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a b s t r a c t

The aim of this paper is to develop a finite element method to approximate the buckling
problem of simply supported Kirchhoff plates subjected to general plane stress tensor. We
introduce an auxiliary variable w := ∆u (with u representing the displacement of the
plate) to write a variational formulation of the spectral problem.We propose a conforming
discretization of the problem, where the unknowns are approximated by piecewise lin-
ear and continuous finite elements. We show that the resulting scheme provides a correct
approximation of the spectrum and prove optimal order error estimates for the eigenfunc-
tions and a double order for the eigenvalues. Finally, we present some numerical experi-
ments supporting our theoretical results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The finite element method for the approximation of eigenvalue problems is the object of great interest from both the
practical and theoretical point of view. We refer to [1–3] and the references therein for the state of art in this subject area.
This paper deals with the analysis of the elastic stability of plates, in particular the so-called buckling problem. This problem
has attracted much interest since it is frequently encountered in engineering applications such as bridge, ship, and aircraft
design. It can be formulated as a spectral problem whose solution is related with the limit of elastic stability of the plate
(i.e., eigenvalues-buckling coefficients and eigenfunctions-buckling modes).

The buckling problem has been studied for years by many researchers, being the Kirchhoff–Love and the Reissner–
Mindlin plate theories the most used. For the Reissner–Mindlin theory, in [4] was performed the analysis of the buckling
problem of a clamped platemodeled by the Reissner–Mindlin equations. On the other hand, in [5,3,6] different formulations
for the buckling problem for a thin plate subjected to clamped boundary conditions and modeled by the Kirchhoff–Love
theory are considered, while [7] deals with non-conforming methods for the vibration and buckling problems of the
biharmonic equation with general boundary conditions.

One of the most well-known mixed methods to deal with the source problem of thin plates modeled by the biharmonic
equation is the method introduced by Ciarlet and Raviart [8]. This was thoroughly studied by many authors (see, for
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instance, [9,10], [11, Section 3(a)], [12, Section 4(a)], [13, Section III.3], [14,15]). Themethodwas applied to the plate vibration
problem in [1, Section 11.3], [16] and [3, Section 7(b)], where it was proved to converge for finite elements of degree k ≥ 2;
moreover, for this problemaprocedure for accelerating the convergence of the approximation has been studied in [17,18] for
finite elements of degree k ≥ 2 and k = 1, respectively. A formulation of the eigenvalue problem for the Stokes equation,
which turns out to be equivalent to a plate buckling problem, is also analyzed in [3, Section 7(d)], where it is proved to
converge for degree k ≥ 2, as well.

We observe that the buckling problem of a simply supported and uniformly compressed Kirchhoff plate is simpler than
the case when a general plane stress tensor is applied. In fact, the solution of the problem can be related with the solution
of the Laplace eigenvalue problem with homogeneous boundary conditions. We also note that the same happens for the
vibration problem of a simply supported Kirchhoff plate. However, this is not true in the case when the plate is subjected to
general plane stress tensor, which is the case that we will study in this work.

Conforming finite element methods for the primal formulation of the biharmonic equation involve C1 finite elements,
which are quite complicated even in two dimensions. An alternative is to use classical non-conforming finite elements as
was studied in [7] for the vibration and buckling problems. The aim of this paper is to analyze a conforming discretization
based on piecewise linear and continuous finite element of a variational formulation of the buckling problem of simply
supported Kirchhoff plates and subjected to general plane stress tensor.

Themethod is based on the idea introduced by Ciarlet and Raviart [8], and consists in the introduction of an auxiliary vari-
able w := 1u (with u being the transverse displacement of the mean surface of the plate) to write a variational formulation
of the spectral problem. To analyze the continuous problem, we introduce the so-called solution operator (whose eigenval-
ues are the reciprocals of the buckling coefficients) which is a compact operator. We propose a conforming discretization
based on piecewise linear and continuous finite elements for the two variables. We use the so-called Babuška–Osborn ab-
stract spectral approximation theory (see [1]) to show that the resulting scheme provides a correct approximation of the
spectrum and prove optimal order error estimates for the eigenfunctions and a double order for the eigenvalues.

The outline of the paper is as follows: we introduce in Section 2 the variational formulation of the buckling eigenvalue
problem, define a solution operator and establish its spectral characterization. In Section 3, we introduce the finite element
discrete formulation and describe the spectrum of a discrete solution operator. In Section 4, we prove that the numerical
scheme provides a correct spectral approximation and establish optimal order approximation of the eigenfunctions.We end
this section by proving that an improved order of convergence holds for the approximation of the eigenvalues. In Section 5,
we report some numerical tests which confirm the theoretical order of the error and allow us to assess the performance of
the proposed method. Finally, we summarize some conclusions in Section 6.

Throughout the article we will use standard notations for Sobolev spaces, norms and seminorms. Moreover, we will
denote with c and C , with or without subscripts, tildes or hats, generic constants independent of the mesh parameter h,
which may take different values in different occurrences. Moreover D(Ω) denotes the space of infinitely differentiable
functions with compact support contained in Ω . Finally, we will use the following notation for any 2× 2 tensor field τ, any
2D vector field v, and any scalar field v:

div v := ∂1v1 + ∂2v2, ∇v :=


∂1v
∂2v


,

div τ :=


∂1τ11 + ∂2τ12
∂1τ21 + ∂2τ22


.

Moreover, we denote

I :=


1 0
0 1


.

2. The spectral problem

Let Ω ⊂ R2 be a bounded convex domain with polygonal boundary occupied by the mean surface of a plate, simply
supported on its whole boundary Γ (see [19,20]). The plate is assumed to be homogeneous, isotropic, linearly elastic, and
sufficiently thin as to be modeled by Kirchhoff–Love equations. We denote by u the transverse displacement of the mean
surface of the plate.

The buckling problem of a plate, which is subjected to a plane stress tensor field σ : Ω → R2×2, σ ≠ 0 reads as the
following eigenvalue problem:

∆2u = −λdiv (σ∇u) in Ω,
u = 1u = 0 on Γ ,

(2.1)

where in this case λ is the critical load. To simplify the notation we have taken the Young modulus and the density of the
plate, both equal to 1. The applied stress tensor field is assumed to satisfy the equilibrium equations:

σt
= σ in Ω, (2.2)

div σ = 0 in Ω. (2.3)
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Moreover, we assume that,

σ ∈ L∞(Ω)
2×2

. (2.4)

However, we do not need to assume σ to be positive definite. Let us remark that, in practice, σ is the stress distribution on
the plate subjected to in-plane loads, which does not need to be positive definite (see, for instance, Section 5).

A classical variational formulation of (2.1) is obtained by testing with v ∈ H1
0(Ω)∩H2(Ω) and using integration by parts

in Ω . Thus, we obtain the following symmetric weak formulation:
Find (λ, u) ∈ R × H1

0(Ω) ∩ H2(Ω), u ≠ 0, such that
Ω

1u1v = λ


Ω

(σ∇u) · ∇v ∀v ∈ H1
0(Ω) ∩ H2(Ω). (2.5)

It is immediate to prove that the eigenvalues of the problem above are real and positive whenever σ is positive definite.
Since, we are not assuming that hypothesis we can prove that these eigenvalues are real (see Lemma 2.1 below).

In what follows we write another variational formulation of (2.1).
We introduce the auxiliary variable w := 1u (see [1, Section 11.3]). Then (2.1) can be rewritten equivalently as follows:

w = 1u in Ω,
1w = −λdiv (σ∇u) in Ω,
u = w = 0 on Γ .

Therefore, by testing the system above with functions in H1
0(Ω), we arrive at the following weak formulation:

Find (λ, w, u) ∈ R × H1
0(Ω) × H1

0(Ω), u ≠ 0, such that


Ω

∇w · ∇v = −λ


Ω

(σ∇u) · ∇v ∀v ∈ H1
0(Ω),

Ω

∇u · ∇τ +


Ω

wτ = 0 ∀τ ∈ H1
0(Ω).

(2.6)

We note that all the solutions of problem above are solutions of (2.1) in the sense of distributions. In fact, if (λ, w, u) is
a solution of (2.6), then by taking as test-function in the second equation τ ∈ D(Ω), we obtain that w = 1u ∈ H1

0(Ω).
On the other hand, taking v ∈ D(Ω) in the first equation, then we have that 1w = −λdiv (σ∇u); therefore, (λ, u) is a
solution of problem (2.1).

The goal of this paper is to propose and analyze a finite element method to solve problem (2.6). In particular, our aim
is to obtain accurate approximations of the smallest (in absolute value) eigenvalues λ, which correspond to the buckling
coefficients and the associated eigenfunctions or buckling modes.

Remark 2.1. In problem (2.6), the eigenvalues cannot vanish. In fact, if λ = 0, then the first equation yields w = 0, and,
from the second one, u = 0. Moreover,


Ω

(σ∇u) · ∇u ≠ 0 in problem (2.6), despite the fact that σ is not positive definite.
In fact, if


Ω

(σ∇u) · ∇u = 0, the first and second equations of problem (2.6) imply that w = 0 and 1u = 0, hence, u = 0.

Now, we introduce a more compact notation for the spectral problem (2.6). Let A :

H1

0(Ω) × H1
0(Ω)


×

H1

0(Ω) ×

H1
0(Ω)


→ R, and B : H1

0(Ω) × H1
0(Ω) → R, be the continuous and symmetric bilinear forms respectively defined by

A((w, u), (τ , v)) :=


Ω

∇w · ∇v +


Ω

∇u · ∇τ +


Ω

wτ,

B(u, v) :=


Ω

(σ∇u) · ∇v.

Using this notation, problem (2.6) can be written as follows:
Find (λ, w, u) ∈ R × H1

0(Ω) × H1
0(Ω), u ≠ 0, such that

A((w, u), (τ , v)) = −λB(u, v) ∀(τ , v) ∈ H1
0(Ω) × H1

0(Ω). (2.7)

Before introducing the numerical method, we define the linear operator corresponding to the source problem associated
with the buckling spectral problem (2.7) and prove some properties that will be used for the subsequent convergence
analysis.

First, we introduce the following bounded linear operator which is called the solution operator:

T : H1
0(Ω) → H1

0(Ω),
f → u,

with (w, u) ∈ H1
0(Ω) × H1

0(Ω) being the solution of the corresponding source problem:

A((w, u), (τ , v)) = −B(f , v) ∀(τ , v) ∈ H1
0(Ω) × H1

0(Ω). (2.8)
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This problem is well posed. In fact, it can be decomposed into the following well posed problems:

• Find w ∈ H1
0(Ω) such that

Ω

∇w · ∇v = −


Ω

(σ∇f ) · ∇v ∀v ∈ H1
0(Ω). (2.9)

• Find u ∈ H1
0(Ω) such that

Ω

∇u · ∇τ = −


Ω

wτ ∀τ ∈ H1
0(Ω). (2.10)

Clearly λ is an eigenvalue of problem (2.7) if and only if µ :=
1
λ
is a non-zero eigenvalue of T , with the same multiplicity

and corresponding eigenfunctions u (recall λ ≠ 0; cf. Remark 2.1).
In order to obtain the spectral characterization, we introduce the following well posed problem:
Given f ∈ H1

0(Ω), find u ∈ H1
0(Ω) ∩ H2(Ω) such that

Ω

1u1v =


Ω

(σ∇f ) · ∇v ∀v ∈ H1
0(Ω) ∩ H2(Ω). (2.11)

The following result regarding the equivalence of problems (2.8) and (2.11) has been dealt with in [21]. We include a
proof for the sake of completeness.

Proposition 2.1. (w, u) is a solution of problem (2.8) if and only if u is a solution of problem (2.11).

Proof. Let (w, u) be a solution of (2.8), equivalently, w and u are solutions of problems (2.9) and (2.10), respectively. On
the one hand, from (2.10) we have that w = 1u. Therefore, 1u ∈ H1

0(Ω) and since Ω is a convex domain, we have that
u ∈ H1

0(Ω)∩H2(Ω). On the other hand, from (2.9), first using that w = 1u, and then integration by parts we conclude that
u is a solution of problem (2.11).

Now, let u ∈ H1
0(Ω) ∩ H2(Ω) be a solution of (2.11). Since Ω is a convex polygonal domain, by resorting to a well

known regularity result for the biharmonic problem with its right-hand side in H1
0(Ω)′, we have that u ∈ H3(Ω) and w =

1u ∈ H1
0(Ω). So, testing problem (2.11) with adequate functions we have that (w, u) be a solution of (2.8). Thus, the proof

is complete.

As a consequence, we have the following spectral characterization result.

Lemma 2.1. The spectrum of T satisfies sp(T ) = {0} ∪ {µn : n ∈ N}, where {µn}n∈N is a sequence of real eigenvalues which
converges to 0. The multiplicity of each non-zero eigenvalue is finite and its ascent is 1.

Proof. By virtue of the equivalence between problems (2.8) and (2.11), T is also a bounded linear operator from H1
0(Ω) into

H2(Ω). Hence, because of the compact inclusion H2(Ω) ↩→ H1
0(Ω) and the spectral characterization of compact operators,

we have that sp(T ) = {0} ∪ {µn : n ∈ N}, with {µn}n∈N a sequence of finite-multiplicity eigenvalues which converges to 0.
Moreover, it is simple to prove by using (2.2) that T |H1

0(Ω)∩H2(Ω) : H1
0(Ω)∩H2(Ω) → H1

0(Ω)∩H2(Ω) is self-adjoint with
respect to the inner product (u, v) →


Ω

1u1v. Therefore, since sp(T ) = {0} ∪ sp(T |H1
0(Ω)∩H2(Ω)), we conclude that the

non-zero eigenvalues of T are real and have ascent 1. Thus, we end the proof.

The following is an additional regularity result for the solution of problem (2.8).

Lemma 2.2. There exists C > 0 such that, for all f ∈ H1
0(Ω), the solution (w, u) of problem (2.8) satisfies u ∈ H2(Ω), and

∥w∥1,Ω + ∥u∥2,Ω ≤ C ∥f ∥1,Ω .

Proof. The estimate for w (which does not involve any additional regularity) follows directly from (2.9) and (2.4). The
estimate for u follows from the classical regularity result for the Laplace equation on convex domains with right-hand side
w ∈ H1(Ω) (cf. [22]). Thus, we conclude the proof.

Remark 2.2. The lemma above does not fix any further regularity for the solution w of problem (2.9). Indeed, no additional
regularity can be expected for arbitrary f ∈ H1

0(Ω). For instance, from (2.9), if σ = I, then w ≡ f .

3. The discrete problem

Wewill study in this section, the numerical approximation of the eigenvalue problem (2.7). With this aim, let {Th}h>0 be
a shape-regular family of triangulations of the polygonal domainΩ by triangles T withmesh size h. Inwhat follows, given an
integer k ≥ 0 and a subset S ofR2, Pk(S) denotes the space of polynomials defined in S of total degree less than or equal to k.
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We consider the space of piecewise linear continuous finite elements:

Hh :=

vh ∈ H1

0(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th

.

Now, we are in a position to write the finite element discretization of problem (2.7).
Find (λh, wh, uh) ∈ R × Hh × Hh, uh ≠ 0, such that

A((wh, uh), (τh, vh)) = −λhB(uh, vh) ∀(τh, vh) ∈ Hh × Hh. (3.12)

As in the continuous case, we introduce for the analysis the discrete solution operator:

Th : H1
0(Ω) → H1

0(Ω),
f → uh,

with (wh, uh) ∈ Hh × Hh being the solution of the following discrete problem:

A((wh, uh), (τh, vh)) = −B(f , vh) ∀(τh, vh) ∈ Hh × Hh. (3.13)

This problem decomposes into a sequence of twowell posed problems, which are the respective discretizations of problems
(2.9) and (2.10):

• Find wh ∈ Hh such that
Ω

∇wh · ∇vh = −


Ω

(σ∇f ) · ∇vh ∀vh ∈ Hh. (3.14)

• Find uh ∈ Hh such that
Ω

∇uh · ∇τh = −


Ω

whτh ∀τh ∈ Hh. (3.15)

Also, as in the continuous case, λh is an eigenvalue of problem (3.12) if and only if µh :=
1
λh

is a non-zero eigenvalue of
Th, with the same multiplicity and corresponding eigenfunctions uh.

Remark 3.1. The same arguments leading to Remark 2.1 allow us to show that any solution of problem (3.12) satisfies
λh ≠ 0.

The matrix form of the discrete spectral problem (3.12) reads as follows:
A B
Bt 0


wh
uh


= λh


0 0
0 −E


wh
uh


, (3.16)

wherewh, and uh denote the vectors whose entries are the components ofwh, and uh, respectively, in particular given bases
of the discrete space Hh.

In this generalized eigenvalue problem, matrices A, B, and E are symmetric, whereas A, and B are also positive definite.
Now, we are in a position to prove the following characterization of the discrete spectral problem (3.12):

Proposition 3.1. Let Zh := {uh ∈ Hh : B(uh, vh) = 0 ∀vh ∈ Hh}. Then, problem (3.12) has exactly dimHh−dimZh eigenvalues,
repeated accordingly to their respective multiplicities. All of them are real and non-zero.

Proof. Since A is positive definite and consequently non-singular, wh can be eliminated in the generalized eigenvalue
problem (3.16) as follows:

wh = −A−1Buh H⇒ Euh = µh

BtA−1B


uh,

with µh :=
1
λh

(recall λh ≠ 0; cf. Remark 3.1).
Now, since also B is non-singular, BtA−1B is symmetric and positive definite and, E being symmetric too, the generalized

eigenvalue problem Euh = µh(BtA−1B)uh is well posed and all its eigenvalues are real. Therefore, the number of eigenvalues
of problem (3.16) (which is the matrix form of problem (3.12)) equals the number of non-zero eigenvalues of this problem,
namely, dimHh − dim(Ker(E)). Thus, we conclude the lemma by noting that Euh = 0 if and only if uh ∈ Zh.

As an immediate consequence of the proof of this proposition, note that problem (3.12) always has real non-zero
eigenvalues, as long as E ≠ 0.

Remark 3.2. For all the solutions (λh, wh, uh) of problem (3.12), there holds


Ω
(σ∇uh) · ∇uh ≠ 0, despite the fact that the

stress tensor σ is not necessarily positive definite. In fact, as shown in the proof of Proposition 3.1,
Ω

(σ∇uh) · ∇uh = B(uh, uh) = ut
hEuh =

1
λh

ut
h


BtA−1B


uh ≠ 0.
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4. Spectral approximation and error estimates

Toprove that Th provides a correct spectral approximation of T , wewill resort to the classical theory for compact operators
(see [1]), which is based on the convergence in norm of Th to T as h goes to zero.

The following lemma yields the uniform convergence of Th to T as h → 0.

Lemma 4.1. There exists C > 0 such that, for all f ∈ H1
0(Ω),

∥(T − Th) f ∥1,Ω ≤ Ch ∥f ∥1,Ω .

Proof. Given f ∈ H1
0(Ω), let (w, u) and (wh, uh) be the solutions of problems (2.8) and (3.13), respectively, so that u = Tf

and uh = Thf . From (2.10) and (3.15), and the first Strang Lemma (cf. [23]), we have

∥u − uh∥1,Ω ≤ C


inf
vh∈Hh

∥u − vh∥1,Ω + sup
vh∈Hh


Ω
(w − wh)vh

∥vh∥1,Ω


. (4.17)

To estimate the first termon the right-hand side above,we use standard approximation results and the regularity of u proved
in Lemma 2.2:

inf
vh∈Hh

∥u − vh∥1,Ω ≤ Ch ∥u∥2,Ω ≤ Ch ∥f ∥1,Ω . (4.18)

For the second term, we use the Cauchy–Schwarz inequality to obtain

sup
vh∈Hh


Ω
(w − wh)vh

∥vh∥1,Ω
≤ ∥w − wh∥0,Ω . (4.19)

Now,we resort to a duality argument to estimate ∥w−wh∥0,Ω , since no additional regularity holds forw (cf. Remark 2.2).
We consider the following well posed problem:

Find w ∈ H1
0(Ω) such that

Ω

∇w · ∇τ =


Ω

(w − wh) τ ∀τ ∈ H1
0(Ω). (4.20)

By virtue of standard regularity results for the Laplace equation on convex domains, we have that

∥w∥2,Ω ≤ C ∥w − wh∥0,Ω .

Let wI
h ∈ Hh be the Lagrange interpolant of w. Taking τ = w − wh in (4.20) and using (2.9), (3.14), and standard approxi-

mation results, we have

∥w − wh∥
2
0,Ω =


Ω

∇w · ∇(w − wh) =


Ω

∇(w − wI
h) · ∇(w − wh)

≤ Ch ∥w∥2,Ω ∥∇(w − wh)∥0,Ω

≤ Ch ∥w − wh∥0,Ω ∥∇(w − wh)∥0,Ω .

Therefore, from (2.9) and (3.14), again, and (2.4),

∥w − wh∥0,Ω ≤ Ch

∥∇w∥0,Ω + ∥∇wh∥0,Ω


≤ Ch ∥f ∥1,Ω . (4.21)

Thus, the lemma follows from (4.17), (4.18), (4.19), and (4.21).

As a direct consequence of Lemma 4.1, Th converges in norm to T as h goes to zero. Hence, standard results of spectral
approximation (see, for instance, [24]) show that isolated parts of sp(T ) are approximated by isolated parts of sp(Th). More
precisely, letµ ≠ 0be an eigenvalue of T withmultiplicitym and letE be its associated eigenspace. There existm eigenvalues
µ

(1)
h , . . . , µ

(m)
h of Th (repeated according to their respective multiplicities) which converge to µ. Let Eh be the direct sum of

their corresponding associated eigenspaces.
We recall the definition of the gapδ between two closed subspaces X and Y of H1

0(Ω):

δ(X, Y) := max {δ(X, Y), δ(Y, X)} , where δ(X, Y) := sup
x∈X:∥x∥1,Ω=1


inf
y∈Y

∥x − y∥1,Ω


.

The following error estimates for the approximation of eigenvalues and eigenfunctions hold true.
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Theorem 4.2. There exists a strictly positive constant C such that

δ̂(E, Eh) ≤ Ch,µ − µ
(i)
h

 ≤ Ch, i = 1, . . . ,m.

Proof. As a consequence of Lemma 4.1, Th converges in norm to T as h goes to zero. Then, the proof follows as a direct
consequence of Theorems 7.1 and 7.3 from [1].

The error estimates for the eigenvaluesµ ≠ 0 of T yield analogous estimates for the eigenvalues λ =
1
µ
of problem (2.7).

However, the order of convergence O(h) in Theorem 4.2 is not optimal for µ. Our next goal is to improve this order.
With this purpose, let us denote λh := 1/µ(i)

h , with µ
(i)
h being any particular eigenvalue of Th converging to µ. Let uh,

and wh be such that (λh, wh, uh) is a solution of problem (3.12) with ∥uh∥1,Ω = 1. According to Theorem 4.2, there exists a
solution (λ, w, u) of problem (2.7) with ∥u∥1,Ω = 1 such that

∥u − uh∥1,Ω ≤ Ch. (4.22)

The following lemma, which will be used to prove an improved order of convergence for the corresponding eigenvalues,
shows estimates for ∥w − wh∥1,Ω .

Lemma 4.2. There exists C > 0 such that

∥w − wh∥1,Ω ≤ Ch.

Proof. First, note that (w, u) is the solution of problem (2.8) with f = λu. Hence, from Lemma 2.2, u ∈ H2(Ω) with
∥u∥2,Ω ≤ Cλ∥u∥1,Ω . Hence, w is the solution of (2.9), then

−1w = div (σ∇(λu)) ∈ L2(Ω),

w = 0 on Γ .

Therefore, from (2.2)–(2.4), we have that w ∈ H2(Ω), and

∥w∥2,Ω ≤ C ∥u∥2,Ω ≤ Cλ ∥u∥1,Ω .

On the other hand, (wh, uh) is the solution of problem (3.13) with f = λhuh. Thus, from the equivalence between this
problem and problems (3.14) and (3.15), wh is the solution of (3.14) with f = λhuh. Hence, from the first Strang Lemma
again,

∥w − wh∥1,Ω ≤ C


inf
τh∈Hh

∥w − τh∥1,Ω + sup
τh∈Hh


Ω
[σ (λ∇u − λh∇uh)] · ∇τh

∥τh∥1,Ω


.

To estimate the first term on the right-hand side above, we use standard approximation results:

inf
τh∈Hh

∥w − τh∥1,Ω ≤ Ch ∥w∥2,Ω ≤ Ch ∥u∥1,Ω .

For the second term, we use the Cauchy–Schwarz inequality, (2.4), (4.22), and Theorem 4.2:

sup
τh∈Hh


Ω
[σ (λ∇u − λh∇uh)] · ∇τh

∥τh∥1,Ω
≤ C ∥λ∇u − λh∇uh∥0,Ω

≤ C |λ| ∥u − uh∥1,Ω + |λ − λh| ∥uh∥1,Ω

≤ Ch.

Thus, we conclude the proof.

Now, we are in a position to prove the double order of convergence for the eigenvalues.

Theorem 4.5. There exists a strictly positive constant C such that

|λ − λh| ≤ Ch2.

Proof. We adapt to our case a standard argument (cf. [1, Lemma 9.1]). Let p := (w, u) and ph := (wh, uh) be as in the proof
of Lemma 4.2. Because of (2.7) and (3.12), and the symmetry of the bilinear forms, we have,

A(p − ph, p − ph) = A(p, p) − 2A(p, ph) + A(ph, ph)

= −λB(u, u) + 2λB(u, uh) − λhB(uh, uh),
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Fig. 1. Square plate: uniform meshes.

whereas

λB(u − uh, u − uh) = λB(u, u) − 2λB(u, uh) + λB(uh, uh).

Therefore, since B(uh, uh) ≠ 0 (cf. Remark 3.1),

λ − λh =
A(p − ph, p − ph) + λB(u − uh, u − uh)

B(uh, uh)
.

Moreover, from (4.22), B(uh, uh)
h

→ B(u, u) ≠ 0 (cf. Remark 2.1). Hence,

|λ − λh| ≤ C (|A(p − ph, p − ph)| + |λ| |B(u − uh, u − uh)|)

≤ C

∥p − ph∥

2
H1
0(Ω)×H1

0(Ω)
+ ∥u − uh∥

2
1,Ω


≤ C


∥w − wh∥

2
1,Ω + ∥u − uh∥

2
1,Ω


≤ Ch2,

the last inequality because of (4.22) and Lemma 4.2. Thus, we conclude the proof.

5. Numerical results

We report in this section somenumerical experimentswhich confirm the theoretical results proved above. The numerical
methods have been implemented in a MATLAB code.

We have taken as an example of a convex domain the unit square Ω := (0, 1) × (0, 1). We have used uniform meshes
as those shown in Fig. 1. The refinement parameter N used to label each mesh is the number of elements on each edge of
the plate.

5.1. Test 1: uniformly compressed square plate

The aim of this first test is to validate the computer code by solving a problem with known analytical solution.
As we stated in the introduction, the eigenvalues of this problem can be related with the eigenvalues of the Laplace

eigenvalue problem with homogeneous boundary conditions In fact, we consider the following eigenvalue problem:
1u = −λu in Ω,
u = 0 on Γ .

(5.1)

We have that the solution of problem (5.1) satisfies our problemwhen σ = I (which corresponds to a uniformly compressed
plate). More precisely, we get

∆2u = −λ1u in Ω,
u = 1u = 0 on Γ .

(5.2)

We also note that the solution of problem (5.1) also satisfies the following problem associated with the vibration problem
of a simply supported Kirchhoff plate:

∆2u = λ2u in Ω,
u = 1u = 0 on Γ .

(5.3)

The exact eigenvalues and eigenfunctions for the last problem are known (see [17,1]).
We report in Table 1 the lowest buckling coefficient computedwith themethod analyzed in this paper. The table includes

computed orders of convergence and the last column shows the exact buckling coefficient.
It can be seen from Table 1 that the computed buckling coefficients converge to the exact ones with an optimal quadratic

order.We also point out that the symmetry of themesh permits to preserve the doublemultiplicity of the second eigenvalue
at discrete level.

Fig. 2 shows the transverse displacements of the principal buckling mode (i.e., the eigenfunction corresponding to the
lowest buckling coefficient of the buckling problem) computed with the method analyzed in this paper.
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Fig. 2. Uniformly compressed square plate; principal buckling mode.

Table 1
Lowest buckling coefficients of a uniformly compressed simply supported square plate computed on uniform
meshes with the method analyzed in this paper.

N = 10 N = 20 N = 40 N = 80 Order Exact

λ1 20.0840 19.8273 19.7614 19.7448 1.97 19.7392
λ2 = λ3 52.0510 50.0190 49.5155 49.3899 2.01 49.3480
λ4 86.8888 80.9137 79.4444 79.0786 2.02 78.9568

Table 2
Non-dimensional buckling intensity k1 of a square plate subjected to linearly varying in-plane load in one
direction.

α N = 10 N = 20 N = 40 N = 80 Order Extrapolated [25] [26] [27]

2 27.7169 26.0680 25.6628 25.5619 2.02 25.5292 25.6 – 25.53
4/3 11.2233 11.0656 11.0253 11.0152 1.97 11.0116 11.0 – 11.01
1 7.9525 7.8478 7.8210 7.8142 1.97 7.8119 7.8 7.8099 7.81
4/5 6.7119 6.6249 6.6026 6.5969 1.97 6.5950 6.6 – 6.60
2/3 6.0684 5.9902 5.9701 5.9651 1.97 5.9633 5.8 – 5.96

5.2. Test 2: square plate under combined bending and compression in one direction

In order to compare our results for the buckling problem, with those in [25–27], a non-dimensional buckling intensity is
defined as:

ki :=
λi
hL

π2
,

where L is the plate side length.
For this test, we have computed the non-dimensional buckling intensity of the same plate as in the previous example

(L = 1), subjected to linearly varying in-plane load in one direction. This corresponds to a plane stress field given by

σ :=


1 − α

y
L


0

0 0


.

For α = 2, it is the case of pure in-plane bending. For 0 < α < 2, the linearly varying load represents an eccentric bending
which can be regarded as a combination of pure bending and uniform compression (see [25–27]).

We report in Table 2 the non-dimensional buckling intensity and we compare our results with those obtained in [25,26]
for a Kirchhoff plate, and in [27] for a thin plate modeled by the Reissner–Mindlin theory. It is well known that the non-
dimensional buckling intensity ki is the limit to the non-dimensional buckling intensity of an identical Reissner–Mindlin
simply supported plate when the thickness goes to zero (see [4]). The table includes computed orders of convergence and
extrapolated more accurate values of each eigenvalue obtained by means of a least-squares fitting. Furthermore, the last
three columns show the results from [25–27].

It can be seen from Table 2 that the results obtained with our method present an excellent agreement with those in
[25–27] for all linearly varying loading cases, we also have that the eigenvalue approximation order is quadratic.

Figs. 3 and 4 show the transverse displacements of the principal buckling mode computed with the method analyzed in
this paper and subjected to linearly varying in-plane load in one direction, considering α = 2 and α = 1, respectively.
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Fig. 3. Principal buckling mode corresponding to α = 2.

Fig. 4. Principal buckling mode corresponding to α = 1.

Table 3
Lowest non-dimensional buckling intensity of a shear loaded simply supported square plate computed on
uniform meshes with the method analyzed in this paper.

N = 20 N = 30 N = 40 N = 50 Order Extrapolated [25]

k1 9.6023 9.4496 9.3952 9.3699 1.96 9.3236 9.34

5.3. Test 3: shear loaded square plate

For this test we have computed the non-dimensional buckling intensity of the same plate as in the previous example,
subjected to a uniform shear load. This corresponds to a plane stress field

σ =


0 1
1 0


.

Note that σ is not positive definite in this case.
We report in Table 3 the lowest non-dimensional buckling intensity and we compare our results with those obtained

in [25]. The table includes computed orders of convergence and extrapolated more accurate values of each eigenvalue
obtained by means of a least-squares fitting. Furthermore, the last column shows the results from [25].

Once more, the method converges with optimal quadratic order.
Fig. 5 shows the transverse displacements of the principal buckling mode for the shear loaded square plate computed

with the method analyzed in this paper.

6. Conclusions

We have introduced a finite element method for the buckling problem of a simply supported Kirchhoff polygonal plate
subjected to general plane stress tensor. The method is based on the introduction of an auxiliary variable w := 1u,
where u represents the transverse displacements. The formulation was discretized considering standard piecewise linear
finite elements for the two variables. We have proved that the method yields an O(h) approximation to the transverse
displacements u of buckling modes and the auxiliary variable w. Moreover, the method yields O(h2) approximation to
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Fig. 5. Shear loaded square plate; principal buckling mode.

the buckling coefficients, too. Finally, we reported numerical results that confirm the numerical analysis of the proposed
method.
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