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In this paper we analyse a finite element approximation of the Stokes eigenvalue problem. We introduce
a variational formulation relying only on the pseudostress tensor and propose a discretization by means
of the lowest-order Brezzi–Douglas–Marini mixed finite element. However, similar results hold true for
other H(div)-conforming elements, like Raviart–Thomas elements. We show that the resulting scheme
provides a correct approximation of the spectrum and prove optimal-order error estimates. Finally, we
report some numerical tests supporting our theoretical results.
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1. Introduction

The finite element approximation of eigenvalue problems is a subject of great interest from both the
practical and theoretical points of view. We refer the reader to Babuška & Osborn (1991) and Boffi
(2010) and the references therein for the state of the art in this subject area. We are particularly inter-
ested in the finite element analysis of the Stokes eigenvalue problem. The practical interest in Stokes
eigenvalues and eigenmodes is discussed, for instance, in Leriche & Labrosse (2004). One motivation
is, for example, the study of a plate buckling problem. Indeed, it is well known that when a thin (Kirch-
hoff) plate is subject to clamped boundary conditions, it admits an equivalent formulation in terms of a
Stokes problem (see, for instance, Mercier et al., 1981, Section 7(d) and Chen & Lin, 2006).

Two formulations of the Stokes eigenvalue problem were analysed in Mercier et al. (1981,
Section 7(d,e)). More recently, an alternative study was presented in Boffi et al. (1997) (see also Boffi,
2010, Part 3 and the references therein). Most of these approaches rely on the usual velocity–pressure
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750 S. MEDDAHI ET AL.

formulation, which was also used in Lovadina et al. (2009) to perform an a posteriori error analysis of
the Stokes eigenvalue problem.

The aim of this paper is to propose an alternative formulation of this problem. We follow the strat-
egy used in Cai et al. (2010) and Gatica et al. (2010, 2012) for the steady-state Stokes problem and
introduce the so-called pseudostress tensor as a variable. This leads to the pseudostress–velocity for-
mulation introduced for the first time (without any additional stabilization term) in Cai et al. (2010).
This formulation is preferable to the classical velocity–pressure formulation when an accurate calcula-
tion of the stress is needed, because it leads to a locally conservative scheme. Moreover, this formula-
tion transforms an essential boundary condition on velocity into a more convenient natural boundary
condition.

One possible disadvantage of using the pseudostress–velocity formulation is that it increases the
number of degrees of freedom of the resulting algebraic linear system of equations. However, for the
eigenvalue variational formulation, the fact that we will be able to eliminate the pressure and velocity
fields, keeping the pseudostress as the only unknown, will be a partial remedy. Last but not least, let us
mention that the velocity, the stress and the pressure fields can be easily postprocessed without affecting
the accuracy of the approximation.

For the sake of simplicity, we will illustrate our spectral approximation theory with a particular finite
element. Since the pseudostress will be sought in H(div; Ω), we have chosen the lowest-order Brezzi–
Douglas–Marini (BDM) mixed finite element. However, similar results hold true for other H(div; Ω)-
conforming elements. In particular, we have checked that all the forthcoming analysis remains valid
for the lowest-order Raviart–Thomas (RT) element. Only one minor difference appears in the spectral
characterization of the corresponding discrete problem (which will be further elaborated on below) but
it does not affect the subsequent analysis at all.

The well-known abstract spectral approximation theory (see Babuška & Osborn, 1991) cannot be
used to deal with the analysis of our problem. Indeed, the kernel of the bilinear form on the left-hand side
of the variational formulation has in our case an infinite-dimensional kernel. Although the standard shift
strategy allows a solution operator to be defined, this is not compact and its nontrivial essential spectrum
may in such cases lead to spectral pollution at the discrete level. However, we follow Meddahi et al.
(2013) and take advantage of the classical theory developed in Descloux et al. (1978a,b) for noncompact
operators to prove that our numerical scheme provides a safe approximation of the eigenvalues at an
optimal convergence rate.

The outline of this article is as follows: we introduce in Section 2 the variational formulation of the
eigenvalue Stokes problem and define a solution operator. Section 3 is devoted to the spectral charac-
terization. In Section 4, we introduce the discrete eigenvalue problem and describe the spectrum of a
discrete solution operator. In Section 5, we prove that the numerical scheme provides a correct spec-
tral approximation and establish optimal-order error estimates for the eigenvalues and eigenfunctions.
Finally, we report in Section 6 a set of numerical tests with both BDM and RT elements to confirm that
the method is not polluted with spurious modes and to show that the experimental rates of convergence
are in accordance with the theoretical ones.

We end this section with some notation that will be used below. Given any Hilbert space V ,
let Vn and Vn×n denote, respectively, the space of vectors and tensors of order n (n = 2 or 3) with
entries in V . Given τ := (τij) and σ := (σij) ∈ R

n×n, we define as usual the transpose tensor τT :=
(τji), the tensor inner product τ : σ := ∑n

i,j=1 τijσij, the trace tr τ := ∑n
i=1 τii and the deviatoric tensor

τD := τ − (1/n)(tr τ )I, where I stands for the identity matrix of R
n×n.

Let Ω be a generic Lipschitz bounded domain of R
n. For s � 0, ‖ · ‖s,Ω stands indistinctly

for the norm of the Hilbertian Sobolev spaces Hs(Ω), Hs(Ω)n or Hs(Ω)n×n, with the convention
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A FINITE ELEMENT METHOD FOR THE STOKES EIGENVALUE PROBLEM 751

H0(Ω) := L2(Ω). We also define for s � 0 the Hilbert space Hs(div; Ω) := {τ ∈ Hs(Ω)n×n : div τ ∈
Hs(Ω)n}, whose norm is given by ‖τ‖2

Hs(div;Ω) := ‖τ‖2
s,Ω + ‖ div τ‖2

s,Ω and define H(div; Ω) :=
H0(div; Ω).

Finally, we employ 0 to denote a generic null vector or tensor and C to denote generic constants
independent of the discretization parameters, which may take different values at different places.

2. The spectral problem

Let Ω ⊂ R
n (n = 2 or 3) be a bounded and connected Lipschitz domain. We assume that its boundary

∂Ω admits a disjoint partition ∂Ω = Γ ∪ Σ and denote by n the outward unit vector normal to ∂Ω .
The Stokes eigenvalue problem is formulated as follows (see Lovadina et al., 2009): find nontrivial

(λ, u, p) such that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− div(∇u) + ∇p = λu in Ω ,

div u = 0 in Ω ,

u = 0 on Γ ,

(∇u − pI)n = 0 on Σ .

Our aim is to employ a dual–mixed approach to derive a variational formulation of this problem. To this
end, we introduce the pseudostress tensor (see Cai et al., 2010)

σ := ∇u − pI,

and reformulate the problem above in terms of this variable as follows: find nontrivial (λ, σ , u)

such that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− div σ = λu in Ω ,

σ D − ∇u = 0 in Ω ,

u = 0 on Γ ,

σn = 0 on Σ .

(2.1)

We point out that the pressure p has disappeared from the formulation but can be easily recovered since

p = −1

n
tr(σ ).

We note that the vector space

W := {τ ∈ H(div; Ω) : τn = 0 on Σ}
endowed with the H(div; Ω) inner product is a Hilbert space. Testing the second equation of (2.1) with
τ ∈ W and integrating by parts yield∫

Ω

σ D : τ +
∫

Ω

u · div τ = 0.

Next, we eliminate u from the last identity by using the first equation of (2.1) to obtain∫
Ω

div σ · div τ = λ

∫
Ω

σ D : τD ∀τ ∈ W .

Consequently, the pseudostress Stokes eigenvalue variational formulation reads as follows.
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752 S. MEDDAHI ET AL.

Problem 2.1. Find λ ∈ R and 0 |= σ ∈ W such that

∫
Ω

div σ · div τ = λ

∫
Ω

σ D : τD ∀τ ∈ W .

It is convenient to use a shift argument to rewrite this eigenvalue problem. Let a(·, ·) and b(·, ·) be
the bounded bilinear forms defined for any σ , τ ∈ W by

a(σ , τ ) :=
∫

Ω

div σ · div τ +
∫

Ω

σ D : τD,

b(σ , τ ) :=
∫

Ω

σ D : τD.

Then, Problem 2.1 can be written in the following equivalent form.

Problem 2.2. Find λ ∈ R and 0 |= σ ∈ W such that

a(σ , τ ) = (λ + 1)b(σ , τ ) ∀τ ∈ W .

Now we introduce the solution operator

T : W −→ W ,

f �−→ Tf := σ ∗,

where σ ∗ ∈ W is the solution of the source problem

a(σ ∗, τ ) = b( f , τ ) ∀τ ∈ W . (2.2)

The following lemma, whose proof is essentially identical to that of Meddahi et al. (2013, Lemma 2.1),
allows us to establish the well-posedness of problem (2.2).

Lemma 2.3 There exists a constant α > 0, depending only on Ω , such that

a(τ , τ ) � α‖τ‖2
H(div;Ω) ∀τ ∈ W .

We deduce from this lemma that the linear operator T is well defined and bounded. As will be shown
below (cf. Lemma 3.5(ii)), μ = 0 is an eigenvalue of T . All the remaining eigenvalues of this operator
are related with those of Problem 2.1. In fact, note that (λ, σ ) ∈ R × W solves Problem 2.1 if and only
if (1/(1 + λ), σ ) is an eigenpair of T with a nonvanishing eigenvalue, i.e., if and only if

Tσ = μσ with μ := 1

1 + λ
|= 0 and σ |= 0.

Moreover, it is easy to check that T is self-adjoint with respect to the inner product a(·, ·) in W . Indeed,
given f , g ∈ W , because of the definition of T and the symmetry of the bilinear forms a(·, ·) and b(·, ·),
there holds

a(Tf , g) = b( f , g) = b(g, f ) = a(Tg, f ) = a( f , Tg).
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A FINITE ELEMENT METHOD FOR THE STOKES EIGENVALUE PROBLEM 753

3. Spectral characterization

Our next goal is to describe the spectrum sp(T) of the solution operator. To this end, we define

K := {τ ∈ W : div τ = 0 in Ω}.

It is straightforward to check that T|K : K → K reduces to the identity. Thus, μ = 1 is an eigenvalue of
T and, from its definition, σ is an associated eigenfunction if and only if

∫
Ω

div σ · div τ = 0 ∀τ ∈ W .

Consequently we have proved the following result.

Lemma 3.1 The operator T admits the eigenvalue μ = 1 and its associated eigenspace is K.

Let us introduce now the auxiliary operator

P : W −→ W ,

σ �−→ Pσ := σ̃ ,

where (σ̃ , ũ) ∈ W × L2(Ω)n is the solution of the following mixed problem:
∫

Ω

σ̃ D : τD +
∫

Ω

ũ · div τ = 0 ∀τ ∈ W , (3.1)

∫
Ω

v · div σ̃ =
∫

Ω

v · div σ ∀v ∈ L2(Ω)n. (3.2)

The Babuška–Brezzi theory shows that this problem is well posed. In fact, it is well known that the
inf–sup condition

sup
τ∈W

∫
Ω

v · div τ

‖τ‖H(div;Ω)

� β‖v‖0,Ω ∀v ∈ L2(Ω)n

holds true and Lemma 2.3 guarantees that the bilinear form
∫

Ω
σ D : τD is elliptic on the kernel

{τ ∈ W :
∫

Ω
v · div τ = 0 ∀v ∈ L2(Ω)n} = K. Therefore, the linear operator P is well defined and

bounded. Problem (3.1–3.2) is none other than the dual–mixed formulation of the following Stokes
problem with external body force − div σ :

− div σ̃ = − div σ in Ω , (3.3)

σ̃ D − ∇ũ = 0 in Ω , (3.4)

ũ = 0 on Γ , (3.5)

σ̃n = 0 on Σ . (3.6)

In fact, it is straightforward to check that (σ̃ , ũ) ∈ H(div; Ω) × H1(Ω)n satisfies these equations if and
only if (σ̃ , ũ) ∈ W × L2(Ω)n is the solution to (3.1–3.2).

Owing to the regularity result for the classical Stokes problem (see, for instance, Girault & Raviart,
1986; Fabes et al., 1988; Savaré, 1998), we know that the solution ũ to (3.3–3.6) belongs to H1+s(Ω)n
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754 S. MEDDAHI ET AL.

for some s ∈ (0, 1] depending only on the geometry of Ω and

‖ũ‖1+s,Ω � C‖ div σ‖0,Ω ,

with C > 0 independent of σ . From now on, s ∈ (0, 1] denotes a constant such that this inequality holds
true. As a consequence of this regularity result, we can state the following lemma.

Lemma 3.2 There exists C > 0 such that, for all σ ∈ W , if (σ̃ , ũ) ∈ W × L2(Ω)n is the solution to
equations (3.1–3.2), then

‖σ̃‖s,Ω + ‖ũ‖1+s,Ω � C‖ div σ‖0,Ω .

Consequently, P(W) ⊂ Hs(Ω)n×n.

It is easy to check that the operator P is idempotent and that its kernel is given by K. Therefore, since
P is a projector, the direct sum W = K ⊕ P(W) holds true. Moreover, it is also easy to check that K
and P(W) are orthogonal with respect to the inner product a(·, ·) of W . Therefore, the following result
is a well-known consequence of the fact that T is self-adjoint with respect to the same inner product.

Lemma 3.3 The subspace P(W) is invariant for T .

The properties of T , as an operator from P(W) into itself, are established in the following result.

Proposition 3.4 The self-adjoint operator T satisfies

T(P(W)) ⊂ {τ ∈ Hs(Ω)n×n : div τ ∈ H1(Ω)n}, (3.7)

and there exists C > 0 such that, for all f ∈ P(W), if σ ∗ = Tf , then

‖σ ∗‖s,Ω + ‖ div σ ∗‖1,Ω � C‖ f ‖H(div;Ω). (3.8)

Consequently, the operator T|P(W) : P(W) → P(W) is compact.

Proof. According to Lemma 3.3, T|P(W) : P(W) → P(W) is correctly defined. Let f ∈ P(W) and
σ ∗ = Tf . Testing (2.2) with τ ∈D(Ω)n×n ⊂ W yields

σ ∗D − ∇(div σ ∗) = f D,

which proves that div σ ∗ ∈ H1(Ω)n.
On the other hand, from Lemmas 3.3 and 3.2, σ ∗ ∈ T(P(W)) ⊂ P(W) ⊂ Hs(Ω)n×n, so that (3.7)

holds true and the estimate (3.8) follows from Lemma 3.2. Finally, the compactness of the operator is a
consequence of the compact embedding {σ ∗ ∈ Hs(Ω)n×n : div σ ∗ ∈ H1(Ω)n} ∩ W ↪→ W . �

We are now in a position to provide a spectral characterization of T .

Theorem 3.5 The spectrum of T decomposes as follows: sp(T) = {0, 1} ∪ {μk}k∈N, where

(i) μ = 1 is an infinite-multiplicity eigenvalue of T and its associated eigenspace is K;

(ii) μ = 0 is an eigenvalue of T and its associated eigenspace is

Z := {τ ∈ W : τD = 0} = {qI : q ∈ H1(Ω) and q = 0 on Σ};
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A FINITE ELEMENT METHOD FOR THE STOKES EIGENVALUE PROBLEM 755

(iii) {μk}k∈N ⊂ (0, 1) is a sequence of nondefective finite-multiplicity eigenvalues of T which con-
verge to 0 and the corresponding eigenspaces lie in P(W).

Proof. The decomposition of sp(T) follows immediately from the classical spectral characterization
of compact operators and the facts that W = K ⊕ P(W), T|K : K → K reduces to the identity and
T|P(W) : P(W) → P(W) is compact (cf. Proposition 3.4).

Property (i) was established in Lemma 3.1.
On the other hand, it is easy to check that Z is the eigenspace of T associated with μ = 0. Thus,

property (ii) follows by noting that τD = 0 if and only if τ = qI, with q = (1/n)tr τ ∈ L2(Ω), ∇q =
div τ ∈ L2(Ω)n and qn = τn on Σ .

Finally, property (iii) follows from Proposition 3.4, the fact that T is self-adjoint and the spectral
characterization of self-adjoint compact operators. �

As an immediate consequence of Proposition 3.4, we have the following additional regularity result
for the eigenfunctions of T associated to eigenvalues μ ∈ (0, 1).

Corollary 3.6 Let σ ∈ W be an eigenfunction of T associated with an eigenvalue μ ∈ (0, 1). Then,
σ ∈ Hs(Ω)n×n, div σ ∈ H1(Ω)n and

‖σ‖s,Ω + ‖ div σ‖1,Ω � C‖σ‖H(div;Ω),

with C > 0 depending on the eigenvalue.

4. The discrete problem

Let {Th(Ω)}h>0 be a shape-regular family of triangulations with mesh size h of the polyhedral (polygo-
nal) domain Ω by tetrahedra (triangles) T . In what follows, given an integer k � 0 and a subset S of R

n,
Pk(S) denotes the space of polynomials defined in S of total degree less than or equal to k.

For the discrete version of W we use standard H(div; Ω)-conforming finite elements; in particular,
we choose the classical BDM elements (see Brezzi & Fortin, 1991), namely

Wh := {τ h ∈ W : τ h|T ∈P1(T)n×n ∀T ∈ Th(Ω)}.

In addition, for the analysis below, we will also need the space

Uh := {vh ∈ L2(Ω)n : vh|T ∈P0(T)n ∀T ∈ Th(Ω)}.

Let us recall some well-known approximation properties of the finite element spaces introduced
above. Given s ∈ (0, 1], we denote by Πh : Hs(Ω)n×n ∩ W → Wh the usual BDM interpolation opera-
tor (see Brezzi & Fortin, 1991) which, for sufficiently smooth τ ∈ W , is characterized by the conditions

∫
F
(Πhτ )nF · q =

∫
F

τnF · q ∀q ∈P1(F)n

for all faces (edges) F of T ∈ Th(Ω), where nF is a unit vector normal to the face (edge) F. The following
commuting diagram property holds true (see Brezzi & Fortin, 1991):

div(Πhτ ) = Lh(div τ ) ∀τ ∈ Hs(Ω)n×n ∩ H(div; Ω), (4.1)
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756 S. MEDDAHI ET AL.

where Lh : L2(Ω)n → Uh is the L2(Ω)n-orthogonal projector. In addition, by repeating the arguments
from the proof of Hiptmair (2002, Theorem 3.16), it is easy to show that there exists C > 0, independent
of h, such that

‖τ − Πhτ‖0,Ω � Chs(‖τ‖s,Ω + ‖ div τ‖0,Ω) ∀τ ∈ Hs(Ω)n×n ∩ H(div; Ω). (4.2)

Moreover, for any s ∈ (0, 1], there holds

‖v − Lhv‖0,Ω � Chs‖v‖s,Ω ∀v ∈ Hs(Ω)n, (4.3)

‖τ − Πhτ‖H(div;Ω) � Chs‖τ‖Hs(div;Ω) ∀τ ∈ Hs(div; Ω) ∩ W . (4.4)

Actually, (4.4) is a straightforward consequence of (4.1–4.3).
Now we introduce the discrete counterpart of Problem 2.1.

Problem 4.1. Find λh ∈ R and 0 |= σ h ∈ Wh such that

∫
Ω

div σ h · div τ h = λh

∫
Ω

σ D
h : τDh ∀τ h ∈ Wh.

As in the continuous case, we resort to a shift argument to write this problem in the following
equivalent form, with the bilinear forms a and b as defined in Section 2.

Problem 4.2. Find λh ∈ R and 0 |= σ h ∈ Wh such that

a(σ h, τ h) = (λh + 1)b(σ h, τ h) ∀τ h ∈ Wh.

Now we are in a position to define the discrete version of the operator T:

T̃h : W −→ W ,

f �−→ T̃h f := σ ∗
h,

where σ ∗
h ∈ Wh is the solution of the discrete source problem

a(σ ∗
h, τ h) = b( f , τ h) ∀τ h ∈ Wh.

Because of Lemma 2.3 and the Lax–Milgram theorem, T̃h is well defined and uniformly bounded
with respect to h. Moreover, the Cea lemma ensures the existence of a constant C > 0, independent of
h, such that, for all σ ∈ W ,

‖Tσ − T̃hσ‖H(div;Ω) � C inf
τ h∈Wh

‖Tσ − τ h‖H(div;Ω). (4.5)

Note that, since T̃h(W) ⊂ Wh, we are allowed to introduce the operator

Th := T̃h|Wh : Wh −→ Wh.

It is well known that sp(T̃h) = sp(Th) ∪ {0} (see, for instance, Bermúdez et al., 1995, Lemma 4.1).
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A FINITE ELEMENT METHOD FOR THE STOKES EIGENVALUE PROBLEM 757

Once more, as in the continuous case, (λh, σ h) ∈ R × Wh solves Problem 4.1 if and only if (1/(1 +
λh), σ h) is an eigenpair of Th with a nonvanishing eigenvalue, i.e., if and only if

Thσ h = μhσ h with μh := 1

1 + λh
|= 0 and σ h |= 0.

Moreover, it can immediately be checked that Th is also self-adjoint with respect to a(·, ·).
To describe the spectrum of this operator, we will proceed as in the continuous case and decompose

Wh into a convenient direct sum. To this end, we define

Kh := K ∩ Wh = {τ h ∈ Wh : div τ h = 0 in Ω},
and note that, once more, Th|Kh : Kh → Kh reduces to the identity. Moreover, we have the following
discrete analogue to Lemma 3.1.

Lemma 4.3 The operator Th admits the eigenvalue μh = 1 and Kh is the associated eigenspace.

We define the discrete version of the auxiliary operator P by

Ph : W −→ Wh,

σ �−→ Ph(σ ) := σ̃ h,

where (σ̃ h, ũh) ∈ Wh × Uh is the solution of the following discrete mixed problem:∫
Ω

σ̃ D
h : τDh +

∫
Ω

ũh · div τ h = 0 ∀τ h ∈ Wh, (4.6)

∫
Ω

vh · div σ̃ h =
∫

Ω

vh · div σ ∀vh ∈ Uh. (4.7)

We point out that the following inf–sup condition is satisfied with a constant β̂ independent of h (see
Brezzi & Fortin, 1991):

sup
τ h∈Wh

∫
Ω

vh · div τ h

‖τ h‖H(div;Ω)

� β̂‖vh‖0,Ω ∀vh ∈ Uh.

Moreover, since div(Wh) ⊂ Uh, the ellipticity of the bilinear form
∫

Ω
σ D : τD on the discrete kernel

{τ h ∈ Wh :
∫

Ω
vh · div τ h = 0 ∀vh ∈ Uh} = Kh follows from its ellipticity on K ⊃ Kh. Hence, as a con-

sequence of the Babuška–Brezzi theory, problem (4.6–4.7) is well posed. The linear operator Ph is then
well defined and uniformly bounded with respect to h. Moreover, the following Cea estimate holds true:

‖σ̃ − σ̃ h‖H(div;Ω) + ‖ũ − ũh‖0,Ω � C

[
inf

τ h∈Wh

‖σ̃ − τ h‖H(div;Ω) + inf
vh∈Uh

‖ũ − vh‖0,Ω

]
, (4.8)

where (σ̃ , ũ) and (σ̃ h, ũh) are the solutions to (3.1–3.2) and (4.6–4.7), respectively.
The above estimate, combined with the approximation properties (4.3) and (4.4), leads to

‖Pσ − Phσ‖H(div;Ω) � Chs[‖σ̃‖Hs(div;Ω) + ‖ũ‖s,Ω ],

whenever σ̃ ∈ Hs(Ω)n×n, ũ ∈ Hs(Ω)n and div σ̃ ∈ Hs(Ω)n. We already know from Lemma 3.2 that
σ̃ ∈ Hs(Ω)n×n and ũ ∈ Hs(Ω)n. However, div σ̃ cannot be in Hs(Ω)n for an arbitrary σ ∈ W . Indeed,
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from (3.3), div σ̃ = div σ , which is in general only in L2(Ω)n. In spite of this fact, an O(hs) convergence
for ‖Pσ h − Phσ h‖H(div;Ω) can be proved for σ h ∈ Wh. Fortunately, this is enough to develop the spectral
approximation theory of our problem.

Lemma 4.4 There exists C > 0 such that, for all σ h ∈ Wh,

‖Pσ h − Phσ h‖H(div;Ω) � Chs‖ div σ h‖0,Ω .

Proof. For σ h ∈ Wh, let σ̃ = Pσ h and σ̃ h = Phσ h. By virtue of (4.8), (4.3) and Lemma 3.2, we have

‖Pσ h − Phσ h‖H(div;Ω) � C

[
inf

τ h∈Wh

‖σ̃ − τ h‖H(div;Ω) + h‖ div σ h‖0,Ω

]
.

Now, since σ̃ ∈ Hs(Ω)n×n ∩ W (cf. Lemma 3.2), Πhσ̃ ∈ Wh is well defined and, according to (4.2),

‖σ̃ − Πhσ̃‖0,Ω � Chs(‖σ̃‖s,Ω + ‖ div σ̃‖0,Ω).

On the other hand, from (3.3), div σ̃ = div σ h in Ω . Therefore, because of (4.1),

div(Πhσ̃ ) = Lh(div σ̃ ) = Lh(div σ h) = div σ h = div σ̃ ,

which proves that

‖σ̃ − Πhσ̃‖H(div;Ω) = ‖σ̃ − Πhσ̃‖0,Ω .

Thus, the result follows from all this and the fact that ‖σ̃‖s,Ω � C‖ div σ h‖0,Ω (cf. Lemma 3.2). �

It is easy to check that Ph|Wh is idempotent and that its kernel is Kh, which allows us to write
Wh as a direct sum of Kh and Ph(Wh), i.e., Wh = Kh ⊕ Ph(Wh). Actually, it is easy to show that this
decomposition is orthogonal with respect to a(·, ·). Consequently, since Th is self-adjoint with respect to
this bilinear form, the subspace Ph(Wh) is invariant for Th and the following spectral characterization
holds true.

Theorem 4.5 The spectrum of Th consists of M := dim(Wh) nondefective eigenvalues, repeated
according to their respective multiplicities. The spectrum decomposes as follows: sp(Th) = {0, 1} ∪
{μhk}K

k=1. Moreover,

(i) the eigenspace associated with μh = 1 is Kh;

(ii) the eigenspace associated with μh = 0 is

Zh := {τ h ∈ Wh : τDh = 0};

(iii) the eigenspaces associated with μhk ∈ (0, 1), k = 1, . . . , K := M − dim(Kh) − dim(Zh) lie on
Ph(Wh).

Proof. Since Wh = Kh ⊕ Ph(Wh), Th|Kh : Kh → Kh is the identity and Th(Ph(Wh)) ⊂ Ph(Wh), the
theorem follows from Lemma 4.3 and the definition of Th. �
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Remark 4.6 The eigenspace Zh of Th corresponding to μh = 0 can be characterized as follows:

Zh = {qhI : qh ∈ Vh},

where

Vh := {qh ∈ H1(Ω) : qh|T ∈P1(T) ∀T ∈ Th(Ω) and qh = 0 on Σ}.
This follows from the same arguments used in the proof of Theorem 3.5(ii) and the fact that qhI ∈ Wh

for all qh ∈ Vh.
Note that the latter holds true for the particular elements we have chosen (BDM), but not necessarily

for any family of H(div; Ω)-conforming elements. For instance, it does not hold for the lowest-order RT
elements. However, this is not a drawback for approximating the most relevant eigenvalues, which are
those closest to μ = 1 (and not those closest to μ = 0). In fact, in practice, the most relevant eigenvalues
λ of Problem 2.1 are the lowest positive ones, which correspond to the eigenvalues μ = 1/(1 + λ) of
T closest to μ = 1. Instead, the eigenvalues of T closest to μ = 0 correspond to the largest eigenvalues
λ of Problem 2.1, which do not play any significant role in practice.

5. Spectral approximation

To prove that Th provides a correct spectral approximation of T , we will resort to the theory developed
in Descloux et al. (1978a,b) for noncompact operators. To this end, we first introduce some notation.
For any linear operator S : W → W we define

‖S‖h := sup
τ h∈Wh

‖Sτ h‖H(div;Ω)

‖τ h‖H(div;Ω)

.

Given τ ∈ W and two closed subspaces X and Y of W , we set

δ(τ , Y) := inf
η∈Y

‖τ − η‖H(div;Ω), δ(X , Y) := sup
τ∈X : ‖τ‖H(div;Ω)=1

δ(τ , Y)

and

δ̂(X , Y) := max{δ(X , Y), δ(Y , X )},
the latter being the so-called gap between subspaces X and Y .

The theory from Descloux et al. (1978a) guarantees a good approximation of the spectrum of T if
the following two properties are satisfied:

(P1) ‖T − Th‖h → 0 as h → 0;

(P2) for all τ ∈ W , δ(τ , Wh) → 0 as h → 0.

Property (P2) follows immediately from the approximation property of the finite element space (4.4)
and the density of smooth functions in W . Property (P1) is a consequence of the following lemma.

Lemma 5.1 There exists C > 0, independent of h, such that

‖T − Th‖h � Chs.
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Proof. Given σ h ∈ Wh, we have

(T − Th)σ h = (T − Th)Phσ h + (T − Th)(I − Ph)σ h = (T − Th)Phσ h,

where the last identity comes from the facts that (I − Ph) is a projector onto Kh ⊂ K and the restrictions
to this subspace of both T and Th reduce to the identity. Let us now consider the splitting

(T − Th)Phσ h = (T − T̃h)(Ph − P)σ h︸ ︷︷ ︸
E1

+ (T − T̃h)Pσ h︸ ︷︷ ︸
E2

.

For the first term we use Lemma 4.4 to obtain the estimate

‖E1‖H(div;Ω) � (‖T‖ + ‖T̃h‖)‖(Ph − P)σ h‖H(div;Ω) � Chs‖σ h‖H(div;Ω),

whereas, by virtue of the Cea estimate (4.5), the second term is bounded as

‖E2‖H(div;Ω) � C inf
τ h∈Wh

‖TPσ h − τ h‖H(div;Ω).

Now, according to Proposition 3.4, if σ ∗ = TPσ h, then σ ∗ ∈ Hs(Ω)n×n, div σ ∗ ∈ H1(Ω)n and

‖σ ∗‖s,Ω + ‖ div σ ∗‖1,Ω � C‖Pσ h‖H(div;Ω) � C‖σ h‖H(div;Ω).

We deduce from the last two estimates and the approximation property (4.4) that

‖E2‖H(div;Ω) � C inf
τ h∈Wh

‖σ ∗ − τ h‖H(div;Ω) � Chs‖σ h‖H(div;Ω).

Summing up, we have shown that

‖(T − Th)σ h‖H(div;Ω) � Chs‖σ h‖H(div;Ω) ∀σ h ∈ Wh,

with C independent of h, which allows us to conclude the proof. �

The following result is a consequence of property (P1); see Descloux et al. (1978a, Theorem 1).

Theorem 5.2 Let U ⊂ C be an open set such that sp(T) ⊂ U . Then, there exists h0 > 0 such that
sp(Th) ⊂ U for all h < h0.

This theorem means that our Galerkin scheme does not introduce spurious modes with eigenvalues
interspersed among the positive eigenvalues of Problem 2.1. Indeed, assume that μ ∈ (0, 1) is an isolated
eigenvalue of T with finite multiplicity m and that C is an open circle in the complex plane centred at μ

with boundary γ , such that μ is the only eigenvalue of T lying in C and γ ∩ sp(T) = ∅. Then, according
to Descloux et al. (1978a, Section 2), for h small enough there exist exactly m eigenvalues μh1, . . . , μhm

of Th (repeated according to their respective multiplicities) which lie in C. Moreover, these and only
these eigenvalues of Th converge to μ as h → 0.

The next step in our analysis is to apply the results from Descloux et al. (1978b) to obtain error
estimates. To this aim, we consider the eigenspace E of T corresponding to μ and the invariant subspace
Eh of Th spanned by the eigenspaces of Th corresponding to μh1, . . . , μhm. Since T and Th are self-
adjoint with respect to a(·, ·), we have the following results from Descloux et al. (1978b).
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Theorem 5.3 There exists a constant C > 0, independent of h, such that

δ̂(E , Eh) � Cδ(E , Wh).

We recall that μ ∈ (0, 1) is an eigenvalue of T with multiplicity m if and only if λ := (1/μ) − 1 is an
eigenvalue of Problem 2.1 with the same multiplicity and that the corresponding eigenfunctions coin-
cide. Analogously, μhi, i = 1, . . . , m are the eigenvalues of Th (repeated according to their respective
multiplicities) converging to μ as h → 0 if and only if λhi := (1/μhi) − 1 are the eigenvalues of Prob-
lem 4.1 converging to λ and the corresponding eigenfunctions also coincide. Thus, the theorem above
provides an error estimate for the approximation of the eigenfunctions of Problem 2.1 by means of those
of Problem 4.1. We have the following result that provides an error estimate for the eigenvalues.

Theorem 5.4 There exist constants C > 0 and h0 > 0 such that, for all h < h0,

|λ − λhi| � Cδ(E , Wh)
2, i = 1, . . . , m.

Proof. This result was proved in Descloux et al. (1978b, Theorem 3) but, for the sake of completeness,
we include here a simple proof adapted to our problem.

Let σ hi be an eigenfunction of Problem 4.1 corresponding to λhi, normalized so that ‖σ hi‖H(div;Ω) =
1. According to Theorem 5.3, δ(σ hi, E) � Cδ(E , Wh). It follows that there exists an eigenfunction
σ ∈ E of Problem 2.1 corresponding to λ such that

‖σ − σ hi‖H(div;Ω) � Cδ(E , Wh). (5.1)

Note that, in spite of the notation, σ may actually depend on h.
The key tool to prove the theorem is the following identity:

(λhi − λ)b(σ hi, σ hi) = a(σ − σ hi, σ − σ hi) − (λ + 1)b(σ − σ hi, σ − σ hi). (5.2)

This identity (which is similar to that from Babuška & Osborn, 1991, Lemma 9.1) follows from straight-
forward calculations after noting that, since (λ, σ ) and (λhi, σ hi) are solutions to Problems 2.1 and 4.1,
respectively,

a(σ , τ ) = (λ + 1)b(σ , τ ) ∀τ ∈ W ,

a(σ hi, τ h) = (λhi + 1)b(σ hi, τ h) ∀τ h ∈ Wh.

Lemma 2.3 and the fact that λhi → λ as h → 0 yield that there exist C > 0 and h0 > 0 such that, for
all h < h0,

b(σ hi, σ hi) = a(σ hi, σ hi)

λhi + 1
�

α‖σ hi‖2
H(div;Ω)

λhi + 1
� C > 0.

Using this estimate to bound the left-hand side of (5.2) from below and the continuity of a and b and
(5.1) to bound the right-hand side from above, we derive

|λ − λhi| � Cδ(E , Wh)
2, i = 1, . . . , m,

which allows us to conclude the proof. �

The two theorems above yield error estimates depending on δ(E , Wh). The order of convergence
will then depend on the regularity of the eigenfunctions. In particular, using the additional smoothness
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Fig. 1. Uniform meshes.

of the eigenfunctions that we have already proved, we can assert from (4.4) and Corollary 3.6 that if
μ ∈ (0, 1), then

‖σ − Πhσ‖H(div;Ω) � Chs‖σ‖Hs(div;Ω) � Chs‖σ‖H(div;Ω) ∀σ ∈ E ,

which allows us to conclude that, at least, δ(E , Wh) � Chs.

6. Numerical results

We report in this section the results of some numerical tests carried out with the method proposed in
Section 4, which will allow us to check the theoretical results proved above as well as to assess its
efficiency. The numerical method was implemented in a MATLAB code. Using standard basis of BDM
elements, Problem 4.2 leads to a generalized matrix eigenvalue problem of the form

Aσ̂ = (λh + 1)Bσ̂ ,

where σ̂ is the vector of components of the eigenfunction in the chosen basis. Matrices A and B are
both symmetric, with the former positive definite and the latter semidefinite. Therefore, it is possible
to apply standard eigensolvers (like the one we have actually used: MATLAB command eigs) to the
equivalent problem

Bσ̂ = 1

λh + 1
Aσ̂ .

Let us remark that the positive definiteness of A is the reason why we chose Problem 4.2 for the imple-
mentation instead of Problem 4.1. In fact, the latter would have led to a semidefinite matrix A and,
hence, to a degenerate generalized matrix eigenvalue problem.

We used uniform meshes such as those shown in Fig. 1. The refinement parameter N used to label
each mesh is the number of elements on each edge. In all the tables below the results are obtained
by using four meshes with increasing levels of refinement. In each case, we list the lowest computed
eigenvalues λhi. We also report in all tables a column labelled “Order” with the estimated order of
convergence and another one labelled “Extrap.” with a more accurate extrapolated approximation of the
eigenvalues obtained by means of a least-squares fitting.

6.1 Test 1

In this numerical test we took Ω := (−1, 1) × (−1, 1) and considered a nonslip boundary condition
u = 0 on the whole of ∂Ω . We compared our results with those obtained in Lovadina et al. (2009)
with a velocity–pressure formulation of the Stokes system and a Galerkin method based on the MINI
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Table 1 Test 1. Lowest eigenvalues λhi of the Stokes problem computed with BDM elements

N = 10 N = 20 N = 30 N = 40 Order Extrap. Lovadina et al. (2009)

λh1 13.4657 13.1823 13.1290 13.1103 1.98 13.0860 13.086
λh2 = λh3 24.2868 23.3472 23.1718 23.1103 1.99 23.0308 23.031
λh4 34.2444 32.6220 32.3075 32.1963 1.93 32.0443 32.053
λh5 41.4711 39.2828 38.8666 38.7201 1.96 38.5252 38.532
λh6 45.9681 42.8124 42.2263 42.0211 2.00 41.7588 41.759

Table 2 Test 1. Lowest eigenvalues λhi of the Stokes problem computed with RT elements

N = 10 N = 20 N = 30 N = 40 Order Extrap. Lovadina et al. (2009)

λh1 13.0355 13.0691 13.0780 13.0815 1.45 13.0887 13.086
λh2 = λh3 22.4794 22.8930 22.9692 22.9962 2.00 23.0306 23.031
λh4 31.6489 31.9330 31.9963 32.0201 1.70 32.0593 32.053
λh5 36.0607 37.9436 38.2719 38.3857 2.09 38.5207 38.532
λh6 41.4860 41.7093 41.7365 41.7456 2.63 41.7520 41.759

element. With this aim, we include in the last column of Table 1 the values obtained by extrapolating
those reported in Lovadina et al. (2009) for the same problem.

It is clear that the eigenvalue approximation order of our method is quadratic and that the results
obtained by the two methods agree perfectly well. We also point out that the symmetry of the meshes
used allows the double multiplicity of the second eigenvalue to be preserved at the discrete level.

Let us remark that the method discussed in this paper is significantly more expensive than that from
Lovadina et al. (2009) in terms of computational cost. This happens even though in the latter, which is
based on the MINI element, it is not possible to eliminate the cubic bubbles by static condensation in
the eigenvalue problem. In fact, since the degrees of freedom corresponding to these bubbles appear in
both matrices (A and B), such elimination would lead to a nonlinear eigenvalue problem which would
be much harder to deal with. Because of this, the number of unknowns for the MINI element in this
two-dimensional problem is 3NV + 2NT ≈ 7NV, where NV denotes the number of vertices and NT the
number of elements. In its turn, the number of unknowns for the method analysed in this paper is almost
double: 4NE ≈ 12NV, where NE denotes the number of edges.

However, as stated in Section 1, the analysis in this paper extends without any significant change to
other H(div; Ω)-conforming elements. In particular we have checked that all the results remain valid
for the lowest-order RT element. The only difference in the analysis with respect to BDM elements
is the lack of a correct approximation of the eigenspace Zh pointed out in Remark 4.6. However, as
explained in that remark, this does not affect the efficiency of the discretization based on RT elements
to approximate the lowest eigenvalues λ of Problem 2.1, which are the most significant in practice.

To check this, we also solved the same problem on the same meshes with the lowest-order RT
elements. We report the results in Table 2, which is an analogue of Table 1.

Excellent agreement with the results extrapolated from those obtained with the MINI element dis-
cretization from Lovadina et al. (2009) can also be clearly observed in Table 2. Let us remark that this
happens even though the computational cost of the lowest-order RT discretization is half that of the
BDM discretization. In fact, the number of unknowns for RT elements is 2NE ≈ 6NV, which is even
smaller than that of the MINI element (7NV).
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Table 3 Test 2. Lowest buckling coefficients λhi computed with BDM elements

N = 10 N = 20 N = 30 N = 40 Order Extrap. Mora & Rodríguez (2009)

λh1 52.729 52.441 52.388 52.369 1.99 52.344 52.345
λh2 = λh3 93.389 92.441 92.265 92.204 2.00 92.125 92.126
λh4 130.488 128.785 128.466 128.354 1.98 128.207 128.213
λh5 157.131 154.881 154.461 154.315 1.99 154.124 154.123
λh6 171.250 168.084 167.498 167.293 2.00 167.029 167.024

6.2 Test 2

In this numerical test we compared our method with a finite element scheme proposed and analysed in
Mora & Rodríguez (2009) for solving the plate buckling problem. As already mentioned in Section 1,
the Stokes eigenvalue problem with a nonslip boundary condition is equivalent to the following, which
corresponds to the buckling problem for a uniformly compressed, clamped Kirchhoff plate (see Mercier
et al., 1981; Chen & Lin, 2006): find λ ∈ R and 0 |= w ∈ H2

0 (Ω) such that

⎧⎪⎨
⎪⎩

Δ2w = −λΔw in Ω ,

w = 0 on ∂Ω ,

∇w · n = 0 on ∂Ω ,

(6.1)

where λ is the buckling coefficient and w is the plate transverse displacement, which corresponds in the
Stokes problem to a stream function of the velocity field: u = curl w := (∂2w, −∂1w).

The computational domain is now the unit square Ω := (0, 1) × (0, 1). In Table 3, we list the lowest
buckling coefficients of problem (6.1) computed by solving Problem 4.2 with BDM elements. We also
solved the buckling problem (6.1) by means of the method proposed in Mora & Rodríguez (2009).
To allow for comparison, the corresponding extrapolated buckling coefficients are included in the last
column of Table 3.

It can be clearly observed from Table 3 that our method computes the buckling coefficients with an
optimal quadratic order of convergence and that the agreement with the method from Mora & Rodríguez
(2009) is excellent.

Once more, the cost of the method based on BDM elements is much larger than that from Mora &
Rodríguez (2009). The number of unknowns for BDM is, as above, 4NE ≈ 12NV, whereas that of Mora
& Rodríguez (2009) is 4NV (therefore, even smaller than that of RT: 2NE ≈ 6NV). However, in this case,
the eigenvalue problem to be solved is much simpler than the one arising from the formulation studied
in Mora & Rodríguez (2009). In fact, the latter leads to a degenerate generalized matrix eigenvalue
problem, which is shown to be well posed in Mora & Rodríguez (2009, Appendix) but that cannot be
solved with standard eigensolvers.

6.3 Test 3

In this numerical test we applied our method to the Stokes eigenvalue problem with mixed
boundary conditions. The computational domain is again the unit square Ω := (0, 1) × (0, 1) and
Γ := (0, 1) × {0}. We observe from the results reported in Table 4 that the order of convergence is
again quadratic in this case.

Finally, we show in Figs 2 and 3 the eigenfunctions corresponding to the four lowest eigenvalues.

 at U
niversidad del B

io B
io on A

pril 1, 2015
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


A FINITE ELEMENT METHOD FOR THE STOKES EIGENVALUE PROBLEM 765

Table 4 Test 3. Lowest eigenvalues λhi of the Stokes problem with
mixed boundary conditions computed with BDM

N = 10 N = 20 N = 30 N = 40 Order Extrap.

λh1 2.4708 2.4682 2.4678 2.4676 2.00 2.4674
λh2 6.2946 6.2835 6.2813 6.2805 1.85 6.2793
λh3 15.3288 15.2402 15.2232 15.2171 1.94 15.2090
λh4 22.4812 22.2751 22.2371 22.2237 2.00 22.2065
λh5 27.3583 27.0518 26.9945 26.9744 1.98 26.9479
λh6 44.2217 43.4121 43.2619 43.2093 2.00 43.1419

Fig. 2. Test 3. Eigenfunctions of the Stokes problem with mixed boundary condition associated with eigenvalues λh1 (left) and
λh2 (right).

Fig. 3. Test 3. Eigenfunctions of the Stokes problem with mixed boundary condition associated with eigenvalues λh3 (left) and
λh4 (right).
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