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Abstract. The aim of this paper is to analyze the linear elasticity eigenvalue problem for-
mulated in terms of the stress tensor and the rotation. This is achieved by considering a mixed
variational formulation in which the symmetry of the stress tensor is imposed weakly. We show
that a discretization of the mixed eigenvalue elasticity problem with reduced symmetry based on the
lowest order Arnold—Falk—Winther element provides a correct approximation of the spectrum. We
also prove quasi-optimal error estimates. Finally, we report some numerical experiments.
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1. Introduction. We analyze in this paper a mixed finite element approxima-
tion of an eigenvalue problem arising in linear elasticity. The use of mixed methods
for the numerical solution of elasticity problems may be motivated by the need of
obtaining direct finite element approximations of stresses ensuring the equilibrium
condition. It is also well known that mixed methods are suitable to deal safely with
nearly incompressible materials since they are free from the locking phenomenon.

The preservation of the stress tensor symmetry represents the most complicated
issue in the construction of mixed finite elements in continuum mechanics. During
the last decade, stable mixed finite element methods for linear elasticity, including
strong and weakly imposed symmetry for the stresses, have been derived using math-
ematical tools based on the finite element exterior calculus (see [3, 4, 5, 6]). The
first mixed finite elements known to be stable for the symmetric stress-displacement
two-dimensional formulation is provided in [6]. A three-dimensional analogue of this
element was proposed in [1]. We are interested here in mixed methods in which the
symmetry of the stress tensor is imposed weakly by means of a suitable Lagrange
multiplier. In spite of the introduction of an additional variable, these methods pro-
duce mixed finite elements with fewer degrees of freedom. One of the oldest methods
in this category was introduced in [2]; it is based on the so-called PEERS element.
Recently, further stable elements with a weak symmetry condition for the stresses
have been constructed in [3] and [5]. Proofs employing more classical techniques are
given in [11] for some of the main results obtained in [3] and [5]. We illustrate here
our spectral approximation theory for the mixed formulation of the elasticity problem
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by employing the lowest-order Arnold-Falk-Winther (AFW) element. It consists of
piecewise linear approximations for the stress and piecewise constant functions for
the rotation (as well as for the displacement, which will not appear as an unknown
in our problem). We point out that we could as well have chosen other finite element
methods, such as the PEERS element, to obtain the same stability properties and
error estimates.

The approximation of eigenvalue problems in mixed form has been the object of
several papers; among them we refer to [20]. An alternative analysis, covering the
case of the Stokes problem and the mixed form of a second-order elliptic problem, is
given in [12, 13] (see also Part 3 of [10] and the references therein). In particular,
this analysis reveals that the natural conditions for the well-posedness and stability of
source mixed problems are not sufficient to ensure a correct spectral approximation.

The classical mixed formulation of the elasticity equations in terms of displace-
ments, stresses, and rotations lies in the framework of [10, Part 3] as a problem of the
so-called class (0, g). However, to the best of the authors’ knowledge, this theory has
not been used to prove spectral approximation results for any of the standard finite
elements used for this formulation (e.g., [2, 5]). We choose an alternative approach,
which leads to a less expensive method. In fact, we propose an equivalent formula-
tion in which the displacements are eliminated in terms of the other variables. Let
us remark that if the displacements were a variable of interest, they could be easily
computed by means of a postprocess.

The so-called Babuska—Osborn abstract spectral approximation theory (see [7])
is a powerful tool to deal with compact operators. However, it is well know that,
generally, the solution operator corresponding to mixed formulations fails to be com-
pact. Actually, in our case, the mixed formulation of the problem admits an essential
spectrum: the solution operator has ;1 = 1 as an eigenvalue (that does not correspond
to a physical vibration mode) with an infinite-dimensional eigenspace. To analyze the
resulting mixed formulation, we cannot take advantage of the tools provided in [10,
Part 3] either, since it can be casted neither to class (f,0) nor to class (0, g) of the
abstract framework considered there. Instead, we directly adapt results from [15] to
prove that our mixed approximation is spectrally correct (safe from spurious modes)
and to provide asymptotic error estimates.

The paper is organized as follows. In section 2 we introduce a mixed formulation
with reduced symmetry of the eigenvalue elasticity problem and define the solution
operator. We point out that, in contrast to the usual dual-mixed formulation, the
elastodynamic equation is used here to eliminate the displacement field. This leads
to a method that is equivalent (both at the continuous and the discrete levels) to the
standard dual-mixed formulation (see [2]), which has the advantage of reducing the
number of unknowns. Moreover, the discrete displacement field may be recovered by
a local postprocess procedure from the elastodynamic equation. Section 3 is devoted
to the characterization of the spectrum of the solution operator. In section 4 we
introduce the discrete eigenvalue problem, describe the spectrum of the discrete solu-
tion operator, and provide the essential tools that allow us to show in section 5 that
the numerical scheme provides a correct spectral approximation. We also establish
asymptotic error estimates for the eigenvalues and eigenfunctions. Finally, we present
in section 6 a set of numerical experiments to confirm that the method is not polluted
with spurious modes and to show that the experimental rates of convergence are in
accordance with the theoretical ones. We report numerical results obtained with the
AFW and the PEERS elements, including nearly incompressible and perfectly incom-
pressible materials, which demonstrate that both methods preserve its locking-free
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character when applied to the elasticity vibration problem. We end the paper with
an appendix where we prove a couple of basic properties for spectral problems posed
in terms of symmetric (although not positive definite) bilinear forms.

We end this section with some notation which will be used below. Given any
Hilbert space V, let V™ and V"*™ denote, respectively, the space of vectors and
tensors of order n (n = 2 or 3) with entries in V. In particular, I is the identity
matrix of R"*™. Given 7 := (r;) and o = (0;;) € R"*", we define as usual

the transpose tensor 7% := (7;;), the trace tr := Y ' | 7;;, the deviatoric tensor

7 :=7— L1 (tr7) I, and the tensor inner product 7 : o := Z:jzl TijOij-

Let Q be a polyhedral Lipschitz bounded domain of R™ with boundary 0€2. For
s >0, |||l o stands for the norm of the Hilbertian Sobolev spaces H*(£2), H*(Q)",
or H*(Q)"*", with the convention H°(Q) := L%(Q). We also define for s > 0 the
Hilbert space H*(div; Q) := {7 € H*(Q)"*" : div T € H*(Q2)"}, whose norm is given
by [17[1f1e aivser) = 17112 o + [[div 72 o and denote H(div; Q) := H(div; Q).

Finally, we employ O to denote a generic null vector or tensor and use C' to
denote generic constants independent of the discretization parameters, which may
take different values at different places.

2. The spectral problem. We assume that an isotropic and linearly elastic
solid occupies a bounded and connected Lipschitz domain Q C R™ (n = 2 or 3). We de-
note by v the outward unit normal vector to the boundary 0€2. We assume that 02 ad-
mits a disjoint partition 92 = I'UX, the structure being fixed on I" and free of stress on
Y. For the sake of simplicity, we also assume that both I' and ¥ have positive measure.

The constitutive equation relating the displacement field u and the Cauchy stress
tensor o is given by

o =Ce(u) in €,

where e(u) := 3 [Vu + (Vu)*] is the linearized strain tensor, V being the gradient
tensor, and C is the elasticity operator, which we assume given by Hooke’s law, i.e.,

Ct =g (tr7) I+ 2usT,

where Ag and pug are the Lamé coefficients, which we assume constant. It is easy to
check that the inverse of the elasticity operator C is given by

_ 1 As
2.1 C 17’ =—7——"—(tr7)1I.
( ) 2,us 2us(n/\s + 2[&5) ( )

For nearly incompressible materials Ag is too large in comparison with ug. However,
notice that the coefficients in (2.1) do not blow up as Ag — oc.

Under the hypothesis of small oscillations, the classical approximation yields the
following eigenvalue problem for the free vibration modes of the system and the cor-
responding natural frequencies w > 0:

o =Ce(u) in Q,
dive + w?psu =0 in Q,
ov =20 on X,

u=0 on I,

where pg is the density of the material. We assume pg is a strictly positive constant.
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We aim to employ a dual-mixed approach to derive a variational formulation of
this problem. The main unknown will be the stress tensor o, which will be sought in
the following subspace of H(div;):

W :={r € H(div;Q): Tv=0o0n X}.

Thanks to the boundedness of the normal trace operator 7 +— 7v from H(div; Q)
onto H™/2(90) and to the continuity of the restriction operator from H~/2(9Q) to

Hé{f(E)’ , we conclude that W is a closed subspace of H(div;Q). (We recall that

HééQ(E)’ is the dual of HééQ(Z), which in its turn is the space of functions from
H!/2(%) whose extension by zero to the whole boundary 99 belongs to H'/2(99).)

As will be shown below, the displacement field u disappears from the formulation,
while the rotation

1 t
=g [Vu — (Vu)*]

is introduced as a further unknown. Notice that this new variable r belongs to the
space

Q:={sel?(Q)"": s*=—s}

of skew-symmetric tensors.

We endow W x Q with the H(div; ) x L2(£2)"*" norm, which we will simply
denote ||-||, as well as the corresponding induced norm of operators acting from W x Q
into the same space.

By using the new variable r and (2.1), the constitutive equation can be rewritten

Clo=¢e(u)=Vu—r.

Testing this equation with 7 € W and integrating by parts yield

/C_la':TZ—/u-diVT—/’T:’P.
Q Q Q

Hence, from the elastodynamic equation div o + w?psu = 0 we obtain

1
OJ2/C_1O'ZT— —diVU-diVT+w2/TIT=O VY eWw.
Q Q PS Q

Finally, the symmetry of o is imposed weakly through the following equation:

(2.2) /0':3:0 Vs e Q.
Q

Combining the last two equations, we arrive at the following variational eigenvalue

problem in which X := w?.

PROBLEM 2.1. Find A€ R, 0 € W, and r € Q, such that (o,7) # 0 and

idivo’-diV‘r:/\</C—1¢7:7'—|—/‘r:7’> VT e W,
Q Ps Q Q

/\/a:s:O Vs e Q.
Q
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Notice that to obtain a symmetric variational eigenvalue problem, we have multi-
plied the constraint (2.2) by the eigenvalue A. Therefore, the symmetry of the stress
o imposed by this constraint is lost for A = 0, which actually is an eigenvalue of Prob-
lem 2.1. However, this is not relevant in practice, because A = 0 does not correspond
to a physical vibration mode of the structure. In fact, it is a spurious eigenvalue
of this mixed formulation for the elasticity equation, which would be present even
though the last equation were not multiplied by A.

We introduce the bilinear forms

1
a(o,T) ::/C_10:7-—|— —diveo -divT, o,TEW,
Q Q Ps

b(T,S):Z/T:S, TEW, secQ.
Q

Then, by a shift argument, the eigenvalue problem above can be rewritten as follows.
PROBLEM 2.2. Find A€ R, 0 € W, and r € Q, such that (o,7) # 0 and

alo,T)+b(r,7) =(A+1) {/ Clo:7+b(t,7) VreWw,
Q
blo,s) =(A+1)b(o,s) Vs € Q.
Next, we define the corresponding solution operator:

T - WxQ —WxQ,
(f,g)— (", 77%),

where (o*,r*) is the solution of the following source problem:
(2.3) a(c*, )+ b(T,r*) = / C'f:T+b(r,g) VT eWw,
Q

(2.4) b(o™,s) =b(f,s) Vs € Q.

The Babuska—Brezzi theory shows that this problem is well posed. Indeed, the
inf-sup condition for the bilinear form b, namely,

b
sup (r,9)

2 Bllslloe  Vs€Q,
TEW |T||H(div;Q)

is an immediate consequence of the following global condition (see, for instance, [11]):

/v-diVT—i—b(T,s)
(2.5) sup 2%

> 8 (Iolog +lsloe) — ¥w.s) € LAQ)" x .
TEW HTHH(div;Q)

On the other hand, the identity

(2.6) ClriT= M(trT)Q—l—iTD 7P

yields

(2.7) a(r,T)> L HTDH2 + L ||div7'|\§_Q V7 € H(div; Q),
2ps 0.9 ps '

which allows us to prove the following lemma regarding the ellipticity of a(-,-).
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LEMMA 2.1. There exists a constant a > 0, depending on us, ps, and Q (but not
on As), such that

2
a(r,7) 2 a7 lggiv.0) VT eWw.

Proof. For each 7 € H(div;Q), let ¢ := 7 — ﬁ(fﬂ trr)I. For n = 2, it is
proved in [14, Proposition IV.3.1] that there exists C' > 0, depending only on €2, such
that

2 2 . 2 .
HTO||Q7Q <C (HTDHO_’Q + Hd1v7'||079) V7 € H(div; Q).

The same proof also runs for n = 3. On the other hand, the proof from [18, Lemma 2.2]
can be easily adapted to our case to show that there exists C' > 0, also depending
only on €, such that

2 2
17 [f(div:0) < C ITollagivio) VT eWw.

The result follows now directly from the last two inequalities, the fact that div g =
div T in , and (2.7). Thus we conclude the proof. O

The linear operator T' is then well defined and bounded. The norm of this operator
remains bounded in the nearly incompressible case (i.e., when A\g — 00). Notice that
(A, o,7) € RxW x Q solves Problem 2.1 if and only if (u, (o, 7)), with u = 1/(1+\),
is an eigenpair of T', i.e., if and only if

1
T =— .
(0.7) = 1 (o7)

Because of this, the next step is to obtain a spectral characterization of this operator.

3. Spectral characterization. We need to describe the spectrum of the solu-
tion operator sp(T') to obtain complete information about the solutions of our original
problem. To accomplish this task we will decompose the space YW x Q into a conve-
nient direct sum. Let

K={reW: divr=0 in Q}.

From the definition of T, it is clear that T|xxg : KK x @ — K x Q reduces to
the identity. Thus, u = 1 is an eigenvalue of T'. Moreover, if (o, ) is an associated
eigenfunction then, from the definition of T again, fQ pis diveo - divr = 0 for all
T € W. Hence, dive = 0 in (2, so that (o,r) € IC x Q. Therefore, we have proved
the following result.
LeEMMA 3.1. u =1 is an eigenvalue of T, with associated eigenspace K x Q.
Next, we define the auxiliary operator

PIWXQ—>WXQ7
(o,r)— (0,7),

where (o, (u,7)) € W x [L2(Q)" x Q] is the solution of the following problem:
(3.1)

/67152T+/ﬂ'diVT+/TZF:0 VT eW,
Q Q Q

(3.2) /v-div&—i—/&:s:/v-diva’ V(v,8) € L2(Q)" x Q.
Q Q Q
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The latter is a well-posed mixed problem. In fact, the ellipticity in the kernel prop-
erty is an immediate consequence of Lemma 2.1, whereas the corresponding inf-sup
condition is (2.5). Therefore, P is a well-posed linear operator.

Problem (3.1)(3.2) is the well-known dual-mixed formulation with weakly im-
posed symmetry of the following classical elasticity problem with volumetric force
density — divo:

(3.3) —dive = —dive in ,
(3.4) o =Ce(u) in €,
(3.5) -0 on ¥,
(3.6) u=0 onT.

In fact, it is straightforward to check that (&, u) € H(div; Q) x HY(Q)" satisfies these
equations if and only if (&, (@, 7)) € W x [L%(Q)" x Q] is the solution to (3.1)-(3.2),
with 7 = [Va — (Va)*].

Owing to the regularity result for the classical elasticity problem (see, for instance,
[17]), we know that the solution @ to (3.3)—(3.6) belongs to H!™$(Q)" for some s €
(0, 1] depending on the geometry of 2 and the Lamé coefficients and

(3.7) [alli oo < Cldivel o,

with C > 0 independent of o. From now on, s € (0,1] denotes a constant such
that this inequality holds true. The following lemma summarizes these additional
regularity results.

LEMMA 3.2. There exists C > 0 such that for all (o,r) e Wx Q, if (7, (u,r)) €
W x [L2(Q)" x Q] is the solution to equations (3.1)-(3.2), then

E
Consequently, P(W x Q) C H*(2)"*™ x H?(Q)"*™.

Since (3.2) implies that dive = div e in {2, it is easy to check that the operator
P is idempotent and that its kernel is given by Ker(P) = IC x Q. Therefore, being
P a projector, W x @ = (K x Q) ® P(W x Q). In what follows we will obtain
an alternative characterization of P(W x Q), which will be useful to show that

P(W x Q) is an invariant subspace of T (as is also the case with IC x Q).
With this end, let us us rewrite the equations of Problem 2.2 as follows:

A((o,7),(1,8)) = (A +1)B((o,7),(T,8)) Y(r,s) e Wx Q,
where A and B are the bounded bilinear forms in YW x @ defined by

satleliot 7l o< Cldivelgq.

A((o,7),(1,8)) : = alo,T) + b(T,1) + b(0, 8)

1
/C o:T+ —diva-div7’—|—/7’:7‘—|—/a:s,
Q Ps Q Q

B((o,r),(T,8)): = /QC* o:7+b(t,r)+b(0,s)

:/Cflo':T—i—/T:r—k/a:s.
Q Q Q

(3.8) G:={(o,7)eWxQ: B((o,r),(r,8)) =0 V(r,8) e Kx Q}.
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In spite of the fact that the bilinear form B is not an inner product in W x Q. we
prove in the appendix (see Proposition A.1) that G is an invariant subspace of T'. In
what follows, we will show that G = P(W x Q). The first step is the following result.
LEmMA 3.3. (K x Q)NgG = {0}.
Proof. Let (o,7) € (IKx Q)N G. Then, (o,7) € K x Q and

/Cilo':‘r—l—/T:r:O v eI,
Q Q
/a:s:O Vs € Q.
Q

As an immediate consequence of (2.5) we have that the following inf-sup condition
also holds true:

v-divT

(3.9) sup

- > Bllvlle Vo e L*(Q)"
TEW “"”H(div;g) ’

Hence, (o, 1) € I x Q is a solution to the problem above if and only if there exists
u € L2(Q)" such that (o, (u,7)) € W x [L2(Q)" x Q] is a solution to the following
problem:

/Cila'iT—l—/T:’l"-l-/u-diV’T:O VT eWw,

Q Q Q
/a:s—l—/v-diva’zO V(v,s) € L2(Q)" x Q.
Q Q

As stated above, this is a well-posed problem, so that (o, (u,r)) = 0 and we conclude
the proof. O

Now we are in a position to prove the following result.

LEMMA 3.4. POW x Q) =G.

Proof. Let (o,7) € P(W x Q). Then, from the definition of P and the fact that
divr =0 for all 7 € IC,

/6_15':7'+/T:F:0 V1T eI,
Q Q
/&:s:O Vs e Q.
Q

Hence, from the definition of G, (o,7) € G.

Conversely, let (o,7) € G and let (o,7) = P(o,r). We have just proved that
(o,7) € G, so that (6 —o,7 — 1) € G, too. Moreover, from the definition of P,
div(c —0o) =01in Q, so that (o —o,7—r) € K x Q. Hence, according to Lemma 3.3,
(6 —o,7—7)=0,s0 that (o,7) = (o,7) = P(o,r) € P(W x Q) and we conclude
the proof. O

The following is the key point for the spectral characterization of T'.

PROPOSITION 3.5. Subspace G is invariant for T,

(3.10) T(G) C {(o*,7*) € H* ()™ x H*()™*" : dive™* € H'(Q)"},
and there exists C' > 0 such that for all (f,g) € G, if (c*,7*) =T(f,g), then
(3.11) "l .0+ Idive™|l, o + 7], o < Cl(F:9)]-

Consequently, the operator T'|g : G — G is compact.
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Proof. According to Proposition A.1 from the appendix, T(G) C G. Therefore,
we have in particular that T'|g : G — G is correctly defined.

Let (f,g) € G and (o*,r*) =T(f,g). By testing (2.3) with 7 € D(Q)"*" C W,
we have that

Clo* -V (i diva*) +r*=C1f+g.
Ps
Then, since pg is constant, we have that dive* € H!(Q)".
On the other hand, from Lemmas 3.4 and 3.2, we have that (o*,r*) € T(G) C
G =PW x Q) C H¥(Q)™*™ x H*(Q2)"*", so that (3.10) holds true. Moreover, by
using Lemma 3.2 again, it is easy to check that (3.11) also holds true.
Finally, the compactness of T'|g follows from the fact that

{(",7") € HY(Q)™" x HY(Q)™" : dive” € H{(Q)"} N (W x Q)

is compactly included in W x Q. Thus, we conclude the proof. O

The following result will be used combined with Proposition A.2 from the ap-
pendix to conclude that the eigenvalues of T are nondefective. Another immediate
consequence of this result is that g = 0 is not an eigenvalue of T'.

LEMMA 3.6. For all nonvanishing (o,r) € G,

A((o,r),(o,7)) > B((o,7),(a,7)) > 0.

Proof. The first inequality follows from the definition of the bilinear forms A and
B. To prove the second, first notice that for all (o,7) € G, o is symmetric (which
in its turn follows from the definition (3.8) of G). Hence, by virtue of (2.6), we have
that

1
B((o,r),(o,1)) = C_10:0'>min{#,—} o
(o)) = | > min { = o

2
b0 0.

Moreover, the expression above cannot vanish; otherwise o = 0 and, hence, (o,r) €
K x QNG =1{0} (see Lemma 3.3). Thus, we conclude the proof. a
We end this section with the spectral characterization of T .
THEOREM 3.7. The spectrum of T decomposes as follows: sp(T) = {0,1} U
{br} pen, where
(i) u =1 1is an infinite-multiplicity eigenvalue of T and its associated eigenspace
s IC x Q;

(i) {pr}pen C (0,1) is a sequence of finite-multiplicity eigenvalues of T which
converges to 0 and the corresponding eigenspaces lie on G; moreover, the
ascent of each of these eigenvalues is 1;

(iii) =0 is not an eigenvalue of T .

Proof. Since W x @ = (K x Q) & G (see Lemmas 3.3 and 3.4), T|xxo :
KxQ — K x Q is the identity, and T'|g : G — G is compact (see Proposition 3.5),
the decomposition of sp(T') follows from the spectral characterization of compact
operators. Property (i) was established in Lemma 3.1. Property (ii) follows from
Lemma 3.6 and Proposition A.2 from the appendix. Finally, property (iii) is also an
immediate consequence of Lemma 3.6. O

As an immediate consequence of Proposition 3.5 (see (3.11)) we have the following
additional regularity result for the eigenfunctions of T' lying on G.
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COROLLARY 3.8. Let (o,7) € W x Q be an eigenfunction of T associated with
an eigenvalue pu € (0,1). Then, o,r € H¥(Q)"*", dive € HY(Q)", and

lollo+ l[divel, o +rl,q < Cl(e,r),

with C' > 0 depending on the eigenvalue.

4. The discrete problem. Let {7,(Q)}r>0 be a shape-regular family of trian-
gulations of the polyhedral (polygonal) region € by tetrahedrons (triangles) T with
mesh size h. In what follows, given an integer k¥ > 0 and a subset S of R™, Py (S)
denotes the space of polynomials defined in S of total degree less than or equal to k.

We define

Wy, o= {1, € W: Tp|r € Po(T)" VT € Th(Q)}
and introduce the finite element subspace of @ given by
Q= {sn€Q: sulr € Po(T)""" VT € Th(Q)} .
In addition, for the analysis below, we will also use the space
Uy, = {v, € L2(Q)" : wylr € Po(T)" VT € Ta(Q)} .

Notice that Wy, x Uy x 9y is the lowest-order mixed finite element of the family
introduced for linear elasticity by Arnold, Falk, and Winther (see [4, 5]).

Let us now recall some well-known approximation properties of the finite element
spaces introduced above. Given s € (0,1], let II, : H*(Q)"*™ N W — W), be the
usual Brezzi-Douglas-Marini interpolation operator (see [14]), which is characterized
by the identities

/(HhT)VF-p:/TVF-p Vp e Pi(E)"
F F

for all face (edge) F of T € Tn(€2), with vp being a unit normal vector to the face
(edge) F. The following commuting diagram property holds true (see [14]):

(4.1) div(Il,7) = Ly(div 1) vV e H°(Q)"*" N H(div; ),

where Lj, : L2(Q)" — U, is the L?(2)"-orthogonal projector. In addition, it is well
known (see, e.g., [19, Theorem 3.16]) that there exists C' > 0, independent of h, such
that for each 7 € H*(Q)"*" N H(div;?) there holds

(42) I = Wrllog < Ch° (Il + Idiv o)

Finally, we denote by R, : @ — Q) the orthogonal projector with respect to the
L2(Q)"*"-norm. Then, for any s € (0, 1], we have:

(4.3) |m— HhT”H(div;Q) <CR |7 Hs (div;Q) vr € H*(div; Q) N W,
(4.4) I = Rarllg o < CP” |7, o vr e H¥(Q)"" N Q,
(4.5) [v = Lyvllg o < CP* [|v]], o Vo € H*(Q)".

Notice that (4.3) is actually a straightforward consequence of (4.1), (4.2), and (4.5).
Let us now introduce the discrete counterpart of Problem 2.1.
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PROBLEM 4.1. Find A\, € R, o, € Wy, and v, € Qp, such that (o, 1) # 0
and

1
—divoy, -divrT, = A\, </Clo'h:7'h+/‘l'ht’l”h> VT, € Wh,
Q Ps Q Q

/\h/O'h:ShZO Vs, € Q.
Q

The discrete version of the operator T' is then given by

Th:WxQ—WxQ,
(f,g9) — (o},7}h),

where (o7}, 75) € Wi, x Qy is the solution of the following discrete source problem,
in which the bilinear forms a and b are as in the previous section:

a(oy,Th) + b(Th,17) = / Clfirmn+ b(Th,9) V1, € Wh,
Q
b(a;;, Sh) = b(f, Sh) Vsh S Qh.

We can use the classical Babuska—Brezzi theory to prove that T, is well defined
and bounded uniformly with respect to h. Indeed, we already know from Lemma 2.1
that a(-,-) is elliptic on the whole W and the following discrete inf-sup condition is
proved in [4, Theorem 11.9]: There exists 8* > 0, independent of h, such that

vy, -divTy, + b(Th, Sh)

(4.6) sup

> 8 (Ilvallog + Isnllo)
ThEWh ”ThHH(div;Q)

for all (vn,sn) € Uy x Qp. Moreover, the following Cea-like estimate holds true:
There exists C' > 0, independent of h, such that for all (o,r) € W x Q,

(4.7) T (o,7) — fh(a, ) <C inf |T(o,7) = (Th,shn)] -

(Th,8h)EWRX Q)

The reason why we have called this operator fh, instead of just T, is that we
preserve this notation for its restriction onto the finite element space. In fact, since
T,(W x Q) C Wy, x Qy, we are allowed to define

Th = fh|Wh><Qh ZWh X Qh — Wh X Qh'

It is well known that sp(T',) = sp(T') U {0} (see, for instance, [8, Lemma 4.1]).
Once more as in the continuous case, (Ap,on,7,) € R X W), x Q) solves Prob-
lem 4.1 if and only if (up, (n,rh)), with pp, = 1/(1+ Ag), is an eigenpair of T'y, i.e.,
if and only if
To(on ) = —— (oh,m1)
on,ry)=—— (on,7h).
r(Oh, Th T hsTh
To describe the spectrum of this operator, we will proceed as in the continuous
case and decompose Wj, x Q), into a convenient direct sum. With this end, we define

Kp=KnNW;={1h € Wy : divr, =0 in Q}.
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Clearly Thlxc,x0, : Kn x Qn — Kp x Q) reduces to the identity. Thus, up =
1 is an eigenvalue of T, and, from the definition of fh, (o, ) is an associated
eigenfunction if and only if o), € Kj. Therefore, we have the following discrete
analogue to Lemma 3.1.
LEMMA 4.1. up, = 1 is an eigenvalue of Ty, with associated eigenspace ICy X Qp,.
The next step is to define the discrete analogue to the operator P. Let

PhIWXQ—>Wh><Qh,
(o,7) — (Oh,Th),

where (6, (Wn, 7h)) € Wh X [Up X Q] is the solution of the following problem:

(4.8) /Cila'h:Th-f—/ﬁh-diVTh-l-/Th:’Fh:O V7 € Wh,
Q Q Q

(4.9) /vh-diva'h—l—/E'h:sh:/vh-diva
Q Q Q
V(’l)h,sh) cUy x Q.

These equations are a finite element discretization of the mixed problem (3.1)-
(3.2) used to define P. The ellipticity in the kernel for the discrete problem follows
easily from Lemma 2.1 and the fact that div(W;,) C U}, whereas (4.6) is the corre-
sponding discrete inf-sup condition. Hence, as a consequence of the Babuska—Brezzi
theory, problem (4.8)-(4.9) is well posed, the operators P}, are bounded uniformly
with respect to h, and the following Cea-like estimate also holds true:

(4.10) llo = T llg(aivio) T 18 = Ballg o + 17— Tallg o

<C| inf 16~ Tulgaia +nf 17— vilog+ ok 17— sl
where (o, (u,7)) and (o, (wp, 7)) are the solutions to (3.1)—(3.2) and (4.8)—(4.9),
respectively.

This estimate, combined with the approximation properties (4.3)-(4.5), leads to
[(P = Pp)(o, )| < CR*[[[6 || aiv:0) T 18lls 0+ 17l o] However, for this inequality
to be meaningful, we need that o,7 € H*(Q)"*" and w € H*(Q2)", which hold true
according to Lemma 3.2. We also need the regularity property dive € H*(Q)" that
clearly cannot hold for an arbitrary (o, r) € Wx Q. In fact, from (3.2), dive = dive
in €, so that div o cannot be smoother than dive. In spite of this fact, there are
two cases in which an O(h®) convergence for ||[(P — Pp,)(o,7)|| can be proved; these
cases are all what we will need for the spectral approximation theory in the following
section.

LEMMA 4.2. There ezists C > 0 such that:

(i) if (o,7) is an eigenfunction of T associated to an eigenvalue p € (0,1), then

[(P = Pp)(o,r)|| < Ch° ||(o,7)]];
(ii) if (on,rn) € Wh X Qp, then
[(P = Pp)(on,ra)l < Ch*||divoylg -

Proof. Case (i). The estimate follows from (4.10), (4.3)—(4.5), Lemma 3.2, and
Corollary 3.8.
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Case (11) For (O'h,’l"h) € Wy x Qp, let (E’,F) = P(O’h,’l"h) and (E'h,'Fh) e
Py (on,rh). By virtue of (4.10), (4.4), (4.5), and Lemma 3.2, we obtain

(P — Pp)(on, )| <C { inf [|o — Tallggiv.o) +1° ||div0'h|0’9] .
ThEW

Since & € W N H*(Q)"*" (see Lemma 3.2), we have that 7, := II o € W), is well

defined and, according to (4.2),

1 = W5y, < Ch* (5], + 1div 0 ) -

On the other hand, from (3.2), diveo = div oy, in Q. Therefore, because of (4.1),
div(Il,o) = Ly(dive) = Ly (divey) = divey, = divae,

which, with the last two inequalities and Lemma 3.2, allows us to end the proof. a
For (1,,71) = Pp(o,7), (4.9) implies that [, vy, - divey, = [, v, - dive for all
vy, € Uy, Hence, it is easy to check that the operator P}, is idempotent and, then, so
is Pplw, xg, , because Py (W x Q) C W), x Qj. Moreover, it is easy to check that
Ker(Pplw,xg,) = Kn x Qp. Therefore, being Pplw, x g, a projector, we have that
Wi x Qp = (Ki x Qr) & Pr(Wh x Q).
Our next goal is to show that P,(W) x Q) = G}, where

Gh:={(on,rn) EWLXxQh: B((on,Th),(Th,sr)) =0 Y(Th,sn) € Ky x Qn},

with the bilinear form B being as in section 3. Notice that as a consequence of Propo-
sition A.1 from the appendix, T,(Gr) C Gj. Moreover, we also have the following
discrete analogue to Lemma 3.3.

LEMMA 4.3. (Kj x Qp) NG, = {0}.

Proof. Since the discrete inf-sup condition analogous to (3.9),

vy - div Ty
sup

> B [lvnllg.q Yo, € Up,
ThEWH HThHH(div;Q)

follows from (4.6), the proof runs almost identically to that of Lemma 3.3. O

We skip the proofs of the following two lemmas since they run almost identically
to those of Lemmas 3.4 and 3.6, respectively.

LEMMA 4.4. P, (W), x Q) = G-

LEMMA 4.5. For all (op,rh) € G,

A((O‘h,’l"h), (O'h,Th)) > B((O‘h,’l"h), (O'h,’l"h)) > 0.

Now, we are in a position to write down a characterization of the spectrum of the
operator T';, and, hence, of the solutions to Problem 4.1.

THEOREM 4.6. The spectrum of T, consists of M := dim(W}, x Q},) eigenvalues,
repeated accordingly to their respective multiplicities. The spectrum decomposes as
follows: sp(Tp) = {1} U {uhk}le. Moreover,

(i) the eigenspace associated with pp, =1 is IC, X Qy,;

(ii) pnk € (0,1), k=1,..., K := M —dim(IC}, x Qy,), are nondefective eigenvalues

with eigenspaces lying on Gy ;

(i) pp = 0 is not an eigenvalue of T',.

Proof. Since W), x Qj, = (KK, X Q) ® G, (see Lemmas 4.3 and 4.4), Thlxc, x 9, :
Ky x Qp — Kp, x Q, is the identity, and T, (G},) C G, (see Proposition A.1), the
theorem follows from Lemmas 4.1 and 4.5 and Proposition A.2. d
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5. Spectral approximation. To prove that T, provides a correct spectral ap-
proximation of T', we will resort to the corresponding theory for noncompact operators
from [15]. With this end, for the sake of brevity, we will denote throughout this sec-
tion X ;=W x Q@ and X}, := W), x Q. Moreover, when no confusion can arise, we
will use x, y, etc., to denote pairs of elements in X and, analogously, x5, y;,, etc.,
for those in Xj. Recall that ||| denotes the norm in X as well as the corresponding
induced norm on operators acting from X into the same space. Finally, as in [15],
we will use |||, to denote the norm of an operator restricted to the discrete subspace
Xp; namely, if S: X — X, then

Szl
S|, := sup .
ThEX ) ”th

We recall some classical notation for spectral approximation. For € X and Y
and Z closed subspaces of X', we set

yey: |lyll=

and
SV, Z) == max {6(Y, £),6(Z,Y)},

the latter being the so-called gap between subspaces Y and Z.
The first step to apply [15] is to establish the following two properties:
e P1: |[T —T4|, -0, ash—0.
e P2: Vx € X, hmh_,() 5(:78, Xh) =0.

The latter, P2, follows immediately from the approximation properties of the
finite element spaces (4.3) and (4.5) and the density of smooth functions in W and
Q. The former, P1, is a consequence of the following lemma.

LEMMA 5.1. There exists C' > 0, independent of h, such that

|T —Thll,, < Ch".
Proof. For (op,rh) € X = Wy X Qp, we write
(T —=Th)(on,rh) = (T —Th)(Prlon, 7)) + (T —Th) (I — Pr)(on,7h))
= (T —Tn)(Pr(on,Th)),

the last equality because (I — P},) is a projector onto ICp, x Q) C K x Q and, on this
subspace, T' and T, are both the identity. Now,

(T = Th)(Prlon,r) = (T — Tp)((Ph — P)(an,m1) + (T — Th)(P(on,mh)) .-

E1 E2

For the first term we use Lemma 4.2 (ii) to write
1B < (1 + 1T ] ) I(Pr = P m)ll < C* llonaivio -

For the second, by virtue of the Cea-like estimate (4.7), we have that
|Es| < C il o I TPlon 7)) = (Th,sn)ll-
h

(Th,8h)EWpL X

Now, since P(op, ) € G (see Lemma 3.4), according to Proposition 3.5, if we denote
(o*,7*) = T(P(on,rh)), then o*,7* € H¥(Q)"*", dive* € HY(Q)", and

lo*llsq + ldive™(l, o + "]l o < CllP(an, 1)l < Cll(an,rm)l-
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Then, from the last two inequalities and the approximation properties (4.3) and (4.5),
we write

B <C inf o, r*) — (1, sn)|| < CR®||(on,r1)],
([ Bl < (rh,sh)ewhxgh”( ) = (Th, sn)ll [(an, Ta)ll

which together with the estimate of F; and the first two equalities of the proof allows
us to conclude the lemma. O
Once properties P1 and P2 have been established, we are in a position to apply

the results about spectral convergence from [15]. With this aim, we recall first the
definition of the resolvent operators of, respectively, T' and T'y,:

(2I-T)': X — X, z€ C\ {sp(T)},
(20 —Tp)" ' : X, — X, z€ C\ {sp(Th)}.

The mapping z — |[(zI — T)~ || is continuous for all z ¢ sp(T) and goes to zero as
|z| = oo. Consequently, it is bounded on any closed subset of the complex plane not
intersecting sp(T'). The following theorem shows that the same happens uniformly
for Ty, provided h is small enough.

THEOREM 5.2. Let F C C be a closed set such that F Nsp(T) = (). Then, there
exist ho > 0 and C > 0 such that, for all h < hg, there hold F Nsp(Th) =0 and

|(zI-Ty)7 ', <C VzeF

Proof. Tt is proved in [15, Lemma 1] that this result follows from proper-
ty P1. O

An equivalent form of the first assertion of this theorem is that any open set of the
complex plane containing sp(T'), also contains sp(T';) for h small enough. Thus, as
a consequence of this theorem, we conclude that the proposed finite element method
(i.e., Problem 4.1) does not introduce spurious modes with eigenvalues interspersed
among the positive eigenvalues of Problem 2.1. Let us remark that such a spectral
pollution could be in principle expected from the fact that the corresponding solution
operator T has an infinite-dimensional eigenvalue (1 = 1).

By applying the results from [15, section 2] to our problem, we conclude the
spectral convergence of Ty, to T' as h — 0. More precisely, for all isolated eigen-
values p of T with finite multiplicity m (and, hence, p € (0,1)), for h small enough,
there exist m eigenvalues pp1, . . ., pihm of T (repeated accordingly to their respective
multiplicities) which converge to p as h — 0. Moreover, if £ is the eigenspace of T'
corresponding to p and £, is the invariant subspace of T', spanned by the eigenspaces
of T}, corresponding to fip1, .., fbhm, then 6(E,Ex) — 0 as h — 0, too.

The next step is to obtain error estimates for the spectral approximation. The
classical reference for this issue on noncompact operators is [16]. However, we cannot
apply the results from this reference directly to our problem since the bilinear form A
used to define T' is not coercive. Instead of extending the results from this reference
to our case, we will adapt the proofs from [15] to obtain error estimates.

With this end, we first recall the definition of spectral projectors. Let u # 1 be an
isolated eigenvalue of T'. Let D be an open disk in the complex plane with boundary
7, such that y is the only eigenvalue of T' lying in D and v Nsp(T") = (). The spectral
projectors E : X — X and Ej : X;, — X}, are defined as follows:

1 —1 1 —1
— [ (:I-T)  dz and E,:=— | (z2I-T)  dz.

211 - 211 ~
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Notice that the latter is well defined only if v N sp(T}) = 0; however, according to
Theorem 5.2, this always happens for h sufficiently small. The former is a projector
onto the eigenspace £ of T associated with p. The latter is a projector onto the
invariant subspace £, of T, associated with the eigenvalues of T’ lying in D.

The proofs of the following results are essentially identical to those of Lemma 2
and Theorems 2 and 3 from [15], but they use the estimates from Lemmas 5.1 and
4.2 (1) instead of properties P1 and P2, respectively. For the sake of completeness, we
include brief proofs of these results.

LEMMA 5.3. There exist constants C' > 0 and hg > 0 such that, for all h < hg,

|E— E|, <Ch’.

Proof. Let hg > 0 be such that, for all h < hg, yNsp(Th) = 0 (see Theorem 5.2).
From the definition of the spectral projectors, we have

1
|E — Eu, < 5 / (=T =T)™t = (2X —Tp) 7Y, d=
T Jy
_ L / |(zI =T)"" (T —Ty) (zI = Tn)7"|, dz
2T ~
1
<5 L |(zI =T) || IT =Tl || (zI = Tw)~"|, dz < Ch,
where, for the last inequality, we have used Lemma 5.1 and Theorem 5.2. a

THEOREM 5.4. There exist constants C > 0 and hy > 0 such that, for all h < hg,

~

3(E.EL) < Ch*.

Proof. Let hg be as in Lemma 5.3 and h < hg. For all ), € &, we have
Eyx, = xp,, whereas Exy, € £. Hence

§(zn, €) < |Epzn — Exp|| < |[|[Ep — El|), [|znl| < Ch° [z,

the last inequality because of Lemma 5.3. Then §(€p,E) < Ch®.
Now, for all x € £, Ex = « and also, since £ C G, Px = «. Then,

le — By Pya| < ||E(Pz — Pya)| + [|(E - By)Pual
< |B|l|Px - Pha| + | E — Eyll, | Paall < Ch* 2.

the last inequality because of Lemmas 4.2 (i) and 5.3 and the fact that the operators
P), are bounded uniformly in h. Then, 6(&, &) < Ch® also, and we conclude the
proof. O

We recall that p € (0,1) is an eigenvalue of T with multiplicity m if and only if
A= (1/u) — 1 is an eigenvalue of Problem 2.1 with the same multiplicity and the
corresponding eigenfunctions coincide. Analogously, fip;, @ = 1,...,m, are the eigen-
values of T}, (repeated accordingly to their respective multiplicities) which converge
to w if and only if A\p; := (1/upi) — 1 are the eigenvalues of Problem 4.1 converging
to A and the corresponding eigenfunctions also coincide.

Thus, the theorem above provides an error estimate for the approximation of the
eigenfunctions of Problem 2.1 by means of those of Problem 4.1, which is the discrete
problem implemented in practice. The last step is the following theorem, in which we
establish a double order of convergence for the corresponding eigenvalues.
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THEOREM 5.5. There exist constants C > 0 and hy > 0 such that, for all h < hq,
A= Ani| < CR, i=1,...,m.

Proof. Let hg be as in Lemma 5.3 and h < hg. Let xp; = (ohi,Thi) be an
eigenfunction of Problem 4.1 corresponding to Ap;, normalized so that ||z = 1.
According to Theorem 5.4, §(xp;, £) < Ch®, so that there exists x € € (i.e., x =
(o, 1), an eigenfunction of Problem 2.1 corresponding to \) satisfying

(5.1) len: — x| < Ch®.

Notice that, in spite of the notation, & actually depends on h.
By writing Problems 2.1 and 4.1 in terms of the bilinear forms A and B, we have

Alx,y) = (A +1) B(z,y) Yy € X,
A(xhi, yy) = (Ani + 1) B(@hi, yp,) Vy), € Xp.

Then, it is easy to check the following equality, which is a variation of a well-known
equation (see, for instance, [7, Lemma 9.1]):

Al —xpi,x — xp) — (A + 1) Bl — @pi, € — i) = (Ani — A) B(@hi, Thi).

Now, according to (5.1), there exists h{, > 0 (h{, < ho) such that, for all h < hy,
we have ||xp; — || < 3. Therefore, since |zy;| = 1, we have that £ < [jz| < 3.
Hence, since B continuous and €& C G is finite dimensional, by virtue of Lemma 3.6,
there exists ¢ > 0, independent of h, such that B(x,x) > c¢. Thus, because of (5.1)
and the continuity of B again, we know that there exists hy > 0 (h; < h{) such
that, for all h < hy, B(xpi, zni) > §. Therefore, the theorem follows from (5.1) and
the fact that A and B are continuous bilinear forms in X. Thus we conclude the
proof. a

6. Numerical results. We report in this section the results of a couple of nu-
merical tests carried out with the method based on AFW elements proposed in sec-
tion 4 and with the analogue based on PEERS elements (see [2]), which confirm the
theoretical results proved above. The numerical methods have been implemented in
a MATLAB code.

We have solved the two tests that follow by using each of both methods (AFW
and PEERS). Since the results obtained with each method are qualitatively the same
and no clear advantage arise from the respective performances, for the sake of brevity
we only report the results of one of the methods for each test.

We recall that the Lamé coefficients of a material are defined in terms of the
Young’s modulus F and Poisson’s ratio v as follows:

Ev E
(61) AS = VT o~ and HS = m

(I+v)(1—-2v)

6.1. Test 1: Approximation of the elasticity vibration problem with

AFW finite elements. We have considered an elastic body occupying the two-

dimensional domain Q := (0,1)?, fixed at its bottom (T') and free at the rest of the

boundary (X). We have used uniform meshes as shown in Figure 6.1. The refinement
parameter N used to label each mesh is the number of elements on each edge.

Let us remark that the eigenfunctions of this problem may present singularities at

the points where the boundary condition changes from Dirichlet (fixed) to Neumann
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Fi1G. 6.1. Test 1 (AFW). Uniform meshes.

TABLE 6.1
Test 1. Sobolev exponents.

v S0
0.35 0.6797
0.49  0.5999
0.5 0.5946

TABLE 6.2

Test 1 (AFW). Computed lowest vibration frequencies wp;, i =1,...,6, for v = 0.35. Theoret-
ical order of convergence 2s > 1.36.

N =10 N =20 N =30 N =40 Order  Extrapolated

Wh1 2949.897 2945.996 2945.141 2944.811 1.72 2944.295
Wh2 7360.490 7352.006 7350.318 7349.698 1.88 7348.840
wh3 7956.297 7899.968 7889.117 7885.257 1.94 7880.084
wpa  13019.896  12816.938  12778.482  12764.909 1.96 12746.802
wps  13169.008  13082.780  13065.967  13059.934 1.92 13051.758
wpe  15060.813  14935.298  14910.771  14902.027 1.92 14890.114

(free). According to [17], estimate (3.7) holds in this case for all s < sg, where s¢ is
the smallest positive root of the following characteristic equation:

(As + 2u5)% — (\s + ug)?stsin @
(As + ps)(As + 3ps)

sin? sof = ,
with € being the size of the inner angle of the domain at the point where the boundary
conditions change (in this test, # = 7). We solved this equation for the values of v
used in the experiments reported below; the obtained results are shown in Table 6.1.

First, we have used the following values for the material coefficients, which corre-
spond to steel: density ps = 7.7 x 103 Kg/m?, Young’s modulus E = 1.44 x 10! Pa,
and Poisson’s ratio v = 0.35

We report in Table 6.2 the lowest vibration frequencies wp; := /An; computed
with this method. We have used four different meshes with increasing levels of refine-
ment. The table also includes the estimated orders of convergence, as well as more
accurate values of the vibration frequencies extrapolated from the computed ones by
means of a least-squares fitting of the model

Whi R W; + Oihai.

This fitting has been done for each vibration mode separately. The fitted parame-
ters w; and «; are the extrapolated vibration frequency and the estimated order of
convergence, respectively.
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TABLE 6.3
Test 1 (AFW). Computed lowest vibration frequencies wp;, i =1,...,6, for v = 0.49. Theoret-
ical order of convergence 2s > 1.20.

N =10 N =20 N =30 N =40 Order  Extrapolated

Wh1 3030.973 3027.216 3026.270 3025.874 1.48 3025.120

Wha 7970.766 7952.238 7948.513 7947.128 1.86 7945.193

Wh3 8127.648 8067.882 8056.421 8052.362 1.95 8046.967

wpa  12768.147  12688.783  12673.338  12667.772 1.92 12660.250

wps  13430.465  13229.412  13191.638  13178.340 1.98 13161.057

wpe  15855.380  15643.181  15601.973  15587.265 1.92 15567.043
TABLE 6.4

Test 1 (AFW). Computed lowest vibration frequencies wp;, i =1,...,6, forv = 0.5. Theoretical
order of convergence 2s > 1.19.

N =10 N =20 N =30 N =40 Order  Extrapolated

Wh1 3039.966 3036.179 3035.213 3034.806 1.46 3034.018
Wh2 8021.350 8001.786 7997.854 7996.391 1.86 7994.348
wh3 8149.142 8088.826 8077.261 8073.166 1.95 8067.720
wpa  12746.042  12666.976  12651.586  12646.036 1.92 12638.546
wps  13464.906 13263.891  13226.137  13212.848 1.98 13195.563
wpe  15888.149  15671.954  15630.001  15615.029 1.93 15594.866

We include in the caption of the table the theoretical lower bound for the order
of convergence. Let us remark that this is only a lower bound, since the actual
order of convergence for each vibration frequency depends on the regularity of the
corresponding eigenfunctions. In fact, it can be seen from this table, as well as from
the other ones reported in this paper, that the attained orders of convergence are in
some cases larger than this lower bound.

To test the locking-free character of the method, we have solved similar prob-
lems with Poisson’s ratios ¥ = 0.49 (nearly incompressible) and v = 0.5 (perfectly
incompressible material). In the last case Ag = 0o (see (6.1)), but we have used the
expression C'7 := 1/(2us) [T — L (tr 7) I], which follows from (2.1) by taking the
limit as Ag — oo.

We report in Tables 6.3 and 6.4 the same results as in Table 6.2, but for v = 0.49
and v = 0.5, respectively.

It can be seen from these tables that the method is thoroughly locking free.
Moreover, evidence of a double order of convergence for the vibration frequencies can
be also clearly observed in all cases.

Figures 6.2 and 6.3 show the vibration modes of the four lowest vibration fre-
quencies for the first case (v = 0.35).

6.2. Test 2: Approximation of the elasticity vibration problem with
PEERS finite elements. As stated in the Introduction, although the analysis in
sections 4 and 5 was presented for the lowest-order AFW elements, the same could be
done for other methods satisfying properties (4.1)—(4.6). As an example of this, we use
in this test the PEERS finite elements introduced by Arnold, Brezzi, and Douglas in
[2] to discretize Problem 2.1. Spurious-free approximation results and error estimates
similar to those from Theorems 5.2, 5.4, and 5.5 can be proved for these elements by
repeating the arguments from the previous sections.

To demonstrate the performance of these elements we have repeated the previous

15

tests, changing only the domain. We have chosen now  := (=1, 2)%\ [0, 1]?, which

corresponds to a two-dimensional closed vessel with vacuum inside. The vessel has
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FiG. 6.2. Test 1 (AFW). Vibration modes associated with frequencies wpy (left) and wpa (right).

AN N

Fi1a. 6.3. Test 1 (AFW). Vibration modes associated with frequencies wps (left) and wpq (Tight).

Fic. 6.4. Test 2 (PEERS). Uniform meshes.

been taken fixed at its bottom (I') and free at the rest of the boundary (¥). We
have used the same material parameters as in the previous test and uniform meshes
as shown in Figure 6.4. The refinement parameter N used to label each mesh is now
the number of element layers across the thickness of the solid.

The eigenfunctions of this problem may present singularities similar to those of the
previous test and with the same Sobolev exponents reported in Table 6.1. Additional
singularities can arise at the reentrant angles of the domain. According to [17], since
at both sides of each reentrant angle the eigenfunction satisfies Neumann boundary
conditions, estimate (3.7) holds in this case for all s < s1, where s; is the smallest
positive root of the following characteristic equation:

sin? 516 = s7sin? 6,

with 6 being the size of the reentrant angle (in this test, § = 3%). Notice that in

this case, the characteristic equation does not depend on the Lamé coefficients and,
then, its solution is independent of the values of v. Solving this equation, we obtained

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/31/13 to 146.83.7.27. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SPECTRAL ANALYSIS FOR THE MIXED ELASTICITY EQUATIONS 1061

TABLE 6.5
Test 2 (PEERS). Computed lowest vibration frequencies wp;,t = 1,...,6 for v = 0.35. Theo-
retical order of convergence 2s > 1.08.

N =16 N=24 N =32 N =40 Order Extrapolated 9]
Wh1 658.143 660.766 661.959 662.634 1.26 664.699 665.918
wpa  2274.912  2278.765  2280.357  2281.201 1.52 2283.277 2284.617
wp3  3769.740  3781.765  3787.064  3790.002 1.34 3798.392 3803.266
wpa  3839.291  3853.616  3860.221  3863.989 1.22 3875.980 3879.595
wps  4496.992  4500.655  4502.364  4503.342 1.19 4506.556 4507.626
wpe  H5450.111  5457.685  5460.962  5462.753 1.40 5467.594 5470.751
TABLE 6.6

Test 2 (PEERS). Computed lowest vibration frequencies wp;,i = 1,...,6 for v = 0.49. Theo-
retical order of convergence 2s > 1.08.

N =16 N =24 N =32 N =40 Order  Extrapolated

Wh1 705.913 709.167 710.655 711.499 1.24 714.140

wpo  2414.882  2419.620  2421.609  2422.675 1.48 2425.376

wp3  3968.908  3983.087  3989.368  3992.861 1.33 4002.904

wpa  4145.538  4164.380 4173.086  4178.057 1.22 4193.836

wps  4893.125  4898.831  4901.495  4903.022 1.19 4908.030

wre  H803.292  5812.016  5815.820  5817.908 1.38 5823.650
TABLE 6.7

Test 2 (PEERS). Computed lowest vibration frequencies wp;,t = 1,...,6 for v = 0.50. Theo-
retical order of convergence 2s > 1.08.

N =16 N =24 N =32 N =40 Order  Extrapolated

Wh1 710.507 713.824 715.341 716.201 1.24 718.893
wpo 2428223 2433.053  2435.082  2436.172 1.48 2438.925
wp3  3987.814  4002.202  4008.579  4012.129 1.33 4022.318
wpa 4175243 4194.541  4203.458  4208.551 1.21 4224.955
wps 4932287 4938.209  4940.974  4942.558 1.19 4947.756
wpe  H5837.940  5846.777  5850.633  5852.752 1.37 5858.653

s1 = 0.5445. Comparing this value with those of Table 6.1, we observe that in this
test, for all values of v, the strongest singularities may arise at the reentrant angles.

Tables 6.5-6.7 are the analogues to Tables 6.2-6.4 for this test. In Table 6.5
(v = 0.35) we also include an additional column with the results reported in [9] for
the same problem solved with standard piecewise linear continuous elements applied
to the direct displacement formulation.

Essentially the same conclusions as in the previous test can be derived for PEERS
elements from Tables 6.5-6.7.

Finally, Figures 6.5 and 6.6 show the vibration modes corresponding to the four
lowest vibration frequencies.

Appendix. Two auxiliary results on variational spectral problems. Let
V be a real (or complex) Hilbert space. Let A, B : V xV — R (resp., C) be two
symmetric (resp., Hermitian) bounded bilinear forms. We assume that A is such that
for all f € V', there exists a unique u € V satisfying

Au,v) = f(v) YveV

and that there exists a constant C', independent of f, such that [[ul|,, < C'[|f|l,,,. Let
T :V — V be the bounded linear operator defined for all u € V' as follows:

TueV: A(Tu,v) = B(u,v) Yv e V.
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Fi1G. 6.5. Test 2 (PEERS). Vibration modes associated with frequencies wpy (left) and wpo (Tight).

FI1G. 6.6. Test 2 (PEERS). Vibration modes associated with frequencies wps (left) and wpyq (Tight).

When B is an inner product in V', T is a self-adjoint operator (with respect to B).
However, in general it is not. In spite of this, we prove in what follows a couple of
properties of T" which are standard for self-adjoint operators.

PROPOSITION A.1. Let E C V be an invariant subspace of T (i.e., T(E) C E).
Let F:={ueV: B(u,v)=0 Yv e E}. Then, F is also an invariant subspace of
T.

Proof. Let u € F. From the symmetric (resp., Hermitian) character of the bilinear
forms and the definition of 7', we have

B(Tu,v) = B(v,Tu) = A(Tv,Tu) = A(Tu,Tv) = B(u,Tv) =0 Yv e E,

where the last identity is due to the fact that Tv € F and u € F. Hence Tu € F and
we end the proof. d

ProproOSITION A.2. Let p € C be an eigenvalue of T and u a corresponding
eigenfunction; namely, w € V, uw # 0, and Tu = pu. If A(u,u) # 0, then

(i) peR;

(ii) w is nondefective (i.e., its ascent is 1).

Proof. From the definition of T' and the symmetric (resp., Hermitian) character
of the bilinear forms, we have

wA(u,u) = Blu,u) = B(u,u) = pA(u,u) = @ Au, u).

Hence (p — @) A(u,u) = 0. Thus, for A(u,u) # 0, u = @ and we conclude (i).
The proof of (ii) is by contradiction. Let us assume that p is defective; namely,
there exists u € V such that Tu = pu + u. Then, we have that

Tu=pu = pAu,v) =B(u,v) YveV,
Tu=pu+u = pAu,v)+ A(u,v) = B(u,v) YvelV.
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We take v = @ in the first equation above and v = u in the second, to write

wA(u,u) = B(u,u),

wA(u,u) + A(u,u) = B(u,u).
Then, by subtracting the first equation (resp., its conjugate) from the second and
using that g is real and the bilinear forms are symmetric (resp., Hermitian), we

obtain A(u,u) = 0, which contradicts the assumption of the proposition. Thus, we
end the proof. O
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