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In this paper, we propose and analyze a C1-virtual element method of high order to solve the Brinkman
problem formulated in terms of the stream function. The velocity is obtained as a simple post-process
from stream function and a novel strategy is written to recover the fluid pressure. We establish optimal
a priori error estimates for the stream function, velocity and pressure with constants independent of
the viscosity. Finally, we report some numerical test illustrating the behavior of the virtual scheme and
supporting our theoretical results on different families of polygonal meshes.
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1. Introduction

During the past decades, the numerical solution of incompressible flow problems have acquired great
interest due to the variety of applications in different sciences: engineering, biomedicine, oceanography
and environmental processes, among others. Different formulation and discretizations of the Stokes,
Brinkman, Oseen, Navier–Stokes and Stokes–Darcy equations have been analyzed in the past years; see
for instance Gatica et al. (2011); Guzmán & Neilan (2012); Vassilevski & Villa (2014); Cai & Chen
(2016); John et al. (2017); Botti et al. (2018, 2019); Camaño et al. (2018); di Pietro & Krell (2018);
Lederer et al. (2018); Anaya et al. (2016, 2019); Fu et al. (2019) and the references therein.

The aim of the present paper is to introduce and analyze a virtual element method (VEM) to
solve the Brinkman problem in polygonal simply connected domains, formulated in terms of the
stream function of the velocity field (fourth-order partial differential equation (PDE)), which stands
as a suitable framework for the study of Stokes and Darcy flows (cf. Juntunen & Stenberg, 2010;
Guzmán & Neilan, 2012; Vassilevski & Villa, 2014; Anaya et al., 2015; Howell et al., 2016), as well as
semidiscretizations of transient Stokes equations. The VEM introduced in Beirão da Veiga et al. (2013)
is a recent generalization of the finite element method that allows to use general polygonal/polyhedral
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meshes. The method has been applied successfully in a large range of problems in fluid mechanics; see
for instance Antonietti et al. (2014); Benedetto et al. (2016); Cangiani et al. (2016); Beirão da Veiga
et al. (2017, 2018, 2019b); Cáceres & Gatica (2017); Cáceres et al. (2017); Vacca (2018); Gatica et al.
(2018b, 2021); Irisarri & Hauke (2019); Liu et al. (2019); Liu & Chen (2019); Zhao et al. (2019), where
Stokes, Brinkman, Stokes–Darcy and Navier–Stokes equations have been recently developed.

In particular, we are interested in a formulation where the stream function is the principal unknown
of the system (Girault & Raviart, 1986). Salient features in formulations of this kind include that there
is only one scalar variable, the incompressible condition is satisfied automatically, the stream function
is one of the most useful tools in flow visualization and the matrix associated to the linear system turns
out to be positive definite. On the other hand, we note that the primary fields velocity and pressure are
not present in the formulation. However, if pressure profiles are required, they can be recovered using
different manners. For instance, for the Navier–Stokes equation, in Cayco & Nicolaides (1986) has been
presented an algorithm for pressure recovery, which is based on a mixed finite element discretization
with discrete stream function as a data on the right-hand side (see also Cayco & Nicolaides, 1989). In
Beirão da Veiga et al. (2019b), it has been recently proposed a VEM least squares method to recover
the pressure field from the stream function, and it is based on the discrete inf-sup stable pair proposed
in Beirão da Veiga et al. (2017) for the Stokes problem. Here, we will also propose a novel strategy to
recover the fluid pressure by using the flexibility of the virtual approach.

It is well known that conforming discretizations of a primal formulation to solve fourth-order PDEs
require C1-continuity. The construction of conforming finite elements with C1-continuity is difficult in
general, since they generally involve a large number of degrees of freedom (see for instance Ciarlet,
2002, Section 6.1). However, this can be easily achieved by using VEM. More precisely, we will follow
the VEM approach presented in Brezzi & Marini (2013); Chinosi & Marini (2016) (see also Mora et al.,
2018; Beirão da Veiga et al., 2019a, 2020; Mora & Velásquez, 2020) to build global discrete spaces of
H2(Ω) of arbitrary order to solve the fourth-order Brinkman problem on general polygonal meshes. In
addition, we will propose a strategy to recover the remaining quantities of interest: velocity and pressure.

According to the above discussion, in the present paper, we are interested in keeping on exploring
the flexibility and ability of the VEM to solve fluid flow problems. More precisely, we will propose and
analyze a C1-conforming discretization of arbitrary order k ≥ 2 using virtual element for the Brinkman
equations formulated in terms of the stream function. We will write two well-posed primal discrete
formulations (cf. (2.3) and (3.20)) and we will establish optimal order error estimates with constants
independent of the viscosity. In addition, the velocity field is then obtained from the discrete stream
function by a simple post-process. An error estimate is derived for the velocity in H1. Moreover, for
k = 3, we propose a novel strategy to approximate the fluid pressure by means of a second-order
variational problem, with a datum coming from the discrete stream function with the help of a proper
polynomial projector, which is discretized by employing the enhanced C0 virtual element space from
Ahmad et al. (2013). An error estimate in H1 is derived for the fluid pressure under the assumption
that the family of polygonal meshes is quasi-uniform. In summary, the advantages of the proposed
VEM are as follows: the possibility to use polygonal meshes, it provides an attractive and competitive
alternative to solve the Brinkman problem in terms of the computational cost, the resulting linear system
for the stream function is positive definite; it is possible to obtain the velocity and pressure fields in a
simple way.

The rest of the paper is organized as follows: in Section 2 we introduce the variational formulation
of the Brinkman equations in terms of the stream function of the velocity field. We prove existence
and uniqueness of this formulation by using the Lax–Milgram Theorem. In Section 3 we present the
virtual element discretization of arbitrary order k ≥ 2. We also prove the existence and uniqueness of
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3634 D. MORA ET AL.

the discrete formulation using the Lax–Milgram Theorem. In Section 4 we prove stability results and
obtain error estimates for the stream function. In addition, we recover the velocity field and the fluid
pressure. In Section 5 we report a set of numerical examples, which allows us to assess the performance
of the proposed method.

Throughout the paper we will follow the usual notation for Sobolev spaces and norms (Adams &
Fournier, 2003). We will denote a simply connected polygonal Lipschitz bounded domain of R2 by Ω ,
and n = (ni)1≤i≤2 is the outward unit normal vector to the boundary ∂Ω . The vector t = (ti)1≤i≤2 is
the unit tangent to ∂Ω oriented such that t1 = −n2, t2 = n1. For D an open bounded domain the L2(D)

inner product will be denoted by (·, ·)0,D. Moreover, c and C, with or without subscripts, tildes or hats,
will represent a generic constant independent of the mesh parameter h, assuming different values in
different occurrences.

2. Model problem

Let Ω ⊂ R2 be a simply connected polygonal domain with boundary Γ := ∂Ω . We consider the
Brinkman problem (for more details, see for instance, Girault & Raviart, 1986; Quarteroni & Valli,
1994): given a sufficiently smooth force density f ∈ [L2(Ω)]2, we seek (u, p) such that:

K−1u − ν div(∇u) + ∇p = f in Ω ,

div u = 0 in Ω ,

u = 0 on Γ ,

(p, 1)0,Ω = 0,

(2.1)

where u and p are the velocity and the pressure fields, respectively. In the model, ν is the viscosity
of the fluid and K denotes the permeability tensor of the Brinkman region. We assume that the fluid
viscosity satisfies 0 < ν ≤ Cν , this includes the case where ν → 0, and the system (2.1) becomes a
singular perturbation of the Darcy equations. We assume that K−1 is a sufficiently smooth and uniformly
symmetric positive definite tensor, i.e., there exist two positive (uniform) constants λ1, λ2 > 0 such that

λ1 ηTη ≤ ηT K−1 η ≤ λ2 ηT η ∀ η ∈ R2.

We introduce the following spaces

H := [H1
0(Ω)]2 =

{
v ∈ [H1(Ω)]2 : v = 0 on Γ

}
and

Q := L2
0(Ω) =

{
q ∈ L2(Ω) : (q, 1)0,Ω = 0

}
.
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The standard velocity-pressure variational formulation of the Brinkman problem reads as follows:
find (u, p) ∈ H × Q, such that∫

Ω

K−1u · v + ν

∫
Ω

∇u : ∇v −
∫

Ω

p div v =
∫

Ω

f · v ∀ v ∈ H,∫
Ω

q div u = 0 ∀ q ∈ Q.

(2.2)

It is well known that (2.2) admits a unique solution (see Girault & Raviart, 1986). Let us introduce
the following space of functions in H with vanishing divergence

Z := {v ∈ H : div v = 0}.

Then, (2.2) can be written in the following form: find u ∈ Z such that∫
Ω

K−1u · v + ν

∫
Ω

∇u : ∇v =
∫

Ω

f · v ∀ v ∈ Z.

Now, we reformulate the above problem as follows: since Ω is a simply connected domain, a well-
known result states that a vector function v ∈ Z if and only if there exists a scalar function ϕ ∈ H2(Ω)

(called stream function, see Girault & Raviart, 1986), such that

v = curl ϕ ∈ H.

The function ϕ is defined up to a constant. Thus, we consider the following space

W := H2
0(Ω) =

{
ϕ ∈ H2(Ω) : ϕ = ∂nϕ = 0 on Γ

}
,

where ∂n denotes the normal derivative. We endow W with the following ν-dependent norm

‖ϕ‖W :=
(
|ϕ|21,Ω + ν|ϕ|22,Ω

)1/2 ∀ϕ ∈ W.

Then, (2.2) can be formulated as follows: find ψ ∈ W, such that∫
Ω

K−1curl ψ · curl φ + ν

∫
Ω

D2ψ : D2φ =
∫

Ω

f · curl φ ∀φ ∈ W, (2.3)

where D2φ := (∂ijφ)1≤i,j≤2 denotes the Hessian matrix of φ and ‘:’ denotes the usual scalar product of
2×2-matrices. We have that ψ ∈ W is the stream function of the velocity field u ∈ Z (i.e., u = curlψ).

Now, in order to rewrite the problem in a compact way, we introduce the following bilinear forms
and linear functional, for any ψ , φ ∈ W:

A(ψ , φ) := Acurl (ψ , φ) + νAΔ(ψ , φ), (2.4)
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3636 D. MORA ET AL.

Acurl (ψ , φ) :=
∫

Ω

K−1curl ψ · curl φ, (2.5)

AΔ(ψ , φ) :=
∫

Ω

D2ψ : D2φ, (2.6)

F(φ) :=
∫

Ω

f · curl φ. (2.7)

The following lemma will allow us to establish the well posedness of formulation (2.3).

Lemma 2.1 There exists a constant α0 > 0, independent of ν, such that

A(φ, φ) ≥ α0 ‖φ‖2
W ∀φ ∈ W.

As a consequence of Lemma 2.1 and the Lax–Milgram Theorem we state the solvability of the
continuous problem (2.3).

Theorem 2.2 There exists a unique ψ ∈ W solution to problem (2.3), which satisfies the following
continuous dependence on the data

‖ψ‖W ≤ C‖f‖0,Ω ,

where the constant C > 0 is independent of ν.

We state the following additional regularity result for the solution of problem (2.3).

Theorem 2.3 Let m ≥ −1. Suppose that f ∈ [Hm(Ω)]2, then there exist s > 1/2 and a constant C > 0,
such that the solution ψ of problem (2.3) satisfies ψ ∈ H2+s(Ω) and

‖ψ‖2+s,Ω ≤ C‖f‖m,Ω .

Proof. The proof follows from the classical regularity result for the biharmonic problem (see Grisvard,
1985; Bacuta et al., 2002; Brenner & Sung, 2005). �

The constant s in the theorem above is called the index of elliptic regularity of the biharmonic
problem with homogeneous Dirichlet boundary conditions. For instance, if Ω is convex, then s ≥ 1,
in this case s will depend on the regularity of f. On the other hand, if Ω is nonconvex, for any f, the
theorem holds, but now for all s < s0, where s0 ∈ (1/2, 1) depends on the largest reentrant angle of Ω

(see Grisvard (1985) for the precise equation determining s0).

3. Virtual element discretization

In this section we will write a VE discretization for the numerical approximation of problem (2.3) of
arbitrary order k ≥ 2. First, we introduce some basic tools, notations and assumptions to construct a
conforming virtual space of W, and to write the corresponding discrete bilinear forms and the discrete
linear functional to write the discrete problem. Finally, we prove existence and uniqueness of the discrete
formulation.
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C1-VIRTUAL ELEMENT METHOD OF HIGH ORDER FOR THE BRINKMAN EQUATIONS 3637

3.1 Mesh assumptions

Let
{
Th

}
h be a sequence of decompositions of Ω into general polygonal elements K. Let hK denote the

diameter of the element K and h the maximum of the diameters of all the elements of the mesh, i.e.,
h := maxK∈Th

hK . In what follows we denote by NK
V the number of vertices of K, by Vi a generic vertex

of K, with 1 ≤ i ≤ NK
V , by e a generic edge of Th. For all e ∈ ∂K we denote by he = |e| the length of

edge and we define a unit normal vector ne
K that points outside of K and a unit tangent vector teK to K.

Also, we denote by xe and xK the midpoint of e and the baricenter of K, respectively.
For the theoretical analysis we will make the following assumptions: there exists a real number

CT > 0 such that, for every h and every K ∈ Th, we have

A1: the ratio between the shortest edge and the diameter hK of K is larger than CT ;

A2: K ∈ Th is star-shaped with respect to every point of a ball of radius CT hK .

3.2 Local and global virtual spaces

For any subset D ⊆ R2 and non-negative integer �, we denote by P�(D) the space of polynomials of
degree up to � defined on D, and denote by M∗

�(K) the set of the two-dimensional scaled monomials
defined on each polygon K as follows:

M∗
�(K) :=

{(
x − xK

hK

)β

: |β| = �

}
, (3.1)

where for a non-negative multi-index β = (β1, β2), we set |β| := β1 + β2 and xβ = xβ1
1 xβ2

2 , with
x = (x1, x2). We define Mk(K) := ⋃

�≤k M∗
�(K) =: {mj}nk

j=1 as a basis of Pk(K), where
nk = dim(Pk(K)). Analogously, we consider the set of the scaled monomials defined on each edge e:

M�(e) :=
{

1,
x − xe

he
,

(
x − xe

he

)2

, . . . ,

(
x − xe

he

)�
}

.

Now, for any k ≥ 2 and for every polygon K ∈ Th, we introduce the following preliminary local
virtual space:

Ṽk
h(K) :=

{
φh ∈ H2(K) : Δ2φh ∈ Pk−2(K), φh|∂K ∈ C0(∂K), φh|e ∈ Pr(e) ∀ e ∈ ∂K,

∇φh|∂K ∈ [C0(∂K)]2, ∂ne
K
φh|e ∈ Pα(e) ∀ e ∈ ∂K

}
,

where r := max{3, k} and α := k − 1.
Next, for a given φh ∈ Ṽk

h(K), we introduce five sets D1 − D5 of linear operators from the local
virtual space Ṽk

h(K) into R.

• D1 : the values of φh(Vi) for each vertex Vi of K;

• D2 : the values of hVi
∇φh(Vi) for each vertex Vi of K;
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3638 D. MORA ET AL.

• D3 : for α > 1 the moments
∫

e q(ζ )∂ne
K
φh(ζ ) dζ ∀ q ∈ Mα−2(e), ∀ edge e;

• D4 : for r > 3 the moments
1

|e|
∫

e q(ζ )φh(ζ ) dζ ∀ q ∈ Mr−4(e), ∀ edge e;

• D5 : for k ≥ 4 the moments
1

|K|
∫

K q(x)φh(x) dx ∀ q ∈ Mk−4(K), ∀ polygon K,

where hVi
corresponds to the average of the diameters corresponding to the elements with Vi as a vertex.

Remark 3.1 In the above construction we have used the scaled monomials Mk as a basis for the
space Pk, because they ensure that the linear operators introduced in D3 − D5 scale as 1 with respect
to the diameter hK (see Brezzi & Marini, 2013, and Beirão da Veiga et al., 2014, Remarks 1.1 and 2.5).
Additionally, we have that the linear operators introduced in D1 and D2 also scale as 1 with respect to
the diameter hK . In turn, this fact allows to build easily bilinear forms satisfying the stability property
(cf. (3.7)).

In order to construct the discrete scheme we decompose the bilinear forms (2.4)–(2.6) in the
following element by element contribution:

AΔ(ϕ, φ) =
∑

K∈Th

AK
Δ(ϕ, φ) :=

∑
K∈Th

∫
K

D2ϕ : D2φ ∀ϕ, φ ∈ W,

Acurl (ϕ, φ) =
∑

K∈Th

AK
curl (ϕ, φ) :=

∑
K∈Th

∫
K
K−1curl ϕ · curl φ ∀ϕ, φ ∈ W.

Also, we split

A(ϕ, φ) =
∑

K∈Th

AK(ϕ, φ) :=
∑

K∈Th

(
AK

curl (ϕ, φ) + ν AK
Δ(ϕ, φ)

)
∀ϕ, φ ∈ W.

In what follows we are going to build discrete version of the local bilinear forms listed above. With
this aim, and for k ≥ 2, we define the following projector operator Π

k,Δ
K : Ṽk

h(K) −→ Pk(K) ⊆ Ṽk
h(K)

for each φh ∈ Ṽk
h(K), as the solution of the local problems (on each polygon K):

AK
Δ

(
Π

k,Δ
K φh, q

) = AK
Δ(φh, q) ∀ q ∈ Pk(K),

̂
Π

k,Δ
K φh = φ̂h, ̂∇Π

k,Δ
K φh = ∇̂φh,

where φ̂h is defined as follows:

φ̂h := 1

NK
V

NK
V∑

i=1

φh(Vi) ∀φh ∈ C0(∂K), (3.2)

and Vi, 1 ≤ i ≤ NK
V , are the vertices of K.
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C1-VIRTUAL ELEMENT METHOD OF HIGH ORDER FOR THE BRINKMAN EQUATIONS 3639

The following result establishes that the projector Π
k,Δ
K is computable using the output values of the

sets D1 − D5 (see Chinosi & Marini, 2016).

Lemma 3.2 The operator Π
k,Δ
K : Ṽk

h(K) → Pk(K) is explicitly computable for every φh ∈ Ṽk
h(K),

using only the information of the linear operators D1 − D5.

For each k ≥ 2 and for any K ∈ Th our local virtual space is given by:

Wk
h(K) :=

{
φh ∈ Ṽk

h(K) :
∫

K
q∗ Π

k,Δ
K φh =

∫
K

q∗ φh, ∀ q∗ ∈ M∗
k−3(K) ∪ M∗

k−2(K)

}
,

where M∗
k−3(K) and M∗

k−2(K) are scaled monomials of degree k−3 and k−2, respectively (see (3.1)),
with the convention that M∗−1(K) = ∅ (see for instance Chinosi & Marini, 2016, for further details).

We have that Wk
h(K) ⊆ Ṽk

h(K), as a consequence the projector Π
k,Δ
K is well defined on Wk

h(K) and
computable using the information the linear operators D1 − D5. In addition, we have that Pk(K) ⊆
Wk

h(K); this will guarantee the good approximation properties for the space. Moreover, it has been
established in Chinosi & Marini (2016) that the sets of linear operators D1 − D5 constitutes a set of
degrees of freedom for Wk

h(K) (see also Ahmad et al., 2013).
Additionally, we observe that the condition appearing in the definition of the local space Wk

h(K) will
be useful to construct an L2-projection, which will be employed to build the discrete bilinear forms. In
particular, we consider the L2(K)-projection onto Pk−2(K). For each φ ∈ L2(K), ΠK

k−2φ ∈ Pk−2(K)

satisfies ∫
K

(
ΠK

k−2φ
)
q =

∫
K

φq ∀ q ∈ Pk−2(K). (3.3)

The following lemma establishes that ΠK
k−2 is computable on Wk

h(K). The proof follows from the
definition of the local virtual space and the set of degrees of freedom.

Lemma 3.3 The operator ΠK
k−2 : Wk

h(K) → Pk−2(K) is explicitly computable for each φh ∈ Wk
h(K),

using only the information of the set of degrees freedom D1 − D5.

In what follows, for each polygon K ∈ Th, we denote by Ndof
K the number of degrees freedom of

Wk
h(K) and by dof i, with 1 ≤ i ≤ dim(Wk

h(K)), the operator that to each smooth enough function φ

associates the ith local degree of freedom dof i(φ).
Now, we will consider the following projection onto the polynomial space [Pk−1(K)]2, which will

be used to construct a local approximation of AK
curl (·, ·): we define ΠK

k−1 : [L2(K)]2 → [Pk−1(K)]2, for
each v ∈ [L2(K)]2 by

∫
K

ΠK
k−1v · q =

∫
K

v · q ∀ q ∈ [Pk−1(K)]2. (3.4)

We observe that for any φh ∈ Wk
h(K), the vector function ΠK

k−1curl φh ∈ [Pk−1(K)]2 can be explicitly
computed from the degrees of freedom D1 − D5. In fact, for all K ∈ Th and for all φh ∈ Wk

h(K), using
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3640 D. MORA ET AL.

integration by parts in the right-hand side of (3.4) (with curl φh instead of v), we have∫
K

curl φh · q =
∫

K
φh rot q −

∫
∂K

φh(q · teK) ∀ q ∈ [Pk−1(K)]2

=
∫

K

(
ΠK

k−2φh

)
rot q −

∫
∂K

φh(q · teK) ∀ q ∈ [Pk−1(K)]2,

where we have used (3.3). The first term on the right-hand side above depends only on ΠK
k−2φh, and this

depends only on the values of the degrees of freedom (see Lemma 3.3). The second term is an integral
on the boundary of the element K, which is fully computable.

Now, for k ≥ 2, we introduce an additional projector, which will be used to write the virtual scheme;

we define Π
k,∇⊥
K : Wk

h(K) −→ Pk(K) ⊆ Wk
h(K) for each φh ∈ Wk

h(K) as the solution of the following
local problem.

∫
K

curl Π
k,∇⊥
K φh · curl q =

∫
K

curl φh · curl q ∀ q ∈ Pk(K), (3.5a)

̂
Π

k,∇⊥
K φh = φ̂h, (3.5b)

where φ̂h has been defined in (3.2). The following result states that this operator is fully computable.

Lemma 3.4 The operator Π
k,∇⊥
K : Wk

h(K) → Pk(K) ⊆ Wk
h(K) is explicitly computable for each

φh ∈ Wk
h(K), using only the information of the set of degrees freedom D1 − D5.

Proof. First we note that (3.5b) is computable using the information of the set D1. On the other hand,
we integrate by parts on the right-hand side of (3.5a) to obtain:

∫
K

curl φh · curl q = −
∫

K
φhΔq −

∫
∂K

φh∂ne
K

q ∀ q ∈ Pk(K)

= −
∫

K
ΠK

k−2φhΔq −
∫

∂K
φh∂ne

K
q ∀ q ∈ Pk(K),

where once again we have used the fact that Δq ∈ Pk−2(K) and the definition of the projection ΠK
k−2

(cf. (3.3)). The previous equality allows us to conclude that the polynomial Π
k,∇⊥
K φh can be explicitly

computed from the degrees of freedom D1 − D5. �
Now, we introduce the global virtual space by combining the local spaces Wk

h(K) and incorporating
the homogeneous boundary conditions. For every decomposition Th of Ω into polygons K, we define

Wh :=
{
φh ∈ W : φh|K ∈ Wk

h(K)
}

.
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We have that the dimension of Wh, R1 := dim(Wh), is given by:

R1 = 3NV + NE(α − 1 + r − 3) + NK dim(Pk−4(K))

= 3NV + NE(α + r − 4) + NK
(k − 3)(k − 2)

2
, (3.6)

where NE is the number of internal edges, NV is the number of internal vertices and NK the number of
elements of Th (see Brezzi & Marini, 2013; Chinosi & Marini, 2016).

3.3 Construction of discrete forms

In this section we will construct the discrete version of the continuous local bilinear forms and the
right-hand side, using the projection operators introduced in Section 3.2.

First, let sK
Δ(·, ·) and sK

curl (·, ·) be any symmetric positive definite bilinear forms to be chosen as to
satisfy:

c0AK
Δ(φh, φh) ≤ sK

Δ(φh, φh) ≤ c1AK
Δ(φh, φh) ∀ φh ∈ Wk

h(K), with Π
k,Δ
K φh = 0,

c2AK
curl (φh, φh) ≤ sK

curl (φh, φh) ≤ c3AK
curl (φh, φh) ∀ φh ∈ Wk

h(K), with Π
k,∇⊥
K φh = 0,

(3.7)

with c0, c1, c2 and c3 positive constants independent of h and K. A classical choice for the bilinear forms
sK
Δ(·, ·) and sK

curl (·, ·) satisfying (3.7) is given by the Euclidean scalar product associated to the degrees
of freedom (see Beirão da Veiga et al., 2013; Brezzi & Marini, 2013; Cangiani et al., 2017b). We will
choose the following representation:

sK
Δ(ψh, φh) := h−2

K

Ndof
K∑

i=1

dof i(ψh)dof i(φh) and sK
curl (ψh, φh) := σK

K

Ndof
K∑

i=1

dof i(ψh)dof i(φh), (3.8)

where the parameter σK
K

> 0 is a multiplicative factor to take into account the inverse of the permeability
tensor. In particular, we define σK

K
as the arithmetic mean of the mean values of the diagonal elements

of tensor K−1 (see Beirão da Veiga et al., 2016b).
The following result establishes that sK

Δ(·, ·) and sK
curl (·, ·) satisfy the stability property (3.7).

Proposition 3.5 The bilinear forms defined in (3.8) satisfy the stability property (3.7).

Proof. The proof follows using the same arguments presented in Cangiani et al. (2017b, Proposition
5.3) (see also Brezzi & Marini, 2013, Section 4.4). First, we have that the stabilizing bilinear forms
sK
Δ(·, ·) and sK

curl (·, ·) are the Euclidean scalar product (multiplied by positive constants) associated to
the degrees of freedom; therefore, these forms are positive definite. In addition, by considering that the
degrees of freedom (cf. D1 − D5) scale like 1 (see Remark 3.1), and that AK

Δ(·, ·) scales like h−2
K , it is

easy to see that the bilinear form sK
Δ(·, ·) scales like h−2

K , too. Using the same arguments we have that
sK

curl (·, ·) scales as AK
curl (·, ·). �
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Then, we set the following global bilinear form,

Ah(ψh, φh) :=
∑

K∈Th

Ah,K(ψh, φh) ∀ ψh, φh ∈ Wh, (3.9)

where

Ah,K(ψh, φh) := Ah,K
curl (ψh, φh) + ν Ah,K

Δ (ψh, φh) ∀ ψh, φh ∈ Wk
h(K), (3.10)

with Ah,K
Δ (·, ·) and Ah,K

curl (·, ·) are the local bilinear forms on Wk
h(K) × Wk

h(K) defined by

Ah,K
Δ (ψh, φh) := AK

Δ

(
Π

k,Δ
K ψh, Πk,Δ

K φh

) + sK
Δ

(
ψh − Π

k,Δ
K ψh, φh − Π

k,Δ
K φh

)
, (3.11)

Ah,K
curl (ψh, φh) :=

∫
K
K−1ΠK

k−1curl ψh · ΠK
k−1curl φh + sK

curl

(
ψh − Π

k,∇⊥
K ψh, φh − Π

k,∇⊥
K φh

)
.

(3.12)

The following result establishes the usual consistency and stability properties for the discrete local
forms.

Proposition 3.6 For k ≥ 2 the local bilinear forms Ah,K
Δ (·, ·), Ah,K

curl (·, ·) and Ah,K(·, ·) (defined in
(3.11), (3.12) and (3.10), respectively) on each element K, satisfy

• Consistency: for all h > 0 and for all K ∈ Th we have that

Ah,K
Δ (q, φh) = AK

Δ(q, φh) ∀ q ∈ Pk(K), ∀ φh ∈ Wk
h(K). (3.13)

• Stability and boundedness: there exist positive constants αi, i = 1, . . . , 6, independent of K, such
that:

α1AK
Δ(φh, φh) ≤ Ah,K

Δ (φh, φh) ≤ α2AK
Δ(φh, φh) ∀ φh ∈ Wk

h(K), (3.14)

α3AK
curl (φh, φh) ≤ Ah,K

curl (φh, φh) ≤ α4AK
curl (φh, φh) ∀ φh ∈ Wk

h(K), (3.15)

α5AK(φh, φh) ≤ Ah,K(φh, φh) ≤ α6AK(φh, φh) ∀ φh ∈ Wk
h(K). (3.16)

Proof. The proof follows standard arguments in the VEM literature (see Beirão da Veiga et al., 2013,
2016a; Antonietti et al., 2016; Cangiani et al., 2017b). �

Since K−1 is a full tensor the bilinear form Ah,K
curl (·, ·) does not satisfy the consistency property. In

order to overcome this drawback we have the following auxiliary results, which will be useful to prove
the theoretical results.
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Lemma 3.7 Let K ∈ Th and let T be a smooth and symmetric tensor field defined on K. For any p, q
smooth enough vector fields defined on K, we have

(T p, q)0,K −
(
TΠK

k−1p, ΠK
k−1q

)
0,K

≤ ‖T p − ΠK
k−1(T p)‖0,K‖q − ΠK

k−1q‖0,K

+ ‖T q − ΠK
k−1(T q)‖0,K‖p − ΠK

k−1p‖0,K

+ C
T

‖p − ΠK
k−1p‖0,K‖q − ΠK

k−1q‖0,K ,

where C
T

> 0 is a constant depending on T .

Proof. For simplicity we consider the following notation: p := ΠK
k−1p and q := ΠK

k−1q. Then using
the symmetry of T, adding and subtracting suitable terms and using the properties of the projection
ΠK

k−1, we have that

(T p, q)0,K − (T p, q)0,K

= (T p, q)0,K − (T p, q)0,K + (T p, q)0,K − (p,T q)0,K

= (T p, q − q)0,K + (p − p,T q)0,K

= (T p, q − q)0,K −
(
T p, q − q

)
0,K

+ (p − p,T q)0,K −
(

p − p,T q
)

0,K

=
(
T p − T p, q − q

)
0,K

+
(

p − p,T q − T q
)

0,K

=
(
T p − T p, q − q

)
0,K

+
(

p − p,T q − T q − T q + T q
)

0,K

=
(
T p − T p, q − q

)
0,K

+
(

p − p,T q − T q
)

0,K
− (p − p,T (q − q))0,K .

Then, the result follows from the Cauchy–Schwarz inequality with C
T

= ‖T ‖L∞(K)2×2 . �
As an immediate consequence of Lemma 3.7 we have the following result.

Lemma 3.8 For all K ∈ Th and for all ϕh, φh ∈ Wk
h(K), we have

AK
curl (ϕh, φh) − Ah,K

curl (ϕh, φh)

≤ ‖K−1 curl ϕh − ΠK
k−1(K

−1curl ϕh)‖0,K‖curl φh − ΠK
k−1curl φh‖0,K

+ ‖K−1 curl φh − ΠK
k−1(K

−1curl φh)‖0,K‖curl ϕh − ΠK
k−1curl ϕh‖0,K

+ C
K
‖curl φh − ΠK

k−1curl φh‖0,K‖curl ϕh − ΠK
k−1curl ϕh‖0,K

+ sK
curl (ϕh − Π

k,∇⊥
K ϕh, φh − Π

k,∇⊥
K φh),

where C
K

> 0 is a constant depending on the tensor K−1.

The next step consists in constructing a computable approximation of the right-hand side (2.7). With
this aim, we define, for each element K, the following computable (using the sets of degrees of freedom
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D1 − D5) term:

Fh,K(φh) :=
∫

K
ΠK

k−1f · curl φh ≡
∫

K
f · ΠK

k−1curl φh ∀ φh ∈ Wk
h(K).

Thus, we introduce the following element as an approximation of (2.7):

Fh(φh) :=
∑

K∈Th

Fh,K(φh) ∀ φh ∈ Wh. (3.17)

Remark 3.9 If f is a smooth function then using integration by parts in (2.7) gives (f, curl φ)0,Ω =
(rot f, φ)0,Ω ∀ φ ∈ W. As a consequence, it is possible to consider an alternative right-hand side as
follows: for each k ≥ 2 and for each K ∈ Th, we define

F̃h,K(φh) :=
∫

K
ΠK

k−2(rot f) φh ≡
∫

K
rot f ΠK

k−2φh ∀ φh ∈ Wk
h(K).

Then, it is possible to consider the following alternative global right-hand side: F̃h : Wh →R defined by

F̃h(φh) :=
∑

K∈Th

F̃h,K(φh) ∀ φh ∈ Wh. (3.18)

We note that F̃h(·) is fully computable using the degrees of freedom D1 −D5, since ΠK
k−2 is computable.

3.4 The discrete virtual schemes

Now, we use the discrete forms and the results of the previous sections to write two discrete VEM for
the approximation of the unique solution of the Brinkman problem presented in (2.3).

The virtual element discretization reads as follows: find ψh ∈ Wh, such that

Ah(ψh, φh) = Fh(φh) ∀ φh ∈ Wh, (3.19)

where Ah(·, ·) is the discrete bilinear form defined in (3.9) and Fh(·) introduced in (3.17). We note that
as a consequence of (3.16) the bilinear form Ah(·, ·) is bounded. Moreover, it is also uniformly elliptic,
as shown the following result.

Lemma 3.10 There exists a constant α̃ > 0, independent of ν and h, such that

Ah(φh, φh) ≥ α̃
∥∥φh

∥∥2
W ∀ φh ∈ Wh.

Proof. Thanks to (3.14) and (3.15) it is easy to check that the above inequality holds with
α̃ := max{α3λ1, α1} > 0. �

As an immediate consequence of Lemma 3.10 we have the following theorem:
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Theorem 3.11 Discrete formulation (3.19) admits a unique solution ψh ∈ Wh, which satisfies the
following continuous dependence on the data

‖ψh‖W ≤ C‖f‖0,Ω ,

where the positive constant C is independent of ν.

Remark 3.12 By considering the alternative right-hand side proposed in Remark 3.9, it is possible to
write the following well-posed discrete formulation: find ψ̃h ∈ Wh, such that

Ah(ψ̃h, φh) = F̃h(φh) ∀ φh ∈ Wh. (3.20)

We are going to analyze in detail the virtual element discretization (3.19) and summarize the results
for the VE discretization (3.20) (see Remark 4.25).

4. Convergence analysis

In the present section we develop an error analysis for the discrete virtual element schemes presented
in Section 3.4. For the forthcoming analysis we will assume that the mesh assumptions A1 and A2,
introduced in Section 3.1, are satisfied.

We will use the following broken H�-seminorm, for each integer � > 0:

|φ|2�,h :=
∑

K∈Th

|φ|2�,K ,

which is well defined for every φ ∈ L2(Ω) such that φ|K ∈ H�(K) for all polygon K ∈ Th.
Moreover, we recall the following approximation result, which is derived by interpolation between

Sobolev spaces (see for instance Girault & Raviart, 1986, Theorem I.1.4) from the analogous result for
integer values. In its turn the result for integer values is stated in Beirão da Veiga et al. (2013, Proposition
4.2) and follows from the classical Scott–Dupont theory (see Brenner & Scott, 2008, and Antonietti
et al., 2016, Proposition 3.1):

Proposition 4.1 If the assumption A2 is satisfied then there exists a constant C > 0, such that for
every φ ∈ Hδ(K), there exists φπ ∈ Pk(K), k ≥ 0, such that

|φ − φπ |�,K ≤ Chδ−�
K |φ|δ,K , 0 ≤ δ ≤ k + 1, � = 0, 1, . . . , [δ],

where [δ] denoting largest integer equal or smaller than δ ∈ R.

We are going to use the following standard approximation property (see Brenner & Scott, 2008;
Cáceres & Gatica, 2017):

Lemma 4.2 There exists a constant C > 0, independent of hK , such that for all v ∈ [Hδ(K)]2

‖v − ΠK
k−1v‖0,K ≤ Chδ

K |v|δ,K 0 ≤ δ ≤ k, k ≥ 2.

Now, we start with the following bound for a dual norm.
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3646 D. MORA ET AL.

Proposition 4.3 Let k ≥ 2 and f ∈ [L2(Ω)]2 such that f|K ∈ [Hk−1(K)]2 for each K ∈ Th. Let F(·) and
Fh(·) the functionals defined in (2.7) and (3.17), respectively. Then, we have the following estimates:

‖F − Fh‖W ′
h

:= sup
φh∈Wh
φh �= 0

|F(φh) − Fh(φh)|∥∥φh

∥∥
W

≤ Chk−1|f|k−1,h.

Proof. Let φh ∈ Wh, then using the definition of F(·) and Fh(·) (see (2.7) and (3.17), respectively),
orthogonality property of the projector ΠK

k−1, the Cauchy–Schwarz inequality and Lemma 4.2, we have

|F(φh) − Fh(φh)| ≤
∑

K∈Th

‖f − ΠK
k−1f‖0,K‖curl φh − ΠK

k−1curl φh‖0,K

≤ C
∑

K∈Th

hk−1
K |f|k−1,K |φh|1,K

≤ Chk−1|f|k−1,h‖φh‖W .

Therefore,

‖F − Fh‖W ′
h

≤ Chk−1|f|k−1,h.

�
In order to develop the error estimates, from now on, we make the following assumption for the

permeability tensor: K−1 ∈ W1+s,∞(Ω)2×2.
The next step is to establish the following result.

Lemma 4.4 Let k ≥ 2 and f ∈ [L2(Ω)]2 such that f|K ∈ [Hk−1(K)]2 for each K ∈ Th. Let ψ and ψh be
the unique solutions of problems (2.3) and (3.19), respectively. Then, there exist s > 1/2 and a positive
constant C, independent of ν and h, such that

‖ψ − ψh‖W ≤ C
(
‖F − Fh‖W ′

h
+ ‖ψ − ψI‖W + |ψ − ψπ |1,h

+ |ψ − ψπ |2,h + hmin{1+s,k}‖ψ‖2+s,Ω

)
,

for all ψI ∈ Wh and for all ψπ ∈ L2(Ω) such that ψπ |K ∈ Pk(K) for all polygon K ∈ Th.

Proof. Let ψI ∈ Wh. We set vh := ψh − ψI . Thus,

‖ψ − ψh‖W ≤ ‖ψ − ψI‖W + ‖vh‖W . (4.1)
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Now, thanks to Lemma 3.10, adding and subtracting the term A(ψ , vh) and using the definition of the
continuous and discrete problems (2.3) and (3.19), respectively, we have

α̃‖vh‖2
W ≤ Ah(vh, vh)

= Ah(ψh, vh) − Ah(ψI , vh)

= Fh(vh) − Ah(ψI , vh)

= Fh(vh) − F(vh) + A(ψ , vh) − Ah(ψI , vh)

= Fh(vh) − F(vh) +
∑

K∈Th

{
νAK

Δ(ψ , vh) + AK
curl (ψ , vh)

}
−

∑
K∈Th

{
νAh,K

Δ (ψI , vh) + Ah,K
curl (ψI , vh)

}
= Fh(vh) − F(vh) +

∑
K∈Th

{
νAK

Δ(ψ − ψπ , vh) − νAh,K
Δ (ψI − ψπ , vh)

}
+

∑
K∈Th

{
AK

curl (ψ , vh) − Ah,K
curl (ψI , vh)

}
, (4.2)

where we have added and subtracted ψπ ∈ L2(Ω) such that ψπ |K ∈ Pk(K) for all K ∈ Th for k ≥ 2, in
the last step.

Now, we are going to analyze the last two terms of (4.2). By using the continuity of bilinear forms
AK

Δ(·, ·) and Ah,K
Δ (·, ·) and the triangular inequality, we have that

ν
{

AK
Δ(ψ − ψπ , vh) + Ah,K

Δ (ψI − ψπ , vh)
}

≤ Cν
(|ψ − ψπ |2,K + |ψI − ψπ |2,K

) |vh|2,K

≤ Cν
(|ψ − ψπ |2,K + |ψ − ψI |2,K

) |vh|2,K . (4.3)

On the other hand, for the last term in (4.2), adding and subtracting the term AK
curl (ψI , vh), we have

AK
curl (ψ , vh) − Ah,K

curl (ψI , vh)

= AK
curl (ψ , vh) − AK

curl (ψI , vh) + AK
curl (ψI , vh) − Ah,K

curl (ψI , vh)

= AK
curl (ψ − ψI , vh) +

{
AK

curl (ψI , vh) − Ah,K
curl (ψI , vh)

}
. (4.4)

Next, thanks to the continuity of AK
curl (·, ·), it follows that

AK
curl (ψ − ψI , vh) ≤ C|ψ − ψI |1,K |vh|1,K , (4.5)
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and the second term in (4.4) is bounded using Lemma 3.8 as follows:

AK
curl (ψI , vh) − Ah,K

curl (ψI , vh)

≤ ‖K−1 curl ψI − ΠK
k−1(K

−1curl ψI)‖0,K‖curl vh − ΠK
k−1curl vh‖0,K

+ ‖K−1 curl vh − ΠK
k−1(K

−1curl vh)‖0,K‖curl ψI − ΠK
k−1curl ψI‖0,K

+ C‖curl ψI − ΠK
k−1curl ψI‖0,K‖curl vh − ΠK

k−1curl vh‖0,K

+ sK
curl (ψI − Π

k,∇⊥
K ψI , vh − Π

k,∇⊥
K vh).

Adding and subtracting appropriate terms, using triangular inequality, the estimate in Lemma 4.2 and
standard argument, we obtain

AK
curl (ψI , vh) − Ah,K

curl (ψI , vh) ≤ C
(
|ψ − ψI |1,K + |ψ − ψπ |1,K + hmin{1+s,k}

K |ψ |2+s,K

)
|vh|1,K . (4.6)

Now, from (4.2) using the triangular and Cauchy–Schwarz inequalities and (4.3), (4.4), (4.5) and
(4.6), we have

α̃‖vh‖2
W ≤ ‖F − Fh‖W ′

h
‖vh‖W +

∑
K∈Th

Cν
(|ψ − ψπ |2,K + |ψ − ψI |2,K

) |vh|2,K

+
∑

K∈Th

C
(
|ψ − ψI |1,K + hmin{1+s,k}

K |ψ |2+s,K + |ψ − ψπ |1,K

)
|vh|1,K

≤ C‖Fh − F‖W ′
h
‖vh‖W + C

∑
K∈Th

(|ψ − ψπ |1,K + √
ν|ψ − ψπ |2,K

)
(
√

ν|vh|2,K + |vh|1,K)

+ C
∑

K∈Th

(√
ν|ψ − ψI |2,K + |ψ − ψI |1,K + hmin{1+s,k}

K ‖ψ‖2+s,K

)
(
√

ν|vh|2,K + |vh|1,K),

applying the Cauchy–Schwarz inequality in the second and third terms of the above estimate, we get

α̃‖vh‖2
W ≤ C

(
‖F − Fh‖W ′

h
+ ‖ψ − ψI‖W + |ψ − ψπ |1,h

+√
ν|ψ − ψπ |2,h + hmin{1+s,k}‖ψ‖2+s,Ω

)
‖vh‖W . (4.7)

Therefore, the proof follows from (4.1) and (4.7). �
The next step is to find an appropriate term ψI ∈ Wh that can be used in Lemma 4.4 to prove

convergence of our discrete scheme. Thus, we have the following result.

Proposition 4.5 Assume that A1 and A2 are satisfied. Then, for each φ ∈ Hδ(Ω), there exist φI ∈ Wh
and C > 0, independent of h, such that

‖φ − φI‖�,Ω ≤ Chδ−�|φ|δ,Ω , � = 0, 1, 2, 2 ≤ δ ≤ k + 1, k ≥ 2.
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Proof. The proof follows repeating the arguments from Beirão da Veiga et al. (2019a, Proposition 4.2)
(see also Antonietti et al., 2016, Proposition 3.1). �

The following theorem establishes the convergence of our scheme.

Theorem 4.6 Let k ≥ 2 and f ∈ [L2(Ω)]2 such that f|K ∈ [Hk−1(K)]2 for each K ∈ Th. Let ψ ∈ W and
ψh ∈ Wh be the unique solutions to the continuous and discrete problems (2.3) and (3.19), respectively.
Then, there exist s > 1/2 and a positive constant C, independent of ν and h, such that

‖ψ − ψh‖W ≤ Chmin{s, k−1} (|f|k−1,h + ‖ψ‖2+s,Ω

)
.

Proof. The result follows from Lemma 4.4 and Propositions 4.1, 4.3 and 4.5. �

4.1 Error estimates in H1 and L2

In this section we prove estimates in H1- and L2-norms for the stream function using duality arguments.
The following preliminary result will be useful to show the estimate in H1 and the proof follows standard
argument.

Lemma 4.7 Let k ≥ 2 and let ϕπ , φπ ∈ Pk(K), then the bilinear forms Ah,K(·, ·), AK(·, ·), Ah,K
curl (·, ·) and

AK
curl (·, ·) on each element K, satisfy

Ah,K(ϕh, φh) − AK(ϕh, φh) = Ah,K(ϕh − ϕπ , φh − φπ) − AK(ϕh − ϕπ , φh − φπ)

+ Ah,K
curl (ϕh − ϕπ , φh) − AK

curl (ϕh − ϕπ , φh)

+ Ah,K
curl (ϕπ , φh) − AK

curl (ϕπ , φh) ∀ ϕh, φh ∈ Wk
h(K). (4.8)

The following result establishes an error estimate in H1-norm for the stream function. We are going
to use a duality argument. With this aim we make the following assumption in Theorems 4.9 and 4.10.

Assumption 4.8 Constants s and C in Theorem 2.3 are independent of ν.

Theorem 4.9 Let k ≥ 2 and f ∈ [L2(Ω)]2 such that f|K ∈ [Hk−1(K)]2 for each K ∈ Th. Let ψ ∈ W and
ψh ∈ Wh be the unique solutions to the continuous and discrete problems (2.3) and (3.19), respectively.
Then, there exist s̃ ∈ (1/2, 1], s > 1/2 and a constant C > 0, independent of ν and h, such that

‖ψ − ψh‖1,Ω ≤ Chs̃+min{s, k−1} (|f|k−1,h + ‖ψ‖2+s,Ω

)
.

Proof. Let φ ∈ W be the solution of the auxiliary variational problem: find φ such that

A(φ, v) =
∫

Ω

∇(ψ − ψh) · ∇v ∀ v ∈ W, (4.9)

where A(·, ·) is the bilinear form defined in (2.4).
From Theorem 2.3 there exists s̃ ∈ (1/2, 1] and C > 0 (cf. Assumption 4.8) such that φ ∈ H2+s̃(Ω)

and

‖φ‖2+s̃,Ω ≤ C|ψ − ψh|1,Ω . (4.10)
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Now, let φI ∈ Wh be such that Proposition 4.5 holds true. Taking v := (ψ −ψh) ∈ W as test function
in (4.9), using the symmetry of the bilinear form and adding and subtracting φI , we obtain

|ψ − ψh|21,Ω ≤ A(ψ − ψh, φ)

= A(ψ − ψh, φ − φI) + A(ψ − ψh, φI)

= A(ψ − ψh, φ − φI) + A(ψ , φI) − A(ψh, φI)

= A(ψ − ψh, φ − φI) + F(φI) − A(ψh, φI)

= A(ψ − ψh, φ − φI) + [F(φI) − Fh(φI)] + [Ah(ψh, φI) − A(ψh, φI)]

=: T1 + T2 + T3, (4.11)

where we have used the definition of the continuous (see (2.3)) and discrete problems (see (3.19)).
Now, we bound each term T1, T2, T3. We start with T1 as follows:

T1 = A(ψ − ψh, φ − φI)

≤ C‖ψ − ψh‖W‖φ − φI‖W

≤ ‖ψ − ψh‖W

(
|φ − φI |21,Ω + ν|φ − φI |22,Ω

)1/2

≤ Chmin{s, k−1}(|f|k−1,h + ‖ψ‖2+s,Ω)
(

Ch2(1+s̃)‖φ‖2
2+s̃,Ω + Cνh2s̃‖φ‖2

2+s̃,Ω

)1/2

≤ Chmin{s, k−1}(|f|k−1,h + ‖ψ‖2+s,Ω)(1 + √
ν)hs̃‖φ‖2+s̃,Ω

≤ C(1 + √
ν)hs̃+min{s, k−1}(|f|k−1,h + ‖ψ‖2+s,Ω)|ψ − ψh|1,Ω , (4.12)

where we have used the continuity of bilinear form A(·, ·), Theorem 4.6 and Proposition 4.5.
For T2 we use the definition of the functionals F(·) and Fh(·), applying the Cauchy–Schwarz

inequality and Lemma 4.2 as follows:

T2 = F(φI) − Fh(φI) =
∑

K∈Th

∫
K
(f − ΠK

k−1f) · (curl φI − ΠK
k−1curl φI)

≤
∑

K∈Th

‖f − ΠK
k−1f‖0,K‖curl φI − ΠK

k−1curl φI‖0,K

≤
∑

K∈Th

Chk−1
K |f|k−1,K

( ∥∥curl φI − curl φ
∥∥

0,K

+ ‖curl φ − ΠK
k−1curl φ‖0,K + ‖ΠK

k−1(curl (φ − φI))‖0,K

)
≤

∑
K∈Th

Chk−1
K |f|k−1,K

(
C‖φ − φI‖1,K + Ch1+s̃

K ‖φ‖2+s̃,K

)
≤ Chs̃+min{s, k−1} (|f|k−1,h + ‖ψ‖2+s,Ω

) |ψ − ψh|1,Ω , (4.13)

where we have also used the Cauchy–Schwarz inequality, Proposition 4.5 and (4.10).
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Now, we continue with the term T3. Let ψπ , φπ ∈ Pk(K) such that Proposition 4.1 holds true. Using
(4.8) we have

T3 =
∑

K∈Th

[Ah,K(ψh − ψπ , φI − φπ) + AK(ψπ − ψh, φI − φπ)]

+
∑

K∈Th

[Ah,K
curl (ψh − ψπ , φπ) − AK

curl (ψh − ψπ , φπ)]

+
∑

K∈Th

[Ah,K
curl (ψπ , φI) − AK

curl (ψπ , φI)]

=: T3a + T3b + T3c. (4.14)

We bound each term on the right-hand side above. To do that we introduce

‖ϕ‖2
W,K :=

(
|ϕ|21,K + ν|ϕ|22,K

)
∀ ϕ ∈ H2(K).

Then, the first term can be bounded as follows: using the continuity of the bilinear forms Ah,K(·, ·) and
AK(·, ·), we have

T3a ≤
∑

K∈Th

C‖ψh − ψπ‖W,K‖φI − φπ‖W,K

≤
∑

K∈Th

C(‖ψh − ψ‖W,K + ‖ψ − ψπ‖W,K)(‖φI − φ‖W,K + ‖φ − φπ‖W,K)

≤
∑

K∈Th

C(‖ψh−ψ‖W,K +C(1 + √
ν)hmin{s,k−1}

K ‖ψ‖2+s,K)
(
‖φI −φ‖W,K +C(1+√

ν)hs̃
K‖φ‖2+s̃,K

)
,

where we have used Proposition 4.1. Now, using the Cauchy–Schwarz inequality, Theorem 4.6 and
(4.10), we obtain

T3a ≤ C(‖ψh − ψ‖W + C(1 + √
ν)hmin{s,k−1}‖ψ‖2+s,Ω)

(
C(1 + √

ν)hs̃‖φ‖2+s̃,Ω + ‖φI − φ‖W

)
≤ C(‖ψh − ψ‖W +(1+√

ν)hmin{s,k−1}‖ψ‖2+s,Ω)
(

C(1+√
ν)hs̃‖φ‖2+s̃,Ω +C(1+√

ν)hs̃‖φ‖2+s̃,Ω

)
≤ C(1 + √

ν)hmin{s, k−1} (|f|k−1,h + ‖ψ‖2+s,Ω

)
hs̃‖φ‖2+s̃,Ω

≤ C(1 + √
ν)hs̃+min{s, k−1} (|f|k−1,h + ‖ψ‖2+s,Ω

) |ψ − ψh|1,Ω . (4.15)
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Now, we will bound the second term on the right-hand side of (4.14). By using Lemma 3.8 and the
fact that φπ ∈ Pk(K), we have

T3b ≤
∑

K∈Th

‖K−1 curl (ψh − ψπ) − ΠK
k−1(K

−1curl (ψh − ψπ))‖0,K‖curl φπ − ΠK
k−1curl φπ‖0,K

+ ‖K−1 curl φπ − ΠK
k−1(K

−1curl φπ)‖0,K‖curl (ψh − ψπ) − ΠK
k−1curl (ψh − ψπ)‖0,K

+ C‖curl (ψh − ψπ) − ΠK
k−1curl (ψh − ψπ)‖0,K‖curl φπ − ΠK

k−1curl φπ‖0,K

+ sK
curl ((ψh − ψπ) − Π

k,∇⊥
K (ψh − ψπ), φπ − Π

k,∇⊥
K φπ)

=
∑

K∈Th

‖K−1 curl φπ − ΠK
k−1(K

−1curl φπ)‖0,K‖curl (ψh − ψπ) − ΠK
k−1curl (ψh − ψπ)‖0,K

≤
∑

K∈Th

C
(
|φπ − φ|1,K + h1+s̃

K ‖φ‖2+s̃,K

) (|ψh − ψ |1,K + |ψ − ψπ |1,K

)
≤ Chs̃+min{s, k−1} (|f|k−1,h + ‖ψ‖2+s,Ω

) |ψ − ψh|1,Ω , (4.16)

where we have also used the stability properties of projector ΠK
k−1, triangular inequality, Proposition 4.1

and the Cauchy–Schwarz inequality.
Finally, we bound the third term on the right-hand side of (4.14). We proceed as in the previous

estimate to obtain that

T3c ≤
∑

K∈Th

‖K−1 curl ψπ − ΠK
k−1(K

−1curl ψπ)‖0,K‖curl φI − ΠK
k−1(curl φI)‖0,K

≤
∑

K∈Th

C(hmin{1+s,k}
K ‖ψ‖2+s,K)(h1+s̃

K ‖φ‖2+s̃,K)

≤ Chs̃+min{s, k−1} (|f|k−1,h + ‖ψ‖2+s,Ω

) |ψ − ψh|1,Ω . (4.17)

Then, from (4.15), (4.16) and (4.17), we get

T3 ≤ Chs̃+min{s, k−1} (|f|k−1,h + ‖ψ‖2+s,Ω

) |ψ − ψh|1,Ω . (4.18)

Finally, the proof follows from (4.11), (4.12), (4.13) and (4.18). �
The following theorem establishes an error estimate in L2-norm.

Theorem 4.10 Let f ∈ [L2(Ω)]2 and let ψ ∈ W and ψh ∈ Wh be the unique solutions to the continuous
and discrete problems (2.3) and (3.19), respectively. Then,

(a) If k = 2 and f|K ∈ [H1(K)]2 for all K ∈ Th then there exist s > 1/2, s̃ ∈ (1/2, 1] and a constant
C > 0, independent of ν and h, such that

‖ψ − ψh‖0,Ω ≤ Chs̃+min{s,1} (|f|1,h + ‖ψ‖2+s,Ω

)
.
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(b) If k ≥ 3 and f|K ∈ [Hk−1(K)]2 for all K ∈ Th then there exist s > 1/2, γ ∈ (1/2, 2] and a
constant C > 0, independent of ν and h, such that

‖ψ − ψh‖0,Ω ≤ Chγ+min{s, k−1} (|f|k−1,h + ‖ψ‖2+s,Ω

)
.

Proof. The proof of (a) follows from Theorem 4.9. In fact we have

‖ψ − ψh‖0,Ω ≤ C|ψ − ψh|1,Ω ≤ Chs̃+min{s,1} (|f|1,h + ‖ψ‖2+s,Ω

)
,

where C > 0 is a constant independent of ν and h.
On the other hand, if k ≥ 3, let φ ∈ W be the solution of the following auxiliary variational problem:

A(φ, v) = G(v) ∀ v ∈ W, (4.19)

where A(·, ·) is the bilinear form defined in (2.4) and G(·) is the functional defined by

G(v) :=
∫

Ω

(ψ − ψh)v ∀ v ∈ W.

From Theorem 2.3 there exists γ ∈ (1/2, 2] and C > 0 (cf. Assumption 4.8) such that φ ∈ H2+γ (Ω)

and

‖φ‖2+γ ,Ω ≤ C‖ψ − ψh‖0,Ω .

Now, taking v := (ψ − ψh) ∈ W as a test function in (4.19), we obtain

‖ψ − ψh‖2
0,Ω = A(ψ − ψh, φ),

where we have used the symmetry of A(·, ·).
Let φI ∈ Wh such that Proposition 4.5 holds true. In particular, we have

‖φ − φI‖2,Ω ≤ Chγ ‖φ‖2+γ ,Ω and ‖φ − φI‖1,Ω ≤ Ch1+γ ‖φ‖2+γ ,Ω .

Repeating the arguments used to obtain estimate (4.11), we get

‖ψ − ψh‖2
0,Ω ≤ B1 + B2 + B3,

where

B1 := A(ψ − ψh, φ − φI), B2 := F(φI) − Fh(φI) and B3 := Ah(ψh, φI) − A(ψh, φI).

Now, repeating the steps used in the proof of Theorem 4.9, we can estimate the terms B1, B2 and B3
to obtain that

‖ψ − ψh‖0,Ω ≤ Chγ+min{s, k−1} (|f|k−1,h + ‖ψ‖2+s,Ω

)
, k ≥ 3.
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The proof is complete. �

4.2 Recovering the velocity field

The solution of the discrete problem (3.19) delivers the stream function of the velocity field. In addition,
it is possible to obtain the remaining quantities of interest: velocity u and pressure p.

We begin with the velocity field: if ψ ∈ W the unique solution of problem (2.3), then

u = curl ψ . (4.20)

At the discrete level, we compute a discrete velocity as a post-processing of the stream function ψh ∈ Wh
as follows: if ψh is the unique solution of problem (3.19) then the function

uh := curl ψh, (4.21)

is an approximation of the velocity.
Now, we establish the accuracy of the discrete velocity. With this aim we introduce the following

ν-dependent norm:

|||v|||1,Ω :=
(
‖v‖2

0,Ω + ν|v|21,Ω

)1/2 ∀ v ∈ [H1(Ω)]2.

Theorem 4.11 Let k ≥ 2 and f ∈ [L2(Ω)]2 such that f|K ∈ [Hk−1(K)]2 for each K ∈ Th. Let ψ and
ψh be the unique solutions of problem (2.3) and problem (3.19), respectively. Then, there exist s > 1/2
and a positive constant C, independent of ν and h, such that

|||u − uh|||1,Ω ≤ Chmin{s, k−1} (|f|k−1,h + ‖ψ‖2+s,Ω

)
.

Proof. From (4.20), (4.21) and Theorem 4.6, we have

|||u − uh|||21,Ω = ‖curl ψ − curl ψh‖2
0,Ω + ν|curl ψ − curl ψh|21,Ω

≤ C‖ψ − ψh‖2
W

≤ Ch2 min{s, k−1} (|f|k−1,h + ‖ψ‖2+s,Ω

)2 .

The proof is complete. �
Remark 4.12 Recently, it has been presented in Vacca (2018) a VEM, of arbitrary order � ≥ 2, to
solve the Darcy and Brinkman problems in terms of the velocity u and the pressure p fields. We are
going to compare the computational cost (in terms of degrees of freedom) between the method from
Vacca (2018) and our C1 scheme to obtain the same accuracy O(h�) for the velocity field. Assuming
a sufficiently smooth solution for the Brinkman problem, it has been established in Vacca (2018,
Section 3 and Theorem 5.2) that the computational cost in terms of degrees of freedom is given by
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R2 := dim(V�
h) + dim(Q�

h) with

dim(V�
h) :=NK

(
�(� + 1)

2
− 1 + (� − 2)(� − 1)

2

)
+ 2

(
NV + (� − 1)NE

)
,

dim(Q�
h) :=NK

�(� + 1)

2
− 1,

where NE is the number of internal edges, NV is the number of internal vertices and NK the number of
elements of Th. It can be observed from (3.6) that for k = �+1 and using the Euler formula (NV −NE +
NK − 1 = 0), that the computational cost of our scheme is smaller than the method studied in Vacca
(2018). In particular, to obtain an O(h2) for the velocity field, R2 = 5NK + 2(NV + NE) − 1, while
our scheme needs R1 = 3NV + NE (cf. (3.6)). In addition, for our method, the resulting linear system is
positive definite, as opposed to the one in Vacca (2018) that is undefinite; this allows for more efficient
methods such as Cholesky factorization or conjugate gradient.

4.3 Recovering the pressure field

In this section we present a novel strategy to recover fluid pressure. We will write a generalized Poisson
problem with data coming from the stream function. Then, we propose a discrete virtual scheme, based
on the C0 enhanced virtual element space from Ahmad et al. (2013). We will also establish an error
estimate for the fluid pressure in H1-norm, under the assumptions that Ω is convex and that the family
of polygonal meshes Th is quasi-uniform.

In order to recover the pressure we consider the following Hilbert space:

H̃1(Ω) :=
{

q ∈ H1(Ω) : (q, 1)0,Ω = 0
}

.

By using the identity −Δu = curl (rot u) − ∇(div u) in the momentum equation of (2.1), we obtain

f = K−1u − ν Δu + ∇p

= K−1u + ν (curl (rot u) − ∇(div u)) + ∇p

= K−1u + ν curl (rot u) + ∇p,

where we have used that div u = 0 in Ω (cf. (2.1)). The above equality can be rewritten as follows:

∇p = f − K−1curl ψ − ν curl (rot curl ψ)

= f − K−1curl ψ + ν curl (Δψ), (4.22)

where we have used the fact that u = curl ψ and the identity rot(curl ψ) = −Δψ .
Then, by testing (4.22) with ∇q for q ∈ H̃1(Ω), we get the following variational problem: find

p ∈ H̃1(Ω) such that

B∇(p, q) = Gψ(q) ∀ q ∈ H̃1(Ω), (4.23)
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where B∇ : H̃1(Ω) × H̃1(Ω) → R is defined by

B∇(p, q) :=
∫

Ω

∇p · ∇q ∀ p, q ∈ H̃1(Ω) (4.24)

and Gψ : H̃1(Ω) → R is the functional defined by:

Gψ(q) :=
∫

Ω

f · ∇q −
∫

Ω

K−1curl ψ · ∇q + ν

∫
Ω

curl (Δψ) · ∇q ∀ q ∈ H̃1(Ω). (4.25)

Since Ω is convex we have that ψ ∈ H3(Ω), thus, as a consequence of the generalized Poincaré
inequality and the Lax–Milgram Theorem, problem (4.23) is well posed.

In what follows, we will write a lowest order discrete virtual scheme associated to (4.23) in
order to build a discrete pressure over the same polygonal mesh Th used to solve the stream
function discrete formulation (3.19). We observe that, following the arguments in this section, it
is possible to write a high order virtual scheme of order � := k − 2 (Ahmad et al. (2013);
Beirão da Veiga et al. (2016a); Cangiani et al. (2017b)), with k ≥ 3 being the order for the C1

VEM (3.19).
Now, we split the bilinear form B∇(·, ·), as follows:

B∇(p, q) =
∑

K∈Th

BK∇(p, q) =
∑

K∈Th

∫
K

∇p · ∇q ∀ p, q ∈ H̃1(Ω).

Now, for each polygon K ∈ Th, we introduce the space

B1(∂K) :=
{

qh ∈ C0(∂K) : qh|e ∈ P1(e) ∀ e ⊂ ∂K
}

.

Then, we consider the finite-dimensional space Ĥh(K), defined as

Ĥh(K) :=
{

qh ∈ H1(K) : qh|e ∈ B1(∂K), Δqh ∈ P0(K)
}

.

The following set of linear operator is defined for all qh ∈ Ĥh(K):

• P1 : the values of qh(Vi) for each vertex Vi of K.

We define the projector Π∇
K : Ĥh(K) −→ P1(K) ⊆ Ĥh(K) for each qh ∈ Ĥh(K) as the solution of

BK∇
(
Π∇

K qh, r
) = BK∇(qh, r) ∀ r ∈ P1(K),

Π̂∇
K qh = q̂h,
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where q̂h is defined in (3.2). We have that the operator Π∇
K is explicitly computable using the set P1 (see

Beirão da Veiga et al., 2016a). We introduce our local virtual space:

Hh(K) :=
{

qh ∈ Ĥh(K) :
(
qh − Π∇

K qh, 1
)

0,K = 0
}

.

Moreover, it is easy to see that the set P1 constitutes a set of degrees of freedom for Hh(K) (see Beirão
da Veiga et al., 2016a).

We can now present the global virtual space to approximate the fluid pressure: for each decomposi-
tion Th of Ω into simple polygons K, we define

Hh :=
{

qh ∈ H̃1(Ω) : qh|K ∈ Hh(K)
}

.

A set of degrees of freedom for Hh is given by the values of qh at the vertices of Th.
Now, we will continue with the construction of the discrete bilinear form and the linear functional

of problem (4.23). To do that, for each K ∈ Th, we consider the L2-projection onto the space [P0(K)]2.
For v ∈ [L2(K)]2, ΠK

0 v ∈ [P0(K)]2 is the unique function such that

∫
K

(
v − ΠK

0 v
) · q = 0 ∀ q ∈ [P0(K)]2. (4.26)

Remark 4.13 For each qh ∈ Hh the function ΠK
0 ∇qh is computable using the degrees of freedom P1

(see Beirão da Veiga et al., 2016a).

Let sK∇(·, ·) be any symmetric positive definite bilinear form such that

c4BK∇(qh, qh) ≤ sK∇(qh, qh) ≤ c5BK∇(qh, qh) ∀ qh ∈ Hh(K), with Π∇
K qh = 0, (4.27)

for some positive constants c4 and c5 independent of K. A classical choice for the stabilizing bilinear
form sK∇(·, ·) satisfying (4.27) is given by the Euclidean scalar product associated to the degrees of
freedom P1 (see Beirão da Veiga et al., 2013; Cangiani et al., 2017b):

sK∇(ph, qh) :=
NK

V∑
i=1

ph(Vi)qh(Vi), (4.28)

where Vi are the vertices of K, with 1 ≤ i ≤ NK
V . A proof that the bilinear form defined in (4.28) satisfies

the property (4.27) is given in Cangiani et al. (2017b, Proposition 5.3).
Then, we set

Bh∇(ph, qh) :=
∑

K∈Th

Bh,K
∇ (ph, qh) ∀ ph, qh ∈ Hh,
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where

Bh,K
∇ (ph, qh) :=

∫
K

ΠK
0 ∇ph · ΠK

0 ∇qh + sK∇
(
ph − Π∇

K ph, qh − Π∇
K qh

)
, (4.29)

for all ph, qh ∈ Hh(K). The following result gives us consistency and stability properties of the local
discrete bilinear form Bh,K

∇ (·, ·).
Proposition 4.14 The local bilinear forms BK∇(·, ·) and Bh,K

∇ (·, ·) defined in (4.24) and (4.29),
respectively, satisfy the following properties:

• Consistency: for each h > 0 and each K ∈ Th, we have

Bh,K
∇ (qh, r) = BK∇(qh, r) ∀ r ∈ P1(K), ∀ qh ∈ Hh(K). (4.30)

• Stability: there exist positive constants α7, α8, independent of hK and K, such that

α7BK∇(qh, qh) ≤ Bh,K
∇ (qh, qh) ≤ α8BK∇(qh, qh) ∀ qh ∈ Hh(K). (4.31)

The next step consists of constructing an approximation of the right-hand side (4.25), which depends
on the stream function ψ and the source term f. With this aim, from now on, we assume that the discrete
problem (3.19) has been solved with k = 3. So, ψh ∈ Wh is available and satisfies the error bound in
Theorem 4.6.

First, for any K ∈ Th, we consider the L2-projection onto P1(K): For v ∈ L2(K), ΠK
1 v ∈ P1(K) is

the unique function such that

(
v − ΠK

1 v, r
)

0,K = 0 ∀ r ∈ P1(K). (4.32)

Now, for each K ∈ Th, we define the following discrete linear functional:

Gψh,K(qh) :=
∫

K
f · ΠK

0 ∇qh −
∫

K
K−1ΠK

2 curl ψh · ΠK
0 ∇qh

+ ν

∫
K

curl (ΠK
1 (Δψh)) · ΠK

0 ∇qh ∀ qh ∈ Hh(K),

where ΠK
2 is the projection defined in (3.4) (with k = 3) and ΠK

1 is the projection defined in (4.32). We
observe that both functions are fully computable for ψh ∈ Wh.

We define

Gψh(qh) :=
∑

K∈Th

Gψh,K(qh) ∀ qh ∈ Hh. (4.33)

Thanks to Remark 4.13 we have that Gψh(·) is computable using the degrees of freedom in Hh.
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Therefore, we propose the following virtual element discretization to recover the fluid pressure: find
ph ∈ Hh such that

Bh∇(ph, qh) = Gψh(qh) ∀ qh ∈ Hh. (4.34)

We observe that by virtue of (4.31) the bilinear form Bh∇(·, ·) is bounded. Moreover, the following
result states that Bh∇(·, ·) is elliptic, thanks to the generalized Poincaré inequality.

Lemma 4.15 There exists a constant λ > 0, independent of ν and h, such that

Bh∇(qh, qh) ≥ λ
∥∥qh

∥∥2
1,Ω ∀ qh ∈ Hh.

Next, we will prove that the linear functional defined in (4.33) is bounded. To do that we consider
the following approximation result (see Cangiani et al., 2017b).

Proposition 4.16 If the assumption A2 is satisfied then there exists a constant C > 0, such that for
every v ∈ H2(K), there exists vπ ∈ P1(K), such that

‖v − vπ‖0,K + hK |v − vπ |1,K ≤ Ch2
K |v|2,K .

For the projections ΠK
0 and ΠK

1 defined in (4.26) and (4.32), respectively, we have the following
approximation result (see Brenner & Scott, 2008; Beirão da Veiga et al., 2016a; Gatica et al., 2018a).

Proposition 4.17 Let ΠK
0 and ΠK

1 be the projections defined in (4.26) and (4.32), respectively. If the
assumption A2 is satisfied then the following approximation properties hold true: there exist constants
Ĉ, C̃ > 0, independent of hK , such that

‖v − ΠK
1 v‖0,K ≤ Ĉhδ

K |v|δ,K ∀ v ∈ Hδ(K), 0 ≤ δ ≤ 2,

‖v − ΠK
0 v‖0,K ≤ C̃hε

K |v|ε,K ∀ v ∈ [Hε(K)]2, 0 ≤ ε ≤ 1.

Now, we consider the following interpolation result on the virtual space Hh (see Mora et al., 2015;
Cangiani et al., 2017a,b).

Proposition 4.18 If the assumptions A1 and A2 are satisfied then there exists a constant C > 0,
independent of h, such that for each v ∈ H2(Ω) there exists vI ∈ Hh, such that

‖v − vI‖0,Ω + h|v − vI |1,Ω ≤ Ch2|v|2,Ω .

In order to establish the well posedness of (4.34) we will assume that the family of polygonal meshes
Th is quasi-uniform.

A3: For each h > 0 and for each K ∈ Th there exists a constant ĉ > 0, independent of h, such that
hK ≥ ĉ h.

We have the following inverse inequality on a polygon (see Chen & Huang, 2018, Lemma 3.1).
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Lemma 4.19 If the assumptions A1 and A2 are satisfied then there exists C̃ > 0, independent of h,
such that

|q|1,K ≤ C̃h−1
K ‖q‖0,K ∀ q ∈ P�(K), � ≥ 0.

The following result establishes that the functional Gψh(·) defined in (4.33) is bounded.

Proposition 4.20 Let f ∈ [L2(Ω)]2 such that f|K ∈ [H2(K)]2 for all K ∈ Th. Let ψ be the unique
solution of the problem (2.3). If the assumptions A1, A2 and A3 are satisfied and ψ ∈ H3(Ω), then the
functional Gψh : Hh → R defined in (4.33) is linear and bounded.

Proof. By using triangular and Cauchy–Schwarz inequalities and the stability of the projections ΠK
2

and ΠK
0 (see Lemma 4.2 and Proposition 4.17), we have

|Gψh(qh)| ≤ C‖f‖0,Ω‖qh‖1,Ω + C‖ψh‖1,Ω‖qh‖1,Ω +
∑

K∈Th

ν

∫
K

|curl (ΠK
1 (Δψh)) · ΠK

0 ∇qh|. (4.35)

Now, adding and subtracting the term curl (Δψ) · ∇qh in the last term on the right-hand side above, and
using the definition of ΠK

0 together with the triangular and Cauchy–Schwarz inequalities, we obtain

∫
K

|curl (ΠK
1 (Δψh)) · ΠK

0 ∇qh| ≤
∫

K

∣∣∣(curl (ΠK
1 Δψh) − curl (Δψ)

) · ∇qh

∣∣∣ +
∫

K
|curl (Δψ) · ∇qh|

≤ ∥∥curl
(
Δψ − ΠK

1 Δψh

)∥∥
0,K‖∇qh‖0,K + ‖curl (Δψ)‖0,K‖∇qh‖0,K

≤ C|Δψ − ΠK
1 Δψh|1,K‖qh‖1,K + C|ψ |3,K‖∇qh‖0,K

≤ C
(∣∣Δψ − ΠK

1 Δψ
∣∣
1,K +∣∣ΠK

1 Δψ − ΠK
1 Δψh

∣∣
1,K +C|ψ |3,K

)‖qh‖1,K

≤ C
(
C

∣∣Δψ
∣∣
1,K + ∣∣ΠK

1 (Δψ − Δψh)
∣∣
1,K + C|ψ |3,K

)‖qh‖1,K

≤ C
(|ψ |3,K + ∣∣ΠK

1 (Δψ − Δψh)
∣∣
1,K

)‖qh‖1,K , (4.36)

where we have also added the term ΠK
1 Δψ and used the stability properties of the projector ΠK

1 (see
Proposition 4.17).

Now, we use the inverse inequality in Lemma 4.19, Assumption A3 and Theorem 4.6, to obtain

∑
K∈Th

ν

∫
K

|curl (ΠK
1 (Δψh)) · ΠK

0 ∇qh| ≤ C
∑

K∈Th

(
ν|ψ |3,K + C̃νh−1

K ‖ΠK
1 (Δψ − Δψh)‖0,K

)
‖qh‖1,K

≤ C
∑

K∈Th

(
ν|ψ |3,K + C̃h−1

K ν‖Δψ − Δψh‖0,K

)
‖qh‖1,K

≤ C
∑

K∈Th

(
ν|ψ |3,K + C̃νh−1

K |ψ − ψh|2,K

)
‖qh‖1,K
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≤ C
(
ν‖ψ‖3,Ω + h−1

K ‖ψ − ψh‖W

)
‖qh‖1,Ω

≤ C
(|f|2,h + ‖ψ‖3,Ω

) ‖qh‖1,Ω , (4.37)

where the constant C > 0 depends on the constant ĉ in Assumption A3. Finally, from (4.35) and (4.37),
we get

|Gψh(qh)| ≤ C
(‖ψh‖1,Ω + ‖ψ‖3,Ω + |f|2,h

) ‖qh‖1,Ω ≤ C
(‖f‖0,Ω + |f|2,h

) ‖qh‖1,Ω .

�
As a consequence of the last result and the Lax–Milgram Theorem we have the following result.

Theorem 4.21 Let f ∈ [L2(Ω)]2 such that f|K ∈ [H2(K)]2 for all K ∈ Th. Let ψ and ψh be the
unique solutions of (2.3) and (3.19), respectively. Suppose that A1, A2 and A3 are satisfied and that
ψ ∈ H3(Ω). Then, problem (4.34) admits a unique solution ph ∈ Hh and there exists C > 0,
independent of ν and h, such that

‖ph‖1,Ω ≤ C
(‖f‖0,Ω + |f|2,h

)
.

In what follows we will establish the order of convergence of the discrete scheme (4.34). We begin
with the following result, which proof follows the same arguments in Beirão da Veiga et al. (2013);
Cangiani et al. (2017b).

Proposition 4.22 Let p and ph be the unique solutions of problems (4.23) and (4.34), respectively. If
the assumptions A1, A2 and A3 are satisfied then there exists C > 0, independent of ν and h, such that

‖p − ph‖1,Ω ≤ C
(
‖Gψ − Gψh‖H′

h
+ ‖p − pI‖1,Ω + |p − pπ |1,h

)
,

for all pI ∈ Hh and for each pπ ∈ L2(Ω) such that pπ |K ∈ P1(K) for all K ∈ Th, where

‖Gψ − Gψh‖H′
h

:= sup
qh∈Hh
qh �= 0

|Gψ(qh) − Gψh(qh)|
‖qh‖1,Ω

.

Now, we will bound the term ‖Gψ − Gψh‖H′
h
, under the assumptions A3 and ψ ∈ H4(Ω).

Proposition 4.23 Let f ∈ [L2(Ω)]2 such that f|K ∈ [H2(K)]2 ∀ K ∈ Th, ψ and ψh be the unique
solutions of the problem (2.3) and problem (3.19), respectively. Let Gψ(·) and Gψh(·) the functional
defined in (4.25) and (4.33), respectively. Suppose that A1, A2 and A3 are satisfied and that ψ ∈ H4(Ω),
then we have the following estimate

‖Gψ − Gψh‖H′
h

≤ Ch
(‖f‖0,Ω + |f|1,h + |f|2,h

)
.
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Proof. Let qh ∈ Hh, then using the definition of Gψ(·) and Gψh(·), and the Cauchy–Schwarz inequality,
we have

∣∣Gψ(qh) − Gψh(qh)
∣∣ ≤

∑
K∈Th

∣∣∣∣∫
K

f ·
(
∇qh − ΠK

0 ∇qh

)∣∣∣∣
+

∑
K∈Th

∣∣∣∣∫
K
K−1curl ψ · ∇qh − K−1ΠK

2 curl ψh · ΠK
0 ∇qh

∣∣∣∣
+

∑
K∈Th

ν

∣∣∣∣∫
K

curl (Δψh) · ∇qh − curl
(
ΠK

1 Δψ
)

· ΠK
0 ∇qh

∣∣∣∣
:= T1 + T2 + T3.

Now, using standard arguments in the virtual element literature (see Beirão da Veiga et al. (2013,
2016a); Cangiani et al. (2017b)), we have that

T1 ≤ Ch|f|1,h

∥∥qh

∥∥
1,Ω , (4.38)

and

T2 ≤ Ch
(‖ψ‖4,Ω + |f|1,h + ‖ψh‖2,Ω

) ‖qh‖1,Ω . (4.39)

Finally, to estimate the term T3, we proceed as in (4.36) and (4.37).

T3 =
∑

K∈Th

ν

∣∣∣∣∫
K

curl (Δψ) · ∇qh − curl
(
ΠK

1 Δψh

)
· ∇qh

∣∣∣∣
=

∑
K∈Th

ν

∣∣∣∣∫
K

curl
(
Δψ − ΠK

1 Δψh

)
· ∇qh

∣∣∣∣
≤

∑
K∈Th

ν

∥∥∥curl
(
Δψ − ΠK

1 Δψh

)∥∥∥
0,K

‖∇qh‖0,K

≤
∑

K∈Th

Cν|Δψ − ΠK
1 Δψh|1,K‖qh‖1,K

≤
∑

K∈Th

C
(
ν

∣∣∣Δψ − ΠK
1 Δψ

∣∣∣ 1,K + ν

∣∣∣ΠK
1 Δψ − ΠK

1 Δψh

∣∣∣ 1,K

)
‖qh‖1,K

≤
∑

K∈Th

C
(

CνhK |Δψ | 2,K + ν

∣∣∣ΠK
1 (Δψ − Δψh)

∣∣∣ 1,K

)
‖qh‖1,K

≤
∑

K∈Th

C
(
νh‖ψ‖4,K + ν

∣∣∣ΠK
1 (Δψ − Δψh)

∣∣∣ 1,K

)
‖qh‖1,K . (4.40)
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Now, using Lemma 4.19, assumption A3 and Theorem 4.6, we have that

ν|ΠK
1 (Δψ − Δψh)|1,K ≤ C̃νh−1

K ‖ΠK
1 (Δψ − Δψh)‖0,K ≤ C̃νh−1

K ‖Δψ − Δψh‖0,K

≤ C̃νh−1
K ‖Δ(ψ − ψh)‖0,Ω ≤ C̃h−1

K ‖ψ − ψh‖W

≤ CC̃h−1
K h2 (|f|2,h + ‖ψ‖4,Ω

)
≤ CC̃

ĉ
h
(|f|2,h + ‖ψ‖4,Ω

)
. (4.41)

Then from (4.40), (4.41) and the Cauchy–Schwarz inequality, we get

T3 ≤ Ch
(‖ψ‖4,Ω + |f|2,h

) ‖qh‖1,Ω . (4.42)

Therefore, using the estimates (4.38), (4.39) and (4.42), we obtain

|Gψ(qh) − Gψh(qh)| ≤ Ch
(‖ψh‖2,Ω + ‖ψ‖4,Ω + |f|1,h + |f|2,h

) ‖qh‖1,Ω

≤ Ch
(‖f‖0,Ω + |f|1,h + |f|2,h

) ‖qh‖1,Ω .

The proof is complete. �
The following theorem provides the rate of convergence of our virtual scheme (4.34). The proof

follows from Propositions 4.22, 4.23, 4.16 and 4.18.

Theorem 4.24 Let f ∈ [L2(Ω)]2 such that f|K ∈ [H2(K)]2 for all K ∈ Th. Let ψ , ψh, p and ph be the
unique solutions of problems (2.3), (3.19), (4.23) and (4.34), respectively. Suppose that A1, A2 and A3
are satisfied and that ψ ∈ H4(Ω). Then, there exists C > 0, independent of ν and h, such that

‖p − ph‖1,Ω ≤ Ch
(‖f‖0,Ω + |f|1,h + |f|2,h

)
.

Now, we state in the following remark the approximation properties of the VEM (3.20).

Remark 4.25 We note that for the alternative discretization problem (3.20), we can prove analogous
rate of convergences as in Theorems 4.6, 4.9, 4.10 and 4.24. We do not include proofs to avoid repeating
the steps of the results. We will present a numerical test to confirm the error estimates in this case.

5. Numerical results

In this section we present some numerical experiments to test the practical performance of the proposed
virtual element discretizations (3.19) and (4.34) and in order to confirm the theoretical results. We will
test the method for the cases k = 2 and k = 3.

We have tested the method by using different families of meshes (see Fig. 1):

• T 1
h : Triangular meshes;

• T 2
h : Trapezoidal meshes;

• T 3
h : Sequence of Centroidal Voronoi Tessellation;

• T 4
h : Hexagonal meshes.
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Fig. 1. Sample meshes. T 1
h (top left), T 2

h (top right), T 3
h (bottom left), T 4

h (bottom right).

In order to test the convergence properties of the proposed scheme we introduce the following
quantities:

eW(ψ) = error(ψ , W) :=
⎛⎝ ∑

K∈Th

|ψ − Π
k,Δ
K ψh|21,K + ν|ψ − Π

k,Δ
K ψh|22,K

⎞⎠1/2

,

ei(ψ) = error(ψ , Hi) :=
⎛⎝ ∑

K∈Th

|ψ − Π
k,Δ
K ψh|2i,K

⎞⎠1/2

, i = 0, 1,

e1(p) = error(p, H1) :=
⎛⎝ ∑

K∈Th

∣∣∣p − Π∇
K ph

∣∣∣2

1,K

⎞⎠1/2

,

e1(u) = error(u, H1) :=
⎛⎝ ∑

K∈Th

|||u − ΠK
k−1uh|||21,K

⎞⎠1/2

.

We will compute experimental rates of convergence for each individual error as follows:

ri(·) := log(ei(·)/e′
i(·))

log(h/h′)
, i = 0, 1, W,

where h, h′ denote two consecutive mesh sizes with their respective errors ei and e′
i.
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Table 1 Test 1. Errors and experimental rates for the stream function ψh and velocity uh, with k = 2,
using the meshes T 1

h and different values of ν

ν dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) eW(ψ) rW(ψ) e1(u) r1(u)

k = 2

156 1/8 2.9811e–3 — 6.1713e–2 — 1.5025e–0 — 1.5813e–0 —
717 1/16 7.6129e–4 1.96 1.5555e–2 1.98 7.6189e–1 0.97 8.2123e–1 0.94

1e0 3075 1/32 1.6005e–4 2.24 4.0753e–3 1.93 3.9142e–1 0.96 4.1752e–1 0.97
12567 1/64 4.3471e–5 1.88 9.7274e–4 2.06 1.9080e–1 1.03 2.0155e–1 1.05
50445 1/128 9.6899e–6 2.16 2.4631e–4 1.98 9.6036e–2 0.99 1.0202e–1 0.98
156 1/8 3.8465e–3 — 4.4890e–2 — 6.7910e–2 — 6.9083e–2 —
717 1/16 5.0859e–4 2.91 1.1968e–2 1.90 2.7103e–2 1.32 2.8244e–2 1.29

1e-3 3075 1/32 4.2636e–5 3.57 3.5945e–3 1.73 1.2622e–2 1.10 1.3318e–2 1.08
12567 1/64 5.3640e–6 1.99 1.0142e–3 1.82 6.0360e–3 1.06 6.3852e–3 1.06
50445 1/128 1.3833e–6 1.95 2.6831e–4 1.91 3.0356e–3 0.99 3.2208e–3 0.98
156 1/8 3.7868e–3 — 4.4383e–2 — 4.4417e–2 4.4417e–2 —
717 1/16 5.5121e–4 2.78 1.0773e–2 2.04 1.0808e–2 2.03 1.0808e–2 2.03

1e-6 3075 1/32 5.6753e–5 3.27 2.3948e–3 2.16 2.4349e–3 2.15 2.4347e–3 2.15
12567 1/64 5.8777e–6 3.27 5.1550e–4 2.21 5.5714e–4 2.12 5.5702e–4 2.12
50445 1/128 8.0838e–7 2.86 1.2773e–4 2.01 1.6571e–4 1.74 1.6591e–4 1.74

5.1 Test 1: convergence history

In this numerical test we solve the Brinkman problem (2.1) on the square domain Ω := (0, 1)2, with
different values for the viscosity ν and with the following tensor:

K−1(x, y) :=
(

sin(2πx) + 1.1 10−6

10−6 sin(2πy) + 1.1

)
.

In addition, we take the load term f in such a way that the analytical solution is given by:

u(x, y) = 200

(
x2(1 − x)2y(1 − y)(1 − 2y)

−x(1 − x)(1 − 2x)y2(1 − y)2

)
, p(x, y) = x3y3 − 1

16
,

ψ(x, y) = 100x2(1 − x)2y2(1 − y)2.
We report in Table 1, the errors and the orders of convergence for the stream function ψh obtained

with the VEM (3.19) and for the post-process velocity uh (cf. (4.21)). We take different values of ν;
1e0, 1e-3, 1e-6. The polynomial degree is given by k = 2 and we consider the sequences of meshes
T 1

h . In this case it can be clearly seen that, the method converges with orders predicted in Theorems 4.6,
4.9, 4.10 and 4.11 for the stream function and velocity.

In Table 2 we report the errors and the orders of convergence for the stream function ψh obtained
with the VEM (3.19), for the post-process velocity uh (cf. (4.21)), and for the pressure ph obtained with
the VEM (4.34). In this case the polynomial degree is given by k = 3 and we take different values of ν;
1e-3, 1e-6 and we consider the sequences of meshes T 4

h .
We note that the results reported in Table 2 confirm, for both methods, the convergence rates

predicted in Theorems 4.6, 4.9, 4.10, 4.11 for the stream function and velocity, and the first-order
convergence rate in the discrete H1-norm (in agreement with Theorem 4.24) for the pressure.
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Table 2 Test 1. Errors and experimental rates for the stream function ψh, velocity field uh and the
pressure ph, with k = 3, using the meshes T 4

h and different values of ν

ν dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) eW(ψ) rW(ψ) e1(u) r1(u) e1(p) r1(p)

k = 3

592 1/8 6.9697e–4 — 7.4549e–3 — 1.1202e–2 — 1.1154e–2 — 1.2461e–1 —
1e-3 2336 1/16 3.1100e–5 4.48 7.1764e–4 3.37 2.2583e–3 2.31 2.3192e–3 2.26 6.7001e–2 0.89

9280 1/32 1.3219e–6 4.45 8.6184e–5 3.05 5.5778e–4 2.01 5.8701e–4 1.98 3.4758e–2 0.94
36992 1/64 7.0976e–8 4.21 1.0872e–5 2.98 1.4126e–4 1.98 1.5043e–4 1.96 1.7706e–2 0.97
592 1/8 7.6336e–4 — 8.2932e–3 — 8.2978e–3 — 8.2976e–3 — 1.2455e–1 —

1e-6 2336 1/16 3.8478e–5 4.31 8.3266e–4 3.31 8.3571e–4 3.31 8.3577e–4 3.31 6.6998e–2 0.89
9280 1/32 1.9187e–6 4.32 9.5227e–5 3.12 9.6922e–5 3.10 9.7015e–5 3.10 3.4757e–2 0.94
36992 1/64 9.8283e–8 4.28 1.1422e–5 3.05 1.2289e–5 2.97 1.2349e–5 2.97 1.7706e–3 0.97

Fig. 2. Test 1. Exact and approximate solutions ψ ; ψh; p; ph (top left, top right, bottom left, bottom right, respectively) using the
VE methods (3.19) and (4.34) with T 4

h , h = 1/32, k = 3 and ν = 1e− 6.

Figure 2 shows plots of the exact (left) and computed (right) stream function and pressure obtained
with the VEMs analyzed in this paper, using the meshes T 4

h , with h = 1/32, ν = 1e−6 and polynomial
degree k = 3.
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Table 3 Test 2. Errors and experimental rates for the stream function ψh, velocity field uh and the
pressure ph, with k = 3, using the meshes T 3

h and different values of ν

ν dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) eW(ψ) rW(ψ) e1(u) r1(u) e1(p) r1(p)

k = 3

455 1/8 1.9311e–5 — 3.0283e–4 — 4.4374e–3 — 4.7685e–3 — 5.2516e–2 —
2083 1/16 1.0992e–6 4.13 3.9817e–5 2.92 1.1299e–3 1.97 1.3179e–3 1.85 2.5695e–2 1.03

2e-4 8751 1/32 6.0995e–8 4.17 5.4004e–6 2.88 2.8968e–4 1.96 3.6877e–4 1.83 1.2814e–2 1.00
35927 1/64 4.2882e–9 3.83 6.8727e–7 2.97 7.3705e–5 1.97 9.6097e–5 1.94 6.6766e–2 0.94
1455231/128 2.1703e–10 4.30 7.9006e–8 3.12 1.7623e–5 2.06 2.3125e–5 2.05 3.2555e–3 1.03
455 1/8 1.9384e–4 — 3.7720e–3 — 1.2516e–2 — 1.2628e–2 — 8.7157e–2 —

2083 1/16 9.4345e–6 4.36 5.3400e–4 2.82 3.6302e–3 1.78 3.6767e–3 1.78 4.7249e–2 0.88
2e-8 8751 1/32 8.2511e–7 3.51 8.6277e–5 2.62 1.0713e–3 1.76 1.0868e–3 1.75 2.4709e–2 0.93

35927 1/64 7.4428e–8 3.47 1.0898e–5 2.98 2.7792e–4 1.94 2.9335e–4 1.88 1.3366e–2 0.88
1455231/128 3.7298e–9 4.31 1.2437e–6 3.13 6.6977e–5 2.05 7.6593e–5 1.93 6.4157e–3 1.05
455 1/8 1.2177e–3 — 3.4590e–2 — 4.5075e–2 — 4.5142e–2 — 7.4545e–2 —

2083 1/16 2.5824e–4 2.23 1.0359e–2 1.73 1.8725e–2 1.26 1.8746e–2 1.26 6.1927e–2 0.26
2e-12 8751 1/32 3.5689e–3 2.85 2.2864e–3 2.17 6.7606e–3 1.46 6.7605e–3 1.47 4.1795e–2 0.56

35927 1/64 3.4144e–6 3.38 3.2606e–4 2.80 1.8847e–3 1.84 1.8864e–3 1.84 2.5123e–2 0.73
1455231/128 1.8212e–7 4.22 3.7525e–5 3.11 4.7370e–4 1.99 4.7676e–4 1.98 1.2654e–2 0.98

5.2 Test 2: ν-dependent solution

The aim of this numerical example is to test the convergence properties of the proposed VE methods
(3.19) and (4.34) by considering the following ν-dependent solution (Mardal et al., 2002):

u(x, y) =
(

−x e−xy/
√

ν

y e−xy/
√

ν

)
, p(x, y) = √

ν e−x/
√

ν − ν
(

1 − e−1/
√

ν
)

,

ψ(x, y) = √
ν e−xy/

√
ν .

We have taken the load term f and the boundary conditions according to the above solution. In
addition, we consider Ω = (0, 1)2, the permeability tensor K := I and different values of the
viscosity ν.

In Table 3 we report the errors and the orders of convergence for the stream function ψh obtained
with the VEM (3.19), for the post-process velocity uh (cf. (4.21)), and for the pressure ph obtained with
the VEM (4.34). In this case the polynomial degree is given by k = 3, we take different values of ν and
we consider the sequences of meshes T 3

h .
It can be seen from Table 3 that, for both methods and for all the values of the viscosity, the

convergence rates predicted in Theorems 4.6, 4.9, 4.10, 4.11 and 4.24 are attained for all quantities.
Figure 3 shows plots of the exact (left) and computed (right) stream function and pressure obtained

with the VEMs analyzed in this paper, using the meshes T 3
h , with h = 1/32, ν = 2e−4 and polynomial

degree k = 3.
In Fig. 4, we depict approximate velocity field uh obtained from the discrete stream function by

using (4.21).
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Fig. 3. Test 2. Exact and approximate solutions ψ ; ψh; p; ph (top left, top right, bottom left, bottom right, respectively) using the
VE methods (3.19) and (4.34) with T 3

h , h = 1/32, k = 3 and ν = 2e− 4.

5.3 Test 3: alternative right-hand side

In this numerical example we test the convergence properties of the proposed VE methods (3.20) and
(4.34). We note that the VEM (3.20) is defined by considering the right-hand side (3.18). With this aim
we take the square domain Ω := (0, 1)2, ν = 1 and K := I. In addition, we take the load term f in such
a way that the analytical solution is given by:

u(x, y) = 2

π2

(
ex2+y2

sin(2πx)(y cos(2πy) − π sin(2πy))

−ex2+y2
cos(2πy)(π cos(2πx) + x sin(2πx))

)
, p(x, y) = sin(x) − sin(y),

ψ(x, y) = 1

π2
sin(2πx) cos(2πy) ex2+y2

.

We report in Table 4 the errors and the orders of convergence for the stream function ψ̃h obtained
with the VEM (3.20) and for the post-process velocity uh (cf. (4.21)). In this case the polynomial degree
is given by k = 2 and we consider the sequences of meshes T 2

h .
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Fig. 4. Test 2. Velocity field obtained from the discrete stream function by using (4.21) and the meshes T 3
h , with h = 1/32, k = 3

and ν = 2e− 4.

Table 4 Test 3. Errors and experimental rates for the stream function ψ̃h and for the velocity uh, with
k = 2 and using the meshes T 2

h

ν dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) eW(ψ) rW(ψ) e1(u) r1(u)

k = 2

147 1/8 1.0602e–2 — 2.1878e–1 — 3.3961e–0 — 4.0146e–0 —
675 1/16 2.9717e–3 1.83 7.8144e–2 1.48 1.7432e–0 0.96 2.2643e–0 0.82

1e0 2883 1/32 8.4340e–4 1.81 2.3046e–2 1.76 8.6434e–1 1.00 1.1862e–0 0.93
11907 1/64 2.2162e–4 1.92 6.1001e–3 1.91 4.2919e–1 1.00 6.0103e–1 0.98
48387 1/128 5.6244e–5 1.97 1.5525e–3 1.97 2.1416e–1 1.00 3.0163e–1 0.99

In Table 5 we report the errors and the orders of convergence for the stream function ψ̃h obtained
with the VEM (3.20) and for the post-process velocity uh (cf. (4.21)). We have also computed the
pressure ph by using (4.34) with the discrete stream function ψ̃h. In this case the polynomial degree is
given by k = 3 and we consider the sequences of meshes T 2

h .
Once again it can be clearly seen from Tables 4 and 5 that the methods converge with orders

predicted in Theorems 4.6, 4.9, 4.10, 4.11 and 4.24 (see Remark 4.25).

5.4 Test 4: mesh allowing small edges

The aim of this final test is to analyze the influence of the mesh assumptions. In this test we compare
the performance of VEM when the geometric assumption A1 is violated. With this end we solve the
Brinkman problem (2.1) on the square domain Ω := (0, 1)2 and using the family of meshes T 5

h
presented in Fig. 5. We note that the family of meshes T 5

h has been obtained by gluing two different
polygonal meshes. We observe that very small edges appear on the interface of the resulting mesh.
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Table 5 Test 3. Errors and experimental rates for the stream function ψ̃h, the velocity uh and the
pressure ph, with k = 3 and using the meshes T 2

h

ν dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) eW(ψ) rW(ψ) e1(u) r1(u) e1(p) r1(p)

k = 3

259 1/8 1.4556e–3 — 1.9235e–2 — 7.1466e–1 — 1.3691e–0 — 4.8476e–0 —
1155 1/16 9.4798e–5 3.94 2.1420e–3 3.16 1.7901e–1 1.99 3.2453e–1 2.07 1.7332e–0 1.48

1e0 4867 1/32 5.9324e–6 3.99 2.5265e–4 3.08 4.4834e–2 1.99 7.1707e–2 2.17 5.5800e–1 1.63
19971 1/64 3.6742e–7 4.01 3.1003e–5 3.02 1.1273e–2 1.99 1.6340e–2 2.13 1.8064e–1 1.62
808991/128 2.2808e–8 4.00 3.8572e–6 3.00 2.8321e–3 1.99 3.8780e–3 2.07 6.3333e–2 1.51

We consider the viscosity ν = 1 and K = I. In addition, we take the load term f in such a way that
the analytical solution is given by:

u(x, y) = 1

2

(
sin2(2πx) sin(2πy) cos(2πy)

− sin2(2πy) sin(2πx) cos(2πx)

)
, p(x, y) = 1

π
sin(2πx) cos(2πy),

ψ(x, y) = 1

8π
sin2(2πx) sin2(2πy).

We report in Tables 6 and 7 the errors and the orders of convergence for the virtual element schemes
(3.19) and (4.34) for k = 2, 3, respectively. We note that the convergence rates are in agreement with the
rates predicted in Theorems 4.6, 4.9, 4.10, 4.11 and 4.24 for the stream function, velocity and pressure.
Even though our theoretical analysis has been strongly developed under assumption A1, this numerical
example shows that the results of Section 4 should hold true for more general mesh assumptions (Beirão
da Veiga et al., 2017; Brenner & Sung, 2018). However, further research is needed in this direction.

6. Conclusions

In this paper we have proposed and analyzed a C1-VEM of high order for the numerical approximation
of the Brinkman equations formulated in terms of the stream function. We have shown that the proposed
scheme is well posed by using the framework of the classical Lax–Milgram theory. We derived optimal
convergence rates (and robust with respect to viscosity) in viscosity dependent H2-norm, and using
duality argument we also established error estimates in H1- and L2-norms. Using the discrete stream
function we compute a discrete velocity field by means of a post-process, and error estimates in H1-norm
has been obtained. In addition, we have presented a novel strategy to approximate the fluid pressure,
which is based on a discrete virtual scheme for a second-order variational problem with datum coming
from the discrete stream function and the load term f. Under the assumptions of convexity and that
the family of polygonal meshes Th is quasi-uniform, we have written an error estimate in H1-norm
for pressure. The key features of the proposed method are the possibility to use general polygonal
meshes, the matrix associated to the linear system turns out to be positive definite and the possibility
to recover further variables of interest (velocity and pressure) in a simply way. Possible extensions
of this work include the following: (a) weakening of the mesh assumptions, (b) write error estimates
with constants independent of the permeability tensor and (c) the study of new VEMs for other stream
function formulations of fluid flow problems with pressure recovery.
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Fig. 5. Mesh with small edges T 5
h .

Table 6 Test 4. Errors and experimental rates for the stream function ψh and velocity uh, with k = 2,
using the meshes T 5

h

ν dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) eW(ψ) rW(ψ) e1(u) r1(u)

k = 2

99 1/4 1.2766e–2 — 1.0977e–1 — 1.7734e–0 — 1.9631e–0 —
489 1/8 6.4358e–3 0.98 3.5125e–2 1.64 9.5290e–1 0.89 1.1574e–0 0.76

1e0 2139 1/16 2.1045e–3 1.51 1.1597e–2 1.59 4.8232e–1 0.98 5.7148e–1 1.01
8889 1/32 5.5807e–4 1.91 3.7060e–3 1.64 2.3768e–1 1.02 2.6782e–1 1.09

36165 1/64 1.4552e–4 1.93 1.0230e–3 1.85 1.1811e–1 1.00 1.3198e–1 1.02
146028 1/128 3.6836e–5 1.98 2.6276e–4 1.96 5.8845e–2 1.00 6.5573e–2 1.00

Table 7 Test 4. Errors and experimental rates for the stream function ψh, the velocity uh and the
pressure ph, with k = 3 and using the meshes T 5

h

ν dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) eW(ψ) rW(ψ) e1(u) r1(u) e1(p) r1(p)

k = 3

163 1/4 2.7991e–3 — 4.2324e–2 — 8.9129e–1 — 1.1630e–0 — 2.5324e–0 —
779 1/8 3.6920e–4 2.92 5.4587e–3 2.95 2.3872e–1 1.90 4.5266e–1 1.36 1.4643e–0 0.79

1e0 3363 1/16 2.9259e–5 3.65 5.2466e–4 3.37 5.8672e–2 2.02 9.1625e–2 2.30 8.7644e–1 0.74
13899 1/32 2.0252e–6 3.85 5.3678e–5 3.28 1.4091e–2 2.05 1.8704e–2 2.29 3.6235e–1 1.27
56411 1/64 1.3089e–7 3.95 6.0607e–6 3.14 3.4257e–3 2.04 4.2121e–3 2.15 1.3941e–1 1.37
2274711/128 8.2684e–9 3.98 7.3151e–7 3.05 8.4692e–4 2.01 1.0130e–3 2.05 5.7776e–2 1.27
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