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a b s t r a c t

The paper deals with the a posteriori error analysis of a virtual element method for the
Steklov eigenvalue problem. The virtual element method has the advantage of using gen-
eral polygonal meshes, which allows implementing efficiently mesh refinement strategies.
We introduce a residual type a posteriori error estimator and prove its reliability and global
efficiency. Local efficiency estimates also hold, although in some elements they involve
boundary terms that are not known to be locally negligible. We use the corresponding
error estimator to drive an adaptive scheme. Finally, we report the results of a couple of
numerical tests, that allow us to assess the performance of this approach.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The Virtual Element Method (VEM), introduced in [1,2], appears as an evolution of the Mimetic Finite Differences Method
(see [3]), VEM takes its main ideas from modern mimetic schemes, but involves the Galerkin discretization of the problem
and consequently can be interpreted as a generalization of the Finite Element Method (FEM) on polygons or polyhedra
meshes. In recent years, the interest in numerical methods that can make use of general polytopal meshes has undergone a
significant growth in the mathematical and engineering literature; we cite [1,3–8] as a minimal sample of these works. To
date, VEM has been applied successfully in a large range of problems; see for instance [1,2,9–20].

The object of this paper is to introduce and analyze an a posteriori error estimator of residual type for a VEM
approximation of the Steklov eigenvalue problem, whose a priori analysis was recently performed in [18]. This problem
is characterized by the presence of the eigenvalue in the boundary condition and it appears for instance in the computation
of the hydroelastic vibration modes of a structure in contact with an incompressible fluid (see [21]), the analysis of the
stability of mechanical oscillators immersed in a viscous media (see [22]) and the dynamics of liquids in moving containers,
i.e., sloshing problems (see [23–28]).

Due to the large flexibility of the meshes to which the virtual element method is applied, mesh adaptivity becomes an
appealing feature since mesh refinement strategies can be implemented very efficiently. For instance, hanging nodes can
be introduced in the mesh to guarantee the mesh conformity without spreading the refined zones. In fact hanging nodes
introducedby the refinement of a neighboring element are simply treated as newnodes since adjacent nonmatching element
interfaces are perfectly acceptable. On the other hand, polygonal cells with very general shapes are admissible. Therefore,
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simple coarsening algorithms based on joining different element could be tried, although this issue will not be considered
in the paper.

On the other hand, adaptive mesh refinement strategies based on a posteriori error indicators play a relevant role in the
numerical solution of partial differential equations in a general sense. For instance, they guarantee achieving errors below
a tolerance with a reasonable computer cost in presence of singular solutions. Several approaches have been considered to
construct error estimators based on the residual equations (see [29–31] and the references therein). In particular, for the
Steklov eigenvalue problem we mention [32–36]. On the other hand, the design and analysis of a posteriori error bounds
for the VEM is a challenging task. References [37,38] are the only a posteriori error analyses for VEM currently available
in the literature. In [37], a posteriori error bounds for the C1-conforming VEM for the two-dimensional Poisson problem
are proposed. In turn, in [38], a posteriori error bounds are introduced for the C0-conforming VEM proposed in [39] for the
discretization of second order linear elliptic reaction–convection–diffusion problems with non constant coefficients in two
and three dimensions.

We have recently developed in [18] a virtual element method for the two dimensional Steklov eigenvalue problem.
Under standard assumptions on the computational domain, we have established that the resulting scheme provides a correct
approximation of the spectrum and proved optimal order error estimates for the eigenfunctions and a double order for the
eigenvalues. Having inmind the capability of VEM in the use of general polygonalmeshes and its flexibility for the application
of mesh adaptive strategies, we introduce and analyze an a posteriori error estimator for the virtual element approximation
from [18]. Since normal fluxes of the VEM solution are not computable, they will be replaced in the estimators by a proper
projection. As a consequence of this replacement, new additional terms appear in the a posteriori error estimator, which
represent the virtual inconsistency of VEM. Similar terms also appear in the other existing papers about a posteriori error
estimates of VEM (see [37,38]).

On the other hand, due to the fact that different eigenfunctions have in general different strengths of singularities, the
optimal mesh for a particular one will not be optimal for other eigenfunctions. Because of this, we focus on computing a
single eigenpair. Let us remark that in many cases (for instance in sloshing problems) only the smallest eigenvalue is sought
in practice. We prove that the estimator is equivalent to the error and use the corresponding indicator to drive an adaptive
scheme. Finally, let us mention that the proposed analysis combined with the results from [38] could be tried for similar
three-dimensional problems.

The outline of this article is as follows: in Section 2 we recall the continuous and discrete formulations of the Steklov
eigenvalue problem together with the spectral characterization and the a priori error estimates for the virtual element
approximation analyzed in [18]. In Section 3, we define the a posteriori error estimator and proved its reliability and global
efficiency. The proof of the latter relies in local efficiency estimates which, for some elements, involve additional boundary
terms that are proved to be globally (although not locally) negligible. In Section 4, we report a set of numerical tests that
allow us to assess the performance of an adaptive strategy driven by the estimator. We also make a comparison between
the proposed estimator and the standard edge-residual error estimator for a finite element method. Finally, we summarize
some conclusions.

Throughout the article we will denote by C a generic constant independent of the mesh parameter h, which may take
different values in different occurrences.

2. The Steklov eigenvalue problem and its virtual element approximation

In this section, we recall the Steklov eigenvalue problem and a VEM approximation proposed in [18]. Also, we summarize
the main a priori analysis results from this reference.

LetΩ ⊂ R2 be a bounded domain with polygonal boundary ∂Ω . Let Γ0 and Γ1 be disjoint open subsets of ∂Ω such that
∂Ω = Γ̄0 ∪ Γ̄1 with Γ0 ̸= ∅. We denote by n the outward unit normal vector to ∂Ω .

We consider the following eigenvalue problem:
Find (λ,w) ∈ R × H1(Ω), w ̸= 0, such that⎧⎨⎩

1w = 0 inΩ,
∂w

∂n
=

{
λw on Γ0,

0 on Γ1.

By testing the first equation above with v ∈ H1(Ω) and integrating by parts, we arrive at the following equivalent weak
formulation:

Problem 1. Find (λ,w) ∈ R × H1(Ω), w ̸= 0, such that∫
Ω

∇w · ∇v = λ

∫
Γ0

wv ∀v ∈ H1(Ω).

According to [18, Theorem 2.1], we know that the solutions (λ,w) of the problem above are:

• λ0 = 0, whose associated eigenspace is the space of constant functions inΩ;
• a sequence of positive finite-multiplicity eigenvalues {λj}j∈N such that λj → ∞.
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The eigenfunctions corresponding to different eigenvalues are orthogonal in L2(Γ0). Therefore the eigenfunctions wj
corresponding to λj > 0 satisfy∫

Γ0

wj = 0. (2.1)

We denote the bounded bilinear symmetric forms appearing in Problem 1 as follows:

a(w, v) :=

∫
Ω

∇w · ∇v, w, v ∈ H1(Ω),

b(w, v) :=

∫
Γ0

wv, w, v ∈ H1(Ω).

Let {Th}h be a sequence of decompositions ofΩ into polygons K . We assume that for every mesh Th, Γ 0 and Γ 1 are union
of edges of elements K ∈ Th. Let hK denote the diameter of the element K and h the maximum of the diameters of all the
elements of the mesh, i.e., h := maxK∈ThhK .

For the analysis, we will make as in [1,18] the following assumptions.

• A1. Every mesh Th consists of a finite number of simple polygons (i.e., open simply connected sets with non self
intersecting polygonal boundaries).

• A2. There exists γ > 0 such that, for all meshes Th, each polygon K ∈ Th is star-shaped with respect to a ball of radius
greater than or equal to γ hK .

• A3. There exists γ̂ > 0 such that, for all meshes Th, for each polygon K ∈ Th, the distance between any two of its
vertices is greater than or equal to γ̂ hK .

We consider now a simple polygon K and, for k ∈ N, we define

Bk(∂K ) :=
{
v ∈ C0(∂K ) : v|ℓ ∈ Pk(ℓ) for all edges ℓ ⊂ ∂K

}
.

We then consider the finite-dimensional space defined as follows:

V K
k :=

{
v ∈ H1(K ) : v|∂K ∈ Bk(∂K ) and1v|K ∈ Pk−2(K )

}
, (2.2)

where, for k = 1,wehave used the convention thatP−1(K ) := {0}.We choose in this space the degrees of freedom introduced
in [1, Section 4.1]. Finally, for every decomposition Th ofΩ into simple polygons K and for a fixed k ∈ N, we define

Vh :=
{
v ∈ H1(Ω) : v|K ∈ V K

k ∀K ∈ Th
}
.

In what follows, we will use standard Sobolev spaces, norms and seminorms and also the broken H1-seminorm

|v|21,h :=

∑
K∈Th

∥∇v∥2
0,K ,

which is well defined for every v ∈ L2(Ω) such that v|K ∈ H1(K ) for each polygon K ∈ Th.
We split the bilinear form a(·, ·) as follows:

a(u, v) =

∑
K∈Th

aK (u, v), u, v ∈ H1(Ω),

where

aK (u, v) :=

∫
K

∇u · ∇v, u, v ∈ H1(K ).

Due to the implicit space definition, we must have into account that we would not know how to compute aK (·, ·) for
uh, vh ∈ Vh. Nevertheless, the final output will be a local matrix on each element K whose associated bilinear form can
be exactly computed whenever one of the two entries is a polynomial of degree k. This will allow us to retain the optimal
approximation properties of the space Vh.

With this end, for any K ∈ Th and for any sufficiently regular function ϕ, we define first

ϕ :=
1
NK

NK∑
i=1

ϕ(Pi),

where Pi, 1 ≤ i ≤ NK , are the vertices of K . Then, we define the projectorΠK
k : V K

k −→ Pk(K ) ⊆ V K
k for each vh ∈ V K

k as the
solution of

aK
(
ΠK

k vh, q
)

= aK (vh, q) ∀q ∈ Pk(K ),

ΠK
k vh = vh.
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On the other hand, let SK (·, ·) be any symmetric positive definite bilinear form to be chosen as to satisfy

c0 aK (vh, vh) ≤ SK (vh, vh) ≤ c1 aK (vh, vh) ∀vh ∈ V K
k withΠK

k vh = 0, (2.3)

for some positive constants c0 and c1 independent of K . Then, set

ah(uh, vh) :=

∑
K∈Th

aKh (uh, vh), uh, vh ∈ Vh,

where aKh (·, ·) is the bilinear form defined on V K
k × V K

k by

aKh (uh, vh) := aK
(
ΠK

k uh,Π
K
k vh

)
+ SK

(
uh −ΠK

k uh, vh −ΠK
k vh

)
, uh, vh ∈ V K

k .

Notice that the bilinear form SK (·, ·) has to be actually computable for uh, vh ∈ V K
k .

The following properties of aKh (·, ·) have been established in [1, Theorem 4.1].

• k-Consistency:

aKh (p, vh) = aK (p, vh) ∀p ∈ Pk(K ), ∀vh ∈ V K
k . (2.4)

• Stability: There exist two positive constants α∗ and α∗, independent of K , such that:

α∗aK (vh, vh) ≤ aKh (vh, vh) ≤ α∗aK (vh, vh) ∀vh ∈ V K
k . (2.5)

Now, we are in a position to write the virtual element discretization of Problem 1.

Problem 2. Find (λh, wh) ∈ R × Vh, wh ̸= 0, such that

ah(wh, vh) = λhb(wh, vh) ∀vh ∈ Vh.

According to [18, Theorem 3.1] we know that the solutions (λh, wh) of the problem above are:

• λh0 = 0, whose associated eigenspace is the space of the constant functions inΩ .
• {λhj}

Nh
j=1, with Nh := dim

{
vh|Γ0 , vh ∈ Vh

}
− 1, which are positive eigenvalues repeated according to their respective

multiplicities.

Moreover, the eigenfunctions corresponding to different eigenvalues are orthogonal in L2(Γ0). Therefore the eigenfunc-
tions whj corresponding to λhj > 0 satisfy∫

Γ0

whj = 0. (2.6)

Let (λ,w) be a solution to Problem 1. We assume λ > 0 is a simple eigenvalue and we normalize w so that ∥w∥0,Γ0 = 1.
Then, for each mesh Th, there exists a solution (λh, wh) of Problem 2 such that λh → λ, ∥wh∥0,Γ0 = 1 and ∥w−wh∥1,Ω → 0
as h → 0. Moreover, according to (2.1) and (2.6), we have that w and wh belong to the space

V :=

{
v ∈ H1(Ω) :

∫
Γ0

v = 0
}
.

Let us remark that the following generalized Poincaré inequality holds true in this space: there exists C > 0 such that

∥v∥1,Ω ≤ C |v|1,Ω ∀v ∈ V . (2.7)

The following a priori error estimates have been proved in [18, Theorems 4.2–4.4]: there exists C > 0 such that for all
r ∈ [

1
2 , rΩ )

∥w − wh∥1,Ω ≤ Chmin{r,k}, (2.8)

|λ− λh| ≤ Ch2min{r,k}, (2.9)

∥w − wh∥0,Γ0 ≤ Chmin{r,1}/2+min{r,k}, (2.10)

where the constant rΩ > 1
2 is the Sobolev exponent for the Laplace problem with Neumann boundary conditions. Let us

remark that rΩ > 1, ifΩ is convex, and rΩ :=
π
ω
with ω being the largest re-entrant angle ofΩ , otherwise.

3. A posteriori error analysis

The aim of this section is to introduce a suitable residual-based error estimator for the VEM approximation of a single
eigenpair of the Steklov eigenvalue problem corresponding to a simple eigenvalue. The estimator must be fully computable,
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in the sense that it must depend only on quantities available from the VEM solution. Then, wewill show its equivalence with
the error. For this purpose, we introduce the following definitions and notations.

For any polygon K ∈ Th, we denote by EK the set of edges of K and

E :=

⋃
K∈Th

EK .

We decompose E = EΩ ∪ EΓ0 ∪ EΓ1 , where EΓ0 := {ℓ ∈ E : ℓ ⊂ Γ0}, EΓ1 := {ℓ ∈ E : ℓ ⊂ Γ1} and EΩ := E \ (EΓ0 ∪ EΓ1 ). For
each inner edge ℓ ∈ EΩ and for any sufficiently smooth function v, we define the jump of its normal derivative on ℓ by[[

∂v

∂n

]]
ℓ

:= ∇(v|K ) · nK + ∇(v|K ′ ) · nK ′ ,

where K and K ′ are the two elements in Th sharing the edge ℓ and nK and nK ′ are the respective outer unit normal vectors.
As a consequence of the mesh regularity assumptions, we have that each polygon K ∈ Th admits a sub-triangulation T K

h
obtained by joining each vertex of K with the midpoint of the ball with respect to which K is starred. Let T̂h :=

⋃
K∈Th

T K
h .

Since we are also assuming A3,
{
T̂h

}
h is a shape-regular family of triangulations ofΩ .

We introduce bubble functions on polygons as follows (see [38]). An interior bubble function ψK ∈ H1
0 (K ) for a polygon

K can be constructed piecewise as the sum of the cubic bubble functions for each triangle of the sub-triangulation T K
h that

attain the value 1 at the barycenter of each triangle. On the other hand, an edge bubble functionψℓ for ℓ ∈ ∂K is a piecewise
quadratic function attaining the value 1 at the barycenter of ℓ and vanishing on the triangles T ∈ T̂h that do not contain ℓ on
its boundary.

The following results which establish standard estimates for bubble functions will be useful in what follows (see [29,31]).

Lemma 3.1 (Interior Bubble Functions). For any K ∈ Th, let ψK be the corresponding interior bubble function. Then, there exists
a constant C > 0 independent of hK such that

C−1
∥q∥2

0,K ≤

∫
K
ψKq2 ≤ ∥q∥2

0,K ∀q ∈ Pk(K ),

C−1
∥q∥0,K ≤ ∥ψKq∥0,K + hK∥∇(ψKq)∥0,K ≤ C∥q∥0,K ∀q ∈ Pk(K ).

Lemma 3.2 (Edge Bubble Functions). For any K ∈ Th and ℓ ∈ EK , let ψℓ be the corresponding edge bubble function. Then, there
exists a constant C > 0 independent of hK such that

C−1
∥q∥2

0,ℓ ≤

∫
ℓ

ψℓq2 ≤ ∥q∥2
0,ℓ ∀q ∈ Pk(ℓ).

Moreover, for all q ∈ Pk(ℓ), there exists an extension of q ∈ Pk(K ) (again denoted by q) such that

h−1/2
K ∥ψℓq∥0,K + h1/2

K ∥∇(ψℓq)∥0,K ≤ C∥q∥0,ℓ.

Remark 3.1. A possible way of extending q from ℓ ∈ EK to K so that Lemma 3.2 holds is as follows: first we extend q
to the straight line L ⊃ ℓ using the same polynomial function. Then, we extend it to the whole plain through a constant
prolongation in the normal direction to L. Finally, we restrict the latter to K .

The following lemma provides an error equation which will be the starting point of our error analysis. From now on, we
will denote by e := (w − wh) ∈ V the eigenfunction error and by

Jℓ :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2

[[
∂(ΠK

k wh)
∂n

]]
ℓ

, ℓ ∈ EΩ ,

λhwh −
∂(ΠK

k wh)
∂n

, ℓ ∈ EΓ0 ,

−
∂(ΠK

k wh)
∂n

, ℓ ∈ EΓ1 ,

(3.1)

the edge residuals. Notice that Jℓ are actually computable since they only involve values ofwh on Γ0 (which are computable
in terms of the boundary degrees of freedom) andΠK

k wh ∈ Pk(K ) which is also computable.

Lemma 3.3. For any v ∈ H1(Ω), we have the following identity:

a(e, v) = λb(w, v) − λhb(wh, v) −

∑
K∈Th

aK (wh −ΠK
k wh, v) +

∑
K∈Th

⎡⎣∫
K
1(ΠK

k wh)v +

∑
ℓ∈EK

∫
ℓ

Jℓv

⎤⎦ .
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Proof. Using that (λ,w) is a solution of Problem 1, adding and subtractingΠK
k wh and integrating by parts, we obtain

a(e, v) = λb(w, v) − a(wh, v)

= λb(w, v) −

∑
K∈Th

[
aK (wh −ΠK

k wh, v) + aK (ΠK
k wh, v)

]
= λb(w, v) −

∑
K∈Th

aK (wh −ΠK
k wh, v) −

∑
K∈Th

[
−

∫
K
1(ΠK

k wh) v +

∫
∂K

∂(ΠK
k wh)
∂n

v

]
= λb(w, v) −

∑
K∈Th

aK (wh −ΠK
k wh, v)

+

∑
K∈Th

⎡⎣∫
K
1(ΠK

k wh) v −

∑
ℓ∈EK∩(EΓ0∪EΓ1 )

∫
ℓ

∂(ΠK
k wh)
∂n

v +
1
2

∑
ℓ∈EK∩EΩ

∫
ℓ

[[
∂(ΠK

k wh)
∂n

]]
ℓ

v

⎤⎦ .
Finally, the proof follows by adding and subtracting the term λhb(wh, v). □

For each K ∈ Th, we introduce the local consistency term θK , the volumetric residual RK and the local error indicator ηK
as follows:

θ2K := aKh (wh −ΠK
k wh, wh −ΠK

k wh),

R2
K := h2

K∥1(ΠK
k wh)∥2

0,K ,

η2K := θ2K + R2
K +

∑
ℓ∈EK

hK∥Jℓ∥2
0,ℓ.

We also introduce the global error estimator by

η2 :=

∑
K∈Th

η2K .

Remark 3.2. The indicators ηK include the terms θK which do not appear in standard finite element estimators. This term,
which represent the virtual inconsistency of the method, has been introduced in [37,38] for a posteriori error estimates of
other VEM. Let us emphasize that it can be directly computed in terms of the bilinear form SK (·, ·). In fact,

θ2K = aKh (wh −ΠK
k wh, wh −ΠK

k wh) = SK (wh −ΠK
k wh, wh −ΠK

k wh).

3.1. Reliability of the a posteriori error estimator

Our next goal is to prove upper bounds for different error terms. These boundswill not be actually computable, since they
will involve the quantity ∥w − wh∥0,Γ0 . However, later on, this quantity will be proved to be asymptotically negligible, so
that the following three lemmas can be seen as intermediary steps to obtain a fully computable a posteriori error estimate.

Lemma 3.4. There exists a constant C > 0 independent of h such that

|w − wh|1,Ω ≤ C
(
η +

λ+ λh

2
∥w − wh∥0,Γ0

)
.

Proof. Since e = w − wh ∈ V ⊂ H1(Ω), there exists eI ∈ Vh satisfying (see [18, Proposition 4.2])

∥e − eI∥0,K + hK |e − eI |1,K ≤ ChK∥e∥1,K . (3.2)

Then, we have that

|w − wh|
2
1,Ω = a(w − wh, e)

= a(w − wh, e − eI ) + a(w, eI ) − ah(wh, eI ) + ah(wh, eI ) − a(wh, eI )

= λb(w, e) − λhb(wh, e)  
T1

+

∑
K∈Th

⎡⎣∫
K
1(ΠK

k wh)(e − eI ) +

∑
ℓ∈EK

∫
ℓ

Jℓ(e − eI )

⎤⎦
  

T2

−

∑
K∈Th

aK (wh −ΠK
k wh, e − eI )  

T3

+ ah(wh, eI ) − a(wh, eI )  
T4

,

(3.3)

the last equality thanks to Lemma 3.3. Next, we bound each term Ti separately.
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For T1, we use the definition of b(·, ·), the fact that ∥w∥0,Γ0 = ∥wh∥0,Γ0 = 1, a trace theorem and (2.7) to write

T1 = λ+ λh − (λ+ λh)
∫
Γ0

wwh =
λ+ λh

2
∥e∥2

0,Γ0 ≤ C
λ+ λh

2
∥e∥0,Γ0 |e|1,Ω . (3.4)

For T2, first, we use a local trace inequality (see [14, Lemma 14]) and (3.2) to write for each ℓ ∈ EK and K ∈ Th

∥e − eI∥0,ℓ ≤ C
(
h−1/2
K ∥e − eI∥0,K + h1/2

K |e − eI |1,K
)

≤ Ch1/2
K ∥e∥1,K .

Hence, using (3.2) again, we have

T2 ≤ C
∑
K∈Th

⎡⎣∥1(ΠK
k wh)∥0,K∥e − eI∥0,K +

∑
ℓ∈EK

∥Jℓ∥0,ℓ∥e − eI∥0,ℓ

⎤⎦
≤ C

∑
K∈Th

⎡⎣hK∥1(ΠK
k wh)∥0,K∥e∥1,K +

∑
ℓ∈EK

h1/2
K ∥Jℓ∥0,ℓ∥e∥1,K

⎤⎦
≤ C

⎧⎨⎩∑
K∈Th

⎡⎣h2
K∥1(ΠK

k wh)∥2
0,K +

∑
ℓ∈EK

hK∥Jℓ∥2
0,ℓ

⎤⎦⎫⎬⎭
1/2

|e|1,Ω , (3.5)

where for the last estimate we have used (2.7).
To bound T3, we use the stability property (2.5) and (3.2) to write

T3 ≤ C
∑
K∈Th

aKh (wh −ΠK
k wh, wh −ΠK

k wh)1/2∥e∥1,K ≤ C

⎛⎝∑
K∈Th

θ2K

⎞⎠1/2

|e|1,Ω , (3.6)

where for the last estimate we have used Remark 3.2 and (2.7) again.
Finally, to bound T4, we add and subtractΠK

k wh on each K ∈ Th and use the k-consistency property (2.4):

T4 =

∑
K∈Th

[
aKh (wh −ΠK

k wh, eI ) − aK (wh −ΠK
k wh, eI )

]
≤

∑
K∈Th

aKh (wh −ΠK
k wh, wh −ΠK

k wh)1/2aKh (eI , eI )
1/2

+

∑
K∈Th

aK (wh −ΠK
k wh, wh −ΠK

k wh)1/2aK (eI , eI )1/2

≤ C
∑
K∈Th

aKh (wh −ΠK
k wh, wh −ΠK

k wh)1/2|eI |1,K

≤ C

⎛⎝∑
K∈Th

θ2K

⎞⎠1/2

|e|1,Ω , (3.7)

where we have used the stability property (2.5), (3.2) and (2.7) for the last two inequalities.
Thus, the result follows from (3.3)–(3.7). □

Although the virtual approximate eigenfunction is wh, this function is not known in practice. Instead of wh, what can be
used as an approximation of the eigenfunction isΠkwh, whereΠk is defined for vh ∈ Vh by

(Πkvh)|K := ΠK
k vh ∀K ∈ Th.

Notice thatΠkwh is actually computable. The following result shows that an estimate similar to that of Lemma 3.4 holds true
forΠkwh.

Lemma 3.5. There exists a constant C > 0 independent of h such that

|w −Πkwh|1,h ≤ C
(
η +

λ+ λh

2
∥w − wh∥0,Γ0

)
.

Proof. For each polygon K ∈ Th, we have that

|w −ΠK
k wh|1,K ≤ |w − wh|1,K + |wh −ΠK

k wh|1,K .

Then, summing over all polygons we obtain

|w −Πkwh|1,h ≤ C

⎛⎝∑
K∈Th

|w − wh|
2
1,K +

∑
K∈Th

|wh −ΠK
k wh|

2
1,K

⎞⎠1/2

.
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Now, using (2.3) together with Remark 3.2, we have that

|wh −ΠK
k wh|

2
1,K ≤

1
c0

SK (wh −ΠK
k wh, wh −ΠK

k wh) =
1
c0
θ2K ≤

1
c0
η2K .

Thus, the result follows from Lemma 3.4. □

In what follows, we prove also an upper bound for the eigenvalue approximation.

Lemma 3.6. There exists a constant C > 0 independent of h such that

|λ− λh| ≤ C
(
η +

λ+ λh

2
∥w − wh∥0,Γ0

)2

.

Proof. From the symmetry of the bilinear forms together with the facts that a(w, v) = λb(w, v) for all v ∈ H1(Ω),
ah(wh, vh) = λhb(wh, vh) for all vh ∈ Vh and b(wh, wh) = 1, we have

|λ− λh| =
|a(w − wh, w − wh) − λb(w − wh, w − wh) + ah(wh, wh) − a(wh, wh)|

b(wh, wh)
≤ C

[
|w − wh|

2
1,Ω + ∥w − wh∥

2
0,Γ0 + |ah(wh, wh) − a(wh, wh)|

]
≤ C

[
|w − wh|

2
1,Ω + |ah(wh, wh) − a(wh, wh)|

]
, (3.8)

where we have also used a trace theorem and (2.7). We now bound the last term on the right-hand side above using the
definition of ah(·, ·) and (2.3):

|ah(wh, wh) − a(wh, wh)|

=

⏐⏐⏐⏐⏐⏐
∑
K∈Th

[
aK (ΠK

k wh,Π
K
k wh) + SK

(
wh −ΠK

k wh, wh −ΠK
k wh

)]
−

∑
K∈Th

aK (wh, wh)

⏐⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐⏐
∑
K∈Th

[
aK

(
ΠK

k wh,Π
K
k wh

)
− aK (wh, wh)

]⏐⏐⏐⏐⏐⏐ +

∑
K∈Th

c1 aK
(
wh −ΠK

k wh, wh −ΠK
k wh

)
=

∑
K∈Th

(1 + c1) aK
(
wh −ΠK

k wh, wh −ΠK
k wh

)
≤ (1 + c1)

∑
K∈Th

(
|wh − w|

2
1,K +

⏐⏐w −ΠK
k wh

⏐⏐2
1,K

)
.

Finally, from the above estimate and (3.8) we obtain

|λ− λh| ≤ C
(
|w − wh|

2
1,Ω + |w −Πkwh|

2
1,h

)
. (3.9)

Hence, we conclude the proof thanks to Lemmas 3.4 and 3.5. □

As claimed above, the upper bounds of the last three lemmas are not computable since they involve the error term
∥w − wh∥0,Γ0 . Our next goal is to prove that this term is asymptotically negligible in these estimates. With this aim, we
will improve the estimate (2.10) by proving that

∥w − wh∥0,Γ0 ≤ Chmin{r,1}/2 (
|w − wh|1,Ω + |w −Πkwh|1,h

)
. (3.10)

This proof is based on the arguments used in Section 4 from [18]. To avoid repeating them step by step, in what follows we
will only report the changes that have to be made in order to prove (3.10).

We define in H1(Ω) the bilinear form â(·, ·) := a(·, ·) + b(·, ·), which is elliptic [18, Lemma 2.1]. Let u ∈ H1(Ω) be the
solution of

â(u, v) = b(w, v) ∀v ∈ H1(Ω).

Since a(w, v) = λb(w, v) we have that u = w/(λ+1). We also define in Vh the bilinear form âh(·, ·) := ah(·, ·)+b(·, ·), which
is elliptic uniformly in h [18, Lemma 3.1]. Let uh ∈ Vh be the solution of

âh(uh, vh) = b(w, vh) ∀vh ∈ Vh. (3.11)

The arguments in the proof of Lemma 4.3 from [18] can be easily modified to prove that

∥u − uh∥0,Γ0 ≤ Chmin{r,1}/2 (
|u − uh|1,Ω + |u −Πkuh|1,h

)
.
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Then, using this estimate in the proof of Theorem 4.4 from [18] yields

∥w − wh∥0,Γ0 ≤ Chmin{r,1}/2 (
|u − uh|1,Ω + |u −Πkuh|1,h

)
. (3.12)

Now, since as stated above u = w/(λ+ 1), we have that

|u − uh|1,Ω ≤
|w − wh|1,Ω

|λ+ 1|
+

⏐⏐⏐⏐ 1
λ+ 1

−
1

λh + 1

⏐⏐⏐⏐ |wh|1,Ω +

⏐⏐⏐⏐ wh

λh + 1
− uh

⏐⏐⏐⏐
1,Ω
. (3.13)

For the second term on the right hand side above, we use (3.9) to write⏐⏐⏐⏐ 1
λ+ 1

−
1

λh + 1

⏐⏐⏐⏐ =
|λ− λh|

|λ+ 1| |λh + 1|
≤ C

(
|w − wh|

2
1,Ω + |w −Πkwh|

2
1,h

)
. (3.14)

To estimate the third term we recall first that

âh(wh, vh) = (λh + 1)b(wh, vh) ∀vh ∈ Vh.

Then, subtracting this equation divided by λh + 1 from (3.11) we have that

âh

(
uh −

wh

λh + 1
, vh

)
= b(w − wh, vh) ∀vh ∈ Vh.

Hence, from the uniform ellipticity of âh(·, ·) in Vh, we obtainuh −
wh

λh + 1

2

1,Ω
≤ C∥w − wh∥0,Γ0

uh −
wh

λh + 1


0,Γ0

≤ C∥w − wh∥0,Γ0

uh −
wh

λh + 1


1,Ω

.

Thereforeuh −
wh

λh + 1


1,Ω

≤ C∥w − wh∥0,Γ0 ≤ C∥w − wh∥1,Ω ≤ C |w − wh|1,Ω , (3.15)

the last inequality because of Poincaré inequality (2.7). Then, substituting (3.14) and (3.15) into (3.13) we obtain

|u − uh|1,Ω ≤ C
(
|w − wh|1,Ω + |w −Πkwh|1,h

)
. (3.16)

For the other term on the right hand side of (3.12) we have

|u −Πkuh|1,h ≤ |u − uh|1,Ω + |uh −Πkuh|1,h, (3.17)

whereas

|uh −Πkuh|1,h ≤

⏐⏐⏐⏐uh −
wh

λh + 1

⏐⏐⏐⏐
1,Ω

+
|wh −Πkwh|1,h

λh + 1
+

⏐⏐⏐⏐Πk

(
wh

λh + 1
− uh

)⏐⏐⏐⏐
1,h

≤ 2
⏐⏐⏐⏐uh −

wh

λh + 1

⏐⏐⏐⏐
1,Ω

+
|w − wh|1,Ω

λh + 1
+

|w −Πkwh|1,h

λh + 1

≤ C
(
|w − wh|1,Ω + |w −Πkwh|1,h

)
,

where we have used (3.15) for the last inequality. Substituting this and estimate (3.16) into (3.17) we obtain

|u −Πkuh|1,h ≤ C
(
|w − wh|1,Ω + |w −Πkwh|1,h

)
.

Finally, substituting the above estimate and (3.16) into (3.12), we conclude the proof of the following result.

Lemma 3.7. There exists C > 0 independent of h such that

∥w − wh∥0,Γ0 ≤ Chmin{r,1}/2 (
|w − wh|1,Ω + |w −Πkwh|1,h

)
.

Using this result, now it is easy to prove that the term ∥w − wh∥0,Γ0 in Lemmas 3.4–3.6 is asymptotically negligible. In
fact, we have the following result.

Theorem 3.1. There exist positive constants C and h0 such that, for all h < h0, there holds

|w − wh|1,Ω + |w −Πkwh|1,h ≤ Cη; (3.18)

|λ− λh| ≤ Cη2. (3.19)
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Proof. From Lemmas 3.4, 3.5 and 3.7 we have

|w − wh|1,Ω + |w −Πkwh|1,h ≤ C
(
η + hmin{r,1}/2 (

|w − wh|1,Ω + |w −Πkwh|1,h
))
.

Hence, it is straightforward to check that there exists h0 > 0 such that for all h < h0 (3.18) holds true.
On the other hand, from Lemma 3.7 and (3.18) we have that for all h < h0

∥w − wh∥0,Γ0 ≤ Chmin{r,1}/2η.

Then, for h small enough, (3.19) follows from Lemma 3.6 and the above estimate. □

3.2. Efficiency of the a posteriori error estimator

Wewill show in this section that the local error indicators ηK are efficient in the sense that they point out correctly which
polygons should be refined.

With this end, first, we prove an upper estimate for the volumetric residual term RK .

Lemma 3.8. There exists a constant C > 0 independent of hK such that

RK ≤ C
(
|w − wh|1,K +

⏐⏐w −ΠK
k wh

⏐⏐
1,K

)
.

Proof. For any K ∈ Th, let ψK be the corresponding interior bubble function. We define v := ψK1(ΠK
k wh). Since v vanishes

on the boundary of K , it may be extended by zero to the whole domain Ω . This extension, again denoted by v, belongs to
H1(Ω) and from Lemma 3.3 we have

aK (e, v) = −aK
(
wh −ΠK

k wh, ψK1(ΠK
k wh)

)
+

∫
K
1(ΠK

k wh)ψK1(ΠK
k wh).

Since1(ΠK
k wh) ∈ Pk−2(K ), using Lemma 3.1 and the above equality we obtain

C−1
∥1(ΠK

k wh)∥2
0,K ≤

∫
K
ψK1(ΠK

k wh)2

= aK
(
e, ψK1(ΠK

k wh)
)
+ aK

(
wh −ΠK

k wh, ψK1(ΠK
k wh)

)
≤ C

(
|e|1,K +

⏐⏐wh −ΠK
k wh

⏐⏐
1,K

) ⏐⏐ψK1(ΠK
k wh)

⏐⏐
1,K

≤ Ch−1
K

(
|e|1,K +

⏐⏐w −ΠK
k wh

⏐⏐
1,K

) 1(ΠK
k wh)


0,K , (3.20)

where, for the last inequality, we have used again Lemma 3.1 and triangular inequality. Multiplying the above inequality by
hK allows us to conclude the proof. □

Next goal is to obtain an upper estimate for the local consistency term θK .

Lemma 3.9. There exists C > 0 independent of hK such that

θK ≤ C
(
|w − wh|1,K + |w −ΠK

k wh|1,K

)
.

Proof. From the definition of θK together with Remark 3.2 and estimate (2.3) we have

θK ≤ C |wh −ΠK
k wh|1,K ≤ C

(
|wh − w|1,K + |w −ΠK

k wh|1,K

)
.

The proof is complete. □

The following lemma provides an upper estimate for the jump terms of the local error indicator.

Lemma 3.10. There exists a constant C > 0 independent of hK such that

h1/2
K ∥Jℓ∥0,ℓ ≤ C

(
|w − wh|1,K +

⏐⏐w −ΠK
k wh

⏐⏐
1,K

)
∀ℓ ∈ EK ∩ EΓ1 , (3.21)

h1/2
K ∥Jℓ∥0,ℓ ≤ C

(
|w − wh|1,K +

⏐⏐w −ΠK
k wh

⏐⏐
1,K + h1/2

K ∥λw − λhwh∥0,ℓ
)

∀ℓ ∈ EK ∩ EΓ0 , (3.22)

h1/2
K ∥Jℓ∥0,ℓ ≤ C

∑
K ′∈ωℓ

(
|w − wh|1,K ′ + |w −ΠK ′

k wh|1,K ′

)
∀ℓ ∈ EK ∩ EΩ , (3.23)

where ωℓ := {K ′
∈ Th : ℓ ∈ EK ′}.
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Proof. First, for ℓ ∈ EK ∩ EΓ1 , we extend Jℓ ∈ Pk−1(ℓ) to the element K as in Remark 3.1. Let ψℓ be the corresponding
edge bubble function. We define v := Jℓψℓ. Then, v may be extended by zero to the whole domainΩ . This extension, again
denoted by v, belongs to H1(Ω) and from Lemma 3.3 we have that

aK (e, v) = −aK (wh −ΠK
k wh, Jℓψℓ) +

∫
K
1

(
ΠK

k wh
)
Jℓψℓ +

∫
ℓ

J2ℓψℓ.

For Jℓ ∈ Pk−1(ℓ), from Lemma 3.2 and the above equality we obtain

C−1
∥Jℓ∥2

0,ℓ ≤

∫
ℓ

J2ℓψℓ ≤ C
[(

|e|1,K + |wh −ΠK
k wh|1,K

)
|ψℓJℓ|1,K +

1(ΠK
k wh)


0,K ∥Jℓψℓ∥0,K

]
≤ C

[(
|e|1,K + |wh −ΠK

k wh|1,K

)
h−1/2
K ∥Jℓ∥0,ℓ + h−1

K

(⏐⏐w −ΠK
k wh

⏐⏐
1,K + |e|1,K

)
h1/2
K ∥Jℓ∥0,ℓ

]
≤ Ch−1/2

K ∥Jℓ∥0,ℓ
(
|e|1,K +

⏐⏐w −ΠK
k wh

⏐⏐
1,K

)
,

where we have used again Lemma 3.2 together with estimate (3.20). Multiplying by h1/2
K the above inequality allows us to

conclude (3.21).
Secondly, for ℓ ∈ EK ∩ EΓ0 , we extend v := Jℓψℓ to H1(Ω) as in the previous case and use Lemma 3.3 to write

aK (e, v) = λ

∫
ℓ

wJℓψℓ − λh

∫
ℓ

whJℓψℓ − aK
(
wh −ΠK

k wh, Jℓψℓ
)
+

∫
K
1

(
ΠK

k wh
)
Jℓψℓ +

∫
ℓ

J2ℓψℓ.

Then, since Jℓ ∈ Pk(ℓ), repeating the previous arguments we obtain⏐⏐⏐⏐∫
ℓ

J2ℓψℓ

⏐⏐⏐⏐ ≤ C
[⏐⏐⏐⏐λh ∫

ℓ

whJℓψℓ − λ

∫
ℓ

wJℓψℓ

⏐⏐⏐⏐ + h−1/2
K ∥Jℓ∥0,ℓ

(⏐⏐w −ΠK
k wh

⏐⏐
1,K + |e|1,K

)]
.

Hence, using Lemma 3.2 and a local trace inequality we arrive at

∥Jℓ∥2
0,ℓ ≤ C

[
∥λw − λhwh∥0,ℓ ∥ψℓJℓ∥0,ℓ + h−1/2

K

(⏐⏐w −ΠK
k wh

⏐⏐
1,K + |e|1,K

)
∥Jℓ∥0,ℓ

]
≤ Ch−1/2

K ∥Jℓ∥0,ℓ

(⏐⏐w −ΠK
k wh

⏐⏐
1,K + |e|1,K + h1/2

K ∥λw − λhwh∥0,ℓ

)
,

where we have used Lemma 3.2 again. Multiplying by h1/2
K the above inequality yields (3.22).

Finally, for ℓ ∈ EK ∩ EΩ , we extend v := Jℓψℓ to H1(Ω) as above again and use Lemma 3.3 to write

a(e, v) = −

∑
K ′∈ωℓ

aK
′

(wh −ΠK ′

k wh, Jℓψℓ) +

∑
K ′∈ωℓ

∫
K ′

1

(
ΠK ′

k wh

)
Jℓψℓ +

∑
K ′∈ωℓ

∫
ℓ

J2ℓψℓ.

Then, proceeding analogously to the previous case we obtain

∥Jℓ∥2
0,ℓ ≤ Ch−1/2

K ∥Jℓ∥0,ℓ

⎡⎣ ∑
K ′∈ωℓ

(
|e|1,K ′ + |w −ΠK ′

k wh|1,K ′

)⎤⎦ .
Thus, the proof is complete. □

Now, we are in a position to prove an upper bound for the local error indicators ηK .

Theorem 3.2. There exists C > 0 such that

η2K ≤ C

⎡⎣ ∑
K ′∈ωK

⎛⎝|w −ΠK ′

k wh|
2
1,K ′ + |w − wh|

2
1,K ′ +

∑
ℓ∈EK∩EΓ0

hK∥λw − λhwh∥
2
0,ℓ

⎞⎠⎤⎦ ,
where ωK := {K ′

∈ Th : K ′ and K share an edge}.

Proof. It follows immediately from Lemmas 3.8–3.10. □

According to the above theorem, for those elements K whose edges do not lie on Γ0, the error indicators η2K provide lower
bounds of the error terms

∑
K ′∈ωK

(
|w −ΠK ′

k wh|
2
1,K ′ + |w − wh|

2
1,K ′

)
in the neighborhoodωK ofK . For those elementsK with

an edge on Γ0, the term hK∥λw − λhwh∥
2
0,ℓ also appears in the estimate. Let us remark that it is reasonable to expect this

terms to be asymptotically negligible. In fact, this is the case at least for the global estimator η2 =
∑

K∈Th
η2K as is shown in

the following result.

Corollary 3.1. There exists a constant C > 0 such that

η2 ≤ C
(
|w − wh|

2
1,Ω + |w −Πkwh|

2
1,h

)
.
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(a) Triangle K refined into 3
quadrilaterals.

(b) Pentagon K refined into 5
quadrilaterals.

Fig. 1. Example of refined elements for VEM strategy.

Proof. From Theorem 3.2 we have that

η2 ≤ C
(
|w − wh|

2
1,Ω + |w −Πkwh|

2
1,h + h∥λw − λhwh∥

2
0,Γ0

)
.

The last term on the right hand side above is bounded as follows:

∥λw − λhwh∥
2
0,Γ0 ≤ 2λ2∥w − wh∥

2
0,Γ0 + 2|λ− λh|

2,

where we have used that ∥wh∥0,Γ0 = 1. Now, by using a trace inequality and Poincaré inequality (2.7) we have

∥w − wh∥0,Γ0 ≤ C |w − wh|1,Ω .

On the other hand, using the estimate (3.9), we have

|λ− λh|
2

≤ (|λ| + |λh|)|λ− λh| ≤ C
(
|w − wh|

2
1,Ω + |w −Πkwh|

2
1,h

)
.

Therefore,

η2 ≤ C
(
|w − wh|

2
1,Ω + |w −Πkwh|

2
1,h

)
and we conclude the proof. □

4. Numerical results

In this section, we will investigate the behavior of an adaptive scheme driven by the error indicator in two numerical
tests that differ in the shape of the computational domain Ω and, hence, in the regularity of the exact solution. With this
aim, we have implemented in aMATLAB code a lowest-order VEM (k = 1) on arbitrary polygonalmeshes following the ideas
proposed in [2].

To complete the choice of the VEM, we had to choose the bilinear forms SK (·, ·) satisfying (2.3). In this respect, we
proceeded as in [1, Section 4.6]: for each polygon K with vertices P1, . . . , PNK , we used

SK (u, v) :=

NK∑
r=1

u(Pr )v(Pr ), u, v ∈ V K
1 .

We have used the MATLAB command eigs to compute the smallest eigenvalue λh and the corresponding eigenfunction
wh. Then, we have computed ∥wh∥0,Γ0 to normalize wh. Notice that this norm is actually computable, since it only involves
values of wh on edges of the mesh.

One of the goals of our numerical tests is to compare the performance of our VEM code with that of a standard classical
finite element method (FEM). Let us remark that, for k = 1 and meshes of triangles, VEM reduces to FEM. This fact allowed
us to use the VEM code for most of the FEM computations. Actually, both codes only differ in the refinement stage.

In fact, in all our tests we have initiated the adaptive processes with a coarse triangular mesh, but we have used different
algorithms to refine the meshes for VEM and FEM. The refinement for FEM was based on the so-called blue–green-closure
strategy (see [40]), for which all the subsequentmeshes consist of triangles. Instead, for VEM, we have used the procedure to
refine the meshes described in [37]. It consists of splitting each element into n quadrilaterals (n being the number of edges
of the polygon) by connecting the barycenter of the element with the midpoint of each edge as shown in Fig. 1 (see [37] for
more details). Notice that although this process is initiated with a mesh of triangles, the successively created meshes will
contain other kind of convex polygons, as it can be seen in Figs. 3 and 7.
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Fig. 2. Test 1. Sloshing in a square domain.

In both procedures (VEM and FEM) we have used the classical strategy of marking to refine those elements K which
satisfy

ηK ≥ 0.5 max
K ′∈Th

{ηK ′}.

Let us remark that we have also tried Dörfler’s marking strategy [41], but no significant change appears in the results.
Since we have chosen k = 1, according to the definition of the local virtual element space V K

1 (cf. (2.2)), the term
R2
K := h2

K∥1wh∥
2
0,K vanishes. Thus, the quantities that we have actually computed as error indicators for our VEM code

are the following:

η2K = θ2K +

∑
ℓ∈EK

hK∥Jℓ∥2
0,ℓ ∀K ∈ Th.

As claimed above, we have used the same VEM code on triangular meshes for the FEM procedure. In such a case, the term
θ2K := aKh (wh − ΠK

k wh, wh − ΠK
k wh) vanishes too, since V K

1 = P1(K ) and hence ΠK
k is the identity. By the same reason, the

projection ΠK
k also disappears in the definition (3.1) of Jℓ. Therefore, for triangular meshes, not only VEM reduces to FEM,

but also the error indicator becomes a classical well-known edge-residual error estimator (see [33]):

η2K =

∑
ℓ∈EK

hK∥Jℓ∥2
0,ℓ with Jℓ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2

[[
∂wh

∂n

]]
ℓ

, ℓ ∈ EΩ ,

λhwh −
∂wh

∂n
, ℓ ∈ EΓ0 ,

−
∂wh

∂n
, ℓ ∈ EΓ1 .

In what follows, we report the results of a couple of tests. In both cases, we will restrict our attention to the approximation
of the eigenvalues. Let us recall that according to Corollary 3.6, the global error estimator η2 provides an upper bound of the
error of the computed eigenvalue.

4.1. Test 1: sloshing in a square domain

We have chosen for this test a problemwith known analytical solution. It corresponds to the computation of the sloshing
modes of a two-dimensional fluid contained in the domainΩ := (0, 1)2 with a horizontal free surface Γ0 as shown in Fig. 2.
The solutions of this problem are

λj = jπ tanh(jπ ), wj(x, y) = cos(jπx) sinh(jπy), j ∈ N.

Figs. 3 and 4 show the adaptively refined meshes obtained with VEM and FEM procedures, respectively.
Since the eigenfunctions of this problem are smooth, according to (2.8) we have that |λ− λh| = O(h2). Therefore, in case

of uniformly refined meshes, |λ− λh| = O
(
N−1

)
, where N denotes the number of degrees of freedom which is the optimal

convergence rate that can be attained.
Fig. 5 shows the error curves for the computed lowest eigenvalue on uniformly refined meshes and adaptively refined

meshes with FEM and VEM schemes. The plot also includes a line of slope−1, which correspond to the optimal convergence
rate of the method O

(
N−1

)
.

It can be seen from Fig. 5 that the three refinement schemes lead to the correct convergence rate. Moreover, the
performance of adaptive VEM is a bit better than that of adaptive FEM, while the latter is also better than that of uniform
FEM. Moreover, in spite of the fact that the eigenfunction is smooth, both adaptive processes lead to meshes more refined
in the vicinity of Γ0 and the error on these meshes is smaller than that on uniform meshes as can be seen from Fig. 5.
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(a) Initial mesh. (b) Step 1.

(c) Step 3. (d) Step 6.

Fig. 3. Test 1. Adaptively refined meshes obtained with VEM scheme at refinement steps 0, 1, 3 and 6.

Table 1
Test 1. Components of the error estimator and effectivity indexes on the adaptively refined meshes with VEM.

N λh1 |λ1 − λh1| θ2 J2 η2
|λ1−λh1 |

η2

81 3.2499 0.1200 0 0.8245 0.8245 0.1456
167 3.1644 0.0345 0.0111 0.2469 0.2580 0.1339
313 3.1450 0.0151 0.0117 0.1108 0.1225 0.1234
745 3.1355 0.0056 0.0054 0.0427 0.0481 0.1171

1540 3.1327 0.0028 0.0033 0.0216 0.0249 0.1113
3392 3.1311 0.0013 0.0015 0.0102 0.0117 0.1069
5806 3.1307 0.0008 0.0009 0.0064 0.0073 0.1069

11973 3.1303 0.0004 0.0005 0.0032 0.0037 0.1075

We report in Table 1, the errors |λ1 − λh1| and the estimators η2 at each step of the adaptive VEM scheme. We include in
the table the terms θ2 :=

∑
K∈Th

θ2K which arise from the inconsistency of VEM and J2 :=
∑

K∈Th

(∑
ℓ∈EK

hK∥Jℓ∥2
0,ℓ

)
which

arise from the edge residuals. We also report in the table the effectivity indexes |λ1 − λh1|/η
2.

It can be seen from Table 1 that the effectivity indexes are bounded above and below far from zero and that the
inconsistency and edge residual terms are roughly speaking of the same order, none of them being asymptotically negligible.

4.2. Test 2

The aim of this test is to assess the performance of the adaptive schemewhen solving a problemwith a singular solution.
In this test Ω consists of a unit square from which it is subtracted an equilateral triangle as shown in Fig. 6. In this case Ω
has a reentrant angle ω =

5π
3 . Therefore, the Sobolev exponent is rΩ :=

π
ω

= 3/5, so that the eigenfunctions will belong
to H1+r (Ω) for all r < 3/5, but in general not to H1+3/5(Ω). Therefore, according to (2.8), using quasi-uniform meshes, the
convergence rate for the eigenvalues should be |λ− λh| ≈ O

(
h6/5

)
≈ O

(
N−3/5

)
. An efficient adaptive scheme should lead

to refine the meshes in such a way that the optimal order |λ− λh| = O
(
N−1

)
could be recovered.
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(a) Initial mesh. (b) Step 1.

(c) Step 3. (d) Step 6.

Fig. 4. Test 1. Adaptively refined meshes obtained with FEM scheme at refinement steps 0, 1, 3 and 6.

Fig. 5. Test 1. Error curves of |λ1−λh1| for uniformly refinedmeshes (‘‘Uniform FEM’’), adaptively refinedmesheswith FEM (‘‘Adaptive FEM’’) and adaptively
refined meshes with VEM (‘‘Adaptive VEM’’).
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Fig. 6. Test 2. DomainΩ .

(a) Initial mesh. (b) Step 1.

(c) Step 4. (d) Step 6.

Fig. 7. Test 2. Adaptively refined meshes obtained with VEM scheme at refinement steps 0, 1, 4 and 6.

Figs. 7 and 8 show the adaptively refined meshes obtained with the VEM and FEM adaptive schemes, respectively.
In order to compute the errors |λ1 − λh1|, due to the lack of an exact eigenvalue, we have used an approximation based

on a least squares fitting of the computed values obtained with extremely refined meshes. Thus, we have obtained the value
λ1 = 1.9288, which has at least four correct significant digits.

We report in Table 2 the lowest eigenvalue λh1 computed with each of the three schemes. Each table includes the
estimated convergence rate and the errors |λ1 − λh1|.

It can be seen from Table 2, that the uniform refinement leads to a convergence rate close to that predicted by the theory,
O

(
N−3/5

)
, while the adaptive VEM and FEM schemes allow us to recover the optimal order of convergence O

(
N−1

)
. This
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(a) Initial mesh. (b) Step 1.

(c) Step 4. (d) Step 6.

Fig. 8. Test 2. Adaptively refined meshes obtained with FEM scheme at refinement steps 0, 1, 4 and 6.

Table 2
Test 2. Eigenvalue λh1 computed with different schemes: uniformly refined meshes (‘‘Uniform FEM’’), adaptively refined meshes with FEM (‘‘Adaptive
FEM’’) and adaptively refined meshes with VEM (‘‘Adaptive VEM’’).

Uniform FEM Adaptive VEM Adaptive FEM

N λh1 |λ1 − λh1| N λh1 |λ1 − λh1| N λh1 |λ1 − λh1|

38 2.3083 0.3795 38 2.3083 0.3795 38 2.3083 0.3795
123 2.0686 0.1398 58 2.0721 0.1433 60 2.1067 0.1779
437 1.9828 0.0540 106 1.9960 0.0672 85 2.0362 0.1074

1641 1.9505 0.0217 229 1.9592 0.0304 148 1.9810 0.0522
6353 1.9377 0.0089 350 1.9467 0.0179 185 1.9678 0.0390

14137 1.9341 0.0053 666 1.9384 0.0096 280 1.9530 0.0242
24993 1.9325 0.0037 909 1.9354 0.0066 458 1.9427 0.0139
38291 1.9316 0.0028 1340 1.9329 0.0041 646 1.9382 0.0094
55921 1.9310 0.0022 2141 1.9315 0.0027 895 1.9356 0.0068
75993 1.9306 0.0018 3438 1.9306 0.0018 1593 1.9325 0.0037
99137 1.9303 0.0015 5172 1.9300 0.0012 2122 1.9315 0.0027

125353 1.9301 0.0013 8014 1.9296 0.0008 3178 1.9306 0.0018
154641 1.9299 0.0011 12365 1.9293 0.0005 5341 1.9298 0.0010
187001 1.9298 0.0010 19153 1.9291 0.0003 7522 1.9295 0.0007
222433 1.9297 0.0009 29403 1.9290 0.0002 11124 1.9292 0.0004

λ1 1.9288 O
(
N−0.68

)
λ1 1.9288 O

(
N−1.10

)
λ1 1.9288 O

(
N−1.16

)

can be clearly seen from Fig. 9, where the three error curves are reported. The plot also includes lines of slopes−1 and−3/5,
which correspond to the expected convergence rates of each scheme. It can also be seen from Table 2 that, although adaptive
VEM leads to meshes with a larger number of degrees of freedom than adaptive FEM, the error of the former is significantly
smaller than that of the latter. In consequence, as can be seen from Fig. 9, the performances of VEM and FEM strategies are
almost the same.

Finally, we report in Table 3 the same information as in Table 1 for this test. Similar conclusions as in the previous test
follow from this table.
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Fig. 9. Test 2. Error curves of |λ1−λh1| for uniformly refinedmeshes (‘‘Uniform FEM’’), adaptively refinedmesheswith FEM (‘‘Adaptive FEM’’) and adaptively
refined meshes with VEM (‘‘Adaptive VEM’’).

Table 3
Test 2. Components of the error estimator and effectivity indexes on the adaptively refined meshes with VEM.

N λh1 |λ1 − λh1| θ2 J2 η2
|λ1−λh1 |

η2

38 2.3083 0.3795 0 2.3181 2.3181 0.1637
58 2.0721 0.1433 0.0379 0.8231 0.8609 0.1664

106 1.9960 0.0672 0.0368 0.4188 0.4556 0.1475
229 1.9592 0.0304 0.0216 0.1942 0.2158 0.1408
350 1.9467 0.0179 0.0164 0.1359 0.1522 0.1173
666 1.9384 0.0096 0.0094 0.0749 0.0844 0.1143
909 1.9354 0.0066 0.0068 0.0556 0.0624 0.1052

1340 1.9329 0.0041 0.0047 0.0408 0.0454 0.0907
2141 1.9315 0.0027 0.0032 0.0275 0.0308 0.0891
3438 1.9306 0.0018 0.0022 0.0178 0.0199 0.0904

Conclusions

We have derived an a posteriori error indicator for a VEM solution of the Steklov eigenvalue problem. We have proved
that it is efficient and reliable. For lowest order elements on triangular meshes, VEM coincides with FEM and the a posteriori
error indicator also coincides with a classical one. However, VEM allows using general polygonal meshes including hanging
nodes, which is particularly interesting when designing an adaptive scheme.We have implemented one such scheme driven
by the proposed error indicators. We have assessed its performance by means of a couple of tests which allow us to confirm
that the adaptive scheme yields optimal order of convergence for regular as well as singular solutions.
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