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a b s t r a c t

The aim of this paper is to analyze an elastoacoustic vibration problem employing a
dual-mixed formulation in the solid domain. The Cauchy stress tensor and the rotation
are the primary variables in the elastic structure while the standard pressure formula-
tion is considered in the acoustic fluid. The resulting mixed eigenvalue problem is ap-
proximated by a conforming Galerkin scheme based on the lowest order Lagrange and
Arnold–Falk–Winther finite element subspaces in the fluid and solid domains, respectively.
We show that the scheme provides a correct approximation of the spectrum and prove
quasi-optimal error estimates. Finally, we report some numerical experiments.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic interaction between a fluid and a structure plays an important role inmany engineering fields (cf. [1]). In this
paper, we are concernedwith an elastoacoustic problem.We aim to compute the free vibrationmodes of an elastic structure
in contact with a compressible fluid, which may have a free surface subject to gravity oscillations (sloshing). Under the
assumption of small displacements in the solid, the problem reduces to the coupling of a scalar-valued equation describing
the propagation of a pressure wave and a vector-valued equation modeling the propagation of waves in an elastic medium.
The focus of this study is to determine the free vibration modes of the overall coupled system.

The choice of the main variables in each media gives rise to different variational formulations for the elastoacoustic
vibration problem. Traditionally, a primal formulation is used in the solid, i.e., the displacement is used in the elastic
structure. In early works [2], the acoustic wave equation is written in terms of the pressure, which leads to non-symmetric
eigenvalue problems (see also [3]). Alternatively, the fluid can be modeled by using the displacement [4–7], a displacement
potential on its own [8,1] or combinedwith the pressure [9].We refer to [8] for a comparison of these different formulations.

More recently, dual-mixed formulations have been considered in the solid for the elastoacoustic source problem (see,
e.g., [10,11]). In such an approach, the unknowns in the solid domain are the Cauchy stress tensor and the rotation while
the pressure is maintained as the only variable in the fluid. The resulting formulation is symmetric, it delivers direct finite
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element approximations of the stresses and avoids the locking phenomenon that arises in the nearly incompressible case.
The aim of this paper is to analyze the elastoacoustic eigenvalue problem corresponding to this formulation. Let us remark
that the locking phenomenon appears in the numerical approximation of elastic problems when the Poisson ratio of an
elastic material is close to 0.5 (i.e., when thematerial is almost incompressible). It is characterized by the fact that themodel
leads to poor convergence rates of the displacements unless the discretization is extremely fine (see [12] and the references
therein).

We define a Galerkin scheme by approximating the unknowns of the fluid and the solid by the lowest-order Lagrange and
Arnold–Falk–Winther [13] finite elements, respectively. The latter consist of piecewise linear approximations for the stress
and piecewise constant functions for the rotation (as well as for the displacement, which will not appear as an unknown in
the present problem). The symmetry of the stress tensor is imposed weakly by means of a suitable Lagrange multiplier (the
rotation). Therefore, the spectral problem we have to deal with has a saddle point structure.

When we undertook the analysis of this formulation, we realized that it does not fit in any of the existing theories
for mixed eigenvalue problems (see Part 3 of [14] and the references therein). Actually, we had to pave the way for the
present study by first considering in [15] the dual-mixed eigenvalue formulation of the standalone elasticity problem with
reduced symmetry. In such a case, we proved that the mixed Galerkin approximation is spectrally correct and provided
asymptotic error estimates for the eigenvalues and eigenfunctions by adapting results from [16,17]. The analysis given here
is a generalization of the results obtained in [15] to the elastoacoustic eigenvalue problem.

The paper is organized as follows. In Section 2 we introduce a mixed formulation with reduced symmetry of the
eigenvalue elastoacoustic problem and define the corresponding solution operator. Sections 3 and 4 are devoted to the
characterization of the spectrum of the solution operator. In Section 5 we introduce the technical finite element results that
are used in Section 6 to describe the spectrum of the discrete solution operator. In Section 7 we show that the numerical
scheme provides a correct spectral approximation and we establish asymptotic error estimates for the eigenvalues and
eigenfunctions. Finally, we present in Section 8 a numerical test which confirms that the method is not polluted with
spurious modes and show that the experimental rates of convergence are in accordance with the theoretical ones.

We end this section with some notation which will be used below. Given any Hilbert space V , let Vn and Vn×n denote,
respectively, the space of vectors and tensors of order n (n = 2 or 3) with entries in V . In particular, I is the identity matrix
of Rn×n. Given τ := (τij) and σ := (σij) ∈ Rn×n, we define as usual the transpose tensor τt

:= (τji), the trace trτ :=
n

i=1 τii,
the deviatoric tensor τD

:= τ −
1
n (trτ) I , and the tensor inner product τ : σ :=

n
i,j=1 τijσij.

Let Ω be a Lipschitz bounded domain of Rn with boundary ∂Ω . For s ≥ 0, ∥·∥s,Ω stands indistinctly for the norm of the
Hilbertian Sobolev spaces Hs(Ω),Hs(Ω)n or Hs(Ω)n×n, with the convention H0(Ω) := L2(Ω). We also define the Hilbert
space Hs(div; Ω) :=


τ ∈ Hs(Ω)n×n

: div τ ∈ Hs(Ω)n

, whose norm is given by ∥τ∥

2
Hs(div;Ω) := ∥τ∥

2
s,Ω + ∥div τ∥

2
s,Ω .

Moreover, we simply denote H0(div; Ω) by H(div; Ω). Finally D(Ω) denotes the space of infinitely differentiable functions
with compact support contained in Ω .

Given two Hilbert spaces S and T and a bounded bilinear form c : S × T → R, we will denote

ker(c) := {s ∈ S : c(s, t) = 0 ∀t ∈ T} .

We will also say that c satisfies the inf–sup condition for the pair {S, T}, whenever there exists β > 0 such that

sup
0≠s∈S

c(s, t)
∥s∥S

≥ β ∥t∥T ∀t ∈ T.

Let {Sh}h>0 and {Th}h>0 be families of finite dimensional subspaces of the Hilbert spaces S and T, respectively. The discrete
kernel of c is the set

ker
h

(c) := {sh ∈ Sh : c(sh, th) = 0 ∀th ∈ Th} .

We say that c satisfies a uniform (discrete) inf–sup condition for the pair {Sh, Th} when there exists β∗ > 0, independent of
h, such that

sup
0≠sh∈Sh

c(sh, th)
∥sh∥S

≥ β∗
∥th∥T ∀th ∈ Th.

Finally, we employ 0 to denote a generic null vector or tensor and C to denote generic constants independent of the
discretization parameters, which may take different values at different places.

2. The spectral problem

Our aim is to compute the free vibration modes of an elastic structure in contact with a compressible, inviscid, and ho-
mogeneous fluid, with mass density ρF and acoustic speed c . The solid is supposed to be isotropic and linearly elastic with
a constant mass density ρS and Lamé coefficients λS and µS. The gravity acceleration is denoted by g .

Let ΩF and ΩS be polyhedral Lipschitz bounded domains occupied by the fluid and the solid, respectively, as shown in
Fig. 1. The boundary ∂ΩF of the fluid domain is split into two parts: the interface Σ between the fluid and the solid and
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Fig. 1. Fluid and solid domains.

the open boundary of the fluid Γ0 (the case Γ0 = ∅ is not excluded). The boundary ∂ΩS of the solid domain is the union
of Σ, ΓD ≠ ∅, and ΓN, the structure being fixed on ΓD and free of stress on ΓN. We assume that Σ is oriented by the unit
normal vector ν outward to the boundary of ΩF. The outward unit normal vector to ∂ΩS \ Σ is also denoted by ν.

We introduce the elasticity operator C : Rn×n
→ Rn×n given by

Cτ := λS (trτ) I + 2µSτ.

The constitutive equation relating the solid displacement field u and the Cauchy stress tensor σ is given by

σ = Cε(u) in ΩS,

where ε(u) :=
1
2


∇u + (∇u)t


is the linearized strain tensor.

Under the hypothesis of small oscillations, the classical approximation yields the following eigenvalue problem for the
free vibration modes of the coupled system and the corresponding natural frequencies ω > 0 (see, for instance, [8,1]):

σ − Cε(u) = 0 in ΩS, (2.1)

div σ + ω2ρSu = 0 in ΩS, (2.2)

∆p +
ω2

c2
p = 0 in ΩF, (2.3)

σν + pν = 0 on Σ, (2.4)
∂p
∂ν

− ω2ρFu · ν = 0 on Σ, (2.5)

∂p
∂ν

−
ω2

g
p = 0 on Γ0, (2.6)

u = 0 on ΓD, (2.7)
σν = 0 on ΓN. (2.8)

We follow [11] and employ primal and dual-mixed approaches in the fluid ΩF and the solid ΩS, respectively, to derive a full
continuous variational formulation of the problem. This procedure is dual to the approach adopted in [5,6]. In particular, the
transmission condition (2.5) that is essential in [5,6] becomes natural in our formulation, while (2.4) changes to an essential
condition that will be incorporated directly into the definition of the space to which the unknowns σ and p will belong.

Therefore, the main unknown σ in the solid should belong to the space

W := {τ ∈ H(div; ΩS) : τν = 0 on ΓN} ,

whose subspace

WΣ := {τ ∈ W : τν = 0 on Σ}

will also be useful in the following. The rotation r :=
1
2


∇u − (∇u)t


will intervene in our variational formulation as a

Lagrange multiplier. It will be sought in the space

Q :=

s ∈ L2(ΩS)

n×n
: st = −s


of skew-symmetric tensors. Using this new variable r , the constitutive equation becomes

C−1σ = ε(u) = ∇u − r.
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Testing this equation with τ ∈ W and integrating by parts yield
ΩS

C−1σ : τ = −


ΩS

u · div τ − ⟨τν, u⟩Σ −


ΩS

τ : r,

where ⟨·, ·⟩Σ stands for the duality pairing between H−1/2(Σ)n :=

H1/2(Σ)n

′ and H1/2(Σ)n with respect to the
L2(Σ)n-inner product. Let us remark that since τν = 0 on ΓN, it is easy to check that τν is well defined in H−1/2(Σ)n.

As a first step to eliminate the displacement field, we substitute back u = −
1

ω2ρS
div σ (cf. (2.2)) into the last equation:

ΩS

C−1σ : τ −


ΩS

1
ω2ρS

div σ · div τ + ⟨τν, u⟩Σ +


ΩS

τ : r = 0. (2.9)

In its turn, the variational formulation in ΩF is given by
ΩF

∇p · ∇q −


ΩF

ω2

c2
pq −


∂p
∂ν

, q

∂ΩF

= 0,

which is obtained by multiplying equation (2.3) by q ∈ H1(ΩF) and integrating by parts. Moreover, using (2.5) and (2.6), we
have that

∂p
∂ν

, q

∂ΩF

=


Σ

ω2ρFu · νq +


Γ0

ω2

g
pq.

Hence, assuming that the test functions τ and q satisfy τν = −qν on Σ , we end up with
ΩF

1
ω2ρF

∇p · ∇q −


ΩF

1
ρFc2

pq + ⟨τν, u⟩Σ −


Γ0

1
ρFg

pq = 0. (2.10)

Finally, the symmetry of σ is imposed weakly through the following equation:
ΩS

σ : s = 0 ∀s ∈ Q. (2.11)

We introduce the closed subspace of W × H1(ΩF)

Y :=

(τ, q) ∈ W × H1(ΩF) : τν + qν = 0 on Σ


,

endowed with the norm

∥(τ, q)∥2
:= ∥τ∥

2
H(div;ΩS)

+ ∥q∥2
1,ΩF

.

For commodity we will also denote the Hilbertian product norm in Y × Q by

|||((τ, q), s)|||2 := ∥(τ, q)∥2
+ ∥s∥2

0,ΩS
.

For (σ, p), (τ, q) ∈ Y, s ∈ Q, and v ∈ L2(ΩS)
n, we introduce the bounded bilinear forms

a((σ, p), (τ, q)) :=


ΩS

1
ρS

div σ · div τ +


ΩF

1
ρF

∇p · ∇q,

d((σ, p), (τ, q)) :=


ΩS

C−1σ : τ +


ΩF

1
ρFc2

pq +


Γ0

1
ρFg

pq,

b((τ, q), s) :=


ΩS

τ : s,

A((σ, p), (τ, q)) := a((σ, p), (τ, q)) + d((σ, p), (τ, q)),

B((τ, q), (s, v)) := b((τ, q), s) +


ΩS

div τ · v.

Then, subtracting (2.9) from (2.10) and imposing (2.11), we arrive at the following variational eigenvalue problem in
which λ := ω2.

Problem 1. Find λ ∈ R, (σ, p) ∈ Y, and r ∈ Q such that ((σ, p), r) ≠ 0 and

a((σ, p), (τ, q)) = λ [d((σ, p), (τ, q)) + b((τ, q), r)] ∀(τ, q) ∈ Y,

λb((σ, p), s) = 0 ∀s ∈ Q.
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Notice that the symmetry constraint (2.11) has been multiplied by the eigenvalue λ to obtain a symmetric variational
eigenvalue problem. Therefore, the symmetry of the stress σ is lost for λ = 0, which is an eigenvalue of Problem 1. However,
this is not relevant in practice, because λ = 0 is still present as a spurious eigenvalue even if the last equation is not
multiplied by λ.

By means of a shift argument, this eigenvalue problem can be rewritten as follows.

Problem 2. Find λ ∈ R, (σ, p) ∈ Y, and r ∈ Q such that ((σ, p), r) ≠ 0 and

A((σ, p), (τ, q)) + b((τ, q), r) = (λ + 1) [d((σ, p), (τ, q)) + b((τ, q), r)]
b((σ, p), s) = (λ + 1) b((σ, p), s)

for all (τ, q) ∈ Y and s ∈ Q.

The solution operator corresponding to this eigenvalue problem is

T : Y × Q −→ Y × Q,

((F , f ), g) −→ T ((F , f ), g) := ((σ∗, p∗), r∗),

where ((σ∗, p∗), r∗) is the solution of the following source problem:

A((σ∗, p∗), (τ, q)) + b((τ, q), r∗) = d((F , f ), (τ, q)) + b((τ, q), g) ∀(τ, q) ∈ Y, (2.12)

b((σ∗, p∗), s) = b((F , f ), s) ∀s ∈ Q. (2.13)

In order to show that this problem is well posed, we begin by noticing that the identity

C−1τ : τ =
1

nλS + 2µS
(trτ)2 +

1
2µS

τD
: τD (2.14)

yields 
ΩS

C−1τ : τ +


ΩS

1
ρS

div τ · div τ ≥
1

2µS

τD
2
0,ΩS

+
1
ρS

∥div τ∥
2
0,ΩS

(2.15)

for all τ ∈ H(div; ΩS). This inequality is the starting point in the proof of the ellipticity of A(·, ·) on Y.

Lemma 2.1. There exists a constant α > 0 independent of λS such that

A((τ, q), (τ, q)) ≥ α ∥(τ, q)∥2
∀(τ, q) ∈ Y.

Proof. The result is a straightforward extension of [15, Lemma 2.1]. It follows easily from (2.15) and the following inequal-
ities:

∥τ0∥0,ΩS ≤ C
τD


0,ΩS

+ ∥div τ∥0,ΩS


∀τ ∈ W ,

∥τ∥H(div;ΩS) ≤ C ∥τ0∥H(div;ΩS) ∀τ ∈ W ,

where τ0 := τ −
1

n|Ω|


Ω
trτ

I . An early form of the first inequality has been proved in [18, Lemma 3.1] (see also

[19, Proposition IV.3.1]), whereas the second inequality has been proved in [20, Lemma 2.2]. �

The following inf–sup condition will be repeatedly used in the forthcoming analysis.

Lemma 2.2. There exists a constant β > 0 such that

sup
0≠(τ,q)∈Y

B((τ, q), (s, v))
∥(τ, q)∥

≥ β

∥s∥0,ΩS + ∥v∥0,ΩS


∀(s, v) ∈ Q × L2(ΩS)

n.

Proof. The inclusion WΣ × {0} ⊂ Y yields

sup
0≠(τ,q)∈Y

B((τ, q), (s, v))
∥(τ, q)∥

≥ sup
0≠τ∈WΣ

B((τ, 0), (s, v))
∥τ∥H(div;ΩS)

.

The result is then a direct consequence of the inf–sup condition

sup
0≠τ∈WΣ


ΩS

div τ · v +


ΩS
τ : s

∥τ∥H(div;ΩS)

≥ β

∥s∥0,ΩS + ∥v∥0,ΩS


∀(s, v) ∈ Q × L2(ΩS)

n, (2.16)

which can be found, for instance, in [21]. �
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In particular, we deduce that b satisfies the inf–sup condition for the pair {Y, Q} with the same constant β appearing in
(2.16). Moreover, Lemma 2.1 shows that A(·, ·) is elliptic in particular on ker(b). Hence, the Babuška–Brezzi theory implies
that the linear operator T is well defined and bounded. Moreover, the norm of this operator remains bounded in the
nearly incompressible case (i.e., when λS → ∞). Notice that (λ, (σ, p), r) ∈ R × Y × Q solves Problem 2 if and only
if (1/(1 + λ), ((σ, p), r)), is an eigenpair of T , i.e., if and only if ((σ, p), r) ≠ 0 and

T ((σ, p), r) =
1

1 + λ
((σ, p), r) .

Our description of the spectrum of the solution operator begins with the identification of the kernel of I − T , where I is
the identity in Y × Q. Let YR be the closed subspace of Y given by

YR := {(τ, ξ) ∈ W × R : τν + ξν = 0 on Σ} .

Then, it is straightforward to check that

ker(a) =

(τ, ξ) ∈ YR : div τ = 0 in ΩS


.

By virtue of the definition of T , we have that T |ker(a)×Q : [ker(a) × Q] → [ker(a) × Q] reduces to the identity. Thus, µ = 1
is an eigenvalue of T . Moreover, if ((σ, p), r) is an associated eigenfunction, then

a((σ, p), (τ, q)) = 0 ∀(τ, q) ∈ Y,

which shows that ((σ, p), r) ∈ ker(a) × Q. Therefore, we have proved the following result.

Lemma 2.3. µ = 1 is an eigenvalue of T with associated eigenspace ker(a) × Q.

In order to complete the spectral characterization of the operator T , we will introduce a convenient direct complement
of this eigenspace, which will turn out to be an invariant subspace of this operator. With this end, we will introduce first in
the following section an auxiliary projector whose kernel coincides with this eigenspace.

3. The auxiliary operator P

Given q ∈ H1(ΩF), letu ∈ H1(ΩS)
n andσ ∈ H(div; ΩS) be the solution of the following linear elasticity problem:

−divσ = 0 in ΩS,σ = Cε(u) in ΩS,σν = qν on Σ,u = 0 on ΓD,σν = 0 on ΓN.

The problem above is well posed. Moreover, as the Neumann data qν on Σ belongs to Hδ(Σ)n for any 0 ≤ δ < 1/2, classical
regularity results for the elasticity equations in polyhedral (polygonal) domains (cf. [22]) ensure the existence of tS ∈ (0, 1),
which depends on δ, the geometry of ΩS and the Lamé coefficients, such thatσ ∈ HtS(ΩS)

n×n and

∥σ∥tS,ΩS ≤ C1 ∥qν∥δ,Σ ≤ C2 ∥q∥1/2,Σ

where the last inequality follows from the boundedness of the operator H1/2(Σ) ∋ q → qν ∈ Hδ(Σ)n. Therefore, we define
the bounded linear operator

E : H1(ΩF) −→ W ,

q −→ Eq := −σ,

which provides a symmetric divergence-free extension of a given pressure field q to the solid domain. Then, we have that
Eq ∈ HtS(ΩS)

n×n and

∥Eq∥tS,ΩS
≤ C ∥q∥1,ΩF

∀q ∈ H1(ΩF). (3.1)

We also defineEq := (Eq, q) ,

which clearly belongs to Y.
In what follows, q̄ := q−

1
|ΩF|


ΩF

q stands for the zero mean value component of functions q from H1(ΩF). We introduce
the auxiliary operator

P : Y × Q −→ Y × Q,

((σ, p), r) −→ P((σ, p), r) := ((σ,p),r),
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where (σ,p) ∈ YR +Ep̄ and (r,u) ∈ Q × L2(ΩS)
n solve the problem

d((σ,p), (τ, ξ)) + B((τ, ξ), (r,u)) = 0 ∀(τ, ξ) ∈ YR, (3.2)

B((σ,p), (s, v)) =


ΩS

div σ · v ∀(s, v) ∈ Q × L2(ΩS)
n. (3.3)

We notice that, by definition, P((σ, p), r) is independent of the last variable r .
Taking into account that Ep̄ is symmetric and divergence-free in ΩS, we have that (3.2)–(3.3) hold true if and only if

(σ0,c) := (σ,p) −Ep̄ ∈ YR and (r,u) ∈ Q × L2(ΩS)
n satisfy

d((σ0,c), (τ, ξ)) + B((τ, ξ), (r,u)) = −d(Ep̄, (τ, ξ)) ∀(τ, ξ) ∈ YR, (3.4)

B((σ0,c), (s, v)) =


ΩS

div σ · v ∀(s, v) ∈ Q × L2(ΩS)
n. (3.5)

Since WΣ × {0} ⊂ YR, we deduce from (2.16) that the bilinear form B satisfies the inf–sup condition for the pair

YR, Q ×

L2(ΩS)
n

. Moreover, the ellipticity in the kernel of d is an immediate consequence of Lemma 2.1 and the fact that

ker(B) ∩ YR ⊂ ker(a). Therefore, the Babuška–Brezzi theory implies that P is a well posed bounded linear operator.
Moreover, it is straightforward to check that the solution ((σ,p), (u,r)) to (3.2)–(3.3) satisfies

−divσ = −div σ in ΩS, (3.6)σ = Cε(u) in ΩS, (3.7)σν = −pν on Σ, (3.8)u = 0 on ΓD, (3.9)σν = 0 on ΓN, (3.10)

and

r =
1
2


∇u − (∇u)t


in ΩS.

By resorting again to the regularity result for the classical elasticity problem (see oncemore [22]), nowwith a non-vanishing
right-hand side div σ ∈ L2(ΩS)

n, we know thatu ∈ H1+tS(ΩS)
n with the same tS ∈ (0, 1) as in (3.1) and that there exists

C > 0, independent of σ and p, such that

∥u∥1+tS,ΩS ≤ C

∥div σ∥0,ΩS + ∥p∥1,ΩF


≤ C


∥div σ∥0,ΩS + ∥p∥1,ΩF


.

The following lemma summarizes these additional regularity results.

Lemma 3.1. There exists C > 0 such that, for all ((σ, p), r) ∈ Y × Q,

∥σ∥tS,ΩS + ∥u∥1+tS,ΩS + ∥r∥tS,ΩS + ∥p∥1,ΩF
≤ C


∥div σ∥0,ΩS + ∥p∥1,ΩF


,

where ((σ,p), (u,r)) ∈

YR +Ep̄× L2(ΩS)

n
× Q


is the solution to (3.2)–(3.3). Consequently, P(Y×Q) ⊂


HtS(ΩS)

n×n
×

H1(ΩF)

× HtS(ΩS)

n×n.

We recall that, by construction, p andp have the same zero mean value component, i.e.,p −
1

|ΩF|


ΩF
p = p̄. Moreover,

according to (3.6), divσ = div σ in ΩS. It follows that the operator P is idempotent and that its kernel is given by
ker(P) = ker(a) × Q. Therefore, being P a projector, we have that Y × Q = [ker(a) × Q] ⊕ P(Y × Q). Our aim now
is to show that P(Y × Q) is an invariant subspace of T . To this end, let us rewrite the equations of Problem 2 as follows:

A(((σ, p), r), ((τ, q), s)) = (λ + 1) B(((σ, p), r), ((τ, q), s)) ∀((τ, q), s) ∈ Y × Q,

where A and B are the bounded bilinear forms in Y × Q defined by

A(((σ, p), r), ((τ, q), s)) := A((σ, p), (τ, q)) + b((τ, q), r) + b((σ, p), s),
B(((σ, p), r), ((τ, q), s)) := d((σ, p), (τ, q)) + b((τ, q), r) + b((σ, p), s).

We introduce the orthogonal complement to ker(a) × Q in Y × Q with respect to the bilinear form B by

[ker(a) × Q]⊥B := {((σ, p), r) ∈ Y × Q : B(((σ, p), r), ((τ, q), s)) = 0 ∀((τ, q), s) ∈ ker(a) × Q} .

Our next goal is to prove that [ker(a) × Q]⊥B = P(Y × Q). The first step is the following result.

Lemma 3.2. [ker(a) × Q] ∩ [ker(a) × Q]⊥B = {0}.
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Proof. Let ((σ, p), r) ∈ [ker(a) × Q] ∩ [ker(a) × Q]⊥B . Then, ((σ, p), r) ∈ [ker(a) × Q] and

d((σ, p), (τ, q)) + b((τ, q), r) = 0 ∀(τ, q) ∈ ker(a),
b((σ, p), s) = 0 ∀s ∈ Q.

The first equation shows that the linear form (τ, q) → d((σ, p), (τ, q)) + b((τ, q), r) belongs to the polar of ker(a) in YR.
Hence, the inf–sup condition

sup
(τ,q)∈YR


ΩS

div τ · v

∥(τ, q)∥
≥ β ∥v∥0,ΩS ∀v ∈ L2(ΩS)

n,

which is a direct consequence of (2.16), proves that there exists u ∈ L2(ΩS)
n such that

−


ΩS

div τ · u = d((σ, p), (τ, q)) + b((τ, q), r) ∀(τ, q) ∈ YR.

Therefore, ((σ, p), (r, u)) ∈ [YR × (Q × L2(ΩS)
n)] satisfies

d((σ, p), (τ, q)) + B((τ, q), (r, u)) = 0 ∀(τ, q) ∈ YR,

B((σ, p), (s, v)) = 0 ∀(s, v) ∈ Q × L2(ΩS)
n.

This is a well posed problem (as was shown when considering (3.4)–(3.5)), so that its unique solution has to be ((σ, p),
(r, u)) = 0 and we conclude the proof. �

Lemma 3.3. P(Y × Q) = [ker(a) × Q]⊥B .

Proof. Let us first show that P(Y × Q) ⊂ [ker(a) × Q]⊥B . Given ((σ,p),r) ∈ P(Y × Q), by virtue of (3.2)–(3.3),

B(((σ,p),r), ((τ, q), s)) = 0 ∀((τ, q), s) ∈ ker(a) × Q,

which means that ((σ,p),r) ∈ [ker(a) × Q]⊥B .
Conversely, let ((σ, p), r) ∈ [ker(a) × Q]⊥B and let ((σ,p),r) = P((σ, p), r). We have just proved that ((σ,p),r) ∈

[ker(a) × Q]⊥B , so that ((σ − σ,p − p),r − r) ∈ [ker(a) × Q]⊥B , too. Moreover, from the definition of P , we have that
div (σ − σ) = 0 in ΩS andp− p ∈ R; in other words, ((σ − σ,p− p),r − r) ∈ ker(a) × Q. Hence, according to Lemma 3.2,
((σ − σ,p − p),r − r) = 0, so that ((σ, p), r) = ((σ,p),r) = P((σ, p), r) ∈ P(Y × Q) and we conclude the proof. �

4. The spectral characterization of T

The first result of this section concerns a regularity result for T |[ker(a)×Q]⊥B .

Proposition 4.1. There exist tS, tF ∈ (0, 1] such that, for all ((F , f ), g) ∈ [ker(a) × Q]⊥B , if ((σ∗, p∗), r∗) = T ((F , f ), g),
then σ∗, r∗

∈ HtS(ΩS)
n×n, div σ∗

∈ H1(ΩS)
n, p∗

∈ H1+tF(ΩF), and there exists C > 0 such thatσ∗

tS,ΩS

+
div σ∗


1,ΩS

+
r∗


tS,ΩS

+
p∗


1+tF,ΩF

≤ C |||((F , f ), g)|||.

Consequently, the operator T |[ker(a)×Q]⊥B : [ker(a) × Q]⊥B → [ker(a) × Q]⊥B is compact.

Proof. Let ((F , f ), g) ∈ [ker(a) × Q]⊥B and ((σ∗, p∗), r∗) = T ((F , f ), g). We already know from Lemmas 3.3 and 3.1 that
((σ∗, p∗), r∗) ∈ T ([ker(a) × Q]⊥B) ⊂ [ker(a) × Q]⊥B = P(Y × Q) ⊂


HtS(ΩS)

n×n
× H1(ΩF)


× HtS(ΩS)

n×n. On the other
hand, testing (2.12) with (τ, 0), (0, q) ∈ D(ΩS)

n×n
× D(ΩF) ⊂ Y yields

C−1σ∗
− ∇


1
ρS

div σ∗


+ r∗

= C−1F + g in ΩS,

−c2∆p∗
+ p∗

= f in ΩF.

Then, since ρS is constant, we have from the first equation that div σ∗
∈ H1(ΩS)

n. Hence, the equation posed in ΩF and the
boundary condition

∂p∗

∂ν
=


1
g
(f − p) on Γ0,

ρF

ρS
div σ∗

· ν on Σ,

(obtained by testing this time (2.12) with appropriate (τ, q) ∈ Y and integrating by parts) show that p∗ is the solution
of a Poisson problem with a Neumann boundary condition. Therefore, according to the classical regularity results for this
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problem in polyhedral (polygonal) domains (see again [22]) we know that there exists tF ∈ (0, 1] such that p∗
∈ H1+tF(ΩF)

and that there exists C > 0 such thatp∗

1+tF,ΩF

≤ C


1
c2
f − p∗


0,ΩF

+
1
g

f − p∗

1/2,Γ0

+
ρF

ρS

J
j=1

div σ∗
· ν

1/2,Σj


,

where Σj, 1 ≤ j ≤ J , are the polygonal faces of Σ , as above. Hence, it is easy to check by using again Lemma 3.1 that the
estimate of the proposition holds true.

Finally, the compactness of T |[ker(a)×Q]⊥B follows from the fact that the space
((σ∗, p∗), r∗) ∈


HtS(ΩS)

n×n
× H1+tF(ΩF)


× HtS(ΩS)

n×n
: div σ∗

∈ H1(ΩS)
n

is compactly included in

H(div; ΩS) × H1(ΩF)


× L2(ΩS)

n×n. �

As shown in [15, Proposition A.2], the following result ensures that the eigenvalues of T are non-defective. Another
immediate consequence of this result is that µ = 0 is not an eigenvalue of T .

Lemma 4.2. For all non-vanishing ((σ, p), r) ∈ [ker(a) × Q]⊥B

A(((σ, p), r), ((σ, p), r)) ≥ B(((σ, p), r), ((σ, p), r)) > 0.

Proof. The first inequality follows from the definition of the bilinear forms A and B and the fact that a is a positive semi-
definite bilinear form. To prove the second, we have that σ is symmetric for all ((σ, p), r) ∈ [ker(a) × Q]⊥B , because of the
definition of this space. Hence, by virtue of (2.14), we have that

B(((σ, p), r), ((σ, p), r)) =


ΩS

C−1σ : σ +


ΩF

1
ρFc2

p2 +


Γ0

1
ρFg

p2

≥ min


n
nλS + 2µS

,
1

2µS


∥σ∥

2
0,ΩS

+
1

ρFc2
∥p∥2

0,ΩF
≥ 0.

Moreover, the expression above cannot vanish; otherwise (σ, p) = 0 and, hence, ((σ, p), r) ∈ [ker(a) × Q] ∩ [ker(a) ×

Q]⊥B = {0} (cf. Lemma 3.2). Thus, we conclude the proof. �

We end this section with the spectral characterization of T .

Theorem 4.3. The spectrum of T decomposes as follows: sp(T ) = {0, 1} ∪ {µk}k∈N, where:

(i) µ = 1 is an infinite-multiplicity eigenvalue of T and its associated eigenspace is ker(a) × Q;
(ii) {µk}k∈N ⊂ (0, 1) is a sequence of finite-multiplicity eigenvalues of T which converge to 0 and the corresponding eigenspaces

lie on [ker(a) × Q]⊥B ; moreover, the ascent of each of these eigenvalues is 1;
(iii) µ = 0 is not an eigenvalue of T .

Proof. Since Y × Q = [ker(a) × Q] ⊕ [ker(a) × Q]⊥B (cf. Lemmas 3.2 and 3.3), T |ker(a)×Q : [ker(a) × Q] → [ker(a) × Q]

is the identity and T |[ker(a)×Q]⊥B : [ker(a) × Q]⊥B → [ker(a) × Q]⊥B is compact (cf. Proposition 4.1), we have that the
decomposition of sp(T ) follows from the spectral characterization of compact operators. Property (i) was established in
Lemma 2.3. Finally, properties (ii) and (iii) follow from Lemma 4.2 and [15, Propositions A1, A2]. �

As an immediate consequence of Proposition 4.1we have the following additional regularity result for the eigenfunctions
of T lying on [ker(a) × Q]⊥B .

Corollary 4.4. Let ((σ, p), r) ∈ Y × Q be an eigenfunction of T associated to an eigenvalue µ ∈ (0, 1). Then, σ, r ∈

HtS(ΩS)
n×n, div σ ∈ H1(ΩS)

n, p ∈ H1+tF(ΩF), with tS, tF ∈ (0, 1] as in Proposition 4.1, and

∥σ∥tS,ΩS + ∥div σ∥1,ΩS + ∥r∥tS,ΩS + ∥p∥1+tF,ΩF
≤ C |||((σ, p), r)|||,

with C > 0 depending on the eigenvalue.

5. The discrete spaces

Let {Th(ΩS)}h>0 and {Th(ΩF)}h>0 be shape-regular families of triangulations of the polyhedral (polygonal) regions Ω̄S
and Ω̄F, respectively, by tetrahedrons (triangles) T of diameter hT , with mesh size h := max{hT : T ∈ Th(ΩS) ∪ Th(ΩF)}.
We assume that the vertices of {Th(ΩS)}h>0 and {Th(ΩF)}h>0 coincide on Σ . In what follows, given an integer k ≥ 0 and a
subset S of Rn, Pk(S) denotes the space of polynomial functions defined in S of total degree ≤ k.
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We define

W h :=

τh ∈ W : τh|T ∈ P1(T )n×n

∀T ∈ Th(ΩS)

,

Vh :=

qh ∈ H1(ΩF) : qh|T ∈ P1(T ) ∀T ∈ Th(ΩF)


and introduce the finite element subspaces of Y and Q given respectively by

Yh := {(τh, qh) ∈ W h × Vh : τhν + qhν = 0 on Σ} = (W h × Vh) ∩ Y,

Qh :=

sh ∈ Q : sh|T ∈ P0(T )n×n

∀T ∈ Th(ΩS)

.

In addition, for the analysis below we will also use the space

Uh :=

vh ∈ L2(ΩS)

n
: vh|T ∈ P0(T )n ∀T ∈ Th(ΩS)


.

Notice that W h × Qh × Uh is the lowest-order mixed finite element of the family introduced for linear elasticity by Arnold,
Falk and Winther (see [23,13]).

Let us now recall some well-known approximation properties of the finite element spaces introduced above. Given
s ∈ (0, 1], let 5h : Hs(ΩS)

n×n
∩ W → W h be the usual lowest-order Brezzi–Douglas–Marini (BDM) interpolation operator

(see [19]), which is characterized by the identities
F
(5hτ) νF · ζ =


F
τνF · ζ ∀ζ ∈ P1(F)n

for all faces (edges) F of elements T ∈ Th(ΩS), with νF being a unit vector normal to the face (edge) F . It is well known that
5h is a bounded linear operator and that the following commuting diagram property holds true (cf. [19]):

div (5hτ) = Lh(div τ) ∀τ ∈ Hs(ΩS)
n×n

∩ H(div; ΩS), (5.1)

where Lh : L2(ΩS)
n

→ Uh is the L2(ΩS)
n-orthogonal projector. In addition, it is well-known that the arguments leading to

[24, Theorem 3.16] allow showing that there exists C > 0, independent of h, such that

∥τ − 5hτ∥0,ΩS ≤ Chs 
∥τ∥s,ΩS + ∥div τ∥0,ΩS


∀τ ∈ Hs(ΩS)

n×n
∩ H(div; ΩS). (5.2)

Finally, we denote byRh : Q → Qh the orthogonal projectorwith respect to the L2(ΩS)
n×n-norm and byπh : H1(ΩF) → Vh

the orthogonal projector with respect to the H1(ΩF)-norm. Then, for any s ∈ (0, 1], we have

∥τ − 5hτ∥H(div;ΩS) ≤ Chs
∥τ∥Hs(div;ΩS) ∀τ ∈ Hs(div; ΩS) ∩ W , (5.3)

∥r − Rhr∥0,ΩS ≤ Chs
∥r∥s,ΩS ∀r ∈ Hs(ΩS)

n×n
∩ Q, (5.4)

∥v − Lhv∥0,ΩS ≤ Chs
∥v∥s,ΩS ∀v ∈ Hs(ΩS)

n, (5.5)

∥q − πhq∥1,ΩF
≤ Chs

∥q∥1+s,ΩF
∀q ∈ H1+s(ΩF). (5.6)

Notice that (5.3) is actually a straightforward consequence of (5.2), (5.1) and (5.5).
In what follows, we gather some of the technical tools that will be used in the subsequent analysis. Let E be the extension

operator defined in Section 3. The following estimate holds true.

Lemma 5.1. There exists a constant C > 0, independent of h, such that

∥5hEq∥0,ΩS
≤ C ∥q∥1,ΩF

∀q ∈ H1(ΩF),

∥Eq − 5hEq∥0,ΩS
≤ ChtS ∥q∥1,ΩF

∀q ∈ H1(ΩF),

with tS ∈ (0, 1] as in Proposition 4.1.

Proof. First notice that Eq ∈ HtS(ΩS)
n×n

∩ H(div; ΩS) for all q ∈ H1(ΩF) and (3.1) holds true. Hence, 5hEq is well defined
and the first estimate follows from the boundedness of 5h : HtS(ΩS)

n×n
∩ W → W h. For the second estimate we use (5.2)

with s = tS, (3.1) again, and the fact that Eq is divergence-free in ΩS. �

Next, we introduce the discrete counterparts of E andE , defined for any q ∈ H1(ΩF) by

Ehq := 5hE(πhq) ∈ W h and Ehq := (Ehq, πhq) . (5.7)

It is clear thatEhq ∈ Yh for all q ∈ H1(ΩF). Moreover, we have the following result.

Lemma 5.2. There exists a constant C > 0, independent of h, such that

∥Eq − Ehq∥H(div;ΩS)
≤ C


htS ∥q∥1,ΩF

+ ∥q − πhq∥1,ΩF


∀q ∈ H1(ΩF).
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Proof. Since div Eq = div Ehq = 0, we only have to estimate the L2(ΩS)-norm. To this end, we add and subtract 5hEq and
use the triangle inequality to obtain

∥Eq − Ehq∥0,ΩS
≤ ∥Eq − 5hEq∥0,ΩS

+ ∥5hE(q − πhq)∥0,ΩS
.

Hence, the proof follows from the two estimates in Lemma 5.1. �

Our aim now is to show that any (τ, q) ∈ Y sufficiently smooth can be well approximated from Yh. We define the
approximation separately on each subdomain. In ΩF we just take qh := πhq, whereas in ΩS we correct the BDM interpolant
5hτ in order to obtain a tensor τh satisfying the constraint τhν + qhν = 0 on Σ from the definition of Yh. We do this as is
shown in the following lemma.

Lemma 5.3. Let (τ, q) ∈ Y with τ ∈ HtS(ΩS)
n×n and let

(τh, qh) := (5hτ + (Ehq − 5hEq) , πhq) .

Then, (τh, qh) ∈ Yh and

∥(τ, q) − (τh, qh)∥ ≤ C

∥τ − 5hτ∥H(div;ΩS) + ∥q − πhq∥1,ΩF


.

Proof. First notice that

τhν + qhν = 5h (τ − Eq) ν + (Ehq + πhq) ν = 0 on Σ .

In fact, from the definition of Eh (cf. (5.7)), it is clear that (Ehq + πhq) ν vanishes on Σ and so does 5h (τ − Eq) ν, because
(τ − Eq) ν = τν + qν = 0 on Σ for (τ, q) ∈ Y.

To prove the estimate, we use again the definition of Eh to write

∥(τ, q) − (τh, qh)∥ ≤ ∥τ − 5hτ∥H(div;ΩS) + ∥5hE(πhq − q)∥H(div;ΩS)
+ ∥q − πhq∥1,ΩF

.

Then, the result follows from the first inequality in Lemma 5.1 and the fact that E(πhq − q) is divergence-free and, hence,
so is 5hE(πhq − q). �

6. The discrete problem

The discrete counterpart of Problem 2 reads as follows.

Problem 3. Find λh ∈ R, (σh, ph) ∈ Yh, and rh ∈ Qh such that ((σh, ph), rh) ≠ 0 and

A((σh, ph), (τh, qh)) + b((τh, qh), rh) = (λh + 1) [d((σh, ph), (τh, qh)) + b((τh, qh), rh)] ,
b((σh, ph), sh) = (λh + 1) b((σh, ph), sh)

for all (τh, qh) ∈ Yh and sh ∈ Qh.

The discrete version of the operator T is then given byTh : Y × Q −→ Y × Q,

((F , f ), g) −→Th((F , f ), g) := ((σ∗

h, p
∗

h), r
∗

h ),

where ((σ∗

h, p
∗

h), r
∗

h ) ∈ Yh × Qh is the solution of the following discrete source problem:

A((σ∗

h, p
∗

h), (τh, qh)) + b((τh, qh), r∗

h ) = d((F , f ), (τh, qh)) + b((τh, qh), g),

b((σ∗

h, p
∗

h), sh) = b((F , f ), sh)

for all (τh, qh) ∈ Yh and sh ∈ Qh. We can use the classical Babuška–Brezzi theory to prove that Th is well defined and
bounded uniformly with respect to h. In fact, we already know from Lemma 2.1 that A is elliptic on the whole Y, whereas
the discrete inf–sup condition

sup
0≠(τh,qh)∈Yh

b((τh, qh), sh)
∥(τh, qh)∥

≥ β ∥sh∥0,ΩS ∀sh ∈ Qh

follows immediately (as shown in Lemma 2.2) from the following one provided by [23, Theorem 11.9]: There exists β∗ > 0,
independent of h, such that

sup
0≠(τh,qh)∈Yh,R

B((τh, 0), (sh, vh))
∥τh∥H(div;ΩS)

≥ β∗

∥vh∥0,ΩS + ∥sh∥0,ΩS


∀(sh, vh) ∈ Qh × Uh. (6.1)
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Moreover, the following Cea-like estimate holds true: There exists C > 0, independent of h, such that for all ((σ, p), r) ∈

Y × Q,

|||T ((σ, p), r) −Th((σ, p), r)||| ≤ C inf
((τh,qh),sh)∈Yh×Qh

|||T ((σ, p), r) − ((τh, qh), sh)|||. (6.2)

The reason whywe have called this operatorTh instead of just Th, is that we preserve this notation for its restriction onto
the finite element space. In fact, sinceTh(Y × Q) ⊂ Yh × Qh, we are allowed to define

Th :=Th|Yh×Qh : Yh × Qh −→ Yh × Qh

and it is well-known that sp(Th) = sp(Th) ∪ {0} (see, for instance, [5, Lemma 4.1]).
Once more, as in the continuous case, we have that (λh, (σh, ph), rh) ∈ R × Yh × Qh solves Problem 3 if and only if

(1/(1 + λh), ((σh, ph), rh)) is an eigenpair of Th, i.e., if and only if ((σh, ph), rh) ≠ 0 and

Th((σh, ph), rh) =
1

1 + λh
((σh, ph), rh) .

To describe the spectrum of this operator, we will proceed as in the continuous case and decompose Yh × Qh in a
convenient direct sum. To this end, let

Yh,R := {(τh, ξ) ∈ W h × R : τhν + ξν = 0 on Σ} ,

ker
h

(a) :=

(τh, ξ) ∈ Yh,R : div τh = 0 in ΩS


.

Clearly Th|kerh(a)×Qh : [kerh(a) × Qh] → [kerh(a) × Qh] reduces to the identity. Thus, µh = 1 is an eigenvalue of Th and,
from the definition ofTh, ((σh, ph), rh) is an associated eigenfunction if and only if (σh, ph) ∈ kerh(a). Therefore, we have
the following discrete analogue to Lemma 2.3.

Lemma 6.1. µh = 1 is an eigenvalue of Th with associated eigenspace kerh(a) × Qh.

LetEh be the operator defined in (5.7) and

Ph : Y × Q −→ Yh × Qh,

((σ, p), r) −→ Ph((σ, p), r) := ((σh,ph),rh),
where (σh,ph) ∈ Yh,R +Ehp̄ and (rh,uh) ∈ Qh × Uh solve the following problem:

d((σh,ph), (τh, ξ)) + B((τh, ξ), (rh,uh)) = 0 ∀(τh, ξ) ∈ Yh,R, (6.3)

B((σh,ph), (sh, vh)) =


ΩS

div σ · vh ∀(sh, vh) ∈ Qh × Uh. (6.4)

Here again, since div Ehp̄ = 0, (6.3)–(6.4) hold true if and only if (σh,0,ch) := (σh,ph)−Ehp̄ ∈ Yh,R and (rh,uh) ∈ Qh ×Uh
solve the equations

d((σh,0,ch), (τh, ξ)) + B((τh, ξ), (rh,uh)) = −d(Ehp̄, (τh, ξ)), (6.5)

B((σh,0,ch), (sh, vh)) =


ΩS

div σ · vh − b(Ehp̄, sh) (6.6)

for all (τh, ξ) ∈ Yh,R and (sh, vh) ∈ Qh × Uh.
Eqs. (6.3)–(6.4) are a stable finite element discretization of the mixed problem (3.2)–(3.3) used to define P . Indeed,

the uniform discrete inf–sup condition of B for the pair {Yh,R, Qh × Uh} is an easy consequence of (6.1). Moreover,
Lemma 2.1 guarantees the uniform ellipticity of d on ker(a) ⊃ kerh(a), whereas the fact that div (W h) ⊂ Uh implies
that kerh(B) ⊂ kerh(a). Hence, as a consequence of the Babuška–Brezzi theory, problem (6.5)–(6.6), and a fortiori problem
(6.3)–(6.4), are well posed. Furthermore, thanks to the definition ofEhp̄, the first estimate from Lemma 5.1, and the fact that
∥πhp̄∥1,ΩF

≤ ∥p̄∥1,ΩF
(since πh is a projection), we can claim that the operators Ph are bounded uniformly with respect to h

and the following Strang-like estimate holds true:(σ0,c) − (σh,0,ch)+ ∥u −uh∥0,ΩS + ∥r −rh∥0,ΩS

≤ C


inf

(τh,ξ)∈Yh,R
∥(σ0,c) − (τh, ξ)∥ + inf

vh∈Uh
∥u − vh∥0,ΩS + inf

sh∈Qh
∥r − sh∥0,ΩS

+ sup
0≠(τh,ξ)∈Yh,R

|d(Ep̄ −Ehp̄, (τh, ξ))|

∥(τh, ξ)∥
+ sup

0≠sh∈Qh

|b(Ep̄ −Ehp̄, sh)|
∥sh∥0,ΩS


, (6.7)

where ((σ0,c), (u,r)) and ((σh,0,ch), (uh,rh)) are the solutions to (3.4)–(3.5) and (6.5)–(6.6), respectively.
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Lemma 6.2. There exists C > 0, independent of h, such that

|||(P − Ph)((σ, p), r)||| ≤ C

htS

∥div σ∥0,ΩS + ∥p∥1,ΩF


+ ∥divσ − div (5hσ)∥0,ΩS + ∥p − πhp∥1,ΩF


.

Proof. The triangle inequality yields

∥(σ,p) − (σh,ph)∥ ≤
(σ0,c) − (σh,0,ch)+

Ep̄ −Ehp̄


≤
(σ0,c) − (σh,0,ch)+ ∥Ep̄ − Ehp̄∥0,ΩS

+ ∥p̄ − πhp̄∥1,ΩF
,

which allows us to resort to (6.7). Now, sinceσ0 =σ − Ep̄ ∈ HtS(ΩS)
n×n

∩ W (thanks to Lemma 3.1 and (3.1)) and πhc =c
is also constant, Lemma 5.3 leads to

inf
(τh,ξ)∈Yh,R

∥(σ0,c) − (τh, ξ)∥ ≤ C ∥σ0 − 5hσ0∥H(div;ΩS) .

Moreover, since Ep̄ is divergence-free, we have that divσ0 = divσ and, by virtue of (5.1), div (5hσ0) = Lh(divσ0) =

Lh(divσ) = div (5hσ), so that

∥divσ0 − div (5hσ0)∥0,ΩS = ∥divσ − div (5hσ)∥0,ΩS .

On the other hand, the Cauchy–Schwarz inequality and the trace inequality in H1(ΩF) yield

sup
0≠(τh,ξ)∈Yh,R

|d(Ep̄ −Ehp̄, (τh, ξ))|

∥(τh, ξ)∥
+ sup

0≠sh∈Qh

|b(Ep̄ −Ehp̄, sh)|
∥sh∥0,ΩS

≤ C

∥Ep̄ − Ehp̄∥0,ΩS

+ ∥p̄ − πhp̄∥1,ΩF


.

Then, from all the above and (6.7), we derive

∥(σ,p) − (σh,ph)∥ + ∥u −uh∥0,ΩS + ∥r −rh∥0,ΩS

≤ C

∥σ0 − 5hσ0∥0,ΩS + ∥divσ − div (5hσ)∥0,ΩS + ∥u − Lhu∥0,ΩS

+ ∥r − Rhr∥0,ΩS + ∥Ep̄ − Ehp̄∥0,ΩS
+ ∥p̄ − πhp̄∥1,ΩF


.

Now, we use again thatσ0 ∈ HtS(ΩS)
n×n

∩ W , Lemma 3.1, and (3.1), to write

∥σ0∥tS,ΩS + ∥u∥1+tS,ΩS + ∥r∥tS,ΩS ≤ C

∥div σ∥0,ΩS + ∥p∥1,ΩF


.

The result then follows by using the approximation properties (5.2), (5.4) and (5.5), the equality divσ0 = divσ = div σ (cf.
(3.6)), Lemma 5.2, and the facts that ∥p̄∥1,ΩF

≤ ∥p∥1,ΩF
and ∥p̄ − πhp̄∥1,ΩF

= ∥p − πhp∥1,ΩF
. �

Lemma 6.3. There exists C > 0 independent of h such that:
(i) if ((σ, p), r) is an eigenfunction of T associated to an eigenvalue µ ∈ (0, 1), then

|||(P − Ph)((σ, p), r)||| ≤ Chmin{tS,tF}|||((σ, p), r)|||;
(ii) if ((σh, ph), rh) ∈ Yh × Qh, then

|||(P − Ph)((σh, ph), rh)||| ≤ ChtS

∥div σh∥0,ΩS + ∥ph∥1,ΩF


.

Proof. Case (i). The estimate follows from Lemma 6.2, (5.3), (5.6), Corollary 4.4, and the fact that divσ = div σ, because of
(3.6).

Case (ii). Let ((σh, ph), rh) ∈ Yh×Qh, ((σ,p),r) = P((σh, ph), rh) and ((σh,ph),rh) = Ph((σh, ph), rh). For (σh, ph) ∈ Yh
we have that ph = πhph. On the other hand, by virtue of (3.6), divσ = div σh. Hence, because of (5.1) and the fact that
divW h ⊂ Uh, there also holds

div (5hσ) = Lh(divσ) = Lh(div σh) = div σh = divσ.

The result follows then directly from Lemma 6.2 and Corollary 4.4. �

For ((σh,ph),rh) = Ph((σ, p), r), (6.4) implies that


ΩS
vh · divσh =


ΩS

vh · div σ for all vh ∈ Uh. Hence, it is easy
to check that the operator Ph is idempotent and, then, so is Ph|Yh×Qh too, because Ph(Y × Q) ⊂ Yh × Qh. Moreover, it
is easy to check that ker(Ph|Wh×Qh) = kerh(a) × Qh. Therefore, being Ph|Wh×Qh a projector, we have that Yh × Qh =

[kerh(a) × Qh] ⊕ Ph(Yh × Qh).
Our next goal is to show that Ph(Yh × Qh) = [kerh(a) × Qh]

⊥B , where

[ker
h

(a) × Qh]
⊥B :=


((σh, ph), rh) ∈ Yh × Qh :

B(((σh, ph), rh), ((τh, qh), sh)) = 0 ∀((τh, qh), sh) ∈ ker
h

(a) × Qh


,
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with the bilinear form B as defined in Section 3. With this end, we repeat the same steps as in that section. In particular, we
have the following discrete analogue to Lemma 3.2.

Lemma 6.4. [kerh(a) × Qh] ∩ [kerh(a) × Qh]
⊥B = {0}.

Proof. Since the discrete inf–sup condition

sup
0≠τh∈Wh∩WΣ


ΩS

vh · div τh

∥τh∥H(div;ΩS)

≥ β∗
∥vh∥0,ΩS ∀vh ∈ Uh

follows from (6.1), the proof runs almost identically to that of Lemma 3.2. �

Now we are ready to establish the claimed result. We skip its proof since it is almost identical to that of Lemma 3.3.

Lemma 6.5. Ph(Yh × Qh) = [kerh(a) × Qh]
⊥B .

The proof of the following lemma is almost identical to that of Lemma 4.2.

Lemma 6.6. For all ((σh, ph), rh) ∈ [kerh(a) × Qh]
⊥B ,

A(((σh, ph), rh), ((σh, ph), rh)) ≥ B(((σh, ph), rh), ((σh, ph), rh)) > 0.

Now, we are in a position to write down a characterization of the spectrum of the operator Th and, hence, of the solutions
to Problem 3.

Theorem 6.7. The spectrum of Th consists of M := dim(Yh × Qh) eigenvalues, repeated accordingly to their respective multi-
plicities. The spectrum decomposes as follows: sp(Th) = {1} ∪ {µhk}

K
k=1. Moreover,

(i) the eigenspace associated to µh = 1 is kerh(a) × Qh;
(ii) µhk ∈ (0, 1), k = 1, . . . , K := M − dim(kerh(a) × Qh), are non-defective eigenvalues, repeated accordingly to their

respective multiplicities, with associated eigenspaces lying on [kerh(a) × Qh]
⊥B ;

(iii) µh = 0 is not an eigenvalue of Th.

Proof. Since Yh × Qh = [kerh(a) × Qh] ⊕ [kerh(a) × Qh]
⊥B (cf. Lemmas 6.4 and 6.5), Th|kerh(a)×Qh : [kerh(a) × Qh] →

[kerh(a) × Qh] is the identity, and Th([kerh(a) × Qh]
⊥B) ⊂ [kerh(a) × Qh]

⊥B (cf. [15, Proposition A.1]), we have that the
theorem follows from Lemmas 6.1 and 6.6 and [15, Proposition A.2]. �

7. Spectral approximation

To prove that Th provides a correct spectral approximation of T , we will resort to the corresponding theory for
non-compact operators from [16].With this end, for the sake of brevity, wewill denote throughout this sectionX := Y×Q
and Xh := Yh ×Qh. Moreover, when no confusion can arise, we will use indistinctly x, y, etc. to denote elements in X and,
analogously, xh, yh, etc. for those in Xh. Moreover, we denote by ||| · ||| the norm in X as above, as well as the corresponding
induced norm on operators acting from X into the same space. Finally, we will use ||| · |||h as in [16] to denote the norm of
an operator restricted to the discrete subspace Xh; namely, if S : X → X , then

|||S|||h := sup
0≠xh∈Xh

|||Sxh|||
|||xh|||

.

We recall some classical notation for spectral approximation. For x ∈ X and E and F closed subspaces of X , we set
δ(x, E) := infy∈E |||x − y|||, δ(E, F ) := supy∈E : |||y|||=1 δ(y, F ), andδ(E, F ) := max {δ(E, F ), δ(F , E)}, the latter being the
so called gap between subspaces E and F .

The first step to adapt the results from [16] to our problem is to establish the following two properties, in which

t := min{tS, tF}.

P1: There exist strictly positive constants C and h0 such that, if h ≤ h0, then

|||T − Th|||h ≤ Cht .

P2: For each eigenfunction x of T associated to an eigenvalue µ ∈ (0, 1), there exist strictly positive constants C and h0
such that, if h ≤ h0, then

δ(x, Xh) ≤ Cht
|||x|||.

The latter (P2) follows immediately from Lemma 5.3, the smoothness of the eigenfunctions established in Corollary 4.4,
and the approximation properties of the finite element spaces (5.3), (5.4) and (5.6). The following lemma proves the for-
mer (P1).
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Lemma 7.1. There exists C > 0, independent of h, such that

|||T − Th|||h ≤ Cht .

Proof. For ((σh, ph), rh) ∈ Xh = Yh × Qh, we write

(T − Th)((σh, ph), rh) = (T − Th)(Ph((σh, ph), rh)) + (T − Th)((I − Ph)((σh, ph), rh))
= (T − Th)(Ph((σh, ph), rh)),

the last equality because (I − Ph) is a projector onto kerh(a) × Qh and T and Th are both the identity on this subspace. Now,
since Th =Th|Xh ,

(T − Th)(Ph((σh, ph), rh)) = (T −Th)((Ph − P)((σh, ph), rh))  
E1

+ (T −Th)(P((σh, ph), rh))  
E2

.

For the first term we use Lemma 6.3 (ii) to write

|||E1||| ≤

∥T∥ + ∥Th∥


|||(Ph − P)((σh, ph), rh)||| ≤ ChtS ∥(σh, ph)∥ .

For the second, by virtue of the Cea-like estimate (6.2), we have that

|||E2||| ≤ C inf
((τh,qh),sh)∈Yh×Qh

|||T (P((σh, ph), rh)) − ((τh, qh), sh)|||.

Now, since P((σh, ph), rh) ∈ [ker(a) × Q]⊥B (cf. Lemma 3.3), according to Proposition 4.1, if we denote ((σ∗, p∗), r∗) =

T (P((σh, ph), rh)), then we have that σ∗, r∗
∈ HtS(ΩS)

n×n, div σ∗
∈ H1(ΩS)

n, p∗
∈ H1+tF(ΩF), andσ∗


tS,ΩS

+
div σ∗


1,ΩS

+
r∗


tS,ΩS

+
p∗


1+tF,ΩF

≤ C |||P((σh, ph), rh)|||

≤ C ∥(σh, ph)∥ .

Then, from the last two inequalities, Lemma 5.3, and the approximation properties (5.3), (5.4) and (5.6), we write

|||E2||| ≤ C inf
((τh,qh),sh)∈Yh×Qh

|||((σ∗, p∗), r∗) − ((τh, qh), sh)||| ≤ Cht
∥(σh, ph)∥ ,

which together with the estimate of E1 and the first two equalities of the proof allow us to conclude the lemma. �

Nowwe are in a position to apply the spectral approximation theory from [16]. Our first result was proved to follow from
property P1 in Theorem 1 from this reference.

Theorem 7.2. Let F ⊂ C be a closed set such that F ∩ sp(T ) = ∅. Then, there exist h0 > 0 and C > 0 such that, for all h < h0,
F ∩ sp(Th) = ∅.

An immediate consequence of this theorem is that the proposed finite element method does not introduce spurious
modes with eigenvalues interspersed among those with a physical meaning (the squares of free vibration frequencies). Let
us remark that such a spectral pollution appears in standard finite element discretizations of other formulations of this same
problem (see [4,6]).

The spectral convergence of Th to T as h → 0 can also be derived by adapting to our problem results from [16, Section 2].
More precisely, by repeating the arguments in the proofs of Theorems 2 and 3 from this reference and using properties P1
and P2, it is easy to prove that for all isolated eigenvalue µ of T with finite multiplicity m (and, hence, µ ∈ (0, 1)), for h
small enough, there existm eigenvalues µh,1, . . . , µh,m of Th (repeated accordingly to their respective multiplicities) which
converge to µ as h → 0. Moreover, if E is the eigenspace of T corresponding to µ and Eh is the invariant subspace of Th
spanned by the eigenspaces of Th corresponding to µh,1, . . . , µh,m, thenδ(E, Eh) ≤ Cht , for h small enough.

Finally, the arguments from [15, Section 5] can be readily adapted to this coupled fluid–structure eigenvalue problem
to prove a double order error estimate. We summarize these results in the following theorem, in which λ := (1/µ) − 1
is an eigenvalue of Problem 1 with multiplicity m and λhi := (1/µhi) − 1, i = 1, . . . ,m, are the eigenvalues of Problem 3
(repeated accordingly to their respective multiplicities) converging to λ.

Theorem 7.3. There exist constants C > 0 and h0 > 0 such that, for all h < h0,δ(E, Eh) ≤ Cht and max
1≤i≤m

|λ − λhi| ≤ Ch2t .

8. Numerical results

We report in this section the results of a numerical test carried out with the method proposed in Section 6 which was
implemented in a MATLAB code.
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Fig. 2. Fluid and solid domains. Coarsest mesh (N = 1).

Table 1
Three lowest computed sloshing frequencies ωS

h,k (in rad/s).

Mode N = 4 N = 6 N = 8 N = 10 N = 12 Order Extrapolated [25,26]

ωS
h,1 5.3196 5.3164 5.3153 5.3148 5.3145 2.00 5.3138 5.3138

ωS
h,2 7.8697 7.8490 7.8417 7.8383 7.8365 2.00 7.8324 7.8324

ωS
h,3 9.7135 9.6560 9.6358 9.6264 9.6213 1.99 9.6097 9.6099

We have chosen a two-dimensional test which corresponds to compute the vibration frequencies of an elastic container
partially filled with a (compressible) liquid. The geometrical data is shown in Fig. 2.

Wehave used severalmesheswhich are successive uniform refinements of the coarse initial triangulation shown in Fig. 2.
The refinement parameter N is the number of element layers across the thickness of the solid (N = 1 for the mesh in Fig. 2).

As was proved above, the method is thoroughly free of the locking phenomenon that arises with other methods when
applied to nearly incompressible solidmaterials.We do not include in this paper experiments confirming such a locking-free
character, because they have been already reported in [15, Section 6.1].

We have used the following physical parameters, which correspond to steel and water:

• Solid density: ρS = 7700 kg/m3,
• Young modulus: E = 1.44 × 1011 Pa,
• Poisson ratio: ν = 0.35,
• Fluid density: ρF = 1000 kg/m3,
• Acoustic speed: c = 1430 m/s,
• Gravity acceleration: g = 9.8 m/s2.

We recall that the Lamé coefficients of a material are defined in terms of the Young modulus E and the Poisson ratio ν as
follows: λS := Eν/[(1 + ν)(1 − 2ν)] and µS := E/[2(1 + ν)].

Let us remark that two completely different types of free vibration modes appear in this kind of problem: the so called
sloshing and elastoacoustic modes. Sloshing modes arise from the gravity oscillations of the liquid free surface which, in
absence of resonance, depend very mildly on the physical parameters of the fluid and the structure. Indeed, the size of the
lowest sloshing frequencies are typically around

√
πg/length(Γ0). On the other hand, elastoacoustic modes arise from the

natural vibrations of the structural-acoustic coupled system. The lowest elastoacoustic vibration frequencies are in this test
around 100 times larger than the lowest sloshing frequencies. We refer to [25,26] for a more detailed discussion.

Because of this, we report on separate tables some of the lowest computed sloshing and elastoacoustic vibration
frequencies ωh :=

√
λh. We report the former (ωS

h,k) in Table 1 and the latter (ωE
h,k) in Table 2. We have used several

different meshes with increasing levels of refinement. The table also includes the estimated orders of convergence, as well
as more accurate values of the vibration frequencies extrapolated from the computed ones by means of a least-squares
fitting. A double order of convergence can be clearly observed in all cases.

We have also solved the same problem with an alternative finite element method for a pure displacement formulation
in both media proposed and analyzed in [25,26]. We report on the last column of both tables the results obtained by
extrapolation from the vibration frequencies computed with this method on the same meshes. An excellent agreement
can be clearly appreciated.
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Table 2
Four lowest computed elastoacoustic vibration frequencies ωE

h,k (in rad/s).

Mode N = 4 N = 6 N = 8 N = 10 N = 12 Order Extrapolated [25,26]

ωE
h,1 446.94 444.76 443.92 443.52 443.29 1.80 442.71 443.01

ωE
h,2 1484.03 1476.47 1473.59 1472.21 1471.46 1.81 1469.45 1468.95

ωE
h,3 2596.19 2586.83 2583.29 2581.61 2580.72 1.84 2578.33 2577.86

ωE
h,4 2790.03 2774.01 2767.89 2764.95 2763.32 1.79 2758.94 2758.63

Fig. 3. Lowest-frequency sloshing mode. Deformed structure (left) and fluid pressure field (right).

Fig. 4. Lowest-frequency elastoacoustic vibration mode. Deformed structure (left) and fluid pressure field (right).

Let us remark that because of the physical and geometrical parameters of the structure, no apparent damping of the
sloshingmodes should be expected. This can be checked by comparing the computed sloshing frequencies with those of the
fluid in a perfectly rigid vessel (which have not been included in Table 1 because they almost coincidewith the corresponding
extrapolated values).

According to the theoretical results, the order of convergence has to be at least O(h2t) (cf. Theorem 7.3) with t :=

min{tS, tF}. In this case, since ΩF is convex, tF = 1, while according to [27] it is easy to check that tS ≈ 0.68 (see
[15, Section 6.1]). It can be clearly seen fromTable 2 that the actual orders of convergence are even better than the theoretical
ones: O(h2tS) = O(h1.36).

Finally, Figs. 3 and 4 show the deformed structure and the fluid pressure field for the lowest-frequency sloshing and
elastoacoustic vibration modes, respectively.
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