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Abstract In this paper we analyze a low-order finite element method for approximating the
vibration frequencies and modes of a non-homogeneous Timoshenko beam. We consider a
formulation in which the bending moment is introduced as an additional unknown. Optimal
order error estimates are proved for displacements, rotations, shear stress andbendingmoment
of the vibrationmodes, as well as a double order of convergence for the vibration frequencies.
These estimates are independent of the beam thickness, which leads to the conclusion that the
method is locking free. For its implementation, displacements and rotations can be eliminated
leading to awell posed generalizedmatrix eigenvalue problem for which the computer cost of
its solution is similar to that of other classical formulations.We report numerical experiments
which allow us to assess the performance of the method.
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1 Introduction

This paper deals with the analysis of a finite element method to compute the vibration
modes of an elastic non-homogeneous beam modeled by Timoshenko equations. Structural
componentswith continuous and discontinuous variations of the geometry and of the physical
parameters are common in buildings and bridges as well as in aircraft, cars, ships, etc. For that
reason, it is important to know the vibration frequencies and modes of this kind of structures.
This problem can be formulated as a spectral problem whose eigenvalues and eigenfunctions
are related with the vibration frequencies and modes, respectively.

The Timoshenko theory to date is one of the most used models to approximate the defor-
mation of a thin or moderately thick elastic beam [5,9,12,18,20,26,30]. It is well understood
that standard finite elements applied to this model lead to wrong results when the thickness
of the beam is small due to the so called locking phenomenon. To avoid locking, the most
used techniques since long ago are based on reduced integration or mixed formulations (see
[2]).

In this paper, we present a rigorous analysis of a low-order finite element method to
compute the vibration frequencies and modes of a non-homogeneous Timoshenko beam, by
means of a mixed bending moment formulation. A similar method was recently introduced
and analyzed for load problems in [23].

One advantage of such a formulation is that the bending moment and the shear stress are
computed directly and not by means of a post-process, which might produce loss of accuracy.
Moreover, the fact that these twoquantities appear explicitly in the formulation could be useful
to apply it to coupled problems in which the coupling involve these quantities. Another
motivation for considering this one-dimensional problem is that it constitutes a stepping
stone towards the more challenging goal of devising finite element spectral approximations
for Reissner–Mindlin plates based on bending moments formulations. Let us remark that this
kind of formulations have been recently proposed and analyzed in different frameworks for
instance in the following references [1,4,6,10,11].

Numerical analysis of eigenvalue problems arising from the computation of the vibration
modes for thin structures are not too many; among them we mention [15–17,24,25], where
MITC-like methods for computing the vibration and buckling modes of beams and plates
were analyzed. One reason for this is that the extension of mathematical results from load to
vibration problems is not quite straightforward for mixed methods. In fact, Boffi et al. [7,8]
showed that eigenvalue problems for mixed formulations show peculiar features that make
them substantially different from the same methods applied to the corresponding source
problems. In particular, they showed that the standard inf-sup and ellipticity in the kernel
conditions, which ensure convergence for the mixed formulation of source problems, are
not enough to attain the same goal in the corresponding eigenvalue problem. Among the
existing techniques to solve the vibration problem of Timoshenko beams, we can mention
[21] where a mixed formulation in terms of displacement, rotation and shear stress has been
proposed and analyzed for Timoshenko rods (which are of course applicable to Timoshenko
beams).

In this paper, we consider the vibration problem for an elastic beam. We follow the
approach proposed in [23] for the load problem. We introduce the bending moment together
with the shear stress as new unknowns in the model (we note that the former usu-
ally represents a quantity of major interest in engineering applications), which together
with the rotation and the transverse displacement lead us to a mixed variational formu-
lation. Then, we introduce a solution operator whose eigenvalues are the reciprocals of
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the scaled squares of the vibration frequencies of the beam. For the numerical approxi-
mation, we use piecewise linear and continuous finite elements for the bending moments
and shear stress and piecewise constants for the transverse displacement and the rotations.
To study the convergence of the proposed method and obtain error estimates, we adapt
the classical theory developed for non-compact operators in [13,14]. We obtain optimal
order error estimates in terms of the mesh size h for the approximation of the vibra-
tion modes and a double order for the vibration frequencies. These estimates are fully
independent of the beam thickness, which allows us to conclude that the method is locking-
free. Moreover, it is shown that the corresponding limit discrete problem that results from
taking the thickness parameter t = 0 is well posed and that its solutions converge to
those of the Euler-Bernoulli beam vibration problem with optimal order in terms of h,
too.

Since we have included as additional variables the bending moment and the shear stress,
one could think at first sight that the resultingmethodwill be significantlymore expensive than
the classical ones, which are based only in displacement and rotation variables. However, we
show that these last two variables can be eliminated in the resulting discrete problem without
additional cost, which leads to an eigenvalue problem of the same size and sparseness as
those of the classical methods.

The outline of the paper is as follows. In Sect. 2, we recall the vibration problem for
a Timoshenko beam. In Sect. 3 we develop the mathematical analysis of the vibration
problem. With this aim, we introduce a linear operator whose spectrum is related with
the solution of the vibration problem. The resulting spectral problem is shown to be well
posed. Its eigenvalues and eigenfunctions are proved to converge to the corresponding ones
of the limit problem as the thickness of the beam goes to zero, which corresponds to a
an Euler-Bernoulli beam model. We also prove in this section a regularity result for the
eigenfunctions. In Sect. 4 we introduce the finite element discretization of the spectral
problem and the discrete solution operator and prove some auxiliary results. In Sect. 5 we
prove that the proposed numerical scheme provides a correct spectral approximation. We
also establish error estimates for the eigenvalues and eigenfunctions. In Sect. 6 we show
how the analysis can be adapted to the Euler-Bernoulli beam vibration problem. Finally,
in Sect. 7, we discuss some implementation details and present a set of numerical experi-
ments to assess the performance of the method, in order to confirm that the experimental
rates of convergence are in accordance with the theory and to show that the method is com-
pletely locking-free. We also show in this section how the displacement and the rotation
variables can be eliminated from the discrete eigenvalue problem, reducing its dimension to
one half without affecting the sparseness, symmetry and positive definiteness of the matri-
ces.

We use standard notations for Sobolev spaces, norms and seminorms. For l ≥ 0 and I
an open interval, ‖ · ‖l,I stands for the norm of the Hilbertian Sobolev space Hl(I), with
the convention H0(I) := L2(I). Moreover, D(I) denotes the space of infinitely differen-
tiable functions with compact support contained in I. Additionally, we will denote with C
a generic positive constant, possibly different at different occurrences, but always indepen-
dent of the beam thickness t and the mesh parameter h which will be introduced in the next
sections.

Finally, given a linear bounded operator T : X → X , defined on a Hilbert space X , we
denote its spectrum by sp(T ) := {z ∈ C : (z I − T ) is not invertible} and by ρ(T ) := C \
sp(T ) the resolvent set of T . Moreover, for any z ∈ ρ(T ), Rz(T ) := (z I − T )−1 : X → X
denotes the resolvent operator of T corresponding to z.
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2 Timoshenko Beam Model

Let us consider an elastic beamwhich satisfies the Timoshenko hypotheses for the admissible
displacements. We assume that the geometry and the physical parameters of the beam may
change along the axial direction. The deformation of the beam is described in terms of the
transverse displacement w and the rotation of the transverse fibers β.

The vibration problem of a clamped Timoshenko beam reads as follows (see [27–29]):
Find ω > 0 and 0 �= (β,w) ∈ H1

0 (I) × H1
0 (I) such that

∫
I
EIβ ′η′ +

∫
I
GAkc(β − w′)(η − v′) = ω2

(∫
I
ρAwv +

∫
I
ρIβη

)

∀(η, v) ∈ H1
0 (I) × H1

0 (I), (1)

where I := (0, L), L being the length of the beam, ω is the angular vibration frequency,
E is the Young modulus, I the moment of inertia of the cross-section, A the area of the
cross-section, ρ the mass density, G := E/(2(1 + ν)) the shear modulus, with ν being the
Poisson ratio, and kc a correction factor. We consider that E , I, A, ρ, kc and ν are piecewise
smooth functions of the axial coordinate x ∈ I, the most usual case being when all those
coefficients are piecewise constant. Moreover, primes denote derivatives with respect to the
axial coordinate x .

It is well known that standard finite element procedures, used in formulations such as (1)
for very thin structures, are subject to numerical locking, a phenomenon induced by the
difference of magnitude between the coefficients in front of the different terms (see [2]). The
appropriate framework for analyzing this is obtained by rescaling formulation (1) so as to
identify a family of problems with a well-posed limit as the thickness becomes infinitely
small. With this aim, we introduce the following non-dimensional parameter, characteristic
of the thickness of the beam:

t2 := 1

L

∫
I

I

AL2 , (2)

which we assume may take values in the range (0, tmax].
We define

λ := ω2

t2
, Î := I

t3
and Â := A

t
,

and assume that Î and Â are bounded above and below far from zero by constants independent
of the parameter t . Let us remark that, for instance, for a beam of rectangular section b × d
with b being a fixed length and d the thickness of the beam, these values are constant and
independent of d: Â = 2

√
3bL and Î = 2

√
3bL3.

We also define

E := E Î, κ := G Âkc, J := ρ Î and P := ρ Â,

so that provided the physical coefficients E, ν and ρ are bounded above and below far from
zero, we immediately obtain that there exist strictly positive constants E,E, κ, κ,P,P, J and
J independent of t such that ⎧⎪⎪⎨

⎪⎪⎩

E ≥ E ≥ E > 0 ∀x ∈ I,
κ ≥ κ ≥ κ > 0 ∀x ∈ I,
P ≥ P ≥ P > 0 ∀x ∈ I,
J ≥ J ≥ J > 0 ∀x ∈ I.

(3)

Then, problem (1) can be equivalently written as follows:
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Find λ > 0 and 0 �= (β,w) ∈ H1
0 (I) × H1

0 (I) such that
∫
I
Eβ ′η′ + 1

t2

∫
I
κ(β − w′)(η − v′) = λ

(∫
I
Pwv + t2

∫
I
Jβη

)

∀(η, v) ∈ H1
0 (I) × H1

0 (I). (4)

It is easy to check that, as a consequence of (3), for each t > 0, the bilinear form on the left
hand side of (4) is elliptic with an ellipticity constant independent of t .

Furthermore, because of the assumption on the physical and geometrical parameters, we
have that E, κ , P and J are piecewise smooth. More precisely, we assume that there exists
a partition 0 = s0 < · · · < sn = L of the interval I, with s1, . . . , sn−1 being the points of
discontinuity of E, κ , P or J, such that if we denote by Si := (si−1, si ), then, Ei := E|Si ∈
W 1,∞(Si ), κi := κ|Si ∈ W 1,∞(Si ), Pi := P|Si ∈ W 1,∞(Si ) and Ji := J|Si ∈ W 1,∞(Si ),
i = 1, . . . , n.

In this paper we will consider a bending moment formulation of the spectral problem
(4). With this end, we introduce the scaled bending moment σ := Eβ ′ and shear stress
γ := t−2κ(β − w′) as new unknowns in the model and test (4) with η, v ∈ D(I) to obtain
that −σ ′ + γ = λt2Jβ and γ ′ = λPw.

Thus, problem (4) can be equivalently written as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ = Eβ ′ in I,
−σ ′ + γ = λt2Jβ in I,
γ = t−2κ(β − w′) in I,
γ ′ = λPw in I,
w(0) = β(0) = w(L) = β(L) = 0.

(5)

We introduce the following spaces that will be used in the sequel:

H := H1(I) × H1(I) and Q := L2(I) × L2(I).

We endow each space as well as H × Q with the corresponding product norm.
Testing the equations in (5) with adequate functions and integrating by parts, we obtain the
following variational formulation of this problem:

Find λ > 0 and 0 �= ((σ, γ ), (β,w)) ∈ H × Q such that∫
I

στ

E
+ t2

∫
I

γ ξ

κ
+
∫
I
β(τ ′ − ξ) −

∫
I
wξ ′ = 0 ∀(τ, ξ) ∈ H, (6)

∫
I
η(σ ′ − γ ) −

∫
I
vγ ′ = −λ

(
t2
∫
I
Jβη +

∫
I
Pwv

)
∀(η, v) ∈ Q. (7)

We write this mixed problem in a more compact form as follows:
Find λ > 0 and 0 �= ((σ, γ ), (β,w)) ∈ H × Q such that

a((σ, γ ), (τ, ξ)) + b((τ, ξ), (β,w)) = 0 ∀(τ, ξ) ∈ H, (8)

b((σ, γ ), (η, v)) = −λr((β,w), (η, v)) ∀(η, v) ∈ Q, (9)

where the bilinear forms a : H × H → R, b : H × Q → R and r : Q × Q → R are defined
by

a((σ, γ ), (τ, ξ)) :=
∫
I

στ

E
+ t2

∫
I

γ ξ

κ
, (10)

b((τ, ξ), (η, v)) :=
∫
I
η
(
τ ′ − ξ

) −
∫
I
vξ ′, (11)
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and

r((β,w), (η, v)) :=
(
t2
∫
I
Jβη +

∫
I
Pwv

)
, (12)

for all (σ, γ ), (τ, ξ) ∈ H and (β,w), (η, v) ∈ Q.
It is easy to check that the so called continuous kernel

K := {(τ, ξ) ∈ H : b((τ, ξ), (η, v)) = 0 ∀(η, v) ∈ Q} ,

is given in this case by

K = {(
τ, τ ′) : τ ∈ P1(I)

}
.

The following lemmas, which have been proved in [23, Lemmas 2.1 and 2.2] show that
the ellipticity in the kernel and inf-sup classical conditions of mixed problems holds true for
(8)–(9).

Lemma 1 There exists α > 0 independent of t such that

a((τ, ξ), (τ, ξ)) ≥ α‖(τ, ξ)‖2
H

∀(τ, ξ) ∈ K.

Lemma 2 There exists C > 0 independent of t such that

sup
0 �=(τ,ξ)∈H

b((τ, ξ), (η, v))

‖(τ, ξ)‖H ≥ C‖(η, v)‖Q ∀(η, v) ∈ Q.

Remark 1 We note that the eigenvalues of problem (8)–(9) are strictly positive. Indeed, it is
easy to check that

λ = a((σ, γ ), (σ, γ ))

r((β,w), (β,w))
≥ 0;

moreover λ = 0 implies (σ, γ ) = 0, so that from (8) and Lemma 2, we have that (β,w) = 0.

The goal of this paper is to propose and analyze a finite elementmethod to solve the spectral
problem (8)–(9) and to obtain accurate approximations of the eigenvalues λ (from which we
obtain the angular vibration frequencies ω of the beam) and the associated eigenfunctions.

3 Analysis of the Spectral Problem

Before introducing the numerical method, we define the linear operator corresponding to the
source problem associated with the spectral problem (8)–(9) and prove some properties that
will be useful for the subsequent convergence analysis:

Given (g, f ) ∈ Q, find ((σ̂ , γ̂ ), (β̂, ŵ)) ∈ H × Q such that

a
(
(σ̂ , γ̂ ), (τ, ξ)

) + b
(
(τ, ξ), (β̂, ŵ)

) = 0 ∀(τ, ξ) ∈ H, (13)

b
(
(σ̂ , γ̂ ), (η, v)

) = −r
(
(g, f ), (η, v)

) ∀(η, v) ∈ Q. (14)

As a consequence of Lemmas 1 and 2, this problem is well posed (see, for instance, [19,
Section II.1.1]) and there exists a constant C > 0, independent of t , such that

∥∥ŵ∥∥
0,I + ∥∥β̂∥∥0,I + ∥∥σ̂∥∥1,I + ∥∥γ̂ ∥∥1,I ≤ C(t2‖g‖0,I + ‖ f ‖0,I) ≤ C‖(g, f )‖Q.
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Thus, we are able to introduce the following bounded linear operator, which is called the
solution operator:

Tt : Q → Q,

(g, f ) �→ (β̂, ŵ).

It is easy to check that (μ, (β,w)), with μ �= 0, is an eigenpair of Tt (i.e., Tt (β,w) =
μ(β,w)) if and only if there exists (σ, γ ) ∈ H such that, for λ = 1/μ, (λ, (σ, γ ), (β,w))

is a solution of problem (8)–(9). We recall that these eigenvalues are strictly positive (cf.
Remark 1). Our aim is to approximate the smallest eigenvalues of problem (8)–(9), which
correspond to the largest eigenvalues of the operator Tt .

This operator is self-adjoint with respect to the inner product r(·, ·) in Q. In fact, given
(g, f ), (g̃, f̃ ) ∈ Q, let ((σ̂ , γ̂ ), (β̂, ŵ)), ((σ̃ , γ̃ ), (β̃, w̃)) ∈ H × Q be the solutions to prob-
lem (13)–(14), with right hand side (g, f ) and (g̃, f̃ ), respectively, so that Tt (g, f ) = (β̂, ŵ)

and Tt (g̃, f̃ ) = (β̃, w̃). Then, using the symmetry of the bilinear forms a(·, ·) and r(·, ·), we
have

r((g, f ), Tt (g̃, f̃ )) =r((g, f ), (β̃, w̃))

= − (
a
(
(σ̂ , γ̂ ), (σ̃ , γ̃ )

) + b
(
(σ̃ , γ̃ ), (β̂, ŵ)

) + b
(
(σ̂ , γ̂ ), (β̃, w̃)

))
=r

(
(g̃, f̃ ), (β̂, ŵ)

)
=r

(
Tt (g, f ), (g̃, f̃ )

)
.

The operator Tt is also compact. To prove this we resort to the following additional
regularity result, which has been proved in [23, Proposition 2.1].

Proposition 1 Given (g, f ) ∈ Q. Let ((σ̂ , γ̂ ), (β̂, ŵ)) ∈ H × Q be the unique solution to
problem (13)–(14). Then, there exists a constant C > 0 independent of t , g and f such that

∥∥ŵ∥∥
1,I + ∥∥β̂∥∥1,I + ∥∥σ̂∥∥1,I + ∥∥γ̂∥∥1,I ≤ C‖(g, f )‖Q.

Hence, as a consequence of the compact inclusion H1(I) ↪→ L2(I), Tt is a compact
operator. Then, we know that the spectrum of Tt satisfies sp(Tt ) = {0}∪{μn : n ∈ N}, where
{μn}n∈N is a sequence of positive eigenvalues which converges to zero, the multiplicity of
each non-zero eigenvalue being finite. Moreover, additional regularity of the eigenfunctions
holds as a consequence of the following improved form of Proposition 1, which has been
proved in [23, Remark 2.1].

Proposition 2 Let ((σ̂ , γ̂ ), (β̂, ŵ)) ∈ H × Q be the solution of problem (13)–(14). If
g|Si , f |Si ∈ H1(Si ), i = 1, . . . , n, then there exists C > 0 independent of t such that

‖ŵ‖1,I + ‖β̂‖1,I + ‖σ̂‖1,I +
(∑n

i=1 ‖σ̂ ′′‖20,Si
)1/2 + ‖γ̂ ‖1,I +

(∑n
i=1 ‖γ̂ ′′‖20,Si

)1/2

≤ C
(
‖g‖20,I + ‖ f ‖20,I + ∑n

i=1

(
‖g′‖20,Si + ‖ f ′‖20,Si

))1/2
.

As a consequence of this result and Proposition 1, we easily obtain the following additional
regularity for the eigenfunctions of problem (8)–(9).

123



832 J Sci Comput (2016) 66:825–848

Corollary 1 Let (λ, (σ, γ, β,w)) be a solution of problem (8)–(9). Then, there exists C > 0
independent of t such that

‖w‖1,I + ‖β‖1,I + ‖σ‖1,I +
(

n∑
i=1

‖σ ′′‖20,Si
)1/2

+ ‖γ ‖1,I +
(

n∑
i=1

‖γ ′′‖20,Si
)1/2

≤ Cλ‖(β,w)‖Q.

The remainder of this section is devoted to prove the convergence of the operator Tt as t
goes to zero to the analogous operator T0 corresponding to the Euler-Bernoulli beam. For this
purpose, we consider problem (13)–(14) with the thickness parameter t = 0, which reads as
follows:

Given f ∈ L2(I), find ((σ0, γ0), (β0, w0)) ∈ H × Q such that∫
I

σ0τ

E
+
∫
I
β0(τ

′ − ξ) −
∫
I
w0ξ

′ = 0 ∀(τ, ξ) ∈ H, (15)
∫
I
η(σ ′

0 − γ0) −
∫
I
vγ ′

0 = −
∫
I
P f v ∀(η, v) ∈ Q. (16)

By arguments similar to those that will be used below to derive (21), it can be seen that this
is a mixed formulation of the load problem for an Euler-Bernoulli clamped beam. Repeating
the arguments used in the proof of [23, Theorem 2.3], we have that problem (15)–(16) is
well posed. Moreover, the proof of Proposition 1 holds for t = 0, too. Thus, the solution of
problem (15)–(16) satisfies the following regularity result: There exists a constant C > 0
independent of f such that

‖w0‖1,I + ‖β0‖1,I + ‖γ0‖1,I + ‖σ0‖1,I ≤ C‖ f ‖0,I. (17)

Now, let T0 be the bounded linear operator defined by

T0 : Q → Q,

(g, f ) �→ (β0, w0). (18)

Notice that T0 actually does not depend on g but only on f . However, we define it in
this way so that T0 be a map from one space into itself, which is necessary for its spectral
analysis. In fact, T0 can be seen as the solution operator of the following mixed eigenvalue
problem:

Find λ0 > 0 and 0 �= ((σ0, γ0), (β0, w0)) ∈ H × Q such that∫
I

σ0τ

E
+
∫
I
β0(τ

′ − ξ) −
∫
I
w0ξ

′ = 0 ∀(τ, ξ) ∈ H, (19)
∫
I
η(σ ′

0 − γ0) −
∫
I
vγ ′

0 = −λ0

∫
I
Pw0v ∀(η, v) ∈ Q. (20)

As usual (μ0, (β0, w0)), with μ0 �= 0, is an eigenpair of T0 (i.e., T0(β0, w0) =
μ0(β0, w0)) if and only if there exist (σ0, γ0) ∈ H such that, for λ0 = 1/μ0,
(λ0, (σ0, γ0), (β0, w0)) is a solution of problem (19)–(20). Moreover, λ0 is positive. In fact,
by taking appropriate test functions, it is easy to check that any solution of (19)–(20) satisfies⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ0 = Eβ ′
0 in I,

σ ′
0 = γ0 in I,

β0 = w′
0 in I,

γ ′
0 = λ0Pw0 in I,

w0(0) = β0(0) = w0(L) = β0(L) = 0.
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From these, we derive the classical fourth order differential equation of the Euler-Bernoulli
clamped beam vibration problem,{

(Ew′′
0 )

′′ = λ0Pw0 in I,
w0(0) = w0(L) = w′

0(0) = w′
0(L) = 0,

(21)

whose corresponding variational formulation reads:
Find λ0 ∈ R and 0 �= w0 ∈ H2

0 (I) such that∫
I
Ew′′

0v
′′ = λ0

∫
I
Pw0v ∀v ∈ H2

0 (I).

Therefore,

λ0 =
∫
I E(w′′

0 )
2∫

I Pw2
0

> 0.

We note that, because of (17), T0 is a compact operator. So, its spectrum is given by
sp(T0) = {0} ∪ {μ0

n : n ∈ N}, where {μ0
n}n∈N is a sequence of positive eigenvalues which

converges to zero, the multiplicity of each non-zero eigenvalue being finite.
The following lemma states the convergence in norm of Tt to T0.

Lemma 3 There exists a positive constant C independent of t such that

‖(Tt − T0)(g, f )‖Q ≤ Ct‖(g, f )‖Q.

Proof Subtracting (15)–(16) from (13)–(14), we obtain
∫
I

(
σ̂ − σ0

)
τ

E
+
∫
I

(
β̂ − β0

) (
τ ′ − ξ

) −
∫
I

(
ŵ − w0

)
ξ ′ = −t2

∫
I

γ̂ ξ

κ
∀(τ, ξ) ∈ H,

∫
I
η
((

σ̂ ′ − σ ′
0

) − (
γ̂ − γ0

)) −
∫
I
v
(
γ̂ ′ − γ ′

0

) = −t2
∫
I
Jgη ∀(η, v) ∈ Q.

Testing the system above with τ = σ̂ − σ0, ξ = γ̂ − γ0, η = β̂ − β0 and v = ŵ − w0 and
subtracting the resulting equations, we obtain

∫
I

(σ̂ − σ0)
2

E
= t2

∫
I
Jg(β̂ − β0) − t2

∫
I

γ̂ (γ̂ − γ0)

κ
.

Thus, by using (3), Proposition 1 and (17), we have

‖σ̂ − σ0‖20,I ≤ Ct2
(
‖g‖0,I‖β̂ − β0‖0,I + ‖γ̂ ‖0,I‖γ̂ − γ0‖0,I

)

≤ Ct2
(
‖g‖0,I(‖β̂‖0,I + ‖β0‖0,I) + ‖γ̂ ‖0,I(‖γ̂ ‖0,I + ‖γ0‖I)

)

≤ Ct2‖(g, f )‖2
Q
.

Now, we use Lemma 2, (13), (15), (3) and the above inequality, to derive

‖(β̂, ŵ) − (β0, w0)‖Q ≤C sup
0 �=(τ,ξ)∈H

b
(
(τ, ξ), (β̂ − β0, ŵ − w0)

)
‖(τ, ξ)‖H

=C sup
0 �=(τ,ξ)∈H

−
∫
I

(
σ̂ − σ0

)
τ

E
− t2

∫
I

γ̂ ξ

κ

‖(τ, ξ)‖H
≤ Ct‖(g, f )‖Q,
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which allows us to complete the proof. ��
As a consequence of this lemma, standard properties of separation of isolated parts of the

spectrum (see, for instance [22]) yield the following result.

Lemma 4 Let μ0 > 0 be an eigenvalue of T0 of multiplicity m. Let D be any disc in the
complex plane centered atμ0 and containing no other element of the spectrum of T0. Then, for
t small enough, D contains exactlym eigenvalues of Tt (repeated according to their respective
multiplicities). Consequently, each eigenvalue μ0 > 0 of T0 is a limit of eigenvalues μ of Tt ,
as t goes to zero.

4 Spectral Approximation

Wewill study in this section, the numerical approximation of the eigenvalue problem (8)–(9).
With this aim, first we consider a family of partitions of I,

Th : 0 = x0 < · · · < xN = L ,

which are all refinements of the initial partition 0 = s0 < · · · < sn = L . Recall that
s1, . . . , sn−1 are the points of discontinuity of any of the coefficients, E, κ , P or J. We
denote I j := (x j−1, x j ), j = 1, . . . , N , and the largest subinterval length is denoted h :=
max1≤ j≤N (x j − x j−1). Notice that for any mesh Th , each I j is contained in one of the
subinterval Si , i = 1, . . . , n, where the physical coefficients are smooth.

We consider the space of piecewise linear continuous finite elements:

Wh := {ξh ∈ H1(I) : ξh |I j ∈ P1(I j ), j = 1, . . . , N }.
For ξ ∈ H1(I) let Lhξ ∈ Wh be its Lagrange interpolant. We recall that

‖ξ − Lhξ‖1,I ≤ Ch

⎛
⎝ N∑

j=1

‖ξ ′′‖20,I j

⎞
⎠

1/2

∀ξ |I j ∈ H2(I j ), j = 1, . . . , N . (22)

We will also consider the space of piecewise constant functions:

Zh := {vh ∈ L2(I) : vh |I j ∈ P0(I j ), j = 1, . . . , N },
and the L2-projector onto Zh :

Ph : L2(I) → Zh,

v �→ Phv ∈ Zh :
∫
I
(v − Phv)qh = 0 ∀qh ∈ Zh .

It is well known that

‖v − Phv‖0,I ≤ Ch|v|1,I ∀v ∈ H1(I). (23)

Defining Hh := Wh × Wh and Qh := Zh × Zh , the discretization of problem (8)–(9)
reads as follows:

Find λh > 0 and 0 �= ((σh, γh), (βh, wh)) ∈ Hh × Qh such that

a((σh, γh), (τh, ξh)) + b((τh, ξh), (βh, wh)) = 0 ∀(τh, ξh) ∈ Hh, (24)

b((σh, γh), (ηh, vh)) = −λhr((βh, wh), (ηh, vh)) ∀(ηh, vh) ∈ Qh . (25)
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As in the continuous case, we introduce for the analysis the discrete solution operator

Tth : Q → Q

(g, f ) �→ (β̂h, ŵh),

where ((σ̂h, γ̂h), (β̂h, ŵh)) ∈ Hh × Qh is the solution of the corresponding discrete source
problem:

a
(
(σ̂h, γ̂h), (τh, ξh)

) + b
(
(τh, ξh), (β̂h, ŵh)

) = 0 ∀(τh, ξh) ∈ Hh, (26)

b
(
(σ̂h, γ̂h), (ηh, vh)

) = −r
(
(g, f ), (ηh, vh)

) ∀(ηh, vh) ∈ Qh . (27)

It is easy to check that the discrete kernel

Kh := {(τh, ξh) ∈ Hh : b((τh, ξh), (ηh, vh)) = 0 ∀(ηh, vh) ∈ Qh} ,

coincides with the continuous one K = {
(τ, τ ′) : τ ∈ P1(I)

}
. Therefore, the ellipticity esti-

mate from Lemma 1 holds true for (τh, ξh) ∈ Kh with the same constant α independent of t
and h. Moreover, the discrete inf-sup condition

sup
0 �=(τh ,ξh)∈Hh

b((τh, ξh), (ηh, vh))

‖(τh, ξh)‖H ≥ C‖(ηh, vh)‖Q ∀(ηh, vh) ∈ Qh (28)

holds true with a positive constant C independent of t and h (see [23, Lemma 3.2]). Conse-
quently, the discrete mixed problem (26)–(27) has a unique solution and there holds∥∥ (σ̂h, γ̂h) ∥∥H + ∥∥(β̂h, ŵh

)∥∥
Q

≤ C
∥∥(g, f )

∥∥
Q
, (29)

once more with a positive constant C independent of t and h. Hence, Tth is a well defined
bounded linear operator.

Remark 2 The above estimate can be improved as follows:

∥∥ (σ̂h, γ̂h) ∥∥2H + ∥∥(β̂h, ŵh
)∥∥2

Q
≤ C

(
t2
∫
I
J|g|2 +

∫
I
P| f |2

)
, (30)

always with a positive constant C independent of t and h. In fact, this follows easily from
taking into account the particular form of the right hand side of problem (26)–(27) and using,
for instance, [19, Remark II. 1.3].

As in the continuous case, (μh, (βh, wh)), with μh �= 0, is an eigenpair of Tth if and only
if there exists (σh, γh) ∈ Hh such that, for λh = 1/μh , (λh, (σh, γh, βh, wh)) is a solution
of problem (24)–(25). Moreover, the same arguments used for Tt allow us to show that the
operator Tth is self-adjoint with respect to the inner product r(·, ·).

Our next goal is to obtain a spectral characterization for problem (24)–(25):

Lemma 5 The variational problem (24)–(25) has exactly dimQh eigenvalues, repeated
according to their respective multiplicities. All of them are real and positive.

Proof Taking particular bases of the discrete spaces, problem (24)–(25) can be written in
matrix form as follows:⎡

⎢⎢⎣
A 0 E 0
0 C −D −E
Et −Dt 0 0
0 −Et 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

σ h

γ h

βh

wh

⎤
⎥⎥⎦ = −λh

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 P 0
0 0 0 Q

⎤
⎥⎥⎦

⎡
⎢⎢⎣

σ h

γ h

βh

wh

⎤
⎥⎥⎦ , (31)
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where σ h , γ h , βh and wh denote the vectors whose entries are the components in those basis
of σh , γh , βh and wh , respectively.

Now we define the following matrices

R :=
[

A 0
0 C

]
, S :=

[
E 0

−D −E

]
, T :=

[
P 0
0 Q

]
,

and vectors

uh :=
[
σ h

γ h

]
, vh :=

[
βh

wh

]
,

to rewrite (31) as follows: [
R S
St 0

] [
uh
vh

]
= −λh

[
0 0
0 T

] [
uh
vh

]
. (32)

The system above is equivalent to solve

Ruh + Svh = 0

Stuh = − λhTvh .

Since A, C, P and Q are scaled mass matrices, it is easy to check that all of them, as well
as R and T, are symmetric and positive definite (although not uniformly in t) and hence
invertible. Thus, from the first equation above we have that uh = −R−1Svh and substituting
this into the second equation we obtain:

(StR−1S)vh = λhTvh . (33)

Conversely, if (λh, vh) is an eigenpair of the above problem, by defining uh := −R−1Svh ,
we have that (λh, (uh, vh)) is an eigenpair of (32).

The eigenvalue problem (33) is well posed because T is symmetric and positive definite.
The same holds true for StR−1S. In fact, this matrix is clearly symmetric and positive semi-
definite. Moreover, it is positive definite because Svh = 0 implies vh = 0, as a consequence
of (28). Then, the generalized eigenvalue problem is well posed and all its eigenvalues are
real and positive. Therefore, the number of eigenvalues of problem (31) equals the number
of eigenvalues of this problem, namely dimQh , and we complete the proof. ��

In order to prove that the solutions of the discrete problem (26)–(27) converge to those
of the continuous problem (13)–(14), the standard procedure would be to show that Tth
converges in norm to Tt as h goes to zero.However, such a proof does not seemstraightforward
in our case. In fact, ‖(Tt −Tth)(g, f )‖Q is bounded for g and f piecewise smooth as follows:

‖(Tt − Tth)(g, f )‖Q ≤ Ch

(
‖g‖20,I + ‖ f ‖20,I +

n∑
i=1

(∥∥g′∥∥2
0,Si

+ ∥∥ f ′∥∥2
0,Si

))1/2

,

but the last terms above are not bounded in general by ‖(g, f )‖Q. To circumvent this draw-
back, we will resort instead to the spectral theory from [13] and [14]. In spite of the fact that
the main use of this theory is when Tt is a non compact operator, it can also be applied to
compact Tt and we will show that in our case it works.

The remainder of this section is devoted to prove the following properties which will be
used in the next section:

P1. ‖Tt − Tth‖h := sup
0 �=(gh , fh)∈Qh

‖(Tt − Tth)(gh, fh)‖Q
‖(gh, fh)‖Q → 0 as h → 0.
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P2. ∀(η, v) ∈ Q, inf
(ηh ,vh)∈Qh

‖(η, v) − (ηh, vh)‖Q → 0 as h → 0.

Property P2 is a consequence of the fact that piecewise constant functions are dense in
L2(I). Regarding property P1, we have the following result.

Lemma 6 Property P1 holds true; moreover, there exists a constant C > 0 independent of
t and h such that

‖Tt − Tth‖h ≤ Ch.

Proof Given (gh, fh) ∈ Qh , let ((σ̂ , γ̂ ), (β̂, ŵ)) ∈ H×Q and ((σ̂h, γ̂h), (β̂h, ŵh)) ∈ Hh×Qh

be the solutions of problems (13)–(14) and (26)–(27), respectively, in both caseswith (g, f ) =
(gh, fh). Therefore, (β̂, ŵ) = Tt (gh, fh) and (β̂h, ŵh) = Tth(gh, fh).

The same arguments used in the proof of Proposition 2 (see [23, Remark 2.1]) allow us
to show that there exists a constant C > 0, independent of t , gh and fh , such that

∥∥ŵ∥∥1,I + ∥∥β̂∥∥1,I + ∥∥σ̂∥∥1,I +
⎛
⎝ N∑

j=1

∥∥σ̂ ′′∥∥2
0,I j

⎞
⎠

1/2

+ ∥∥γ̂∥∥1,I +
⎛
⎝ N∑

j=1

∥∥γ̂ ′′∥∥2
0,I j

⎞
⎠

1/2

≤ C‖(gh, fh)‖Q, (34)

where we have also used that g′
h |I j = f ′

h |I j = 0, because gh and fh are piecewise constant.
On the other hand, since problem (26)–(27) is just the finite element discretization of prob-
lem (13)–(14), using again the results from [23] (in particular, Theorem 3.3), we have that

∥∥(Tt − Tth)(gh, fh)
∥∥
Q

≤ ∥∥((σ̂ , γ̂ ), (β̂, ŵ)
) − (

(σ̂h, γ̂h), (β̂h, ŵh)
)∥∥

H×Q

≤ C inf
((τh ,ξh),(ηh ,vh))∈Hh×Qh

∥∥((σ̂ , γ̂ ), (β̂, ŵ)
) − (

(τh, ξh), (ηh, vh)
)∥∥

H×Q

≤ C
∥∥((σ̂ , γ̂ ), (β̂, ŵ)

) − (
(Lh σ̂ ,Lh γ̂ ), (Ph β̂,Phŵ)

)∥∥
H×Q

≤ Ch‖(gh, fh)‖Q,

where, for the last inequality we have used the error estimates (22) and (23) together with the
additional regularity result (34). Thus, the proof follows from the definition of ‖Tt − Tth‖h
and the above estimate. ��

5 Convergence and Error Estimates

In this section we will adapt the arguments from [13,14] to prove convergence of our spectral
approximation as well as to obtain error estimates for the approximate eigenvalues and
eigenfunctions. With this end, we will use the following results.

Lemma 7 Let F ⊂ C be a closed set such that F ∩ sp(T0) = ∅. Then, there exist strictly
positive constants t0 and C such that, ∀t < t0, F ∩ sp(Tt ) = ∅ and

‖Rz(Tt )‖ := sup
0 �=(η,v)∈Q

‖Rz(Tt )(η, v)‖Q
‖(η, v)‖Q ≤ C ∀z ∈ F.
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Proof We consider the mapping z → ‖(z I − T0)−1‖, which is continuous for all z ∈ ρ(T0).
It is clear that this mapping goes to zero as |z| → ∞. Hence, if F ⊂ ρ(T0) is a closed subset,
then the mapping above attains its maximum. Let Ĉ := maxz∈F ‖(z I − T0)−1‖; there holds

‖(z I − T0)(η, v)‖Q ≥ 1

Ĉ
‖(η, v)‖Q ∀(η, v) ∈ Q ∀z ∈ F.

Next, we observe that

‖(z I − T0)(η, v)‖Q ≤ ‖(z I − Tt )(η, v)‖Q + ‖(Tt − T0)(η, v)‖Q.

Moreover, according to Lemma 3, there exists t0 > 0 such that, for all t < t0,

‖(Tt − T0)(η, v)‖Q ≤ 1

2Ĉ
‖(η, v)‖Q ∀(η, v) ∈ Q.

Therefore, for all (η, v) ∈ Q, for all z ∈ F and for all t < t0,

‖(z I − Tt )(η, v)‖Q ≥ ‖(z I − T0)(η, v)‖Q − ‖(Tt − T0)(η, v)‖Q ≥ 1

2Ĉ
‖(η, v)‖Q.

Consequently, z is not an eigenvalue of Tt . Moreover, z �= 0, because 0 /∈ ρ(T0). Hence,
since the spectrum of Tt consists of eigenvalues and μ = 0, we have that z /∈ sp(Tt ), so that
(z I − Tt ) is invertible for all t < t0 and for all z ∈ F . Moreover, from the above inequality,
we have that

‖Rz(Tt )‖ = ‖(z I − Tt )
−1‖ ≤ 2Ĉ

and we conclude the proof. ��
The following result shows that Rz(Tth |Qh ) is bounded on any closed subset of the complex

plane not intersecting sp(T0), provided t and h are small enough. Here and thereafter, h0 and
t0 denote small positive constants, not necessarily the same at each occurrence.

Lemma 8 Let F ⊂ C be a closed set such that F ∩ sp(T0) = ∅. Then, there exist strictly
positive constants h0, t0 and C such that, ∀h < h0 and ∀t < t0, F ∩ sp(Tth) = ∅ and

‖Rz(Tth)‖h ≤ C ∀z ∈ F.

Proof Let F be a closed set such that F ∩ sp(T0) = ∅. As an immediate consequence of
Lemma 7, we have that for all (η, v) ∈ Q, for all z ∈ F and for all t < t0,

‖(η, v)‖Q ≤ C‖(z I − Tt )(η, v)‖Q.

Now, from Lemma 6, we have that there exists h0 > 0 such that for all h < h0

‖(Tt − Tth)(ηh, vh)‖Q ≤ 1

2C
‖(ηh, vh)‖Q ∀(ηh, vh) ∈ Qh .

Then, for (ηh, vh) ∈ Qh and z ∈ F , we have

‖(z I − Tth)(ηh, vh)‖Q ≥ ‖(z I − Tt )(ηh, vh)‖Q −‖(Tt − Tth)(ηh, vh)‖Q ≥ 1

2C
‖(ηh, vh)‖Q.

Since Qh is finite dimensional, we deduce that (z I − Tth) is invertible and, hence, z /∈
sp(Tth). Moreover

‖Rz(Tth)‖h = ‖(z I − Tth)
−1‖h ≤ 2C ∀z ∈ F

and we complete the proof. ��
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An equivalent form of the first assertion of this theorem is that any open set of the complex
plane containing sp(T0), also contains sp(Tth) for h and t small enough.

The eigenvalues μ of Tt are typically simple and converges to simple eigenvalues T0 as t
tends to zero. Because of this, we state our results only for eigenvalues of Tt converging to
a simple eigenvalue of T0 as t goes to zero.

Let μ0 �= 0 be an eigenvalue of T0 with multiplicity m = 1. Let D be a closed disk
centered at μ0 with boundary Γ such that 0 /∈ D and D ∩ sp(T0) = {

μ0
}
. Let t0 > 0 be

small enough so that, for all t < t0, D contains only one eigenvalueμ of Tt , which we already
know is simple (cf. Lemma 4). Let E be the eigenspace of Tt corresponding to μ.

According to Lemma 8 there exist t0 > 0 and h0 > 0 such that ∀t < t0 and ∀h < h0,
Γ ⊂ ρ(Tth). Moreover, proceeding as in [13, Section 2], from properties P1 and P2 it follows
that for h small enough Tth has exactly one eigenvalue μh ∈ D. Let Eh be the eigenspace of
Tth associated to μh . The theory in [14] could be adapted too, to prove error estimates for
the eigenvalues and eigenfunctions of Tth to those of T0 as h and t go to zero. However, our
goal is not this one, but to prove that μh converges to μ as h goes to zero, with t < t0 fixed,
and to provide the corresponding error estimates for eigenvalues and eigenfunctions. With
this aim, we will modify accordingly the theory from [14].

Let Πh : Q → Q be defined for all (η, v) ∈ Q by Πh(η, v) = (Phη,Phv) ∈ Qh , with Ph

being the L2-projector defined in the previous section. The properties ofPh lead to analogous
properties for Πh ; for instance, Πh is bounded uniformly on h, namely, ‖Πh(η, v)‖Q ≤
‖(η, v)‖Q. Moreover, the error estimate (23) holds for Πh too:

‖Πh(η, v) − (η, v)‖Q ≤ Ch(|η|1,I + |v|1,I) ∀(η, v) ∈ H. (35)

Next, we define

Bth := TthΠh : Q → Q,

we observe that Bth and Tth have the same non-zero eigenvalues and corresponding eigen-
functions. Furthermore, we have the following result analogous to [14, Lemma 1].

Lemma 9 There exist strictly positive constants h0, t0 and C such that

‖Rz(Bth)‖ ≤ C ∀h < h0, ∀t < t0, ∀z ∈ Γ.

Proof It is essentially identical to that of Lemma 5.2 from [24]. ��
Next, we introduce

– Et : Q → Q, the spectral projector of Tt corresponding to the isolated eigenvalue μ,
namely,

Et := 1

2π i

∫
Γ

Rz(Tt ) dz;
– Fth : Q → Q, the spectral projector of Bth corresponding to the eigenvalueμh , namely,

Fth := 1

2π i

∫
Γ

Rz(Bth) dz.

As a consequence of Lemma 9, the spectral projectors Fth are bounded uniformly in h
and t for h and t small enough. Notice that Et (Q) is the eigenspace of Tt associated to μ and
Fth(Q) is the eigenspace of Bth (and hence of Tth) associated to μh .

We recall the definition of the gap δ̂ between two closed subspaces Y and Z of Q:

δ̂(Y, Z) := max {δ(Y, Z), δ(Z , Y )} ,
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where

δ(Y, Z) := sup
y∈Y

‖y‖Q=1

(
inf
z∈Z ‖y − z‖Q

)
.

The following results will be used to prove convergence of the eigenspaces.

Lemma 10 There exist positive constants h0, t0 and C such that, for all h < h0 and for all
t < t0,

‖(Et − Fth)|Et (Q)‖ ≤ ‖(Tt − Bth)|Et (Q)‖ ≤ Ch.

Proof The proof of the first inequality follows from Lemmas 7 and 9 and the same arguments
as Lemma 3 from [14]. For the other inequality, let (β,w) ∈ Et (Q). We have

‖(Tt − Bth)(β,w)‖Q ≤‖(Tt − TtΠh)(β,w)‖Q + ‖(TtΠh − Bth)(β,w)‖Q
≤‖Tt‖‖(I − Πh)(β,w)‖Q + ‖(Tt − Tth)Πh(β,w)‖Q
≤Ch(|β|1,I + |w|1,I) + Ch‖Πh(β,w)‖Q
≤Ch‖(β,w)‖Q,

where we have used (35), Lemma 6 and Corollary 1. ��
Now, we are in position to prove an optimal order error estimate for the eigenspaces.

Theorem 1 There exist positive constants h0, t0 and C such that, for all h < h0 and for all
t < t0,

δ̂ (Fth(Q), Et (Q)) ≤ Ch.

Proof The proof follows by using Lemma 10 and arguing exactly as in the proof of [14,
Theorem 1]. ��

In what follows, we state a preliminary suboptimal error estimate for |μ − μh | that will
be used in the sequel but which will be improved below (cf. Theorem 2).

Lemma 11 There exist strictly positive constants h0, t0 and C such that, for h < h0 and
t < t0,

|μ − μh | ≤ Ch.

Proof The proof follows by repeating the arguments used in [24] to derive Lemma 5.6 from
this reference. ��

Since the eigenvalue μ of Tt corresponds to an eigenvalue λ = 1/μ of problem (8)-(9),
Lemma 11 leads to an error estimate for the approximation of λ as well. However, the order
of convergence O(h) in this lemma is not optimal. The following lemma will be used to
prove a double order of convergence for the corresponding eigenvalues, but it is interesting
by itself, too. In fact, it shows optimal order convergence for the bending moment and shear
stress of the vibration modes.

Lemma 12 Let (λ, (σ, γ, β,w)) and (λh, (σh, γh, βh, wh)) be the solutions of problems
(8)–(9) and (24)–(25), respectively, with ‖(β,w)‖Q = ‖(βh, wh)‖Q = 1 and such that

‖β − βh‖0,I + ‖w − wh‖0,I ≤ Ch. (36)

Then, for h and t small enough,

‖σ − σh‖1,I + ‖γ − γh‖1,I ≤ Ch. (37)
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Proof Let ((σ̂ , γ̂ ), (β̂, ŵ)) ∈ H × Q be the solution of the following auxiliary problem:

a
(
(σ̂ , γ̂ ), (τ, ξ)

) + b
(
(τ, ξ), (β̂, ŵ)

) = 0 ∀(τ, ξ) ∈ H, (38)

b
(
(σ̂ , γ̂ ), (η, v)

) = −λhr ((βh, wh), (η, v)) ∀(η, v) ∈ Q. (39)

Notice that problem (24)–(25) can be seen as a discretization of the load problem above. The
arguments in the proof of Lemma 6 can be repeated, considering gh = λhβh and fh = λhwh ,
to show that

∥∥((σ̂ , γ̂ ), (β̂, ŵ)
) − (

(σh, γh), (βh, wh)
)∥∥

H×Q
≤ Chλh‖(βh, wh)‖Q ≤ Chλ, (40)

the last inequality because λh → λ as a consequence of Lemma 11.
On the other hand, subtracting (8)–(9) from (38)–(39), we obtain

a
(
(σ − σ̂ , γ − γ̂ ), (τ, ξ)

) + b
(
(τ, ξ), (β − β̂, w − ŵ)

) = 0 ∀(τ, ξ) ∈ H,

b
(
(σ − σ̂ , γ − γ̂ ), (η, v)

) = −r((λβ − λhβh, λw − λhwh), (η, v)) ∀(η, v) ∈ Q.

As a consequence of Lemmas 1 and 2, the problem above has a unique solution (see, for
instance, [19, Section II.1.1]) and there exists C > 0 such that

‖σ − σ̂‖1,I + ‖γ − γ̂ ‖1,I ≤ C
(‖λβ − λhβh‖0,I + ‖λw − λhwh‖0,I

)
≤ C

(
λ‖β − βh‖0,I + |λ − λh |‖βh‖0,I

+λ‖w − wh‖0,I + |λ − λh |‖wh‖0,I
)

≤ Ch,

the last inequality because of (36) and Lemma 11.
Finally, from the above inequality and (40) we obtain (37) and the proof is complete. ��
Now we are in a position to prove a double order of convergence for the eigenvalues.

Theorem 2 There exist strictly positive constants h0, t0 and C such that, for h < h0 and
t < t0,

|λ − λh | ≤ Ch2.

Proof Let (λ, (σ, γ, β,w)) and (λh, (σh, γh, βh, wh)) be as in Lemma 12. Then, we write
problem (8)–(9) and problem (24)–(25) as follows:

A((σ, γ, β,w), (τ, ξ, η, v)) = −λB((σ, γ, β,w), (τ, ξ, η, v)),

A((σh, γh, βh, wh), (τh, ξh, ηh, vh)) = −λh B((σh, γh, βh, wh), (τh, ξh, ηh, vh)),

where the bilinear forms A and B are defined by

A((σ, γ, β,w), (τ, ξ, η, v)) := a((σ, γ ), (τ, ξ)) + b((τ, ξ), (β,w)) + b((σ, γ ), (η, v)),

B((σ, γ, β,w), (τ, ξ, η, v)) := r((β,w), (η, v)).

LetU := (σ, γ, β,w) andUh := (σh, γh, βh, wh). Then, it is easy to check the following
identity (see, for instance, [3, Lemma 9.1]):

(λ − λh)B(Uh,Uh) = A(U −Uh,U −Uh) + λB(U −Uh,U −Uh).

Now, since B(Uh,Uh) = t2
∫
I Jβ

2
h + ∫

I Pw2
h and (σh, γh, βh, wh) can be seen as the

solution of problem (26)–(27) with data (g, f ) = λh(βh, wh), as a consequence of Remark 2,
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we have that

B(Uh,Uh) ≥ 1

Cλ2h
‖(βh, wh)‖2Q = 1

Cλ2h
.

Since λh → λ and λ > 0, for h small enough

B(Uh,Uh) ≥ 1

2Cλ2
,

the right hand side being a positive constant independent of h and t . Hence from Theorem 1
and Lemma 12, we obtain

|λ − λh | ≤ Ch2

and the proof is complete. ��

6 The Euler-Bernoulli Beam

The analysis above can be extended to the Euler-Bernoulli beam vibration problem (19)–
(20). To simplify the notation, from now on we drop out the index 0 from eigenvalues and
eigenfunctions of this problem.

The discretization of (19)–(20) reads:
Find λh > 0 and 0 �= ((σh, γh), (βh, wh)) ∈ Hh × Qh such that∫

I

σhτh

E
+
∫
I
βh(τ

′
h − ξh) −

∫
I
whξ

′
h = 0 ∀(τh, ξh) ∈ Hh, (41)

∫
I
ηh(σ

′
h − γh) −

∫
I
vhγ

′
h = −λh

∫
I
Pwhvh ∀(ηh, vh) ∈ Qh . (42)

Using the same notation as in (31), this discrete problem can be written in matrix form as
follows: ⎡

⎢⎢⎣
A 0 E 0
0 0 −D −E
Et −Dt 0 0
0 −Et 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

σ h

γ h

βh

wh

⎤
⎥⎥⎦ = −λh

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Q

⎤
⎥⎥⎦

⎡
⎢⎢⎣

σ h

γ h

βh

wh

⎤
⎥⎥⎦ . (43)

To show the well-posedness of this generalized eigenvalue problem, we cannot proceed
as we did to derive (33), because in this case matrix S is not positive definite and R is
not invertible. However, we can use the following alternative. From (43), we know that
σ h = −A−1Eβh . Using this in the third row we obtain EtA−1Eβh + Dtγ h = 0 and rewrite
(43) as follows: ⎡

⎣ 0 D E
Dt G 0
Et 0 0

⎤
⎦
⎡
⎣γ h

βh

wh

⎤
⎦ = λh

⎡
⎣0 0 0

0 0 0
0 0 Q

⎤
⎦
⎡
⎣γ h

βh

wh

⎤
⎦ , (44)

where G := EtA−1E. This matrix is symmetric and positive definite, because A so is and
ker E = {0}.

For λh �= 0, (44) is equivalent to

EQ−1Etγ h + λhDβh = 0,

Dtγ h + Gβh = 0.
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In its turn, by substituting βh = −G−1Dtγ h into the first equation, the problem above
turns out equivalent to

EQ−1Etγ h = λhDG−1Dtγ h ⇐⇒ (EQ−1Et + DG−1Dt︸ ︷︷ ︸
H

)γ h = (λh + 1)DG−1Dtγ h

⇐⇒ DG−1Dtγ h = μhHγ h, (45)

where μh = 1/(λh + 1).
Our next goal is to prove that H is symmetric and positive definite. With this aim, we

observe that

Etγ h = 0 ⇐⇒
∫
I
γ ′
hvh = 0 ∀vh ∈ Zh . (46)

Testing (46) with vh = γ ′
h , we have that

∫
I |γ ′

h |2 = 0, which implies that γh ∈ P0(I);
namely, ker Et = P0(I).

On the other hand

Dtγ h = 0 ⇐⇒
∫
I
γhηh = 0 ∀ηh ∈ Zh ⇐⇒

∫
I j

γh = 0, j = 1, . . . , N .

Consequently, γ h has to be amultiple of the function γ 0
h ∈ Zh defined by γ 0

h (xi ) = (−1)i ,
0 ≤ i ≤ N ; namely, ker Dt = 〈γ 0

h 〉.
Therefore, since Q is positive definite, γ t

h(EQ−1Et)γ h > 0 if and only if γ h /∈ P0(I),
whereas, since G is positive definite, γ t

h(DG−1Dt)γ h > 0 if and only if γ h /∈ 〈γ 0
h 〉. Thus,

since P0(I) ∩ 〈γ 0
h 〉 = {0}, we conclude that H is positive definite.

Note that μ0
h = 0 is an eigenvalue of problem (45) with eigenfunction γ 0

h . The rest of
the spectrum are eigenvalues μi

h ∈ (0, 1] (which correspond to λh = (1/μi
h) − 1 ≥ 0) with

eigenfunctions γ i
h , i = 1, . . . , N . One of these eigenvalues is μi

h = 1 (which correspond to
λN
h = 0) with corresponding eigenfunction γ N

h ∈ P0(I).
For 1 ≤ i ≤ N − 1, defining β i

h := −G−1Dtγ i
h ; wi

h := (1/λih)Q
−1Etγ i

h and
σ i
h := −A−1Eβ i

h , we have that (λih, (σ
i
h, γ

i
h,β

i
h,w

i
h)) are eigenpairs of problem (43).

The remaining solution of (45), λN
h = 0, with γ N

h ∈ P0(I), does not lead a solution of
problem (43). In fact, λN

h = 0 cannot be an eigenvalue of this problem, since the matrix on
its left-hand side is invertible. Thus we are led to the following result.

Proposition 3 Problem (43) has N − 1 eigenvalues, repeated according to their respective
multiplicities.

Since all the results from [23] used for the theoretical analysis remain valid for t = 0, the
same happens with the results of the present paper. In particular the O(h) estimates for the
eigenspaces fromTheorem1 and theO(h2) estimate for the eigenvalues fromTheorem2 hold
true for the finite element approximation (41)–(42) of the Euler-Bernoulli beam vibration
problem.

7 Numerical Results

We report in this section the results of some numerical tests computed with a MATLAB code
implementing the finite element method described above. For all the tests we have considered
a clamped beam of length L and uniform meshes of N elements, with different values of N .

In all the tests, we have used the following physical parameters:
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L

d

b

Fig. 1 Undeformed uniform beam

– Young modulus: E = 2.1 × 106 Kgf/cm2, (1 Kgf= 980 kg/cm2),
– Poisson ratio: ν = 0.3,
– Density: ρ = 7.85 × 10−3 kg/cm3,
– Correction factor: kc = 1.

7.1 Implementation

The generalized eigenvalue problem that has to be solved has been written in matrix form
into the proof of Lemma 5 (cf. (31)). This is a degenerate matrix generalized eigenvalue
problem since none of the matrices is positive definite. Therefore, its solution would need of
some specialized software. Alternatively, problem (31) has been equivalently written as (33),
where both matrices are symmetric and positive definite. However, on the left hand side there
is a full matrix, because R−1 is full too. Therefore, (33) is not appropriate for the computer
solution of the problem, either.

Instead, we proceed from (32) as follows: From the second equation Tvh = − 1
λh

Stuh
and, since T is invertible, vh = − 1

λh
T−1Stuh . Substituting this into the first equation of (32)

we arrive at
(ST−1St)uh = λhRuh . (47)

Matrix R is symmetric and positive definite, whereas (ST−1St) is symmetric and positive
semi-definite. Thus, this generalized eigenvalue problem can be solved with standard soft-
ware. Moreover, since T is formed by two mass matrices with piecewise constant elements,
it is diagonal. Hence to compute T−1 is completely inexpensive and the matrix (ST−1St)

result as sparse as R. The only minor drawback is that the eigenvalue problem (47) has the
spurious eigenvalue λh = 0 with multiplicity 2. SinceT−1 is positive definite, the eigenspace
associated to λh = 0 is the kernel of S. Using the standard basis of the finite element spaces
Wh (piecewise linear and continuous elements) and Zh (piecewise constant elements) it is
possible to prove that if uh = (σ h, γ h)

t with σ h and γ h being the vector of nodal compo-
nents of σh ∈ Wh and γh ∈ Wh , respectively, thus (Suh)i = ∫

Ii
(σ ′

h − γh), i = 1, . . . , N .
Therefore, uh ∈ ker S implies that either γh = 0 and σh is constant or γh is constant and
σ ′
h = γh . Thus, the eigenspace of λh = 0 in problem (47) is spanned by (1, 0) ∈ Hh and

(x, 1) ∈ Hh .

7.2 Test 1: Uniform Beam with Analytical Solution

The aim of this first test is to validate the computer code by solving a problem with known
analytical solution. With this purpose, we will compare the exact vibration frequencies of
a uniform clamped beam as that shown in Fig. 1 (undeformed beam) with those computed
with the method analyzed in this paper.
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Table 1 Angular vibration frequencies of a uniform beam

Mode N = 16 N = 32 N = 64 N = 128 Order Exact

ωh
1 4017.49 4000.74 3996.84 3995.90 2.1 3995.61

ωh
2 9778.27 9644.64 9613.68 9606.23 2.1 9603.80

ωh
3 170614.73 16621.41 16520.22 16495.89 2.1 16487.94

L

d

b

3d

Fig. 2 Smoothly varying cross-section beam

We note also that for this kind of beam, we have that I = bd3
12 and A = bd are constant.

In Table 1 we report the three lowest vibration frequencies computed by our method with
four different meshes (N = 16, 32, 64, 128). We have taken L = 120 cm and a square cross
section of side-length b = d = 20 cm. The table includes computed orders of convergence
and the exact vibration frequencies.

It can be seen from Table 1 that the computed frequencies converge to the exact ones with
an optimal quadratic order.

7.3 Test 2: Beam with a Smoothly Varying Cross-Section.

In this test we apply the method analyzed in this paper to a beam of rectangular section with
smoothly varying thickness. With this purpose, we consider a beam as that shown in Fig. 2.

Let b and d be as shown in Fig. 2. We have taken L = 100, b = 3 and d = 3 cm. The
equation of the top and bottom surfaces of the beam are

z = ± 150d

2x + 100
, 0 ≤ x ≤ 100.

Hence, the area of the cross section and the moment of inertia are given by

A(x) = 900d

2x + 100
, I(x) = 1

4

(
300d

2x + 100

)3

, 0 ≤ x ≤ 100.

In Table 2 we report the four lowest vibration frequencies computed by our method
with four different meshes (N = 16, 32, 64, 128). The table includes computed orders of
convergence as well as more accurate values obtained by means of a least-squares fitting.

It can be seen from Table 2 that the computed vibration frequencies also converge with
an optimal quadratic order as predicted by the theoretical results.

We show in Fig. 3 the deformed beam for the four lowest vibration modes.
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Table 2 Angular vibration frequencies of a beam with a smoothly varying cross-section

Mode N = 16 N = 32 N = 64 N = 128 Order Extrap

ωh
1 1674.8167 1667.2007 1665.2819 1664.8012 2.03 1664.6419

ωh
2 4382.5912 4308.8768 4290.4391 4285.8294 2.03 4284.3014

ωh
3 8432.5758 8139.6797 8067.2309 8049.1697 2.03 8043.1848

ωh
4 13875.8820 13078.9166 12884.6634 12836.4208 2.03 12820.4405

Fig. 3 Smoothly varying cross-section beam; four vibration modes with lowest frequency

3d

b L/2

d

L

d

Fig. 4 Rigidly joined beams

7.4 Test 3: Rigidly Joined Beams.

The aim of this test is to apply the method analyzed in this paper to a beam with area varying
discontinuously along its axis. With this purpose, we consider a composed beam formed
by two rigidly joined beams as shown in Fig. 4. Moreover, we will assess the performance
of the method as the thickness d approaches to zero to check that the proposed method is
thoroughly locking-free.

Let b and d be as shown in Fig. 4. We have taken L = 100 and b = 3, so that the area of
the cross section and the moment of inertia are:

A(x) =
{
9d, 0 ≤ x ≤ 50,
3d, 50 < x ≤ 100,

I(x) =
{

27d3
4 , 0 ≤ x ≤ 50,

d3
4 , 50 < x ≤ 100.

We have used uniform meshes with an even number N of elements, so that the point
x = L/2 is always a node of the mesh as required by the theory.

In Table 3 we present the results for the lowest computed rescaled eigenvalue λh1 =(
ωh
1/t

)2
, with varying thickness d and different meshes. According to (2), the non dimen-

sional parameter t is given in this case by t2 = 5d2

8L2 . Again, we have computed the orders of
convergence and more accurate extrapolated values by means of a least-squares fitting.
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Table 3 Lowest rescaled eigenvalue λ1h (multiplied by 10−10) of a composed beam with varying thickness
d

Thickness N = 16 N = 32 N = 64 N = 128 Order Extrap.

d = 4 4.72371 4.68871 4.67989 4.67768 2.03 4.67695

d = 0.4 5.00424 4.96518 4.95534 4.95288 2.03 4.95207

d = 0.04 5.00724 4.96813 4.95829 4.95582 2.03 4.95500

d = 0.004 5.00727 4.96816 4.95831 4.95585 2.03 4.95503

Fig. 5 Rigidly joined beams; two lowest frequency vibration modes

The results from Table 3 show clearly that the method does not deteriorate when the
thickness parameter becomes small, thus we may conclude that the method is locking-free.

Finally, we show in Fig. 5 the deformed beam for the two lowest frequency vibration
modes.
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