
which is defined as:

λ̂
( j)
h :=

λ
( j)
h L
π2 , (5.14)

where L is the plate side length.
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Fig. 2. η1 (left) corresponds to a uniformly compressed plate (in the x , y directions) and η2 (right) corresponds to a plate subjected to
uniaxial compression (in the x direction).

Fig. 3. η3 corresponds to a plate subjected to shear load.

Moreover, we will consider different in-plane compressive stress η. More precisely, we will compute the
non-dimensional buckling coefficients using the following η:

η1 :=

(
1 0
0 1

)
, η2 :=

(
1 0
0 0

)
, η3 :=

(
0 1
1 0

)
.

The physical meaning of the tensors η1, η2 and η3 is illustrated in Figs. 2 and 3, respectively.

5.1. Test 1: Clamped square plate

In this numerical test we compute the non-dimensional buckling coefficients (cf. (5.14)) for a uniformly
compressed square plate ΩS (cf. (5.10)). This corresponds to the stress field η1

We report in Table 1 the four lowest non-dimensional buckling coefficients computed with the virtual element
method analyzed in this paper. The polynomial degrees are given by k = 2, 3 and with two different families of
meshes and N = 32, 64, 128. The table includes orders of convergence as well as accurate values extrapolated by
means of a least-squares fitting. In the last row of the table, we show the values obtained by extrapolating those
computed with different method presented in [7]. (See Fig. 4.)

In this case, since ΩS is convex, the problem have smooth eigenfunctions, as a consequence, when using degree
k, the order of convergence is 2(k − 1) as the theory predicts (cf. Theorem 4.4). Moreover, the results obtained by
the two methods agree perfectly well.

In the next test we compute once again the non-dimensional buckling coefficients (in absolute value) of the same
plate as in the previous example, subjected to a uniform shear load. This corresponds to the stress field η3.

In Table 2 we report the four lowest non-dimensional buckling coefficients (in absolute value) considering the
stress field η3. Once again, the polynomial degrees are given by k = 2, 3 and with the mesh T 1

h and N = 32, 64, 128.
The table includes orders of convergence as well as accurate values extrapolated by means of a least-squares fitting.
In the last row of the table, we show the values obtained by extrapolating those computed with the method presented
in [7].

Once again, it can be clearly observed from Table 2 that our method computes the scaled buckling coefficients
(cf. (5.14)) with an optimal order of convergence and that the agreement with the method from [7] is excellent.

We show in Fig. 5 the buckling mode associated with the lowest scaled buckling coefficient.
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Fig. 4. Test 1. Buckling mode associated to the first non-dimensional buckling coefficient of a square clamped plate subjected to a plane
stress tensor field η1.

Table 1
Test 1. Lowest non-dimensional buckling coefficients λ̂i

h , i = 1, 2, 3, 4 of a clamped
square plate subjected to a plane stress field η1.

Mesh k N λ̂1
h λ̂2

h λ̂3
h λ̂4

h

32 5.2724 9.1716 9.2744 12.8252
64 5.2952 9.2906 9.3174 12.9461

T 2
h 2 128 5.3014 9.3229 9.3297 12.9786

Order 1.86 1.88 1.80 1.89
Extrap. 5.3038 9.3350 9.3347 12.9907

32 5.3037 9.3345 9.3347 12.9918
64 5.3036 9.3342 9.3342 12.9904

T 2
h 3 128 5.3036 9.3342 9.3342 12.9904

Order 3.95 3.95 3.94 3.93
Extrap. 5.3036 9.3342 9.3342 12.9903

32 5.3192 9.3581 9.3968 13.0934
64 5.3075 9.3401 9.3498 13.0162

T 4
h 2 128 5.3046 9.3356 9.3381 12.9968

Order 2.00 2.00 2.00 1.99
Extrap. 5.3036 9.3342 9.3341 12.9903

32 5.3039 9.3348 9.3353 12.9939
64 5.3036 9.3342 9.3342 12.9906

T 4
h 3 128 5.3036 9.3342 9.3342 12.9904

Order 3.94 3.93 3.93 3.91
Extrap. 5.3036 9.3342 9.3342 12.9903

[7] 5.3037 9.3337 9.3337 12.9909

5.2. Test 2: Clamped L-shaped plate

In this numerical test, we consider an L-shaped domain: ΩL (cf. (5.11)). We have used triangular and concave
meshes as those shown in T 3

h and T 4
h , respectively (see Fig. 1). Once again, the refinement parameter N is the

number of elements on each edge.
Table 3 reports the four lowest non-dimensional buckling coefficient computed with the method analyzed in this

paper with polynomial degree k = 2. We include in this table orders of convergence, as well as accurate values
extrapolated by means of a least-squares fitting again. In the last row of the table, we show the values obtained by
extrapolating those computed with different method presented in [7].
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Table 2
Test 1. Lowest non-dimensional buckling coefficients (in absolute value) λ̂i

h , i =

1, 2, 3, 4 of a clamped square plate subjected to a plane stress tensor field η3.

Mesh k N λ̂1
h λ̂2

h λ̂3
h λ̂4

h

32 14.4988 16.6946 32.5980 34.5132
64 14.6050 16.8607 33.1421 35.0854

T 1
h 2 128 14.6327 16.9042 33.2905 35.2419

Order 1.94 1.93 1.87 1.87
Extrap. 14.6424 16.9197 33.3467 35.3009

32 14.6459 16.9227 33.3660 35.3258
64 14.6423 16.9191 33.3428 35.2975

T 1
h 3 128 14.6420 16.9189 33.3413 35.2956

Order 3.92 3.94 3.87 3.86
Extrap. 14.6420 16.9188 33.3411 35.2955

[7] 14.6420 16.9195 33.3376 –

Table 3
Test 2. Four lowest non-dimensional buckling coefficient of a clamped L-shaped plate and subjected
to a plane stress tensor field η1.

Mesh k N λ̂1h λ̂2h λ̂3h λ̂4h

32 13.1749 15.0809 17.0798 19.9445
64 13.0847 15.0234 17.0203 19.8758

T 3
h 2 128 13.0495 15.0083 17.0042 19.8582

Order 1.36 1.93 1.89 1.97
Extrap. 13.0271 15.0029 16.9983 19.8522

32 13.1949 15.1399 17.1801 20.1590
64 13.0903 15.0388 17.0453 19.9297

T 4
h 2 128 13.0511 15.0124 17.0105 19.8717

Order 1.41 1.94 1.95 1.98
Extrap. 13.0274 15.0031 16.9983 19.8519

[7] 13.0290 15.0036 16.9949 –

Fig. 5. Test 1. Buckling mode associated to the first non-dimensional buckling coefficient of a square plate subjected to a plane stress tensor
field η3.

We observe that for the lowest non-dimensional buckling coefficient, the method converges with orders 1.36 and
1.41, for T 3

h and T 4
h , respectively. We note that these orders of convergence are in accordance with the expected

order which in this case is 2s = 1.089 (see Theorem 4.4), because of the singularity of the solution (see [39]). For
the other non-dimensional buckling coefficients, the method converges with larger orders.
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Fig. 6. Test 2. Buckling mode associated to the first non-dimensional buckling coefficient of a clamped L-shaped plate subjected to a plane
stress tensor field η1.

We show in Fig. 6 the buckling mode associated with the lowest scaled buckling coefficient.
In this section, we consider an additional numerical test. We take the same configuration for the L-shaped domain

as in the previous test: ΩL . In this case, we solve the problem with polynomial degree k = 3 and we adopt a
refinement with hanging nodes. In particular, the test is focused to validate the use of refined meshes as a tool to
handle solutions with corner singularities. With this end, we have considered two families of meshes, namely: T 3

h
and T 3,ℓ

h .
The mesh T 3

h consists in a sequence of uniform triangular meshes (see Fig. 1). The initial uniform mesh has
N = 16 elements on each edge of the plate and the last one has N = 64 elements on each edge.

On the other hand, the mesh T 3,ℓ
h is obtained by refining a patch around the re-entrant corner of ΩL (cf. (5.11)),

starting from an initial uniform triangular mesh T 3,0
h which corresponds to the first mesh of T 3

h (with N = 16).
The procedure consists in to split each element which belongs to the region:

Rℓ :=

{
(x, y) ∈ R2

: |x − 1/2| ≤
3
N

21−ℓ and |y − 1/2| ≤
3
N

21−ℓ

}
∩ Ω L ℓ = 1, 2, . . . , ℓ̂,

into three quadrilaterals by connecting the barycenter of the element with the midpoint of each edge, where ℓ̂ is
the number of meshes to refine, with the convention that T 3,0

h := T 3
h (the initial mesh with N = 16). Note that

although this process is initiated with a triangular mesh, the successively created meshes will contain other kind of
convex polygons as can be appreciated in Fig. 7.

In Table 4, we report the lowest non-dimensional buckling coefficient computed with the method analyzed in this
paper with polynomial degree k = 3. Since the exact buckling coefficient is not known for this problem, we report
a reference value obtained with the finite element method proposed in [7], in which a very fine triangular mesh was
used. We compare the lowest non-dimensional buckling coefficient obtained by using uniform triangular meshes
with those of T 3,ℓ

h . It is possible to observe that the reported errors are similar in the last row of each mesh in
Table 4; however, the dofs in the case of corner-refined meshes are much less than the case of uniform meshes. As
a consequence, we remark that the possibility of using more general meshes allow us easier refinements near edges
and/or corners of the domain; therefore, the method has the potential of being competitive also in the presence of
non-smooth solutions.

5.3. Test 3: Circular plate

In this test we solve the buckling problem on a circular plate ΩC (cf. (5.12)). The domain ΩC is partitioned
using a sequence of polygonal meshes (Centroidal Voronoi tessellation) created with PolyMesher [45]. An example
of the adopted meshes is shown in Fig. 8 with NP = 1024.

We report in Table 5 the four lowest non-dimensional buckling coefficient (L = 1) for a circular clamped plate
under uniform in-plane pressure. The table includes orders of convergences as well as accurate values extrapolated
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Fig. 7. Sample meshes: initial mesh T 3,0
h with N = 16 (top left), T 3,1

h (top right), T 3,2
h (bottom left) and T 3,3

h (bottom right).

Table 4
Test 2. Lowest non-dimensional buckling coefficient of a clamped L-
shaped plate and subjected to a plane stress tensor field η1, by using
uniform triangular meshes and polygonal meshes with hanging nodes.

Mesh Dofs λ̂1h Error

2 179 13.1286430620 0.0996560949

T 3
h 8 963 13.0711178812 0.0421309140

36 355 13.0453680375 0.0163810704

ref. 13.0289869671 –

T 3,0
h 2 179 13.1286430620 0.0996560949

T 3,1
h 3 499 13.0869955611 0.0580085940

T 3,2
h 5 005 13.0656232778 0.0366363107

T 3,3
h 6 501 13.0533274578 0.0243404907

T 3,4
h 7 947 13.0455813044 0.0165943372

ref. 13.0289869671 –
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Table 5
Test 3. Lowest non-dimensional buckling coefficients λ̂i

h , i = 1, 2, 3, 4 of a circular
clamped plate subjected to a plane stress field η1.

Mesh k NP λ̂1
h λ̂2

h λ̂3
h λ̂4

h

1 024 5.8962 10.5171 10.5249 16.1264
4 096 5.9365 10.6455 10.6469 16.3993

T 5
h 2 16 384 5.9469 10.6783 10.6783 16.4720

Order 1.95 1.97 1.96 1.91
Extrap. 5.9506 10.6895 10.6891 16.4983

1 024 5.9494 10.6868 10.6872 16.4931
4 096 5.9503 10.6891 10.6891 16.4974

T 5
h 3 16 384 5.9503 10.6891 10.6891 16.4974

Order 4.00 4.00 4.00 4.00
Extrap. 5.9503 10.6891 10.6891 16.4976

[46] 5.9503 – – –

Fig. 8. Test 3. Buckling modes associated to the lowest non-dimensional buckling coefficients λ̂1
h (left) and λ̂2

h (right) of a circular clamped
plate under uniform in-plane pressure η1.

by means of a least-squares fitting. We compare the performance of the proposed method with those presented
in [46] for Reissner–Mindlin plates with very small thickness. It is well known that when the thickness goes to
zero the solution of the Reissner–Mindlin model converges to an identical Kirchhoff–Love solution.

It can be clearly seen from Table 5 that our method computes the scaled buckling coefficients with an optimal
order of convergence. Moreover, an excellent agreement with the result presented in [46] can be clearly appreciated.

Fig. 8 shows the buckling modes corresponding to the two lowest non-dimensional buckling coefficient of a
circular clamped plate.

5.4. Test 4: Simply supported-free square plate

In this test we have computed the non-dimensional buckling coefficient of a simply supported-free square plate
(see Remark 2.2), subjected to linearly varying in-plane load in one direction (x direction). This corresponds to a
plane stress field given by

η̃2 :=

(
1 − α

y
L 0

0 0

)
, (5.15)

with values of α in {0, 2/3, 1, 4/3, 2}. We observe that for α = 0, we obtain the plane stress tensor field η2.
We take an square plate ΩS which has two simply supported edges and two free edges.
We report in Table 6 the lowest non-dimensional buckling coefficient for different values of α. The polynomial

degrees are given by k = 2, 3 and the family of meshes T 2
h with N = 32, 64, 128. The table includes computed
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Table 6
Test 4. Non-dimensional buckling coefficient λ̂1h for different values of α of a square plate with
mixed boundary conditions and subjected to linearly varying in-plane load in one direction η̃2.

Mesh k N α = 0 α = 2/3 α = 1 α = 4/3 α = 2

32 0.9984 1.4474 1.7763 2.1687 3.0676
64 0.9996 1.4490 1.7782 2.1709 3.0702

T 2
h 2 128 0.9999 1.4495 1.7787 2.1715 3.0710

Order 1.91 1.90 1.90 1.88 1.85
Extrap. 1.0000 1.4496 1.7789 2.1717 3.0713

32 1.0000 1.4496 1.7789 2.1717 3.0712
64 1.0000 1.4496 1.7789 2.1717 3.0712

T 2
h 3 128 1.0000 1.4496 1.7789 2.1717 3.0712

Order 4.00 4.00 4.00 4.00 4.00
Extrap. 1.0000 1.4496 1.7789 2.1717 3.0712

Fig. 9. Test 4. Buckling modes associated to the lowest non-dimensional buckling coefficient λ̂1
h of a square plate with mixed boundary

conditions and subjected to linearly varying in-plane load in one direction η̃2 (cf. (5.15)): α = 0 (top left), α = 2/3 (top middle), α = 1
(top right), α = 4/3 (bottom left), α = 2 (bottom right).

orders of convergence and extrapolated more accurate values of each eigenvalue obtained by means of a least-squares
fitting.

It can be clearly observed from Table 6 that the proposed virtual scheme computes the scaled buckling coefficient
(cf. (5.14)) with an optimal order of convergence for all the values of α.

Finally, we show in Fig. 9 the buckling mode associated with the lowest scaled buckling coefficient for different
values of the parameter α.

5.5. Test 5: A square plate with a hole subjected to different in-plane loads

In this final numerical test, we compute the buckling coefficients and modes of a clamped (CCCC) and a simply
supported (SSSS) square plate with a hole (free). We have taken ΩH (cf. (5.13), where all of the lengths are measured
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Table 7
Test 5: Lowest non-dimensional buckling load intensity factor k.

NP CCCC SSSS

η1 η2 η3 η1 η2 η3

400 6.594 11.848 24.622 1.464 2.849 12.578
1600 6.594 11.856 24.696 1.465 2.851 12.602
6400 6.593 11.858 24.713 1.465 2.852 12.605

Fig. 10. Test 5. Buckling modes associated to the lowest non-dimensional buckling coefficient k of a square clamped plate with a hole
and subjected to a plane stress tensor fields η1 (top left), η2 (top middle), and η3 (top right). Buckling modes associated to the lowest
non-dimensional buckling coefficient k of a square simply supported plate with a hole and subjected to a plane stress tensor fields η1 (bottom
left), η2 (bottom middle), and η3 (bottom right).

in meters m). In this case, instead of (2.1), we have solved the following eigenvalue problem:

BD∆
2u = −λ div(η∇u) in Ω ,

where BD :=
Et3

12(1−ν2)
is the bending rigidity with the material parameters E = 200 × 109 N

m2 , t = 1 and ν = 0.3.
In addition, the results are presented in terms of the following non-dimensional buckling load intensity factor

defined as k :=
L2λ

(1)
h

π2 BD
.

The domain ΩH is partitioned using a sequence of Voronoi polygonal meshes created with PolyMesher [45],
each mesh with NP polygons. An example of the adopted meshes is shown in Fig. 10.

We report in Table 7 the lowest non-dimensional buckling load intensity factor k for three different in-plane load
cases; namely, η1, η2 and η3.

Finally, we show in Fig. 10 the buckling modes associated with the lowest non-dimensional buckling load
intensity factor k for a clamped and a simply supported square plate with a hole, respectively.
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