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Abstract. We aim to provide a finite element analysis for the elastoacoustic
vibration problem. We use a dual-mixed variational formulation for the elas-
ticity system and combine the lowest order Lagrange finite element in the fluid
domain with the reduced symmetry element known as PEERS and introduced
for linear elasticity in [1]. We show that the resulting global nonconforming
scheme provides a correct spectral approximation and we prove quasi-optimal
error estimates. Finally, we confirm the asymptotic rates of convergence by
numerical experiments.

1. Introduction. We are concerned with the computation of the free vibration
modes of a coupled system consisting of an elastic structure which is in contact
with an internal compressible fluid. We refer to [3, 5, 15, 18] for the analysis of
different formulations of this eigenvalue problem. Here, we follow [12, 16, 17] and
consider a dual-mixed formulation with reduced symmetry in the solid. This leads
to a symmetric saddle point problem that delivers direct finite element approxima-
tions of the stresses and that is immune to the locking phenomenon that arises in the
nearly incompressible case. Recently, a Galerkin scheme based on the lowest-order
Lagrange finite element in the fluid and the lowest order Arnold-Falk-Winther [2]
mixed finite element in the solid has been analyzed in [17]. It was shown that such
a mixed finite element Galerkin approximation is spectrally correct and provides
optimal convergence error estimates for eigenvalues and eigenfunctions. Our pur-
pose here is to show that the same order of convergence can be achieved, at a lower
computational cost, when PEERS element [1] is used in the solid in association with
the lowest order Lagrange finite element in the fluid. Compared with [17], the main
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technical difficulty is related with the fact that, in this case, the Galerkin scheme is
nonconforming.

The paper is organized as follows. In Section 2 we recall the mixed formula-
tion with reduced symmetry of the fluid-structure eigenvalue problem and provide
a spectral description of the corresponding solution operator. In Section 3 we intro-
duce the mixed finite element approximation of the saddle point eigenproblem and
characterize the spectrum of the discrete solution operator. In Section 4 we provide
the conditions under which the numerical scheme is spectrally correct and we pro-
vide abstract convergence error estimates for the eigenfunctions and the eigenvalues.
In Section 5 we establish asymptotic error estimates and finally, in Section 6, we
present numerical tests and confirm that the experimental rates of convergence are
in accordance with the theoretical ones.

Notations. In all what follows we will denote the vectorial and tensorial counter-
parts of order n (n = 2, 3) of a given Hilbert space V by Vn and Vn×n respectively.
We use standard notation for the Hilbertian Sobolev space Hs(Ω), s ≥ 0, defined
on a Lipschitz bounded domain Ω ⊂ R

n and denote by ‖·‖s,Ω the norms in Hs(Ω),

Hs(Ω)n and Hs(Ω)n×n.
The component-wise inner product of two matrices σ, τ ∈ R

n×n is denoted
σ : τ := tr(σtτ ), where tr τ :=

∑n
i=1 τii and τ t := (τji) stand for the trace and the

transpose of τ = (τij) respectively. For σ : Ω → R
n×n and u : Ω → R

n, we define
the row-wise divergence divσ : Ω → R

n and the row-wise gradient ∇u : Ω → R
n×n

by,

(divσ)i :=
∑

j

∂jσij and (∇u)ij := ∂jui.

We introduce for s ≥ 0 the Hilbert space

Hs(div; Ω) :=
{
τ ∈ Hs(Ω)n×n : div τ ∈ Hs(Ω)n

}

endowed with the norm ‖τ‖2Hs(div;Ω) := ‖τ‖2s,Ω + ‖div τ‖2s,Ω and we use the con-

vention H(div; Ω) := H0(div; Ω).
Given two Hilbert spaces V and W and a bounded bilinear form c : V ×W → R,

we say that c satisfies the inf-sup condition for the pair {V ,W}, whenever there
exists β > 0 such that

sup
06=s∈V

c(s, t)

‖s‖V
≥ β ‖t‖W ∀t ∈ W .

Finally, 0 stands for a generic null vector or tensor and denote by C generic
constants independent of the discretization parameters, which may take different
values at different places.

2. The spectral problem. We consider an elastic structure occupying a Lipschitz
and polyhedral domain ΩS. We assume that the structure is fixed at ∅ 6= ΓD ⊂ ∂ΩS

and free of stress on ΓN := ∂ΩS \ (ΓD ∪ Σ). We are interested by the simplified
model in which the stress tensor σ is related to the linearized deformation tensor
ε := 1

2 [∇u+ (∇u)t] through the constitutive law

σ = Cε(u) in ΩS,

where λS and µS are Lamé coefficients, I is the identity matrix of Rn×n and C :
R

n×n → R
n×n is given by Cτ := λS (tr τ ) I + 2µSτ . We will also consider the

rotation r := 1
2 [∇u− (∇u)t] as a further variable. The interior fluid domain is
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given by a Lipschitz and polyhedral domain ΩF and the fluid-structure interface is
represented by by Σ, see Figure 1. The boundary ∂ΩF of the fluid domain is the
union of the interface Σ and the open boundary of the fluid Γ0 (we don’t exclude
the case Γ0 = ∅).

The spectral structural-acoustic coupled problem described in Figure 1, with
natural frequencies ω, can be formulated as follows in terms of the stress tensor
and the pressure (see, for instance, [5, 18]): Find σ : ΩS → R

n×n symmetric,
r : ΩS → R

n×n skew symmetric, p : ΩF → R and ω ∈ R such that,

∇

(
1

ρS
divσ

)
+ ω2

(
C−1σ + r

)
= 0 in ΩS, (1)

divσ = 0 on ΓD, (2)

σν = 0 on ΓN (3)

∆p+
ω2

c2
p = 0 in ΩF, (4)

∂p

∂ν
−

ω2

g
p = 0 on Γ0, (5)

σν + pν = 0 on Σ, (6)

∂p

∂ν
+

ρF
ρS

divσ · ν = 0 on Σ, (7)

where c is the acoustic speed, g is the gravity acceleration and ρF and ρS represent
the fluid and solid mass densities respectively.

Notice that the displacement can be recovered, and also post-precessed at the
discrete level, from

divσ + ω2ρSu = 0. (8)

We consider W := {τ ∈ H(div; ΩS), τν = 0 on ΓN}, and introduce the prod-

uct space Ỹ := W ×H1(ΩF) endowed with the Hilbertian norm

‖(τ , q)‖2 := ‖τ‖2H(div;ΩS)
+ ‖q‖21,ΩF

.

It is straightforward to prove that the subspace Y given by

Y :=
{
(τ , q) ∈ Ỹ : τν + qν = 0 on Σ

}
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Figure 1. Fluid and solid domains
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is closed in Ỹ . The rotation r will be sought in the space

Q :=
{
s ∈ L2(ΩS)

n×n : st = −s
}
.

For commodity we will also denote the Hilbertian product norm in Ỹ ×Q by

‖|((τ , q), s)‖|2 := ‖(τ , q)‖2 + ‖s‖20,ΩS
.

The closed subspace WΣ := {τ ∈ W : τν = 0 on Σ} will also be useful in the
following.

For (σ, p), (τ , q) ∈ Ỹ , s ∈ Q, and v ∈ L2(ΩS)
n, we introduce the bounded

bilinear forms

a((σ, p), (τ , q)) :=

∫

ΩS

1

ρS
divσ · div τ +

∫

ΩF

1

ρF
∇p · ∇q,

d((σ, p), (τ , q)) :=

∫

ΩS

C−1σ : τ +

∫

ΩF

1

ρFc2
pq +

∫

Γ0

1

ρFg
pq,

b((τ , q), s) :=

∫

ΩS

τ : s,

A((σ, p), (τ , q)) := a((σ, p), (τ , q)) + d((σ, p), (τ , q)),

B((τ , q), (s,v)) := b((τ , q), s) +

∫

ΩS

div τ · v.

It is clear that the kernel of the bilinear form a in Y is

ker(a) := {(τ , ξ) ∈ YR : div τ = 0 in ΩS} ,

where YR is the closed subspace of Y given by

YR := {(τ , ξ) ∈ W × R : τν + ξν = 0 on Σ} .

The variational formulation of the eigenvalue problem (1)-(7) is given, in terms
of λ := 1 + ω2 as follows (see [17] for more details): Find λ ∈ R, 0 6= (σ, p) ∈ Y ,
and 0 6= r ∈ Q such that

A((σ, p), (τ , q)) + b((τ , q), r) = λ [d((σ, p), (τ , q)) + b((τ , q), r)] (9)

b((σ, p), s) = λ b((σ, p), s) (10)

for all (τ , q) ∈ Y and s ∈ Q.
The solution operator corresponding to this eigenvalue problem is

T̃ : Ỹ ×Q −→ Ỹ ×Q,

((F , f), g) 7−→ T̃ ((F , f), g) := ((σ∗, p∗), r∗),

where ((σ∗, p∗), r∗) ∈ Y ×Q solves the source problem:

A((σ∗, p∗), (τ , q)) + b((τ , q), r∗) = d((F , f), (τ , q)) + b((τ , q), g) (11)

b((σ∗, p∗), s) = b((F , f), s) (12)

for all (τ , q) ∈ Y and s ∈ Q.

Theorem 2.1. The linear operator T̃ is well defined and bounded. Moreover, the
norm of this operator remains bounded in the nearly incompressible case (i.e., when
λS → ∞).
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Proof. As a consequence of [17, Lemma 2.2], it is straightforward that b satisfies
the inf-sup condition for the pair {Y ,Q}. Moreover, [17, Lemma 2.1] proves that
A(·, ·) is elliptic on ker(b) with an ellipticity constant independent of λS. The result
is then an application of the Babuška-Brezzi theory.

Notice that (λ, (σ, p), r) ∈ R×Y×Q solves problem (9)-(10) if and only if
(
µ :=

1
λ , ((σ, p), r)

)
, is an eigenpair of T := T̃ |Y×Q, i.e., if and only if ((σ, p), r) 6= 0 and

T ((σ, p), r) =
1

λ
((σ, p), r) .

Moreover, it is clear that µ = 1 is an eigenvalue of T : Y × Q → Y × Q with
associated eigenspace ker(a)×Q.

Let us now rewrite the equations of problem (9)-(10) as follows: Find λ ∈ R and
0 6= ((σ, p), r) ∈ Y ×Q such that,

A(((σ, p), r), ((τ , q), s)) = λB(((σ, p), r), ((τ , q), s)) ∀((τ , q), s) ∈ Y ×Q,

where A and B are the bounded bilinear forms in Ỹ ×Q defined by

A(((σ, p), r), ((τ , q), s)) := A((σ, p), (τ , q)) + b((τ , q), r) + b((σ, p), s),

B(((σ, p), r), ((τ , q), s)) := d((σ, p), (τ , q)) + b((τ , q), r) + b((σ, p), s).

To continue with the spectral description of T : Y ×Q → Y ×Q we introduce the
orthogonal subspace to ker(a)×Q in Y ×Q with respect to the bilinear form B,

[ker(a)×Q]⊥B := {((σ, p), r) ∈ Y ×Q : B(((σ, p), r), ((τ , q), s)) = 0

∀((τ , q), s) ∈ ker(a)×Q} .

Lemma 2.2. The subspace [ker(a)×Q]⊥B is invariant for T , i.e.,

T ([ker(a)×Q]⊥B) ⊂ [ker(a)×Q]⊥B . (13)

Moreover, we have the direct and stable decomposition

Y ×Q = [ker(a)×Q]⊕ [ker(a)×Q]⊥B . (14)

Proof. We refer to [16, Proposition A.1] for the proof of (13) and proceed as follows
to obtain the splitting of a given ((σ, p), r) ∈ Y×Q according to (14). We consider
the problem: find ((σ0, p0), r0) ∈ ker(a)×Q solution of

d((σ0, p0), (τ , q)) + b((τ , q), r0) = d((σ, p), (τ , q)) + b((τ , q), r) ∀(τ , q) ∈ ker(a),

b((σ0, p0), s) = b((σ, p), s) ∀s ∈ Q.

The first equation shows that the linear form (τ , q) 7→ d((σ0 − σ, p0 − p), (τ , q)) +
b((τ , q), r0−r) belongs to the polar of ker(a) in YR. Hence, the well-known inf-sup
condition

sup
(τ ,q)∈YR

∫

ΩS

div τ · v

‖(τ , q)‖
≥ sup

τ∈WΣ

∫

ΩS

div τ · v

‖τ‖H(div;ΩS)
≥ β ‖v‖0,ΩS

∀v ∈ L2(ΩS)
n,

proves the existence of u0 ∈ L2(ΩS)
n such that

−

∫

ΩS

div τ · u0 = d((σ0 − σ, p0 − p), (τ , q)) + b((τ , q), r0 − r) ∀(τ , q) ∈ YR.
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Therefore, ((σ0, p0), (r0,u0)) ∈ [YR × (Q× L2(ΩS)
n)] satisfies

d((σ0, p0), (τ , q)) +B((τ , q), (r0,u0)) = d((σ, p), (τ , q)) + b((τ , q), r), (15)

B((σ0, p0), (s,v)) = b((σ, p), s), (16)

for all (τ , q) ∈ YR and (s,v) ∈ Q×L2(ΩS)
n. The saddle point problem (15)-(16) is

well-posed (see [17, Section 3]) and ((σ−σ0, p−p0), r−r0) belongs to [ker(a)×Q]⊥B

by construction. The decomposition (14) follows then from

((σ, p), r) = ((σ0, p0), r0) + ((σ − σ0, p− p0), r − r0).

It is clear now that the solution of the continuous eigenvalue problem (9)-(10)
relies on the spectral description of

T |[ker(a)×Q]⊥B : [ker(a)×Q]⊥B → [ker(a)×Q]⊥B .

To this end, we need to provide a characterization of the unique projection P :
Y ×Q → Y × Q with range [ker(a) × Q]⊥B and kernel ker(a) × Q associated to
the splitting (14).

In what follows, q̄ := q − 1
|ΩF|

∫
ΩF

q stands for the zero mean value component

of functions q ∈ L2(ΩF). For a given ((σ, p), r) ∈ Y × Q we denote ((σ̃, p̃), r̃) :=
P ((σ, p), r). By definition of the projection P , we should have that ((σ̃ − σ, p̃ −
p̄), r̃ − r) ∈ ker(a)×Q and ((σ̃, p̃), r̃) ∈ [ker(a)×Q]⊥B . In other words,

div σ̃ = divσ and p̃ = p̄+ c̃, with c̃ ∈ R (17)

d((σ̃, p̃), (τ , ξ)) + b((τ , ξ), r̃) = 0 ∀(τ , ξ) ∈ ker(a), (18)

b((σ̃, p̃), s) = 0 ∀(s,v) ∈ Q. (19)

It is convenient to incorporate the divergence restriction on σ̃ by means of a
Lagrange multiplier and use a shift argument to deal properly with the affine trans-
mission condition relating σ̃ and p̃ on Σ. For this purpose, given q ∈ H1(ΩF), we let
û ∈ H1(ΩS)

n and σ̂ ∈ H(div; ΩS) be the solution of the following linear elasticity
problem:

−div σ̂ = 0 in ΩS,

σ̂ = Cε(û) in ΩS,

σ̂ν = qν on Σ,

û = 0 on ΓD,

σ̂ν = 0 on ΓN.

and we define the bounded linear operator E : H1(ΩF) −→ W given by Eq :=
−σ̂. We notice that E provides a symmetric divergence-free extension of a given
pressure field q to the solid domain. Classical regularity results for the elasticity
equations in polyhedral (polygonal) domains (cf. [10, 13]) ensure the existence of
tS ∈ (0, 1], which depends on the geometry of ΩS and the Lamé coefficients, such
that Eq ∈ HtS(ΩS)

n×n and

‖Eq‖tS,ΩS
≤ C ‖q‖1,ΩF

∀q ∈ H1(ΩF). (20)

We consider Êq := (Eq, q) ∈ Y and introduce the operator

P̃ : Ỹ ×Q → Ỹ ×Q
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((σ, p), r) 7→ P̃ ((σ, p), r) := ((σ̃0, c̃) + Êp̄, r̃)

where (σ̃0, c̃) ∈ YR and (r̃, ũ) ∈ Q× L2(ΩS)
n satisfy

d((σ̃0, c̃), (τ , ξ)) +B((τ , ξ), (r̃, ũ)) = −d(Êp̄, (τ , ξ)) (21)

B((σ̃0, c̃), (s,v)) =

∫

ΩS

divσ · v (22)

for all (τ , ξ) ∈ YR and (s,v) ∈ Q × L2(ΩS)
n. The arguments given for the well-

posedness of (15)-(16) are valid for the saddle point problem (21)-(22). Moreover,

it is clear from (17)–(19) that P = P̃ |Y×Q.
The following regularity results obtained in Lemma 3.1 and Proposition 4.1 of

[17] are essential for the forthcoming analysis.

Lemma 2.3. There exists C > 0 such that, for all ((σ, p), r) ∈ Ỹ ×Q,

‖σ̃‖tS,ΩS
+ ‖ũ‖1+tS,ΩS

+ ‖r̃‖tS,ΩS
+ ‖p̃‖1,ΩF

≤ C
(
‖divσ‖0,ΩS

+ ‖p‖1,ΩF

)
,

where ((σ̃, p̃), (ũ, r̃)) ∈
[
YR + Êp

]
×
[
L2(ΩS)

n ×Q
]
is the solution to (21)–(22).

Consequently, P̃ (Ỹ ×Q) ⊂
[
HtS(ΩS)

n×n ×H1(ΩF)
]
×HtS(ΩS)

n×n.

Lemma 2.4. If ((σ∗, p∗), r∗) = T̃ ((σ, p), r), with ((σ, p), r) ∈ Ỹ × Q, then
divσ∗ ∈ H1(ΩS)

n and there exists tF ∈ (0, 1] such that p∗ ∈ H1+tF(ΩF). Moreover,
there exists a constant C > 0 such that

‖divσ∗‖1,ΩS
+ ‖p∗‖1+tF,ΩF

≤ C ‖|((σ, p), r)‖| .

As a first consequence of Lemmas 2.3 and 2.4 and the fact that P (Y × Q) =
[ker(a)×Q]⊥ is T -invariant we have that

T ◦P (Y×Q) ⊂ P (Y×Q)∩T (Y×Q) →֒
[
HtS(div; ΩS)×H1+tF(ΩF)

]
×HtS(ΩS)

n×n

(23)
and the compactness of T : [ker(a)×Q]⊥B → [ker(a)×Q]⊥B follows. This permits

us to announce the following spectral characterization of T̃ .

Theorem 2.5. The spectrum of T̃ : Ỹ × Q → Ỹ × Q decomposes as follows:

sp(T̃ ) = {0, 1} ∪ {µk}k∈N
, where:

i) µ = 1 is an infinite-multiplicity eigenvalue of T̃ and its associated eigenspace
is ker(a)×Q;

ii) {µk}k∈N
⊂ (0, 1) is a sequence of finite-multiplicity eigenvalues of T̃ which

converge to 0 and the corresponding eigenspaces lie on [ker(a)×Q]⊥B ; more-
over, the ascent of each of these eigenvalues is 1;

iii) µ = 0 is an infinite-multiplicity eigenvalue of T̃ and its associated eigenspace
is

ker T̃ :=
{
((σ, p), r) ∈ Ỹ ×Q : B(((σ, p), r), ((τ , q), s)) = 0

∀((τ , q), s) ∈ Y ×Q} .

Proof. See [16, Proposition A.2] and [17, Theorem 4.3] for more details.
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3. The discrete eigenproblem. Let {Th(ΩS)}h>0 and {Th(ΩF)}h>0 be shape-
regular families of triangulations of the polyhedral (polygonal) regions Ω̄S and Ω̄F,
respectively, by tetrahedrons (triangles) T of diameter hT , with mesh size h :=
max{hT : T ∈ Th(ΩS) ∪ Th(ΩF)}. For the sake of simplicity, in the forthcoming
analysis we assume that Th(ΩS) and Th(ΩF) induce on Σ a coincident triangulation
denoted Σh. In what follows, given an integer k ≥ 0 and a subset S of Rn, Pk(S)
denotes the space of polynomial functions defined in S of total degree ≤ k.

We consider the first order Raviart-Thomas finite element

RT 0(T ) := {ax+ b, a ∈ R, b ∈ R
n}

and denote by bT the usual bubble function on T ∈ Th(ΩS). We introduce

Wh :=
{
τh ∈ W : (τh,i|T )

t ∈ RT 0(T )⊕ curl(P0(T )
2n−3bT )

∀i ∈ {1, · · · , n}, ∀T ∈ Th(ΩS)
}
,

and

Vh :=
{
qh ∈ H1(ΩF) : qh|T ∈ P1(T ) ∀T ∈ Th(ΩF)

}
,

where τh,i stands for the i-th row of τh. It is well-known that

Φh
S := {τh · ν : τh ∈ Wh} ⊂ P0(Σh)

n,

where P0(Σh) := {φh : Σ → R : φh|F ∈ P0(F ) ∀F ∈ Σh}. We denote by
̺h the L2(Σ)-orthogonal projection onto P0(Σh) and introduce the finite element
subspaces

Yh := {(τ h, qh) ∈ Wh × Vh : τhν + ̺h(qh)ν = 0 on Σ} ,

Qh :=
{
sh ∈ Q ∩ C0(Ω̄S)

n×n : sh|T ∈ P1(T )
n×n ∀T ∈ Th(ΩS)

}
.

We point out that Yh ⊂ Ỹ is not a subspace of Y . In addition, for the analysis
below we will also use the space

Uh :=
{
vh ∈ L2(ΩS)

n : vh|T ∈ P0(T )
n ∀T ∈ Th(ΩS)

}
.

Notice that Wh ×Qh ×Uh is the lowest-order mixed finite element of the PEERS
family introduced for linear elasticity by Arnold, Brezzi and Douglas (see [1]). In
particular we have the inf-sup condition [1, 8]: There exists β∗ > 0, independent of
h, such that

sup
0 6=τh∈Wh∩WΣ

B((τ h, qh), (sh,vh))

‖τ h‖H(div;ΩS)

≥ β∗
(
‖vh‖0,ΩS

+ ‖sh‖0,ΩS

)
, (24)

for all (sh,vh) ∈ Qh × Uh.
The discrete counterpart of problem (9)-(10) reads as follows: Find λh ∈ R,

0 6= (σh, ph) ∈ Yh, and 0 6= rh ∈ Qh such that

A((σh, ph), (τ h, qh)) + b((τ h, qh), rh) = λh [d((σh, ph), (τ h, qh)) + b((τ h, qh), rh)] ,
(25)

b((σh, ph), sh) = λh b((σh, ph), sh) (26)

for all (τ h, qh) ∈ Yh and sh ∈ Qh.

The discrete version of the operator T̃ is then given by

T̃ h : Ỹ ×Q −→ Ỹ ×Q,

((F , f), g) 7−→ T h((F , f), g) := ((σ∗
h, p

∗
h), r

∗
h),
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where ((σ∗
h, p

∗
h), r

∗
h) ∈ Yh ×Qh solves the discrete source problem,

A((σ∗
h, p

∗
h), (τ h, qh)) + b((τ h, qh), r

∗
h) = d((F , f), (τh, qh)) + b((τ h, qh), g), (27)

b((σ∗
h, p

∗
h), sh) = b((F , f), sh) (28)

for all (τ h, qh) ∈ Yh and sh ∈ Qh. We can use the classical Babuška-Brezzi theory

to prove that T̃ h is well defined and bounded uniformly with respect to h. Indeed,
we already know from [17, Lemma 2.1] that A is elliptic on the whole W ×H1(ΩF)
(and in particular on Yh), whereas the discrete inf-sup condition

sup
0 6=(τh,qh)∈Yh

b((τh, qh), sh)

‖(τh, qh)‖
≥ β ‖sh‖0,ΩS

∀sh ∈ Qh

follows immediately from (24), as shown in [17, Lemma 2.2].

Lemma 3.1. Let ((σ∗, p∗), r∗) := T̃ ((F , f), g) ∈ Y × Q and ((σ∗
h, p

∗
h), r

∗
h) :=

T̃ h((F , f), g) ∈ Yh ×Qh be the solutions of (11)-(12) and (27)-(28) respectively.
The following identity holds true,

A

(
((σ∗ −σ∗

h, p
∗ − p∗h), r

∗ − r∗h), ((τ h, qh), sh)
)
=

∫

Σ

1

ρS
divσ∗ · (qhν + τ hν) (29)

for all (τ h, qh) ∈ Yh and sh ∈ Qh.

Proof. We have from (27)-(28) that

A

(
((σ∗

h, p
∗
h), r

∗
h), ((τ h, qh), sh)

)
= B

(
((F , f), g), ((τ h, qh), sh)

)
(30)

for all ((τ h, qh), sh) ∈ Yh×Qh. On the other hand, testing (11) with (τ , 0), (0, q) ∈
D(ΩS)

n×n ×D(ΩF) ⊂ Y yields

C−1σ∗ −∇

(
1

ρS
divσ∗

)
+ r∗ = C−1F + g in ΩS,

−c2∆p∗ + p∗ = f in ΩF.

Applying an integration by parts formula to (11) and using the last two equations
we deduce that

A

(
((σ∗, p∗), r∗), ((τ h, qh), sh)

)
= B

(
((F , f), g), ((τ h, qh), sh)

)

+

∫

Σ

(
1

ρF

∂p∗

∂ν
qh −

1

ρS
divσ∗ · τhν

)
. (31)

Testing now (11) with an appropriate (τ , q) ∈ Y we can show that

∂p∗

∂ν
= −

ρF
ρS

divσ∗ · ν on Σ.

Substituting the last identity in (31) and taking into account (30) we deduce (29).

Since T̃ h(Ỹ×Q) ⊂ Yh×Qh, and Yh×Qh ⊂ Ỹ ×Q we are allowed to consider

T h := T̃ h|Yh×Qh
: Yh ×Qh −→ Yh ×Qh
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and, as in the continuous case, we have that (λh, (σh, ph), rh) ∈ R×Yh×Qh solves
problem (25)-(26) if and only if (µh := 1

λh
, ((σh, ph), rh)) is an eigenpair of T h, i.e.,

if and only if ((σh, ph), rh) 6= 0 and

T h((σh, ph), rh) =
1

λh
((σh, ph), rh) .

To describe the spectrum of this operator, we proceed as in the continuous case
and consider

kerh(a) := {(τ h, ξ) ∈ Yh,R : div τ h = 0 in ΩS} ,

where Yh,R is the subspace of YR defined by

Yh,R := {(τh, ξ) ∈ Wh × R : τ hν + ξν = 0 on Σ} .

Clearly, T h : [kerh(a) × Qh] → [kerh(a) × Qh] reduces to the identity, which
means that here again µh = 1 is an eigenvalue of T h with associated eigenspace
kerh(a)×Qh. Let us also consider

[kerh(a)×Qh]
⊥B := {((σh, ph), rh) ∈ Yh ×Qh :

B(((σh, ph), rh), ((τ h, qh), sh)) = 0 ∀((τ h, qh), sh) ∈ kerh(a)×Qh} .

We have the following discrete analogue to Lemma 2.2.

Lemma 3.2. The subspace [kerh(a) × Qh]
⊥B is invariant for T h. Moreover, we

have the following direct and uniformly stable decomposition

Yh ×Qh = [kerh(a)×Qh]⊕ [kerh(a)×Qh]
⊥B . (32)

Proof. Taking into account the inf-sup condition (24), the proof is similar to the
one given for Lemma 2.2.

We denote by P h : Yh × Qh → Yh × Qh the unique projection with range
[kerh(a)×Qh]

⊥B and kernel kerh(a)×Qh associated to the discrete direct splitting
(32). Given ((σh, ph), rh) ∈ Yh×Qh, ((σ̃h, p̃h), r̃h) := P h((σh, ph), rh) is uniquely
characterized by,

div σ̃h = divσh and p̃h = p̄h + c̃h, with c̃h ∈ R, (33)

d((σ̃h, p̃h), (τ , ξ)) + b((τ , ξ), r̃) = 0 ∀(τ , ξ) ∈ kerh(a), (34)

b((σ̃h, p̃h), s) = 0 ∀s ∈ Qh. (35)

We are now in a position to provide a characterization of the spectrum of T h

and, hence, of the solutions to problem (25)-(26).

Theorem 3.3. The spectrum of T h consists of M := dim(Yh ×Qh) eigenvalues,
repeated accordingly to their respective multiplicities. The spectrum decomposes as

follows: sp(T h) = {1} ∪ {µhk}
K
k=1. Moreover,

i) the eigenspace associated to µh = 1 is kerh(a)×Qh;
ii) µhk ∈ (0, 1), k = 1, . . . ,K := M−dim(kerh(a)×Qh), are non-defective eigen-

values, repeated accordingly to their respective multiplicities, with associated
eigenspaces lying on [kerh(a)×Qh]

⊥B ;
iii) µh = 0 is not an eigenvalue of T h.

Proof. See [17, Theorem 6.7] for more details.
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4. Abstract convergence analysis. For the sake of brevity, we will denote in

this section X := Y × Q, X̃ := Ỹ × Q and Xh := Yh × Qh. Moreover, when
no confusion can arise, we will use indistinctly x, y, etc. to denote elements in X

and, analogously, xh, yh, etc. for those in Xh. Finally, we will use ‖·‖L(Xh,X̃)
to

denote the norm of an operator restricted to the discrete subspace Xh; namely, if

S : X̃ → X̃, then

‖S‖L(Xh,X̃)
:= sup

0 6=xh∈Xh

‖|Sxh‖|

‖|xh‖|
.

For x ∈ X̃ and E and F closed subspaces of X̃, we set δ(x,E) := infy∈E ‖|x− y‖|,

δ(E,F) := sup
y∈E: ‖|y‖|=1 δ(y,F), and δ̂(E,F) := max {δ(E,F), δ(F,E)}, the latter

being the so called gap between subspaces E and F.

Proposition 1. There exists C > 0, independent of h, such that for all x :=

((σ, p), r) ∈ X̃,

‖T̃ x− T̃ hx‖ ≤ C
(
δ(T̃ x,Xh) + Υh(T̃ x)

)
, (36)

where the consistency error is given by

Υh(T̃ x) := sup
06=yh:=((τh,qh),sh)∈Xh

∫
Σ

1
ρS

divσ∗ · (qhν + τ hν)

‖|yh‖|
, (37)

with T̃ x := ((σ∗, p∗), r∗).

Proof. We deduce from the well-posedness of problem (27)-(28) that the operator

Xh ∋ yh 7−→ A
(
yh, ·

)
: Xh → R

has a uniformly bounded inverse. It follows that (see [9]), there exists γ > 0
independent of h such that

sup
06=yh∈Xh

A
(
xh,yh

)

‖|yh‖|
≥ γ ‖|xh‖| , ∀xh ∈ Xh. (38)

Let x∗ := T̃ x ∈ X and x∗
h := T̃ hx ∈ Xh be the solutions of (11)-(12) and (27)-

(28) respectively with data x = ((F , f), g). The triangle inequality and (38) show
that, for all ỹh ∈ Xh,

‖|x∗ − x∗
h‖| ≤ ‖|x∗ − ỹh‖|+ ‖|x∗

h − ỹh‖| ≤ ‖|x∗ − ỹh‖|+
1

γ
sup

yh∈Xh

A(x∗
h − ỹh,yh)

‖|yh‖|
.

Denoting by ‖A‖ the norm of the bilinear form A and using again the triangle
inequality we deduce that

‖|x∗ − x∗
h‖| ≤

(
1 +

‖A‖

γ

)
‖|x∗ − ỹh‖|+

1

γ
sup

yh∈Xh

A(x∗ − x∗
h,yh)

‖|yh‖|
∀ỹh ∈ Xh

and the result follows from (29).

Lemma 4.1. There exists C > 0, independent of h, such that
∥∥∥T̃ − T h

∥∥∥
L(Xh,X̃)

≤ C
( ∥∥∥P̃ − P h

∥∥∥
L(Xh,X̃)

+ δ(T ◦ P̃ (Xh),Xh)+

sup
xh∈Xh

Υh(T ◦ P̃ xh)

‖|xh‖|

)
.
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Proof. Given xh ∈ Xh, we have that

(T̃ − T h)xh = (T̃ − T h)P hxh + (T̃ − T h)(I − P h)xh = (T̃ − T h)P hxh,

where the last equality is because both T̃ and T h become the identity when re-
stricted to kerh(a)×Qh. On the other hand,

(T̃ − T h)P hxh = (T̃ − T̃ h)(P h − P̃ )xh + (T̃ − T̃ h)(P̃ xh)

yields the estimate

∥∥∥
∣∣∣(T̃ − T̃ h)P hxh

∥∥∥
∣∣∣ ≤

((∥∥∥T̃
∥∥∥
L(X̃,X̃)

+ ‖T̃ h‖L(X̃,X̃)

) ∥∥∥
∣∣∣(P h − P̃ )xh

∥∥∥
∣∣∣+

∥∥∥
∣∣∣(T̃ − T̃ h) ◦ P̃ xh

∥∥∥
∣∣∣
)

(39)

and the result follows from the uniform boundedness of T̃ h (as established in Propo-
sition 1) and from (36).

Given an eigenvalue µ /∈ {0, 1} of T̃ , we let Dγ be an open disk in the complex

plane with boundary γ, such that µ is the only eigenvalue of T̃ lying in Dγ and

γ ∩ sp(T̃ ) = ∅. We recall that the spectral projector G := 1
2πi

∫
γ

(
zI − T̃

)−1

dz :

X̃ −→ X̃ is well-defined and bounded. It is shown in [11, Lemma 1] that, if

limh→0

∥∥∥T̃ − T h

∥∥∥
L(Xh,X̃)

= 0, then (for h sufficiently small) the discrete projec-

tion Gh := 1
2πi

∫
γ

(
zI − T̃ h

)−1

dz : Xh −→ Xh is also well-defined and uniformly

bounded. Moreover, (cf. [11, Lemma 2]) there exists C > 0 independent of h such
that

‖G−Gh‖L(Xh,X̃)
≤ C

∥∥∥T̃ − T h

∥∥∥
L(Xh,X̃)

. (40)

Theorem 4.2. Assume that

lim
h→0

(∥∥∥P̃ − P h

∥∥∥
L(Xh,X̃)

+ δ(T ◦ P̃ (X̃),Xh) + sup
xh∈Xh

Υh(T ◦ P̃ xh)

‖|xh‖|

)
= 0. (41)

Then, if m is the multiplicity of an eigenvalue µ /∈ {0, 1} of T̃ , there exists exactly
m eigenvalues {µi,h, i = 1 · · · ,m} of T h such that

lim
h→0

max
1≤i≤m

|µ− µi,h| = 0.

Moreover, if E(µ) is the eigenspace corresponding to µ and Eh(µ) is the T h-invariant
subspace of Xh spanned by the eigenspaces corresponding to {µi,h, i = 1 · · · ,m}
then

lim
h→0

δ̂(E(µ),Eh(µ)) = 0.

Proof. We deduce from Theorem 4.1 that limh→0

∥∥∥T̃ − T h

∥∥∥
L(Xh,X̃)

= 0 and the

result is a consequence of Section 2 of [11].
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Theorem 4.3. Under the condition (41), if m is the multiplicity of an eigenva-

lue µ /∈ {0, 1} of T̃ then, for h sufficiently small, there exists a constant C > 0
independent of h such that

δ̂(E(µ),Eh(µ)) ≤ C
( ∥∥∥P̃ − P h

∥∥∥
L(Xh,X̃)

+ δ(T ◦ P̃ (X̃),Xh) + sup
xh∈Xh

Υh(T ◦ P̃ xh)

‖|xh‖|

)
.

Proof. It is well-known that G is a projector in X̃ with range E(µ) and we deduce
from Theorem 4.2 that, for h sufficiently enough, Gh is a projector in Xh with
range Eh(µ), cf. [11]. Hence, for all xh ∈ Eh(µ), we have Ghxh = xh, whereas
Gxh ∈ E(µ). It follows that,

δ(xh,E(µ)) ≤ ‖Ghxh −Gxh‖ ≤ ‖Gh −G‖L(Xh,X̃)
‖|xh‖|

for all xh ∈ Eh(µ). We deduce from (40) that there exist constants C > 0 and
h0 > 0 such that, for all h < h0,

δ(Eh(µ),E(µ)) ≤ C
∥∥∥T̃ − T h

∥∥∥
L(Xh,X̃)

. (42)

On the other hand, we notice that Gx = x for all x ∈ E(µ). Then, for all
yh ∈ Xh and for h small enough,

‖|x−Ghyh‖| ≤ ‖|G(x− yh)‖|+ ‖|(G −Gh)yh‖| ≤

‖G‖L(X̃,X̃) ‖|(x− yh)‖|+ ‖(G−Gh)‖L(Xh,X̃)
‖|yh‖|

≤ (1 + ‖G‖L(X̃,X̃)) ‖|x− yh‖|+ ‖|G−Gh‖|L(Xh,X̃)
‖|x‖| ,

where the last inequality follows from the triangle inequality, (40), Lemma 4.1 and
(41). It follows that

infxh∈Eh(µ) ‖|x− xh‖|

‖|x‖|
=

infyh∈Xh
‖|x−Ghyh‖|

‖|x‖|
≤

(1 + ‖G‖L(X̃,X̃))
infyh∈Xh

‖|x− yh‖|

‖|x‖|
+ ‖G−Gh‖L(Xh,X̃)

, ∀x ∈ E(µ).

Using (40) and the fact that T ◦ Px = Tx = µx for any x ∈ E(µ) yield

δ(E(µ),Eh(µ)) ≤
1 + ‖G‖L(X̃,X̃)

µ
δ(T ◦ P (X),Xh) + ‖G−Gh‖L(Xh,X̃)

≤
1 + ‖G‖L(X̃,X̃)

µ
δ(T ◦ P (X),Xh) +

∥∥∥T̃ − T h

∥∥∥
L(Xh,X̃)

.

The result follows now from Lemma 4.1 by noticing that both δ(T ◦P (X),Xh) and

δ(T ◦ P̃ (Xh),Xh) are smaller than δ(T ◦ P̃ (X̃),Xh).

Theorem 4.4. Under the condition (41), if m is the multiplicity of an eigenvalue

µ /∈ {0, 1} of T̃ then there exists a constant C > 0 independent of h such that

sup
1≤i≤m

|µ− µi,h| ≤ C

((∥∥∥P̃ − P h

∥∥∥
L(Xh,X̃)

+ δ(T ◦ P̃ (X̃),Xh)
)2

+ sup
x∈E(µ)

Υh(x)

‖|x‖|

)
.

Proof. Let ui,h be an eigenfunction corresponding to µi,h such that ‖xi,h‖ = 1. We
know from (42) that, if h is sufficiently small,

δ(xi,h,E(µ)) ≤ C
∥∥∥T̃ − T h

∥∥∥
L(Xh,X̃)

.
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Then, there exists an eigenfunction x := ((σ, p), r) ∈ E(µ) satisfying

‖|xi,h − x‖| ≤ C
∥∥∥T̃ − T h

∥∥∥
L(Xh,X̃)

,

which proves that ‖|x‖| is bounded from below and above by constant independent
of h. Proceeding as in the proof of Lemma 3.1 we obtain that

A(x,yh) = λB(x,yh)−

∫

Σ

1

ρS
divσ · (qhν + τhν) (43)

for all yh := ((τ h, qh), sh) ∈ Xh. With the aid of (43), it is easy to show that the
identity

A(x− xi,h,x− xi,h)− λB(x− xi,h,x− xi,h)

+ 2

∫

Σ

1

ρS
divσ · (pi,hν + σi,hν) = (λi,h − λ)B(xi,h,xi,h)

holds true. Now, as E(µ) is finite-dimensional, there exists c > 0, independent of
h, such that B(x,x) ≥ c. This proves that B(xih,xih) ≥

c
2 for h sufficiently small.

The result follows now from the fact that A and B are continuous bilinear forms on
X̃.

5. Asymptotic error estimates. We begin this section by recalling some well-
known approximation properties of the finite element spaces introduced above.
Given s ∈ (0, 1], let Πh : Hs(ΩS)

n×n∩W → Wh be the usual lowest-order Raviart-
Thomas interpolation operator (see [9]), which is characterized by the identities

∫

F

(Πhτ )νF · ζ =

∫

F

τνF · ζ ∀ζ ∈ P0(F )n

for all faces (edges) F of elements T ∈ Th(ΩS), with νF being a unit vector normal
to the face (edge) F . It is well known that Πh is a bounded linear operator and
that the following commuting diagram property holds true (cf. [9]):

div(Πhτ ) = Lh(div τ ) ∀τ ∈ Hs(ΩS)
n×n ∩ H(div; ΩS), (44)

where Lh : L2(ΩS)
n → Uh is the L2(ΩS)

n-orthogonal projector. In addition, it is
well-known that the arguments leading to [14, Theorem 3.16] allow showing that
there exists C > 0, independent of h, such that

‖τ −Πhτ‖0,ΩS
≤ Chs

(
‖τ‖s,ΩS

+ ‖div τ‖0,ΩS

)
∀τ ∈ Hs(ΩS)

n×n ∩ H(div; ΩS).

(45)
Finally, we denote by Rh : Q → Qh the orthogonal projector with respect to the
L2(ΩS)

n×n-norm and by πh : H1(ΩF) → Vh the orthogonal projector with respect
to the H1(ΩF)-norm. Then, for any s ∈ (0, 1], we have

‖τ −Πhτ‖H(div;ΩS)
≤ Chs ‖τ‖Hs(div;ΩS)

∀τ ∈ Hs(div; ΩS) ∩W , (46)

‖r −Rhr‖0,ΩS
≤ Chs ‖r‖s,ΩS

∀r ∈ Hs(ΩS)
n×n ∩Q, (47)

‖v −Lhv‖0,ΩS
≤ Chs ‖v‖s,ΩS

∀v ∈ Hs(ΩS)
n, (48)

‖q − πhq‖1,ΩF
≤ Chs ‖q‖1+s,ΩF

∀q ∈ H1+s(ΩF). (49)

Notice that (46) is actually a straightforward consequence of (45), (44), and (48).
The following estimate holds true.
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Lemma 5.1. There exists a constant C > 0, independent of h, such that

‖ΠhEq‖0,ΩS
≤ C ‖q‖1,ΩF

∀q ∈ H1(ΩF),

‖Eq −ΠhEq‖0,ΩS
≤ ChtS ‖q‖1,ΩF

∀q ∈ H1(ΩF).

Proof. See [17, Lemma 5.1].

Next, we introduce the discrete counterparts of E and Ê, defined for any q ∈
H1(ΩF) by

Ehq := ΠhE(πhq) ∈ Wh and Êhq := (Ehq, πhq) . (50)

It is clear that Êhq ∈ Yh for all q ∈ H1(ΩF). Indeed, as ν is piecewise constant on
Σ,

(Ehq)ν = ̺h(E(πhq)ν) = −̺h

(
(πhq)ν

)
= −

(
̺h(πhq)

)
ν

where ̺h : L2(Σ)n → P0(Σ
h
S)

n stands for the vectorial counterpart of ̺h. Moreover,
we have the following result.

Lemma 5.2. There exists a constant C > 0, independent of h, such that

‖Eq −Ehq‖H(div;ΩS)
≤ C

(
htS ‖q‖1,ΩF

+ ‖q − πhq‖1,ΩF

)
∀q ∈ H1(ΩF).

Proof. Since divEq = divEhq = 0, we only have to estimate the L2(ΩS)-norm.
To this end, we add and subtract ΠhEq and use the triangle inequality to obtain

‖Eq −Ehq‖0,ΩS
≤ ‖Eq −ΠhEq‖0,ΩS

+ ‖ΠhE(q − πhq)‖0,ΩS
.

Hence, the proof follows from the two estimates in Lemma 5.1.

Our aim now is to show that, if τ is sufficiently smooth, then (τ , q) ∈ Y can be
approximated well from Yh.

Lemma 5.3. Let (τ , q) ∈ Y with τ ∈ HtS(ΩS)
n×n and let

(τ h, qh) := (Πhτ + (Ehq −ΠhEq) , πhq) .

Then, (τ h, qh) ∈ Yh and

‖(τ , q)− (τ h, qh)‖ ≤ C
[
‖τ −Πhτ‖H(div;ΩS)

+ ‖q − πhq‖1,ΩF

]
.

Proof. First notice that

τhν + ̺h(qh)ν = Πh (τ −Eq)ν + (Ehqν + ̺h(πhq)ν) = 0 on Σ.

Indeed, from the definition of Eh (cf. (50)), it is clear that ((Ehq)ν + ̺h(πhq)ν)
vanishes on Σ and so does Πh (τ −Eq)ν, because (τ −Eq) ν = τν + qν = 0 on
Σ for any (τ , q) ∈ Y .

To prove the estimate we use again the definition of Eh to write

‖(τ , q)− (τ h, qh)‖

≤ ‖τ −Πhτ‖H(div;ΩS)
+ ‖ΠhE(πhq − q)‖H(div;ΩS)

+ ‖q − πhq‖1,ΩF
.

Then, the result follows from the first inequality in Lemma 5.1 and the fact that
E(πhq − q) is divergence-free and, hence, so is ΠhE(πhq − q).

Lemma 5.4. There exists a constant C > 0 independent of h such that

δ(T ◦ P̃ (X̃),Xh) ≤ Cht, with t := min{tS, tF}.
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Proof. On the one hand, we have that (T ◦ P̃ )(X̃) ⊂ T (X). On the other hand, it

is straightforward that, for any x̃ ∈ X̃,

B((I − T ) ◦ P̃ (x̃),y) = 0, ∀y ∈ ker(a)×Q.

Thus, (I − T ) ◦ P̃ (X̃) ⊂ P (X). It follows from Lemmas 2.3 and 2.4 that

T ◦ P̃ (X̃) ⊂ T (X) ∩ P̃ (X̃) →֒
[
HtS(div; ΩS)×H1+tF(ΩF)

]
×HtS(ΩS)

n×n

and the result is a consequence of Lemma 5.3 and the approximation properties
(46)-(49).

Let Êh be the operator defined in (50) and let

P̃ h : Ỹ ×Q −→ Yh ×Qh,

((σ, p), r) 7−→ P̃ h((σ, p), r) := ((σ̃h,0, c̃h) + Êhp̄, r̃h),

where (σ̃h,0, c̃h) ∈ Yh,R and (r̃h, ũh) ∈ Qh × Uh solve the equations

d((σ̃h,0, c̃h), (τ h, ξ)) +B((τ h, ξ), (r̃h, ũh)) = −d(Êhp̄, (τ h, ξ)), (51)

B((σ̃h,0, c̃h), (sh,vh)) =

∫

ΩS

divσ · vh − b(Êhp̄, sh) (52)

for all (τ h, ξ) ∈ Yh,R and (sh,vh) ∈ Qh × Uh. It is clear that P̃ h|Yh×Qh
= P h.

Equations (51)–(52) constitute a conforming finite element discretization of the

mixed problem (21)–(22) used to define P̃ . The uniform discrete inf-sup condition
of B for the pair {Yh,R,Qh × Uh} is an easy consequence of (24). Moreover, [17,
Lemma 2.1] guarantees the uniform ellipticity of d on W × H1(ΩF) ⊃ kerh(a),
whereas the fact that div(Wh) ⊂ Uh implies that kerh(B) ⊂ kerh(a). Hence,
as a consequence of the Babuška-Brezzi theory, problem (51)–(52), is well posed.

Furthermore, thanks to the definition of Êhp̄, the first estimate from Lemma 5.1,
and the fact that ‖πhp̄‖1,ΩF

≤ ‖p̄‖1,ΩF
(since πh is a projection), we can claim

that the operators P̃ h are bounded uniformly with respect to h and the following
Strang-like estimate holds true:

‖(σ̃0, c̃)− (σ̃h,0, c̃h)‖+ ‖ũ− ũh‖0,ΩS
+ ‖r̃ − r̃h‖0,ΩS

≤ C

[
inf

(τh,ξ)∈Yh,R

‖(σ̃0, c̃)− (τ h, ξ)‖+ inf
vh∈Uh

‖ũ− vh‖0,ΩS
+ inf

sh∈Qh

‖r̃ − sh‖0,ΩS

+ sup
06=(τh,ξ)∈Yh,R

|d(Êp̄− Êhp̄, (τh, ξ))|

‖(τh, ξ)‖
+ sup

0 6=sh∈Qh

|b(Êp̄− Êhp̄, sh)|

‖sh‖0,ΩS

]
, (53)

where ((σ̃0, c̃), (ũ, r̃)) and ((σ̃h,0, c̃h), (ũh, r̃h)) are the solutions to (21)–(22) and
(51)–(52), respectively. As a consequence, we have the following estimate.

Lemma 5.5. There exists C > 0, independent of h, such that
∥∥∥P̃ − P h

∥∥∥
L(Xh,X̃)

≤ C htS .

Proof. See [17, Lemma 6.3] for more details.
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Lemma 5.6. There exists C1 > 0, independent of h, such that

sup
x∈X̃

Υh(T ◦ P̃ x)

‖|x‖|
≤ C1 h.

Moreover, if µ /∈ {0, 1} is an eigenvalue of T̃ . Then, there exists a constant C2 > 0,
independent of h such that

sup
x∈E(µ)

Υh(x)

‖|x‖|
≤ C2 h

1+tS

Proof. We first notice that by definition qhν + τ hν = (qh − ̺hqh)ν. Hence, if

T ◦ P̃ x := ((σ∗, p∗), r∗), we have that
∫

Σ

1

ρS
divσ∗ ·

(
qhν + τhν

)
=

∫

Σ

1

ρS

(
divσ∗ · ν − ̺h(divσ∗ · ν)

)(
qh − ̺hqh

)

=

∫

Σ

1

ρS

(
divσ∗ − ̺h(divσ∗)

)
· ν
(
qh − ̺hqh

)
≤ C3h‖divσ∗‖1/2,Σ ‖qh‖1/2,Σ

≤ C4h ‖|x‖| ‖|((τ h, qh), sh)‖| , (54)

which proves the first estimate of the Lemma.
On the other hand, if x := ((σ, p), r) ∈ E(µ) then T ◦P (x) = µx and we deduce

again from (23) that there exists a constant C > 0 such that

‖σ‖HtS (div;ΩS)
+ ‖u‖1+tS,ΩS

+ ‖r‖tS,ΩS
+ ‖p‖1+tF,ΩF

≤ C ‖|x‖| ,

where u is the displacement field given by u = µ
(µ−1)ρS

divσ ∈ H1+tS(ΩS)
n. With

this regularity result at hand, we can proceed as in (54) to obtain
∫

Σ

u · ν
(
qh − ̺hqh

)
≤ C6h

1+tS‖divσ‖1/2+tS,Σ ‖qh‖1/2,Σ

≤ C7h
1+tS ‖|x‖| ‖|((τ h, qh), sh)‖| , ∀((τ h, qh), sh) ∈ Xh,

and the second estimate of the Lemma follows.

We conclude that we have have the following asymptotic convergence for the
eigenfunctions and eigenvalues of problem (1)-(7).

Theorem 5.7. If µ /∈ {0, 1} is an eigenvalue of T̃ , there exist constants C > 0 and
h0 > 0 such that, for all h < h0,

δ̂(E(µ),Eh(µ)) ≤ Cht and max
1≤i≤m

|λ− λi,h| ≤ Ch2t, with t := min{tS, tF}.

6. Numerical results. We use a two-dimensional benchmark test that is identical
to the one carried out in [17]. The geometrical data representing an elastic container
(steel) filled with a compressible liquid (water) is shown in Figure 2. The physical
parameters are given by:

• Solid density: ρS = 7700 kg/m3,
• Young modulus: E = 1.44× 1011Pa,
• Poisson ratio: ν = 0.35,
• Fluid density: ρF = 1000 kg/m3,
• Acoustic speed: c = 1430m/s,
• Gravity acceleration: g = 9.8m/s2.
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Table 1. Lowest computed sloshing frequencies ωS
h,k (in rad/s).

Mode N = 4 N = 6 N = 8 N = 10 N = 12 Order Extrapolated [17]

ωS
h,1

5.3196 5.3164 5.3153 5.3148 5.3145 2.00 5.3138 5.3138

ωS
h,2

7.8697 7.8490 7.8417 7.8383 7.8365 2.00 7.8324 7.8324

ωS
h,3

9.7135 9.6560 9.6358 9.6264 9.6213 1.99 9.6097 9.6099
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Figure 2. Fluid and solid domains. Coarsest mesh (N = 1).

We use several meshes which are successive uniform refinements of the coarse
initial triangulation shown in Figure 2. The refinement parameter N is the number
of element layers across the thickness of the solid (N = 1 for the mesh in Figure 2).

We can distinguish between two types of vibrations corresponding to sloshing and
elastoacoustic modes. We refer to [4, 6] for a more detailed discussion on sloshing
(or gravity) and elastoacoustic frequencies. We report the lowest computed sloshing
vibration frequencies ωS

h,k in Table 1 and the elastoacoustic vibration frequencies

ωE
h,k in Table 2. The tables also include the estimated orders of convergence, as well

as more accurate values of the vibration frequencies extrapolated from the computed
ones by means of a least-squares fitting. A double order of convergence can be clearly
observed in all cases. We finally notice that our results are in agreement with those
obtained in [17] and based on the Arnold-Falk-Winther element [2]. This happens
even though the computer cost of the lowest-order PEERS element is lower then
that of the Arnold-Falk-Winther (AFW) element. Indeed, the global number of
unknowns for PEERS elements is ≈ 12Nv while which the number of unknowns for
AFW elements is ≈ 20Nv, where Nv represents the number of vertices in Th(ΩS).

REFERENCES

[1] D. N. Arnold, F. Brezzi and J. Douglas, PEERS: A new mixed finite element method for
plane elasticity, Japan J. Appl. Math., 1 (1984), 347–367.

[2] D. N. Arnold, R. S. Falk and R. Winther, Mixed finite element methods for linear elasticity
with weakly imposed symmetry, Math. Comp., 76 (2007), 1699–1723.

http://www.ams.org/mathscinet-getitem?mr=MR840802&return=pdf
http://dx.doi.org/10.1007/BF03167064
http://www.ams.org/mathscinet-getitem?mr=MR2336264&return=pdf
http://dx.doi.org/10.1090/S0025-5718-07-01998-9


FEM ANALYSIS FOR A FLUID-STRUCTURE SPECTRAL PROBLEM 287

Table 2. Lowest computed elastoacoustic vibration frequencies
ωE
h,k (in rad/s).

Mode N = 4 N = 6 N = 8 N = 10 N = 12 Order Extrapolated [17]

ωE
h,1

423.60 433.08 436.63 438.41 439.46 1.76 442.12 442.71

ωE
h,2

1415.60 1443.44 1453.59 1458.54 1461.37 1.86 1468.12 1469.45

ωE
h,3

2459.47 2516.73 2538.56 2549.67 2556.26 1.71 2573.58 2578.33

ωE
h,4

2644.78 2703.40 2724.84 2735.34 2741.39 1.84 2756.02 2758.94
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