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The aim of this paper is to develop a virtual element method for the two-dimensional
Steklov eigenvalue problem. We propose a discretization by means of the virtual elements
presented in [L. Beirão da Veiga et al., Basic principles of virtual element methods, Math.
Models Methods Appl. Sci. 23 (2013) 199–214]. Under standard assumptions on the com-
putational domain, we establish that the resulting scheme provides a correct approxi-
mation of the spectrum and prove optimal-order error estimates for the eigenfunctions
and a double order for the eigenvalues. We also prove higher-order error estimates for
the computation of the eigensolutions on the boundary, which in some Steklov problems
(computing sloshing modes, for instance) provides the quantity of main interest (the free
surface of the liquid). Finally, we report some numerical tests supporting the theoretical
results.

Keywords: Virtual element method; Steklov eigenvalue problem; error estimates.

AMS Subject Classification: 65N25, 65N30, 74S99

1. Introduction

Very recently, a new evolution of the Mimetic Finite Difference Method was pro-
posed in Ref. 7 under the name of Virtual Element Method (VEM). This approach
takes the steps from the main ideas of modern mimetic schemes but follows from
a Galerkin discretization of the problem and therefore can be fully interpreted
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as a generalization of the finite element method. Thus, VEM couples the flexibi-
lity of mimetic methods with the theoretical and applicative background of finite
elements. Since VEM is very recent, the current published literature is still very
limited.1,3,7–10,16

This paper deals with the solution of an eigenvalue problem by means of VEM.
In particular, we have chosen the Steklov eigenvalue problem, which involves the
Laplace operator but is characterized by the presence of the eigenvalue in the bound-
ary condition. The reason of this choice is that the analysis turns out simpler, since
the right-hand side involves only boundary terms whose approximation by virtual
elements can be seen as a classical interpolation.

The numerical approximation of eigenvalue problems is object of great interest
from both, the practical and theoretical points of view. We refer to Ref. 13 and
the references therein for the state-of-the-art in this subject area. In particular, the
Steklov eigenvalue problem appears in many applications. For instance, we mention
the study of the vibration modes of a structure in contact with an incompressible
fluid (see Ref. 11) and the analysis of the stability of mechanical oscillators immersed
in a viscous media (see Ref. 28). One of its main applications arises from the
dynamics of liquids in moving containers, i.e. sloshing problems (see Refs. 12, 17–
19, 22 and 31).

Among the existing techniques to solve this problem, various finite element
methods have been introduced and analyzed. For instance, conforming finite ele-
ment discretizations have been considered in Refs. 2 and 14, while Refs. 33 and 27
deal with nonconforming finite elements. Other numerical treatments for the Steklov
eigenvalue problem, including a posteriori error analysis can be found in Refs. 4,
5, 21, 23, 32 and the references cited therein. Traditionally, finite element meth-
ods rely on triangular (simplicial) or quadrilateral meshes. However, in complex
simulations, it can be convenient to use more general polygonal meshes.

The aim of this paper is to introduce and analyze a virtual element method which
applies to general polygonal (even non-convex) meshes for the solution of the two-
dimensional Steklov eigenvalue problem. We begin with a variational formulation of
the spectral problem. We propose a discretization based on the approach introduced
in Ref. 7 for the Laplace equation. By using the abstract spectral approximation
theory (see Ref. 6), under rather mild assumptions on the polygonal meshes, we
establish that the resulting scheme provides a correct approximation of the spec-
trum and prove optimal-order error estimates for the eigenfunctions and a double
order for the eigenvalues.

The outline of this paper is as follows: we introduce in Sec. 2 the variational for-
mulation of the Steklov eigenvalue problem, define a solution operator and establish
its spectral characterization. In Sec. 3, we introduce the virtual element discrete
formulation and describe the spectrum of a discrete solution operator. In Sec. 4,
we prove that the numerical scheme provides a correct spectral approximation and
establish optimal-order error estimates for the eigenvalues and eigenfunctions. We
also prove an improved error estimate for the eigenfunctions on the free boundary,
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which allows computing a quantity of typical interest in sloshing problems. Finally,
in Sec. 5, we report a set of numerical experiments that allow us to assess the con-
vergence properties of the method and to check whether the experimental rates of
convergence agree with the theoretical ones.

Throughout the paper we will use standard notations for Sobolev spaces, norms
and seminorms. Moreover, we will denote by C a generic constant independent of
the mesh parameter h, which may take different values in different occurrences.

2. The Spectral Problem

Let Ω ⊂ R
2 be a bounded domain with polygonal boundary ∂Ω. Let Γ0 and Γ1 be

disjoint open subsets of ∂Ω such that ∂Ω = Γ̄0 ∪ Γ̄1 and |Γ0| �= 0. We denote by n

the outward unit normal vector to ∂Ω and by ∂n the normal derivative.
We consider the following eigenvalue problem:
Find (λ, w) ∈ R × H1(Ω), w �= 0, such that

∆w = 0 in Ω,

∂nw =

{
λw on Γ0,

0 on Γ1.

By testing the first equation above with v ∈ H1(Ω) and integrating by parts,
we arrive at the following equivalent weak formulation.

Problem 1. Find (λ, w) ∈ R × H1(Ω), w �= 0, such that∫
Ω

∇w · ∇v = λ

∫
Γ0

wv ∀ v ∈ H1(Ω).

Since the bilinear form on the left-hand side is not H1(Ω)-elliptic, it is convenient
to use a shift argument to rewrite this eigenvalue problem in the following form:

Problem 2. Find (λ, w) ∈ R × H1(Ω), w �= 0, such that

â(w, v) = (λ + 1)b(w, v) ∀ v ∈ H1(Ω),

where

â(w, v) := a(w, v) + b(w, v), w, v ∈ H1(Ω),

a(w, v) :=
∫

Ω

∇w · ∇v, w, v ∈ H1(Ω),

b(w, v) :=
∫

Γ0

wv, w, v ∈ H1(Ω)

are bounded bilinear symmetric forms.

Next, we define the solution operator associated with Problem 2:

T : H1(Ω) → H1(Ω),

f �→ Tf := u,
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where u ∈ H1(Ω) is the solution of the corresponding source problem:

â(u, v) = b(f, v) ∀ v ∈ H1(Ω). (2.1)

The following lemma allows us to establish the well-posedness of this source
problem.

Lemma 2.1. There exists a constant α > 0, depending on Ω, such that

â(v, v) ≥ α‖v‖2
1,Ω ∀ v ∈ H1(Ω).

Proof. The result follows immediately from the generalized Poincaré inequality.

We deduce from Lemma 2.1 that the linear operator T is well defined and
bounded. Notice that (λ, w) ∈ R×H1(Ω) solves Problem 2 (and hence Problem 1)
if and only if Tw = µw with µ �= 0 and w �= 0, in which case µ := 1

1+λ . Moreover,
it is easy to check that T is self-adjoint with respect to the inner product â(·, ·) in
H1(Ω). Indeed, given f, g ∈ H1(Ω),

â(Tf , g) = b(f, g) = b(g, f) = â(Tg, f) = â(f, T g).

The following is an additional regularity result for the solution of problem (2.1)
and consequently, for the eigenfunctions of T .

Lemma 2.2. There exists rΩ > 1
2 such that the following results hold :

(i) for all f ∈ H1(Ω) and for all r ∈ [ 12 , rΩ), the solution u of problem (2.1)
satisfies u ∈ H1+r1(Ω) with r1 := min{r, 1} and there exists C > 0 such that

‖u‖1+r1,Ω ≤ C‖f‖1,Ω;

(ii) if w is an eigenfunction of Problem 1 with eigenvalue λ, for all r ∈ [12 , rΩ),
w ∈ H1+r(Ω) and there exists C > 0 (depending on λ) such that

‖w‖1+r,Ω ≤ C‖w‖1,Ω.

Proof. The proof of (i) follows from the classical regularity result for the Laplace
equation with Neumann boundary conditions (cf. Ref. 25). The proof of (ii) follows
from the same arguments and the fact that w is the solution of problem (2.1) with
f = λw, combined with a bootstrap trick.

The constant rΩ > 1
2 is the Sobolev exponent for the Laplace problem with

Neumann boundary conditions. If Ω is convex, then rΩ > 1, whereas, otherwise,
rΩ := π

ω with ω being the largest re-entrant angle of Ω (see Ref. 25). Hence, because
of the compact inclusion H1+r(Ω) ↪→ H1(Ω), T is a compact operator. Therefore,
we have the following spectral characterization result.

Theorem 2.1. The spectrum of T decomposes as follows : sp(T )={0, 1}∪{µk}k∈N,

where:
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(i) µ = 1 is an eigenvalue of T and its associated eigenspace is the space of
constant functions in Ω;

(ii) µ = 0 is an infinite-multiplicity eigenvalue of T and its associated eigenspace
is H1

Γ0
(Ω) := {q ∈ H1(Ω) : q = 0 on Γ0};

(iii) {µk}k∈N ⊂ (0, 1) is a sequence of finite-multiplicity eigenvalues of T which
converge to 0 and their corresponding eigenspaces lie in H1+r(Ω).

Proof. Properties (i) and (ii) are easy to check. Property (iii) follows from the
classical spectral characterization of compact operators and Lemma 2.2(ii).

3. The Discrete Problem

In this section, first we recall the mesh construction and the assumptions considered
in Ref. 7 for the virtual element method. Then, we will introduce a virtual element
discretization of Problems 1 and 2 and provide a spectral characterization of the
resulting discrete eigenvalue problems.

Let {Th}h be a family of decompositions of Ω into polygons K. Let hK denote
the diameter of the element K and h the maximum of the diameters of all the
elements of the mesh, i.e. h := maxK∈Ω hK .

For the analysis, we will make as in Ref. 7 the following assumptions.

• A0.1. Every mesh Th consists of a finite number of simple polygons (i.e. open
simply connected sets with non-self-intersecting polygonal boundaries).

• A0.2. There exists γ > 0 such that, for all meshes Th, each polygon K ∈ Th is
star-shaped with respect to a ball of radius greater than or equal to γhK .

• A0.3. There exists γ̂ > 0 such that, for all meshes Th, for each polygon K ∈ Th,
the distance between any two of its vertices is greater than or equal to γ̂hK .

We consider now a simple polygon K and, for k ∈ N, we define

Bk(∂K) := {v ∈ C0(∂K) : v|e ∈ Pk(e) for all edges e ⊂ ∂K}.

We then consider the finite-dimensional space defined as follows:

V K
k := {v ∈ H1(K) : v|∂K ∈ Bk(∂K) and ∆v|K ∈ Pk−2(K)},

where, for k = 1, we have used the convention that P−1(K) := {0}. We choose in
this space the degrees of freedom introduced in Sec. 4.1 of Ref. 7. Finally, for every
decomposition Th of Ω into simple polygons K and for a fixed k ∈ N, we define

Vh := {v ∈ H1(Ω) : v|K ∈ V K
k }.

In what follows, we will also use the broken H1-seminorm

|v|21,h :=
∑

K∈Th

‖∇v‖2
0,K ,
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which is well defined for every v ∈ L2(Ω) such that v|K ∈ H1(K) for all polygon
K ∈ Th.

In order to construct the discrete scheme, we need some preliminary definitions.
First, we split the bilinear form â(·, ·) as follows:

â(u, v) =
∑

K∈Th

aK(u, v) + b(u, v), u, v ∈ H1(Ω),

where

aK(u, v) :=
∫

K

∇u · ∇v, u, v ∈ H1(Ω). (3.1)

To compute the local matrix aK for u, v ∈ Vh, we must have into account that due
to the implicit space definition, we would not know how to compute the bilinear
form exactly. Nevertheless, the final output will be a local matrix on each element
K whose associated bilinear form is exact whenever one of the two entries is a
polynomial of degree k. This will allow us to retain the optimal approximation
properties of the space Vh.

With this end, for any K ∈ Th and for any sufficiently regular function ϕ, we
define first:

ϕ :=
1

NK

NK∑
i=1

ϕ(Pi), (3.2)

where Pi, 1 ≤ i ≤ NK , are the vertices of K. Now, we define the projector ΠK
k :

V K
k → Pk(K) ⊆ V K

k for each v ∈ V K
k as the solution of

aK(ΠK
k v, q) = aK(v, q) ∀ q ∈ Pk(K), (3.3a)

ΠK
k v = v. (3.3b)

Remark 3.1. Equation (3.3b) is only needed for the problem above to be well-
posed. However, it is not used at all on the forthcoming analysis. Therefore, it
could be substituted by any other appropriate compatible average of ϕ on ∂K, for
instance,

ϕ :=
1

|∂K|

∫
∂K

ϕ,

which makes sense for any ϕ ∈ H1(K).

On the other hand, let SK(·, ·) be any symmetric positive definite bilinear form
to be chosen as to satisfy

c0a
K(v, v) ≤ SK(v, v) ≤ c1a

K(v, v) ∀ v ∈ V K
k with ΠK

k v = 0, (3.4)

for some positive constants c0 and c1 independent of K. Then, set

ah(uh, vh) :=
∑

K∈Th

aK
h (uh, vh), uh, vh ∈ Vh,
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where aK
h (·, ·) is the bilinear form defined on V K

k × V K
k by

aK
h (u, v) := aK(ΠK

k u, ΠK
k v) + SK(u − ΠK

k u, v − ΠK
k v), u, v ∈ V K

k . (3.5)

The following properties of the bilinear form aK
h (·, ·) have been established in

Theorem 4.1 of Ref. 7.

• k-Consistency:

aK
h (p, vh) = aK(p, vh) ∀ p ∈ Pk(K), ∀ vh ∈ V K

k .

• Stability: There exist two positive constants α∗ and α∗, independent of K, such
that:

α∗a
K(vh, vh) ≤ aK

h (vh, vh) ≤ α∗aK(vh, vh) ∀ vh ∈ V K
k . (3.6)

Now, we are in a position to write the virtual element discretization of Prob-
lem 1.

Problem 3. Find (λh, wh) ∈ R × Vh, wh �= 0, such that

ah(wh, vh) = λhb(wh, vh) ∀ vh ∈ Vh.

We use again a shift argument to rewrite this discrete eigenvalue problem in the
following convenient equivalent form.

Problem 4. Find (λh, wh) ∈ R × Vh, wh �= 0, such that

âh(wh, vh) = (λh + 1)b(wh, vh) ∀ vh ∈ Vh,

where

âh(wh, vh) := ah(wh, vh) + b(wh, vh), wh, vh ∈ Vh.

We observe that by virtue of (3.6) and the trace theorem, the bilinear form
âh(·, ·) is bounded. Moreover, as shown in the following lemma, it is also uniformly
elliptic.

Lemma 3.1. There exists a constant β > 0, independent of h, such that

âh(vh, vh) ≥ β‖vh‖2
1,Ω ∀ vh ∈ Vh.

Proof. Thanks to (3.6) and Lemma 2.1, it is easy to check that the above inequality
holds with β := α min{α∗, 1}.

The discrete version of the operator T is then given by

Th : H1(Ω) → H1(Ω),

f �→ Thf := uh,

where uh ∈ Vh is the solution of the corresponding discrete source problem

âh(uh, vh) = b(f, vh) ∀ vh ∈ Vh.
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Because of Lemma 3.1, the linear operator Th is well defined and bounded
uniformly with respect to h. Once more, as in the continuous case, (λh, wh) ∈ R×Vh

solves Problem 4 (and hence Problem 3) if and only if Thwh = µhwh with µh �= 0
and wh �= 0, in which case µh := 1

1+λh
. Moreover, Th|Vh

: Vh → Vh is self-adjoint
with respect to âh(·, ·). Indeed, given f, g ∈ Vh,

âh(Thf, g) = b(f, g) = b(g, f) = âh(Thg, f) = âh(f, Thg).

As a consequence, we have the following spectral characterization.

Theorem 3.1. The spectrum of Th|Vh
consists of Mh := dim(Vh) eigenvalues,

repeated according to their respective multiplicities. It decomposes as follows:
sp(Th|Vh

) = {0, 1} ∪ {µhk}Nh

k=1, where:

(i) the eigenspace associated with µh = 1 is the space of constant functions in Ω;
(ii) the eigenspace associated with µh = 0 is Zh := Vh ∩H1

Γ0
(Ω) = {qh ∈ Vh : qh =

0 on Γ0};
(iii) µhk ⊂ (0, 1), k = 1, . . . , Nh := Mh−dim(Zh)−1, are non-defective eigenvalues

repeated according to their respective multiplicities.

4. Spectral Approximation

To prove that Th provides a correct spectral approximation of T , we will resort
to the classical theory for compact operators (see Ref. 6), which is based on the
convergence in norm of Th to T as h → 0. With the aim of proving this, the first
step is to establish the following result.

Lemma 4.1. There exists C > 0 such that, for all f ∈ H1(Ω), if u = Tf and
uh = Thf, then

‖(T − Th)f‖1,Ω = ‖u − uh‖1,Ω ≤ C(‖u − uI‖1,Ω + |u − uπ|1,h),

for all uI ∈ Vh and for all uπ ∈ L2(Ω) such that uπ|K ∈ Pk(K) ∀K ∈ Th.

Proof. Let f ∈ H1(Ω). For uI ∈ Vh, we set vh := uh−uI and thanks to Lemma 3.1,
the definition (3.5) of aK

h and those of T and Th, we have

β‖vh‖2
1,Ω ≤ âh(vh, vh) = âh(uh, vh) − âh(uI , vh)

= b(f, vh) −
∑

K∈Th

aK
h (uI , vh) − b(uI , vh)

= b(f, vh) − b(uI , vh)

−
∑

K∈Th

(aK
h (uI − uπ, vh) + aK(uπ − u, vh) + aK(u, vh))

= b(u − uI , vh) −
∑

K∈Th

(aK
h (uI − uπ, vh) + aK(uπ − u, vh)).
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Therefore, from the trace theorem, (3.6) and the boundedness of aK
h (·, ·) and

aK(·, ·),

β‖vh‖2
1,Ω ≤ ‖u − uI‖0,Γ0‖vh‖0,Γ0

+
∑

K∈Th

(α∗|uI − uπ|1,K |vh|1,K + |uπ − u|1,K |vh|1,K)

≤ ‖u − uI‖1,Ω‖vh‖1,Ω

+
∑

K∈Th

(α∗|uI − u|1,K |vh|1,K + (α∗ + 1)|u − uπ|1,K |vh|1,K)

≤ C(‖u − uI‖1,Ω + |u − uπ|1,h)‖vh‖1,Ω.

Hence, the proof follows from the triangular inequality.

The next step is to find appropriate terms uI and uπ that can be used in
the above lemma to prove the claimed convergence. For the latter we have the
following proposition, which is derived by interpolation between Sobolev spaces
(see for instance Theorem I.1.4 in Ref. 24) from the analogous result for integer
values of s. In its turn, the result for integer values is stated in Proposition 4.2 of
Ref. 7 and follows from the classical Scott–Dupont theory (see Ref. 15).

Proposition 4.1. If the assumption A0.2 is satisfied, then there exists a constant
C, depending only on k and γ, such that for every s with 0 ≤ s ≤ k and for every
v ∈ H1+s(K), there exists vπ ∈ Pk(K) such that

‖v − vπ‖0,K + hK |v − vπ |1,K ≤ Ch1+s
K ‖v‖1+s,K .

For the term uI ∈ Vh in Lemma 4.1, we have the following result which is an
extension of Proposition 4.3 in Ref. 7 to less regular functions.

Proposition 4.2. If the assumptions A0.2 and A0.3 are satisfied, then, for each
s with 0 ≤ s ≤ k, there exists a constant C, depending only on k, γ and γ̂, such
that for every v ∈ H1+s(Ω), there exists vI ∈ Vh that satisfies

‖v − vI‖0,Ω + h|v − vI |1,Ω ≤ Ch1+s‖v‖1+s,Ω.

Proof. Let v ∈ H1+s(Ω), 0 ≤ s ≤ k. Since we are assuming A0.2, let vπ ∈ L2(Ω)
be defined on each K ∈ Th so that vπ |K ∈ Pk(K) and the estimate of Proposition 4.1
holds true.

For each polygon K ∈ Th, consider the triangulation T K
h obtained by joining

each vertex of K with the midpoint of the ball with respect to which K is starred.
Let T̂h :=

⋃
K∈Th

T K
h . Since we are also assuming A0.3, {T̂h}h is a shape-regular

family of triangulations of Ω.
Let vc be the Clément interpolant of degree k of v over T̂h (cf. Ref. 20). Then,

vc ∈ H1(Ω) and the following error estimate follows by interpolation between
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Sobolev spaces from the analogous result for integer values of s (which in turn
has been proved in Ref. 20):

‖v − vc‖0,Ω + h|v − vc|1,Ω ≤ Ch1+s‖v‖1+s,Ω. (4.1)

Now, for each K ∈ Th, we define vI |K ∈ H1(K) as the solution of the following
problem: {

−∆vI = −∆vπ in K,

vI = vc on ∂K.

Note that vI |K ∈ V K
k . Moreover, although vI is defined locally, since on the bound-

ary of each element it coincides with vc which belongs to H1(Ω), we have that also
vI belongs to H1(Ω) and, hence, vI ∈ Vh.

According to the above definition we have that{
−∆(vπ − vI) = 0 in K,

vπ − vI = vπ − vc on ∂K,

and, hence, it is easy to check that

|vπ − vI |1,K = inf{|z|1,K , z ∈ H1(K) : z = vπ − vc on ∂K} ≤ |vπ − vc|1,K .

Therefore,

|v − vI |1,K ≤ |v − vπ|1,K + |vπ − vI |1,K ≤ |v − vπ|1,K + |vπ − vc|1,K

≤ 2|v − vπ |1,K + |v − vc|1,K ,

which together with Proposition 4.1 and (4.1) lead to

|v − vI |1,Ω ≤ Chs‖v‖1+s,Ω. (4.2)

On the other hand, for all K ∈ Th, each triangle T ∈ T K
h has one edge on

∂K. Hence, since vI = vc on ∂K, a scaling argument and the classical Poincaré
inequality yield

‖vc − vI‖0,T ≤ ChK |vc − vI |1,T .

Thus, from the above inequality, (4.1) and (4.2), we have

‖v − vI‖0,Ω ≤ ‖v − vc‖0,Ω + ‖vc − vI‖0,Ω ≤ ‖v − vc‖0,Ω + Ch|vc − vI |1,Ω

≤ ‖v − vc‖0,Ω + Ch|v − vc|1,Ω + Ch|v − vI |1,Ω

≤ Ch1+s‖v‖1+s,Ω,

which together with (4.2) allow us to conclude the proof.

The following result yields the convergence in norm of Th to T as h → 0.

Lemma 4.2. For all r ∈ [12 , rΩ), let r1 := min{r, 1} as defined in Lemma 2.2(i).
Then, there exists C > 0 such that

‖(T − Th)f‖1,Ω ≤ Chr1‖f‖1,Ω ∀ f ∈ H1(Ω).
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Proof. The result follows from Lemma 4.1, Propositions 4.1 and 4.2, and Lemma
2.2(i).

4.1. Error estimates

As a direct consequence of Lemma 4.2, standard results about spectral approxima-
tion (see Ref. 26, for instance) show that isolated parts of sp(T ) are approximated
by isolated parts of sp(Th). More precisely, let µ ∈ (0, 1) be an isolated eigenvalue
of T with multiplicity m and let E be its associated eigenspace. Then, there exist m

eigenvalues µ
(1)
h , . . . , µ

(m)
h of Th (repeated according to their respective multiplici-

ties) which converge to µ. Let Eh be the direct sum of their corresponding associated
eigenspaces.

We recall the definition of the gap δ̂ between two closed subspaces X and Y of
H1(Ω):

δ̂(X ,Y) := max{δ(X ,Y), δ(Y,X )},

where

δ(X ,Y) := sup
x∈X :‖x‖1,Ω=1

(
inf
y∈Y

‖x − y‖1,Ω

)
.

The following error estimates for the approximation of eigenvalues and eigenfunc-
tions hold true.

Theorem 4.1. There exists a strictly positive constant C such that

δ̂(E , Eh) ≤ Cγh,

|µ − µ
(i)
h | ≤ Cγh, i = 1, . . . , m,

where

γh := sup
f∈E:‖f‖1,Ω=1

‖(T − Th)f‖1,Ω.

Proof. As a consequence of Lemma 4.2, Th converges in norm to T as h goes to
zero. Then, the proof follows as a direct consequence of Theorems 7.1 and 7.3 from
Ref. 6.

The theorem above yields error estimates depending on γh. The next step is to
show an optimal-order estimate for this term.

Theorem 4.2. For all r ∈ [12 , rΩ) there exists a positive constant C such that

‖(T − Th)f‖1,Ω ≤ Chmin{r,k}‖f‖1,Ω ∀ f ∈ E , (4.3)

and, consequently,

γh ≤ Chmin{r,k}. (4.4)
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Proof. The proof is identical to that of Lemma 4.2, but using now the additional
regularity from Lemma 2.2(ii).

The error estimate for the eigenvalue µ ∈ (0, 1) of T leads to an analogous
estimate for the approximation of the eigenvalue λ = 1

µ − 1 of Problem 1 by means

of the discrete eigenvalues λ
(i)
h := 1

µ
(i)
h

− 1, 1 ≤ i ≤ m, of Problem 3. However, the

order of convergence in Theorem 4.1 is not optimal for µ and, hence, not optimal
for λ either. Our next goal is to improve this order.

Theorem 4.3. For all r ∈ [12 , rΩ), there exists a strictly positive constant C such
that

|λ − λ
(i)
h | ≤ Ch2min{r,k}.

Proof. Let wh be such that (λ(i)
h , wh) is a solution of Problem 3 with ‖wh‖1,Ω = 1.

According to Theorem 4.1, there exists a solution (λ, w) of Problem 1 such that

‖w − wh‖1,Ω ≤ Cγh. (4.5)

From the symmetry of the bilinear forms and the facts that a(w, v) = λb(w, v)
for all v ∈ H1(Ω) (cf. Problem 1) and ah(wh, vh) = λ

(i)
h b(wh, vh) for all vh ∈ Vh (cf.

Problem 3), we have

a(w − wh, w − wh) − λb(w − wh, w − wh)

= a(wh, wh) − λb(wh, wh)

= [a(wh, wh) − ah(wh, wh)] − (λ − λ
(i)
h )b(wh, wh),

from which we obtain the following identity:

(λ(i)
h − λ)b(wh, wh) = a(w − wh, w − wh) − λb(w − wh, w − wh)

+ [ah(wh, wh) − a(wh, wh)]. (4.6)

The next step is to bound each term on the right-hand side above. The first
and the second ones are easily bounded from the continuity of a(·, ·) and b(·, ·), the
trace theorem, (4.5) and (4.4):

|a(w − wh, w − wh)| + λ|b(w − wh, w − wh)| ≤ Ch2 min{r,k}. (4.7)

For the third term, we use (3.4) and (3.3a) to write:

|ah(wh, wh) − a(wh, wh)|

=

∣∣∣∣∣ ∑
K∈Th

[aK(ΠK
k wh, ΠK

k wh) + SK(wh − ΠK
k wh, wh − ΠK

k wh)]

−
∑

K∈Th

aK(wh, wh)

∣∣∣∣∣
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≤
∣∣∣∣∣ ∑
K∈Th

[aK(ΠK
k wh, ΠK

k wh) − aK(wh, wh)]

∣∣∣∣∣
+

∑
K∈Th

c1a
K(wh − ΠK

k wh, wh − ΠK
k wh)

=
∑

K∈Th

[aK(wh − ΠK
k wh, wh − ΠK

k wh)]

+
∑

K∈Th

c1a
K(wh − ΠK

k wh, wh − ΠK
k wh)

=
∑

K∈Th

(1 + c1)aK(wh − ΠK
k wh, wh − ΠK

k wh).

Therefore, from the definition of aK(·, ·) (cf. (3.1)) and the fact that ΠK
k is the

projector defined by (3.3a), we obtain

|ah(wh, wh) − a(wh, wh)| ≤ C
∑

K∈Th

|wh − ΠK
k wh|21,K

≤ C
∑

K∈Th

|wh − ΠK
k w|21,K

≤ C
∑

K∈Th

(|wh − w|1,K + |w − ΠK
k w|1,K)2.

Now, also from (3.3a) it is immediate to check that

|w − ΠK
k w|1,K ≤ |w − wπ |1,K ∀wπ ∈ Pk(K).

Then, from the last two inequalities, Proposition 4.1, (4.5) and (4.4), we obtain

|ah(wh, wh) − a(wh, wh)| ≤ Ch2 min{r,k}.

On the other hand, by virtue of Lemma 3.1 and the fact that λ
(i)
h → λ as h goes to

zero, we know that there exists C > 0 such that

b(wh, wh) =
âh(wh, wh)

λ
(i)
h + 1

≥
β‖wh‖2

1,Ω

λ
(i)
h + 1

≥ β

C
> 0.

By using this estimate to bound the left-hand side of (4.6) from below, together
with the previous one and (4.7) for an upper bound of the right-hand side, we
conclude that

|λ − λ
(i)
h | ≤ Ch2 min{r,k}

and we end the proof.

4.2. Error estimates for the eigenfunctions on Γ0

Our next goal is to improve the error estimate for the trace of the eigenfunctions
in the L2(Γ0)-norm. With this end, we will resort to a duality technique. Given
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u ∈ H1(Ω) and uh ∈ Vh, let v ∈ H1(Ω) be the solution of the following problem:
∆v = 0 in Ω,

∂nv + v =

{
u − uh on Γ0,

0 on Γ1.

By testing the first equation above with functions in H1(Ω) and integrating by
parts, we obtain

â(v, z) :=
∫

Ω

∇v · ∇z +
∫

Γ0

vz =
∫

Γ0

(u − uh)z =: b(u − uh, z) ∀ z ∈ H1(Ω).

(4.8)

Therefore, v = T (u − uh), so that according to Lemma 2.2(i), for all r ∈ [ 12 , rΩ),
v ∈ H1+r1(Ω) (recall that r1 := min{r, 1}) and

‖v‖1+r1,Ω ≤ C‖u − uh‖1,Ω. (4.9)

The improved error estimate will be a consequence of the following result.

Lemma 4.3. Let f ∈ E be an eigenfunction of the operator T . If u = Tf and
uh = Thf, then, for all r ∈ [ 12 , rΩ), there exists C > 0 such that

‖(T − Th)f‖0,Γ0 = ‖u − uh‖0,Γ0 ≤ Chr1/2+min{r,k}‖f‖1,Ω.

Proof. Let v be as defined above and vI ∈ Vh so that the estimate of Proposi-
tion 4.2 holds true. Testing (4.8) with z = (u − uh) ∈ H1(Ω), we obtain

‖u − uh‖2
0,Γ0

= â(u − uh, v) = â(u − uh, v − vI) + â(u − uh, vI). (4.10)

To bound the first term on the right-hand side above, we use the continuity of the
bilinear form â(·, ·), Proposition 4.2 and (4.9):

â(u − uh, v − vI) ≤ C‖u − uh‖1,Ω‖v − vI‖1,Ω

≤ Chr1‖u − uh‖1,Ω‖v‖1+r1,Ω ≤ Chr1‖u − uh‖2
1,Ω. (4.11)

For the second term, we use that â(u, vh) = b(f, vh) = âh(uh, vh) for all vh ∈ Vh

to write

â(u − uh, vI) = âh(uh, vI) − â(uh, vI) =
∑

K∈Th

(aK
h (uh, vI) − aK(uh, vI))

=
∑

K∈Th

(aK(ΠK
k uh, ΠK

k vI)+ SK(uh −ΠK
k uh, vI −ΠK

k vI)− aK(uh, vI))

=
∑

K∈Th

(aK(ΠK
k uh − uh, vI − ΠK

k vI) + SK(uh − ΠK
k uh, vI − ΠK

k vI)),

(4.12)

where we have used (3.3a) to derive the last equality.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
15

.2
5:

14
21

-1
44

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

r.
 D

av
id

 M
or

a 
on

 0
4/

28
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



April 20, 2015 14:12 WSPC/103-M3AS 1550037

A virtual element method for the Steklov eigenvalue problem 1435

Now, from the symmetry of SK(·, ·), inequality (3.4) and the definition of
aK(·, ·), we have that SK(vh, zh) ≤ c1|vh|1,K |zh|1,K for all vh, zh ∈ V K

k such that
ΠK

k vh = ΠK
k zh = 0. We use this inequality to bound the second term on the right-

hand side of (4.12):∑
K∈Th

SK(uh − ΠK
k uh, vI − ΠK

k vI) ≤ c1

∑
K∈Th

|uh − ΠK
k uh|1,K |vI − ΠK

k vI |1,K .

(4.13)

Using that ΠK
k is the projector defined by (3.3a), we have that

|uh − ΠK
k uh|1,K ≤ |uh − ΠK

k u|1,K

≤ |uh − u|1,K + |u − uπ|1,K ∀uπ ∈ Pk(K),

and, analogously,

|vI − ΠK
k vI |1,K ≤ |vI − v|1,K + |v − vπ|1,K ∀ vπ ∈ Pk(K).

Substituting these inequalities into (4.13) and using (4.3), Proposition 4.1 and
Lemma 2.2(ii) (since f ∈ E) for the former and Propositions 4.1 and 4.2 and (4.9)
for the latter, we obtain∑

K∈Th

SK(uh − ΠK
k uh, vI − ΠK

k vI) ≤ Chr1+min{r,k}‖f‖1,Ω‖u − uh‖1,Ω.

By repeating the same steps as above, we obtain a similar bound for the first
term on the right-hand side of (4.12):∑

K∈Th

aK(uh − ΠK
k uh, vI − ΠK

k vI) ≤ Chr1+min{r,k}‖f‖1,Ω‖u − uh‖1,Ω.

Hence,

â(u − uh, vI) ≤ Chr1+min{r,k}‖f‖1,Ω‖u − uh‖1,Ω.

The proof follows by substituting this inequality and (4.11) into (4.10) and using
(4.3).

The next step is to define a solution operator on the space L2(Γ0):

T̃ : L2(Γ0) → L2(Γ0),

f̃ �→ T̃ f̃ := u|Γ0 ,

where u ∈ H1(Ω) is the solution of the following problem:

â(u, v) =
∫

Γ0

f̃ v ∀ v ∈ H1(Ω). (4.14)

It is easy to check that the operator T̃ is compact and self-adjoint. We also define
the corresponding discrete solution operator:

T̃h : L2(Γ0) → L2(Γ0),

f̃ �→ T̃hf̃ := uh|Γ0 ,
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where uh ∈ Vh is the solution of the discrete problem

âh(uh, vh) =
∫

Γ0

f̃ vh ∀ vh ∈ Vh. (4.15)

The spectra of T and T̃ coincide. In fact, it is immediate to check that if Tw =
µw, with w �= 0 and µ �= 0, then w|Γ0 �= 0 and T̃ (w|Γ0) = µw|Γ0 . Conversely, if
T̃ w̃ = µw̃, with w̃ �= 0 and µ �= 0, then there exists w ∈ H1(Ω), such that Tw = µw

and w|Γ0 = w̃. The same arguments allow us to show that the spectra of Th and
T̃h also coincide and their respective eigenfunctions are related in the same way as
those of T and T̃ .

To prove that the operators T̃h converge in norm to T̃ , we will use the following
additional regularity estimate analogous to that in Lemma 2.2 but that only involves
‖f‖0,Γ0.

Lemma 4.4. For all s ∈ (0, 1
2 ), there exists C > 0 such that, for all f ∈ L2(Γ0),

the solution u of problem (4.14) satisfies u ∈ H1+s(Ω) and

‖u‖1+s,Ω ≤ C‖f‖0,Γ0.

Proof. The proof is a consequence of Theorem 4 in Ref. 29.

Now, we are able to conclude the convergence in norm of T̃h to T̃ .

Lemma 4.5. For all s ∈ (0, 1
2 ), there exists C > 0 such that

‖(T̃ − T̃h)f̃‖0,Γ0 ≤ Chs‖f̃‖0,Γ0.

Proof. Given f̃ ∈ L2(Γ0), let u ∈ H1(Ω) and uh ∈ Vh be the solutions of problems

(4.14) and (4.15), respectively, so that T̃ f̃ = u|Γ0 and T̃hf̃ = uh|Γ0 . The arguments
used in the proof of Lemma 4.1 can be repeated in this case yielding

‖u − uh‖1,Ω ≤ C(‖u − uI‖1,Ω + |u − uπ|1,h),

with uI and uπ as in that lemma. Thus, the result follows from Propositions 4.1
and 4.2, and Lemma 4.4.

As a consequence of this lemma, a spectral convergence result analogous to
Theorem 4.1 holds for T̃h and T̃ . Moreover, we are in a position to establish the
following estimate.

Theorem 4.4. Let wh be an eigenfunction of Th associated with the eigenvalue

µ
(i)
h , 1 ≤ i ≤ m, with ‖wh‖0,Γ0 = 1. Then, there exists an eigenfunction w of T

associated with µ such that, for all r ∈ [12 , rΩ), there exists C > 0 such that

‖w − wh‖0,Γ0 ≤ Chr1/2+min{r,k}.

Proof. Thanks to Lemma 4.5, Theorem 7.1 from Ref. 6 yields spectral convergence
of T̃h to T̃ . In particular, because of the relation between the eigenfunctions of T
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and Th with those of T̃ and T̃h, respectively, we have that wh|Γ0 ∈ Ẽh and there
exists w ∈ E such that

‖w − wh‖0,Γ0 ≤ C sup
ef∈eE:‖ ef‖0,Γ0=1

‖(T̃ − T̃h)f̃‖0,Γ0 . (4.16)

On the other hand, because of Lemma 4.3, for all f̃ ∈ Ẽ , if f ∈ E is such that
f̃ = f |Γ0 , then

‖(T̃ − T̃h)f̃‖0,Γ0 = ‖(T − Th)f‖0,Γ0 ≤ Chr1/2+min{r,k}‖f‖1,Ω.

Now, for f ∈ E , Tf = µf . Hence, ‖f‖1,Ω = 1
µ‖Tf ‖1,Ω ≤ C‖f‖0,Γ0 (cf. Lemma 4.4).

Thus, substituting this expression into the previous inequality, we have that

‖(T̃ − T̃h)f̃‖0,Γ0 ≤ Chr1/2+min{r,k}‖f̃‖0,Γ0 ,

which together with (4.16) allow us to conclude the proof.

Remark 4.1. The result above is actually an improved error estimate in L2(Γ0)-
norm as compared with the obvious one ‖w − wh‖0,Γ0 ≤ Chmin{r,k} which follows
from Theorems 4.1 and 4.2 and the trace theorem.

5. Numerical Results

We report in this section some numerical examples which have allowed us to assess
the theoretical results proved above. With this aim, we have implemented in a
MATLAB code a lowest-order VEM (k = 1) on arbitrary polygonal meshes, by
following the ideas proposed in Ref. 9.

To complete the choice of the VEM, we had to fix the bilinear forms SK(·, ·)
satisfying (3.4) to be used. To do this, we have proceeded as in Ref. 7: for each
polygon K with vertices P1, . . . , PNK , we have used

SK(u, v) := σK

NK∑
i=1

u(Pi)v(Pi), u, v ∈ V K
1 , (5.1)

where σK is the so-called stability constant that can be chosen freely as far as it
satisfies

0 < σ∗ ≤ σK ≤ σ∗, (5.2)

with the two constants σ∗ and σ∗ independent of h and the particular element K.
As stated in Sec. 4.6 of Ref. 7, under assumption A0.3, this choice of SK(·, ·)

satisfies (3.4).

5.1. Test 1: Sloshing in a square domain

In this test, we have taken Ω := (0, 1)2, with Γ0 and Γ1 as shown in Fig. 1.
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Γ0

Ω

Γ1

Fig. 1. Sloshing in a square domain.

This problem corresponds to the computation of the sloshing modes of a two-
dimensional fluid contained in Ω with a horizontal free surface Γ0. The analytical
solutions of this problem are

λn = nπ tanh(nπ), wn(x, y) = cos(nπx) sinh(nπy), n ∈ N.

We have taken σK = 1 in (5.1). We have used three different families of meshes
(see Fig. 2):

• T 1
h : triangular meshes, considering the middle point of each edge as a new degree

of freedom;
• T 2

h : trapezoidal meshes which consist of partitions of the domain into N × N

congruent trapezoids, all similar to the trapezoid with vertexes (0, 0), (1
2 , 0),

(1
2 , 2

3 ), and (0, 1
3 );

• T 3
h : meshes built from T 1

h with the edge midpoint moved randomly; note that
these meshes contain non-convex elements.

The refinement parameter N used to label each mesh is the number of elements on
each edge.

We report in Table 1 the lowest eigenvalues λhi computed with this method.
The table also includes the estimated orders of convergence. The exact eigenvalues
are also reported in the last column to allow for comparison.

It can be seen from Table 1 that the computed eigenvalues converge to the exact
ones with an optimal quadratic order as predicted by the theory.

Fig. 2. Test 1. Sample meshes: T 1
h (left), T 2

h (middle) and T 3
h (right) for N = 4.
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Table 1. Test 1. Computed lowest eigenvalues λhi, 1 ≤ i ≤ 3, on different meshes.

Th λhi N = 16 N = 32 N = 64 N = 128 Order λi

T 1
h λh1 3.1330 3.1306 3.1301 3.1299 2.03 3.1299

λh2 6.3095 6.2894 6.2846 6.2835 2.07 6.2831
λh3 9.5183 9.4459 9.4298 9.4260 2.09 9.4248

T 2
h λh1 3.1424 3.1331 3.1307 3.1301 1.98 3.1299

λh2 6.3765 6.3095 6.2900 6.2849 1.92 6.2831
λh3 9.6929 9.5092 9.4475 9.4306 1.85 9.4248

T 3
h λh1 3.1331 3.1308 3.1301 3.1299 2.03 3.1299

λh2 6.3105 6.2896 6.2847 6.2835 2.05 6.2831
λh3 9.5193 9.4470 9.4300 9.4261 2.06 9.4248

Table 2. Test 1. Errors ‖w − wh‖0,Γ0 of the vibration mode for
the lowest eigenvalue λh1 on different meshes.

Th N = 8 N = 16 N = 32 N = 64 Order

T 1
h 3.633e− 3 8.715e− 4 2.265e− 4 5.567e− 5 2.00

T 2
h 2.507e− 2 5.939e− 3 1.445e− 3 3.558e− 4 2.05

T 3
h 4.559e− 3 9.943e− 4 2.576e− 4 6.592e− 5 2.03

We report in Table 2 the L2(Γ0)-errors of the eigenfunctions corresponding to
the lowest eigenvalue for each family of meshes and different refinement levels. We
also include in this table the estimated orders of convergence.

We observe from this table a clear quadratic order of convergence. Let us remark
that this is the optimal order attainable with the virtual elements used, which is
actually larger than the order O(h3/2) predicted by the theory.

Figure 3 shows the eigenfunctions on Γ0 corresponding to the three lowest eigen-
values. Let us remark that, in the sloshing problem, this corresponds to the shape
of the fluid free surface (∂nw = λw) for each sloshing mode.

5.2. Test 2: Effect of the stability

The aim of this test is to analyze the influence of the stability constant σK in (5.1) on
the computed spectrum. We will show that the introduction of the stability terms
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Fig. 3. Test 1. Sloshing modes: wh1 (left), wh2 (middle) and wh3 (right) computed with N = 256.
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SK in (3.5) leads to spurious eigenvalues. We will also show that these spurious
eigenvalues can be driven by appropriately choosing the stability constant σK . If
the same value of σK is chosen for all K ∈ Th (as in the previous test), roughly
speaking, the spurious eigenvalues will be proportional to this stability constant.
This can be seen from Table 3, where we report the lowest eigenvalues computed
by the method with varying values of σK on a fixed mesh T 1

h with refinement level
N = 8 (see Fig. 2, left).

The table also includes on the last column the three lowest exact eigenvalues.
The computed eigenvalues into boxes correspond to approximations of these phys-
ical eigenvalues, whereas the rest correspond to spurious spectrum.

For σK ≥ 1 we observe that the lowest computed eigenvalues are correct approx-
imations of the physical ones, whereas the largest are spurious and behave roughly
speaking proportional to σK as claimed above. For values of σK < 1, the spuri-
ous eigenvalues appear interspersed among the correct ones, which makes it hard
to distinguish spurious and physical eigenvalues. For very small values of σK , the
spurious eigenvalues become even smaller than the physical ones, as can be seen on
the first column of Table 3 for σK = 1/64.

The above analysis suggests to use a sufficiently large σK in order to avoid the
correct spectrum to be polluted. This phenomenon seems to contradict the theore-
tical analysis: spurious eigenvalues should not appear, when there is convergence in
norm as was shown to happen in our case (see Lemma 4.2). However, this assertion
is of an asymptotic nature: spurious eigenvalues will not appear interspersed among
the correct spectrum for h small enough. In fact, this is what happens in our case
as is shown in Table 4. In this table we report the eigenvalues computed only with
the smallest σK of the previous experiment, but with increasingly refined meshes.

Table 3. Test 2. Computed lowest eigenvalues for σK = 4−k with −3 ≤ k ≤ 3.

σK = 1/64 σK = 1/16 σK = 1/4 σK = 1 σK = 4 σK = 16 σK = 64 λi

1.517 3.078 3.101 3.142 3.175 3.189 3.193 3.1299

1.531 5.563 6.065 6.393 6.668 6.784 6.819 6.2831

1.587 5.646 8.716 9.788 10.755 11.181 11.309 9.4248

1.693 5.824 11.020 13.487 15.948 17.105 17.460

1.715 5.903 12.878 17.494 22.298 24.551 25.235
2.171 6.368 14.527 22.314 30.464 34.046 35.093
2.180 6.537 15.731 27.513 39.415 43.831 45.055
2.196 7.806 16.752 33.436 44.896 49.191 50.407
2.214 8.134 18.433 41.706 113.899 405.657 1573.904

3.071 8.251 19.318 49.196 141.263 501.449 1941.283

5.834 8.409 21.881 61.343 183.830 655.050 2534.774

8.037 8.607 23.403 72.371 231.747 844.138 3285.114

9.645 10.182 27.705 85.040 282.392 1051.315 4119.669
10.747 11.494 28.317 92.654 324.962 1237.860 4883.585
11.080 12.064 29.445 99.697 358.294 1377.508 5448.886
11.712 12.800 29.840 101.609 369.180 1426.727 5652.202
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Table 4. Test 2. Computed lowest eigenvalues for σK = 1/64.

N = 4 N = 8 N = 16 N = 32 N = 64 λi

0.747 1.517 2.929 3.126 3.129 3.1299

0.801 1.530 2.975 5.854 6.276 6.2831

0.874 1.587 3.033 5.901 9.399 9.4248

1.096 1.693 3.044 5.931 11.703
1.098 1.715 3.056 5.981 11.752

2.898 2.171 3.114 5.987 11.815

4.760 2.180 3.150 5.990 11.857

5.425 2.196 3.260 6.046 11.890
2.214 3.367 6.109 11.897

3.071 3.394 6.140 11.915

5.834 3.407 6.220 11.952

8.037 3.482 6.252 11.976

9.645 3.569 6.404 11.991
10.747 3.626 6.438 12.033
11.080 4.367 6.446 12.179
11.712 4.382 6.469 12.185

4.389 6.516 12.199
4.401 6.618 12.312

6.158 6.827 12.463

The table shows that the spurious eigenvalues are also roughly speaking propor-
tional to 1/h, so that they blow up as the mesh is refined. For instance, for the most
refined mesh reported in Table 4 (N = 64), the three lowest correct eigenvalues are
not polluted by the spurious ones.

This analysis suggests, that the user of VEM for spectral problems, has to be
aware of the risk of spurious eigenvalue pollution. The way of minimizing this risk
is to take a reasonably large σK (which will depend, in real problems, on the value
of the physical constants) and sufficiently refined meshes. Moreover, the spurious
character of an eigenvalue can be easily checked from its dependence on σK and
the mesh.

5.3. Test 3: Circular domain

In this test, we have taken as domain the unit circle Ω := {(x, y) ∈ R
2 : x2+y2 < 1}

with Γ0 = ∂Ω and Γ1 = ∅.
It is easy to check that any homogeneous harmonic polynomial of degree n

satisfies ∂nw = nw on ∂Ω. Therefore, for all n ∈ N, λ = n is an eigenvalue of
this problem and the corresponding eigenspace is the set of homogeneous harmonic
polynomials of degree n, whose dimension is 2.

We have taken σK = 1 in (5.1). We have used polygonal meshes created with
PolyMesher,30 as that shown in Fig. 4. The refinement parameter N used to label
each mesh is now the number of elements intersecting the boundary.
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Fig. 4. Test 3. Sample polygonal mesh for N = 29.

Table 5. Test 3. Computed lowest eigenvalues λhi, 1 ≤ i ≤ 4.

λhi N = 8 N = 30 N = 104 N = 342 Order λi

λh1 0.9509 0.9960 0.9997 1.0000 1.97 1
λh2 0.9762 0.9971 0.9997 1.0000 1.81 1
λh3 1.9528 1.9957 1.9997 2.0000 1.91 2
λh4 2.0601 2.0002 1.9998 2.0000 1.89 2

We report in Table 5 the four lowest eigenvalues λhi computed with this method.
The table also includes the estimated orders of convergence. The last column shows
the exact eigenvalues.

Once more, a quadratic order of convergence can be clearly appreciated from
Table 5.

Finally, Fig. 5 shows a plot of the eigenfunctions computed with the finest mesh.
In order to compute the L2(Γ0)-errors, some special care had to be taken because

of the double multiplicity of each eigenvalue. We focused on the eigenvalue λ3 =
λ4 = 2, whose corresponding eigenspace is spanned by the eigenfunctions w3(x, y) =
xy and w4(x, y) = x2 − y2. As can be seem from Fig. 5 (down), the computed
eigenfunctions are not necessarily w3 or w4, but linear combination of these two.
To isolate one particular eigenfunction, we took advantage of the symmetry of the
domain and solved the problem in the quarter x, y > 0 of the unit circle. Thus,
to compute w3(x, y) = xy, which vanishes on x = 0 and y = 0, we imposed these
values as homogeneous Dirichlet data of the problem. Proceeding in this way, we
could ensure that the computed eigenfunction was actually an approximation of w3.

Another difficulty of this test is that the curved domain is approximated by a
polygonal one, so that the boundary values of these computed eigenfunctions are
defined on the polygonal domain, whereas those of the exact eigenfunctions are
given on the curved domain. To avoid these drawbacks, we projected the latter
onto the polygonal domain.
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Fig. 5. Test 3. Eigenfunctions: wh1 (upper left), wh2 (upper right), wh3 (lower left) and wh4

(lower right) computed with a very refined mesh (N = 342).

Table 6. Test 3. L2(Γ0)-errors of the eigenfunction
w3(x, y) = xy on different polygonal meshes.

N = 9 N = 37 N = 117 N = 379 Order

3.485e− 3 4.354e− 4 2.970e− 5 1.672e− 6 2.06

We report in Table 6 the L2(Γ0)-errors computed as described above on the
curved boundary of the quarter of circle by using again polygonal meshes obtained
with PolyMesher, similar to that shown in Fig. 4, but for the quarter of circle. We
also include in this table the computed order of convergence which, once more, is
clearly quadratic.
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