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SYMMETRIC AND NONSYMMETRIC DISCONTINUOUS
GALERKIN METHODS FOR A PSEUDOSTRESS FORMULATION

OF THE STOKES SPECTRAL PROBLEM\ast 
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Abstract. In this paper we introduce and analyze symmetric and nonsymmetric discontin-
uous Galerkin (DG) methods for the Stokes eigenvalue problem. The formulation is obtained by
introducing the so-called pseudostress tensor, and thanks to the structure of the system, the ve-
locity and pressure variables are eliminated. We propose different DG discretizations to solve the
resulting spectral problem and the convergence analysis is based on the abstract spectral theory for
noncompact operators. We show that the proposed method is spurious modes free and asymptotic
estimates for the eigenvalues and eigenfunctions are proved if the so-called stabilization parameter is
sufficiently large and the meshsize is small enough. We report some numerical experiments to assess
the performance of the methods.
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1. Introduction. The discontinuous Galerkin (DG) method has gained rele-
vance in recent years to solve spectral problems (see, for instance, [2, 5, 6, 15, 18]).
Compared with conforming finite elements, discretizations based on DG methods have
a number of attractive features. For instance, the DG method has the advantage of
being flexible in the choice of polynomial degrees and amenable for hp-adaptivity and
relatively simple implementation on highly unstructured meshes. In particular, in [2],
DG methods (symmetric and nonsymmetric methods) have been introduced and an-
alyzed for the Laplace eigenvalue problem. They have proved that for the Hermitian
case, it is possible to obtain a double order of convergence for the eigenvalues but
suboptimal order of convergence for the non-Hermitian cases. On the other hand, a
complete analysis for Maxwell's eigenvalue problem has been presented in [6]. The
authors have established necessary and sufficient conditions for a spurious free approx-
imation by an H(curl) interior penalty DG method. More recently, a symmetric DG
method has been presented and analyzed in [18] for the elasticity eigenproblem with
reduced symmetry. It was shown that the proposed scheme provides a correct approx-
imation of the spectrum, and asymptotic error estimates for the eigenvalues and the
eigenfunctions were proved. Additionally in [15], an H(div)-conforming DG method
has been studied for the classical velocity-pressure formulation of the Stokes eigenvalue
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DG FOR THE STOKES EIGENPROBLEM A699

problem. They proved a priori error estimates for the eigenvalues and eigenfunctions.
Moreover, an a posteriori error estimator of residual type is presented.

Now, following the recent work [18], we propose a new DG discretization for
the Stokes eigenvalue problem, which is based on the so-called pseudostress tensor
(nonsymmetric) of the problem. We mention that the Stokes eigenvalue problem has
attracted much interest since it is frequently encountered in important applications,
for instance, to study the stability of fluid flow problems, and it also appears in the
analysis of the elastic stability of thin plates (see [25], [24]). More precisely, the eigen-
values of the Stokes eigenproblem are related with the dissipation rates of the natural
modes of the unsteady Stokes flow, the natural frequencies of linear incompressible
elastodynamics, and the buckling coefficients of a thin plate modeled by the Kirchhoff
equations. For this reason, different finite element formulations to solve this eigen-
value problem have been studied in the past. Among the papers on this subject, we
cite the following as a minimal sample: [3, 11, 14, 17, 20, 23, 24, 26].

The purpose of the present paper is to introduce and analyze a DG discretization
for solving the Stokes eigenvalue problem. We consider a variational formulation of
the problem written in H(div) as in [23], where an auxiliary variable is introduced,
the nonsymmetric pseudostress tensor, and the velocity and pressure are eliminated
from the system. Despite the fact that the pseudostress formulation of the prob-
lem increases the number of unknowns (for instance, compared with the standard
velocity-pressure formulation) and consequently the number of degrees of freedom of
the resulting generalized eigenvalue problem, we observe that the problem can be
solved with standard eigensolvers (the matrix on the left-hand side is symmetric and
positive definite). On the other hand, we observe that mixed formulations of the prob-
lem (like the standard velocity-pressure formulation) lead to a degenerate generalized
matrix eigenvalue problem (the matrix on the left-hand side is indefinite) which need
to be solved with more sophisticated tools. On the other hand, the main difference
between [23] and the present work lies in the discrete formulation. In [23] conforming
H(div) elements are considered (Brezzi--Douglas--Marini (BDM) and Raviart--Thomas
finite elements). We propose DG discretizations which are flexible to implement high-
order elements by using standard shape functions and also relaxing the interelement
continuity conditions. We observe that our nonconforming discrete formulations will
depend on a stabilization parameter, which is not presented in the conforming case
analyzed in [23]. Thus, in our case we need to adapt the abstract spectral theory for
noncompact operators (see [8, 9]) to prove a correct spectral approximation.

This paper is concerned with DG discretizations to approximate the pseudostress
tensor by discontinuous finite element spaces of degree k \geq 1. Then, we adapt the
abstract spectral theory for noncompact operators (see [8, 9]) to deal with the contin-
uous and discrete solution operators, which appear as the solution of the continuous
and discrete source problems, and whose spectra are related with the solutions of the
eigenvalue problems. We prove stability of the DG discrete methods considering its
symmetric and nonsymmetric nature; this stability will depend on the choice of the
so-called stabilization parameter. Then, we establish that the resulting DG discretiza-
tions provide a correct approximation of the spectrum if the stabilization parameter
is sufficiently large and the meshsize h is small enough. We prove optimal order error
estimates for the eigenfunctions and a double order for the eigenvalues in the sym-
metric case, and suboptimal order for the nonsymmetric methods (cf. Theorem 4.4).
In particular, we will see in the numerical test section that the order of convergence
for the nonsymmetric methods depends on the choice of the polynomial degree: if the
polynomial degree k is odd the convergence order is k, and if k is even, the convergence
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A700 FELIPE LEPE AND DAVID MORA

order is k + 1. We will also see that the methods can be affected by the presence of
spurious modes if the stabilization parameters are not chosen appropiately.

The outline of the paper is the following. In section 2, we describe the continuous
problem in terms of the pseudostress tensor. Moreover, we recall the spectral charac-
terization of the corresponding solution operator and the regularity results proved in
[23]. In section 3, we introduce the DG methods, describing the spaces, the discrete
norms, and the general framework. We also prove the stability of the DG methods
and we introduce the discrete solution operator. Section 4 is dedicated to proving
error estimates for the eigenfunctions and eigenvalues. In section 5, we present some
numerical tests to assess the performance of the proposed DG methods. Finally, we
summarize some conclusions in section 6.

We end this section with some notation that we will use in what follows. Given
any Hilbert space V , let V n and V n\times n denote, the space of vectors and tensors,
respectively, of order n (n = 2, 3) with entries in V . In particular, \bfitI is the identity
matrix of \BbbR n\times n and 0 denotes a generic null vector or tensor. Given \bfittau := (\tau ij) and\widetilde \bfittau := (\~\tau ij) \in \BbbR n\times n, we define as is usual the transpose tensor \bfittau \ttt := (\tau ji), the trace
tr \bfittau :=

\sum n
i=1 \tau ii, the deviatoric tensor \bfittau \ttD := \bfittau  - 1

n (tr \bfittau ) \bfitI , and the tensor inner
product \bfittau : \widetilde \bfittau :=

\sum n
i,j=1 \tau ij\~\tau ij .

Let \Omega be a polyhedral Lipschitz bounded domain of \BbbR n with boundary \partial \Omega . Let
\bfitalpha = (\alpha i) \in \BbbN n be a multi-index and [s] denote the largest integer equal to or smaller
than s \in \BbbR . According to [1], we consider the Sobolev spaces

Hs(\Omega ) := \{ \phi \in L2(\Omega ) : \partial \bfitalpha \phi \in L2(\Omega ); | \bfitalpha | \leq s\} if s \in \BbbN 

and

Hs(\Omega ) := \{ \phi \in H[s](\Omega ) : | \partial \bfitalpha \phi | 2s - [s],\Omega < +\infty ; | \bfitalpha | = [s]\} if s \in \BbbR ,

endowed with the norms

\| \phi \| 2s,\Omega := \| \phi \| 0,\Omega +

s\sum 
\bfitalpha =1

\| \partial \bfitalpha \phi \| 20,\Omega , s \in \BbbN ,

and, respectively,

\| \phi \| 2s,\Omega := \| \phi \| 2[s] +
\sum 

| \bfitalpha | =[s]

| \partial \bfitalpha \phi | 2s - [s],\Omega , s \in \BbbR ,

where

| \phi | 2\theta ,\Omega :=

\int 
\Omega 

\int 
\Omega 

| \phi (\bfitx ) - \phi (\bfity )| 2

| \bfitx  - \bfity | n+2\theta 
dxdy, \theta \in (0, 1).

We consider the convention H0(\Omega ) := L2(\Omega ). We also define the Hilbert space
Hs(div,\Omega ) := \{ \bfittau \in Hs(\Omega )n\times n : div \bfittau \in Hs(\Omega )n\} , whose norm is given by \| \bfittau \| 2Hs(\bfd \bfi \bfv ,\Omega )

:= \| \bfittau \| 2s,\Omega + \| div \bfittau \| 2s,\Omega , and we denote H(div,\Omega ) := H0(div; \Omega ).

2. The continuous spectral problem. Let \Omega \subset \BbbR n, with n = 2, 3, be a
bounded and connected Lipschitz domain. We denote by \bfitn the outward unit normal
vector to \Gamma := \partial \Omega , and we assume that \Gamma admits a disjoint partition \Gamma := \Gamma D \cup \Gamma N ;
we also assume that both \Gamma D and \Gamma N have positive measure.

In what follows, we recall the variational formulation of the Stokes eigenvalue
problem proposed in [23]. Also, we summarize some results from this reference.
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DG FOR THE STOKES EIGENPROBLEM A701

We are interested in the following Stokes eigenvalue problem: Find nontrivial
(\widehat \lambda ,\bfitu , p) such that (see [20])

 - div(\nabla \bfitu ) +\nabla p = \widehat \lambda \bfitu in\Omega ,

div\bfitu = 0 in\Omega ,

\bfitu = 0 on\Gamma D,

(\nabla \bfitu  - p\bfitI )\bfitn = 0 on\Gamma N .

(2.1)

To study this problem, we introduce the so-called pseudostress tensor \bfitsigma := \nabla \bfitu  - p\bfitI 
(see [7, 12, 13]). Then, system (2.1) is rewritten as follows:

 - div\bfitsigma = \widehat \lambda \bfitu in\Omega ,

\bfitsigma  - \nabla \bfitu + p\bfitI = 0 in\Omega ,

div\bfitu = 0 in\Omega ,

\bfitu = 0 on\Gamma D,

\bfitsigma \bfitn = 0 on\Gamma N .

(2.2)

Now, taking the trace operator in the second equation above, using the incompress-
ibility constraint (third equation in (2.2)), we have that

(2.3) p =  - 1

n
tr(\bfitsigma ).

Then, we eliminate the pressure using the previous identity and the second equation
of (2.2) can be written as \bfitsigma \ttD  - \nabla \bfitu = 0.

The previous manipulations and taking into account that the Neumann boundary
condition on \Gamma N becomes essential in this formulation, we have that the solution of
(2.2) will be sought in the following functional space:

\bfscrV := \{ \bfittau \in H(div,\Omega ) : \bfittau \bfitn = 0 on \Gamma N\} .

Moreover, it is also observed that the essential boundary condition on the velocity
is transformed into a natural condition. As a consequence, we eliminate the velocity
\bfitu by using the first equation in (2.2) and the natural boundary condition on \Gamma D, to
write the following eigenvalue problem: Find \lambda \in \BbbR and 0 \not = \bfitsigma \in \bfscrV such that

(2.4) a(\bfitsigma , \bfittau ) = \lambda b(\bfitsigma , \bfittau ) \forall \bfittau \in \bfscrV ,

where \lambda := 1+\widehat \lambda and the bilinear forms a : \bfscrV \times \bfscrV \rightarrow \BbbR and b : \bfscrV \times \bfscrV \rightarrow \BbbR are defined
as

a(\bfitsigma , \bfittau ) :=

\int 
\Omega 

div\bfitsigma \cdot div \bfittau +

\int 
\Omega 

\bfitsigma \ttD : \bfittau \ttD ,

b(\bfitsigma , \bfittau ) :=

\int 
\Omega 

\bfitsigma \ttD : \bfittau \ttD .

We note that a shift argument has been used to write (2.4). This has been done in
order to analyze the variational formulation with a well-posed solution operator (cf.
(2.5)).

The bilinear form a is \bfscrV -elliptic as stated in the following result.
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A702 FELIPE LEPE AND DAVID MORA

Lemma 2.1. There exists a constant \alpha > 0, depending only on \Omega , such that

a(\bfittau , \bfittau ) \geq \alpha \| \bfittau \| 2\bfd \bfi \bfv ,\Omega \forall \bfittau \in \bfscrV .

Proof. See Lemma 2.1 in [22].

According to Lemma 2.1, we are in a position to introduce the following solution
operator \bfitT , defined as

\bfitT : \bfscrV \rightarrow \bfscrV ,

\bfitf \mapsto \rightarrow \bfitT \bfitf := \widetilde \bfitsigma ,(2.5)

where \widetilde \bfitsigma \in \bfscrV is the unique solution, as a consequence of Lemma 2.1 and the Lax--
Milgram theorem, of the following source problem:

(2.6) a(\widetilde \bfitsigma , \bfittau ) = b(\bfitf , \bfittau ) \forall \bfittau \in \bfscrV .

Thus, we have that the linear operator \bfitT is well defined and bounded. Clearly
(\lambda ,\bfitsigma ) \in \BbbR \times \bfscrV solves problem (2.4) if and only if (\mu = 1/\lambda ,\bfitsigma ) is an eigenpair of \bfitT ,
with \mu \not = 0 and \bfitsigma \not = 0. Moreover, the linear operator \bfitT is self-adjoint with respect
to the inner product a(\cdot , \cdot ) in \bfscrV .

Let

(2.7) \bfscrX := \{ \bfittau \in \bfscrV : div \bfittau = 0 in \Omega \} .

It is clear that \bfitT | \bfscrX : \bfscrX \rightarrow \bfscrX reduces to the identity, leading to the conclusion that
\mu = 1 is an eigenvalue of \bfitT with associated eigenspace \bfscrX .

In reference [23] it has been shown that there exists an operator \bfitP : \bfscrV \rightarrow \bfscrV ,
which satisfies the following properties:

\bullet \bfitP is idempotent and its kernel is given by \bfscrX .
\bullet There exist C > 0 and s \in (0, 1] depending only on the geometry of \Omega such
that \bfitP (\bfscrV ) \subset Hs(\Omega )n\times n and \| \bfitP (\bfittau )\| s,\Omega \leq C\| div \bfittau \| 0,\Omega .

\bullet \bfitP (\bfscrV ) is invariant for \bfitT . Moreover, \bfitP (\bfscrV ) is orthogonal to \bfscrX with respect to
the inner product a(\cdot , \cdot ) of \bfscrV .

As an immediate consequence of the properties listed above, we have that the
space \bfscrV can be decomposed in the following direct sum \bfscrV = \bfscrX \oplus \bfitP (\bfscrV ). Moreover,
we have the following regularity result, whose proof follows the arguments of those in
[23, Proposition 3.4].

Proposition 2.1. There exists s \in (0, 1] such that

\bfitT (\bfitP (\bfscrV )) \subset \{ \bfittau \in Hs(\Omega )n\times n : div \bfittau \in H1+s(\Omega )n\} ,

and there exists C > 0 such that if \bfitsigma \ast := \bfitT \circ \bfitP (\bfittau ), then

\| \bfitsigma \ast \| s,\Omega + \| div\bfitsigma \ast \| 1+s,\Omega \leq C\| div \bfittau \| 0,\Omega \forall \bfittau \in \bfscrV ,

concluding that \bfitT | \bfitP (\bfscrV ) : \bfitP (\bfscrV ) \rightarrow \bfitP (\bfscrV ) is compact.

All the previous results lead to the following spectral characterization of operator
\bfitT proved in Theorem 3.5 of [23].

Lemma 2.2. The spectrum of \bfitT decomposes as follows: sp(\bfitT ) = \{ 0, 1\} \cup \{ \mu k\} k\in \BbbN ,
where
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DG FOR THE STOKES EIGENPROBLEM A703

\bullet \mu = 1 is an infinite-multiplicity eigenvalue of \bfitT and its associated eigenspace
is \bfscrX ,

\bullet \mu = 0 is an eigenvalue of \bfitT and its associated eigenspace is

\scrZ := \{ \bfittau \in \bfscrV : \bfittau \ttD = 0\} = \{ qI : q \in H1(\Omega ) and q = 0 on\Gamma N\} ,

\bullet \{ \mu k\} k\in \BbbN \subset (0, 1) is a sequence of nondefective finite-multiplicity eigenvalues
of \bfitT which converge to 0.

Moreover, the following additional regularity result holds true for eigenfunctions \bfitsigma 
associated to some eigenvalue \mu \in (0, 1). The proof follows from a classical bootstrap
trick.

Proposition 2.2. Let \bfitsigma \in \bfscrV be an eigenfunction associated with an eigenvalue
\mu \in (0, 1). Then, there exists a positive constant C > 0, depending on the eigenvalue,
such that

\| \bfitsigma \| r,\Omega + \| div\bfitsigma \| 1+r,\Omega \leq C\| div\bfitsigma \| 0,\Omega ,

with r > 0.

3. The DG discretization. In this section, we will introduce symmetric and
nonsymmetric DG discretizations to solve the Stokes eigenvalue problem. We start
with standard definitions, then we introduce the DG spaces, jumps, averages, and the
bilinear forms.

Let \scrT h be a shape regular family of meshes which subdivide the domain \=\Omega into
triangles/tetrahedra K. Let hK denote the diameter of the element K and h the
maximum of the diameters of all the elements of the mesh, i.e., h := maxK\in \scrT h

\{ hK\} .
Let F be a closed set. We say that F \subset \Omega is an interior edge/face if F has a

positive (n - 1)-dimensional measure and if there are distinct elements K and K \prime such
that F = \=K \cap \=K \prime . A closed subset F \subset \Omega is a boundary edge/face if there exists
K \in \scrT h such that F is an edge/face of K and F = \=K \cap \partial \Omega . Let \scrF 0

h and \scrF \partial 
h be the

sets of interior edges/faces and boundary edges/faces, respectively. We assume that
the boundary mesh \scrF \partial 

h is compatible with the partition \partial \Omega = \Gamma D \cup \Gamma N , namely,\bigcup 
F\in \scrF D

h

F = \Gamma D and
\bigcup 

F\in \scrF N
h

F = \Gamma N ,

where \scrF D
h := \{ F \in \scrF \partial 

h ; F \subset \Gamma D\} and \scrF N
h := \{ F \in \scrF \partial 

h ; F \subset \Gamma N\} . Also we denote
\scrF h := \scrF 0

h \cup \scrF \partial 
h and \scrF \ast 

h := \scrF 0
h \cup \scrF N

h . Also, for any element K \in \scrT h, we introduce the
set \scrF (K) := \{ F \in \scrF h; F \subset \partial K\} of edges/faces composing the boundary of K.

Let \BbbP m(\scrT h) be the space of piecewise polynomials respect with to \scrT h of degree at
most m \geq 0, namely,

\BbbP m(\scrT h) :=
\bigl\{ 
v \in L2(\Omega ); v| K \in \BbbP m(K) \forall K \in \scrT h

\bigr\} 
.

For any k \geq 1, we define the finite element spaces \bfscrV h := \BbbP k(\scrT h)n\times n and \bfscrV c
h :=

\bfscrV h \cap \bfscrV . We observe that the space \bfscrV c
h is the BDM finite element space. Now, we

recall some well-known properties of the space \bfscrV c
h (see [4]).

Let \Pi h : Ht(\Omega )n\times n \rightarrow \bfscrV c
h be the tensorial version of the BDM-interpolation

operator, which satisfies the following classical error estimate (see [16, Theorem 3.16]):

(3.1) \| \bfittau  - \Pi h\bfittau \| 0,\Omega \leq Chmin\{ t,k+1\} \| \bfittau \| t,\Omega \forall \bfittau \in Ht(\Omega )n\times n, t > 1/2.
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A704 FELIPE LEPE AND DAVID MORA

Also, for less regular tensorial fields we have the following estimate:
(3.2)
\| \bfittau  - \Pi h\bfittau \| 0,\Omega \leq Cht(\| \bfittau \| t,\Omega + \| \bfittau \| \bfd \bfi \bfv ,\Omega ) \forall \bfittau \in Ht(\Omega )n\times n \cap H(div,\Omega ), t \in (0, 1/2].

Moreover, the following commuting diagram property holds true:

(3.3) \| div(\bfittau  - \Pi h\bfittau )\| 0,\Omega = \| div \bfittau  - \scrR h div \bfittau \| 0,\Omega \leq Chmin\{ t,k\} \| div \bfittau \| t,\Omega 

for div \bfittau \in Ht(\Omega )n and \scrR h being the L2(\Omega )n-orthogonal projection onto \BbbP k - 1(\scrT h)n.
For any t \geq 0, we define the following broken Sobolev space:

Ht(\scrT h)n := \{ \bfitv \in L2(\Omega )n; \bfitv | K \in Ht(K)n \forall K \in \scrT h\} .

Now, for \bfitv := \{ \bfitv K\} \in Ht(\scrT h)n and \bfittau := \{ \bfittau K\} \in Ht(\scrT h)n\times n the components \bfitv K

and \bfittau K represent the restrictions \bfitv | K and \bfittau | K ; when it is convenient, we will drop
the subscript for these restrictions. The space of the skeletons of the triangulations
\scrT h is defined by L2(\scrF h) :=

\prod 
F\in \scrF h

L2(F ).

In the forthcoming analysis, h\scrF \in L2(\scrF h) will represent the piecewise constant
function defined by h\scrF | F := hF for all F \in \scrF h, where hF denotes the diameter of
edge/face F .

Next, for \bfitv \in Ht(\scrT h)n, with t > 1/2, we define averages \{ \bfitv \} \in L2(\scrF h)
n and

jumps J\bfitv K \in L2(\scrF h) as follows:

\{ \bfitv \} F := (\bfitv K + \bfitv K\prime )/2 and J\bfitv KF := \bfitv K \cdot \bfitn K + \bfitv K\prime \cdot \bfitn K\prime \forall F \in \scrF (K) \cap \scrF (K \prime ),

where \bfitn K is the outward unit normal vector to \partial K. Also, on the boundary \partial \Omega 
and for all F \in \scrF (K) \cap \partial \Omega , the averages and jumps are defined by \{ \bfitv \} F := \bfitv K and
J\bfitv KF := \bfitv K \cdot \bfitn , respectively. For tensorial fields the previous definitions are analogous.

For a tensor field \bfittau \in \bfscrV h we define divh \bfittau \in L2(\Omega )n by divh \bfittau | K = div(\bfittau | K) for
all K \in \scrT h and we endow \bfscrV (h) := \bfscrV + \bfscrV h with the seminorm

| \bfittau | 2\bfscrV (h) := \| divh \bfittau \| 20,\Omega + \| h - 1/2
\scrF J\bfittau K\| 20,\scrF \ast 

h
,

which is well defined in \bfscrV (h) and the norm

\| \bfittau \| 2DG := | \bfittau | 2\bfscrV (h) + \| \bfittau \| 20,\Omega .

In our analysis, we will need the following discrete trace inequality (see [10]):

(3.4) \| h1/2\{ v\} \| 0,\scrF \leq C\| v\| 0,\Omega \forall v \in \BbbP k(\scrT h).

Now, we introduce the symmetric and nonsymmetric DG discretizations to solve
the Stokes eigenvalue problem (2.4): Find \lambda h \in \BbbC and 0 \not = \bfitsigma h \in \bfscrV h such that

(3.5) ah(\bfitsigma h, \bfittau h) = \lambda hb(\bfitsigma h, \bfittau h) \forall \bfittau h \in \bfscrV h,

where the bilinear form ah : \bfscrV h \times \bfscrV h \rightarrow \BbbC is defined by

ah(\bfitsigma h, \bfittau h) :=

\int 
\Omega 

divh \bfitsigma h \cdot divh \bfittau h +

\int 
\Omega 

\bfitsigma \ttD 
h : \bfittau \ttD 

h

+

\int 
\scrF \ast 

h

\tta Sh
 - 1
\scrF J\bfitsigma hK \cdot J\bfittau hK  - 

\int 
\scrF \ast 

h

\{ divh \bfitsigma h\} \cdot J\bfittau hK  - \varepsilon 

\int 
\scrF \ast 

h

\{ divh \bfittau h\} \cdot J\bfitsigma hK,(3.6)

D
ow

nl
oa

de
d 

03
/1

7/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DG FOR THE STOKES EIGENPROBLEM A705

where \tta S > 0 is the so-called stabilization parameter and \varepsilon \in \{  - 1, 0, 1\} . As studied
in [2], the Hermitian or non-Hermitian nature of the DG method lies in the choice
of \varepsilon . If \varepsilon = 1 we obtain the classic symmetric interior penalty (SIP) method as the
one studied, for example, in [18], for the elasticity eigenproblem. If \varepsilon =  - 1 we obtain
the nonsymmetric interior penalty method (NIP) and if \varepsilon = 0 the incomplete interior
penalty method (IIP).

Notice that the essential boundary condition for the pseudostress tensor is directly
incorporated within the DG schemes.

We also observe that for \varepsilon = 1 all the eigenvalues of the discrete problem (3.5) are
real. On the other hand, in the case of nonsymmetric methods we expect to obtain
complex eigenvalues with the discrete method (see Remark 5.1).

For the analysis, we introduce the following norm:

\| \bfitsigma \| \ast DG :=
\bigl( 
\| \bfitsigma \| 2DG + \| h1/2

\scrF h
\{ div\bfitsigma \} \| 20,\scrF \ast 

h

\bigr) 1/2
.

It is easy to check that for all \bfitsigma , \bfittau \in \bfscrV (h), and div\bfitsigma ,div \bfittau \in Ht(\Omega )n with t >
1/2, the bilinear form ah(\cdot , \cdot ) is bounded. In fact, there exists a constant C > 0,
independent of h, such that

(3.7)
\bigm| \bigm| ah(\bfitsigma , \bfittau )\bigm| \bigm| \leq C\| \bfitsigma \| \ast DG\| \bfittau \| \ast DG.

Moreover, by means of (3.4) it is possible to prove that for all \bfittau h \in \bfscrV h there exists
a positive constant MDG such that

(3.8) | ah(\bfitsigma , \bfittau h)| \leq MDG\| \bfitsigma \| \ast DG\| \bfittau h\| DG.

In order to analyze the discrete eigenvalue problem (3.5), we need to decompose
the space \bfscrV c

h. With this aim, we consider the following subspace of \bfscrX (cf. (2.7)):

\bfscrX h := \{ \bfittau h \in \bfscrV c
h : div \bfittau h = 0\} .

The following result shows the existence of the discrete counterpart of operator
\bfitP and establishes an approximation estimate.

Lemma 3.1. There exist a projection \bfitP h : \bfscrV c
h \rightarrow \bfscrV c

h with kernel \bfscrX h and a
constant C > 0, independent of h, such that

\| (\bfitP  - \bfitP h)\bfittau h\| \bfd \bfi \bfv ,\Omega \leq C hs\| div \bfittau h\| 0,\Omega \forall \bfittau h \in \bfscrV c
h,

where s \in (0, 1] is such that Proposition 2.1 holds true.

Proof. See [23, Lemma 4.4].

The following technical result, proved in [21, Proposition 5.2], will be useful in
the forthcoming analysis.

Proposition 3.1. There exist a projection \scrI h : \bfscrV h \rightarrow \bfscrV c
h and two constants

C, \=C > 0, independent of h, such that

(3.9) C \| \bfittau \| DG \leq 
\Bigl( 
\| \scrI h\bfittau \| 2\bfd \bfi \bfv ,\Omega + \| h - 1/2

\scrF J\bfittau K\| 20,\scrF \ast 
h

\Bigr) 1/2

\leq \=C \| \bfittau \| DG \forall \bfittau \in \bfscrV h.

Moreover, we have that

(3.10) \| divh(\bfittau  - \scrI h\bfittau )\| 20,\Omega +
\sum 

K\in \scrT h

h - 2
K \| \bfittau  - \scrI h\bfittau \| 20,K \leq C \| h - 1/2

\scrF J\bfittau K\| 20,\scrF \ast 
h

with C > 0 independent of h.
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Now we will prove that ah(\cdot , \cdot ) is elliptic in \bfscrV h for any \varepsilon \in \{  - 1, 0, 1\} .
Lemma 3.2. For any \varepsilon \in \{  - 1, 0, 1\} , there exists a parameter \tta \ast > 0 such that for

all \tta S \geq \tta \ast there holds

ah(\bfittau h, \bfittau h) \geq \alpha DG\| \bfittau h\| 2DG \forall \bfittau h \in \bfscrV h,

where \alpha DG > 0, independent of h.

Proof. First, we have that there exists a positive constant \alpha c (cf. Lemma 2.1)
such that

a(\bfittau \ast 
h, \bfittau 

\ast 
h) \geq \alpha c\| \bfittau \ast 

h\| 2\bfd \bfi \bfv ,\Omega \forall \bfittau \ast 
h \in \bfscrV c

h.

Hence, there exists an operator \Theta : \bfscrV c
h \rightarrow \bfscrV c

h that satisfies a(\bfittau \ast 
h,\Theta \bfittau \ast 

h) = \alpha c\| \bfittau \ast 
h\| 2\bfd \bfi \bfv ,\Omega ,

with \| \Theta \bfittau \ast 
h\| \bfd \bfi \bfv ,\Omega \leq \| \bfittau \ast 

h\| \bfd \bfi \bfv ,\Omega .
Let \bfittau h \in \bfscrV h which we decompose as follows \bfittau h := \widetilde \bfittau h+\bfittau c

h with \bfittau c
h := \scrI h\bfittau h \in \bfscrV c

h.
Hence,

(3.11) ah(\bfittau h,\Theta \bfittau c
h + \widetilde \bfittau h) = \alpha c\| \bfittau c

h\| 2\bfd \bfi \bfv ,\Omega + ah(\bfittau 
c
h, \widetilde \bfittau h) + ah(\widetilde \bfittau h,\Theta \bfittau c

h) + ah(\widetilde \bfittau h, \widetilde \bfittau h).

Hence, we need to bound the last three terms on the right-hand side of the above
equality. For the last term of the right-hand side we have

ah(\widetilde \bfittau h, \widetilde \bfittau h) \geq \| divh \widetilde \bfittau h\| 20,\Omega + \| \widetilde \bfittau \ttD 
h\| 20,\Omega + \tta S\| h - 1/2

\scrF J\widetilde \bfittau hK\| 20,\scrF \ast 
h

 - (1 + \varepsilon ) \| h1/2
\scrF \ast 

h
\{ divh \widetilde \bfittau h\} \| 0,\scrF \ast 

h
\| h - 1/2

\scrF \ast 
h

J\widetilde \bfittau hK\| 0,\scrF \ast 
h

\geq \tta S\| h - 1/2
\scrF J\widetilde \bfittau hK\| 20,\scrF \ast 

h
+

\biggl( 
1 + \varepsilon 

2

\biggr) \Bigl( 
 - \| h1/2

\scrF \ast 
h
\{ divh \widetilde \bfittau h\} \| 20,\scrF \ast 

h
 - \| h - 1/2

\scrF \ast 
h

J\widetilde \bfittau hK\| 20,\scrF \ast 
h

\Bigr) 
= \tta S\| h - 1/2

\scrF J\bfittau hK\| 20,\scrF \ast 
h
 - \widehat C \biggl( 

1 + \varepsilon 

2

\biggr) 
\| h - 1/2

\scrF \ast 
h

J\bfittau hK\| 20,\scrF \ast 
h
,

where we have used the decomposition \widetilde \bfittau h = \bfittau h  - \bfittau c
h, (3.4), and (3.10). Moreover, \widehat C

is a constant which depends on the constants of estimates (3.4) and (3.10). Hence,

(3.12) ah(\widetilde \bfittau h, \widetilde \bfittau h) \geq (\tta S  - C1)\| h - 1/2
\scrF \ast 

h
J\bfittau hK\| 20,\scrF \ast 

h
,

with C1 = \widehat C \bigl( 
1+\varepsilon 
2

\bigr) 
\geq 0 independent of h.

Next, we bound ah(\bfittau 
c
h, \widetilde \bfittau h) (cf. (3.11)), considering once again the decomposition

\bfittau h := \widetilde \bfittau h + \bfittau c
h and applying (3.10) as follows:

ah(\bfittau 
c
h, \widetilde \bfittau h) \geq  - \| div \bfittau c

h\| 0,\Omega \| divh \widetilde \bfittau h\| 0,\Omega  - \| (\bfittau c
h)

\ttD \| 0,\Omega \| \widetilde \bfittau \ttD \| 0,\Omega 
 - \| h1/2

\scrF \ast 
h
\{ div \bfittau c

h\} \| 0,\scrF \ast 
h
\| h - 1/2

\scrF \ast 
h

J\widetilde \bfittau hK\| 0,\scrF \ast 
h
,

\geq  - C2\| div \bfittau c
h\| 0,\Omega \| h

 - 1/2
\scrF \ast 

h
J\bfittau hK\| 0,\scrF \ast 

h
 - C3\| \bfittau c\| 0,\Omega \| \widetilde \bfittau h\| 0,\Omega 

 - C4\| div \bfittau c
h\| 0,\Omega \| h

 - 1/2
\scrF \ast 

h
J\bfittau hK\| 0,\scrF \ast 

h
,

\geq  - C5\| \bfittau c
h\| \bfd \bfi \bfv ,\Omega \| h

 - 1/2
\scrF \ast 

h
J\bfittau hK\| 0,\scrF \ast 

h
.

Thus,

(3.13) ah(\bfittau 
c
h, \widetilde \bfittau h) \geq  - \alpha c

4
\| \bfittau c

h\| 2\bfd \bfi \bfv ,\Omega  - C6\| h - 1/2
\scrF \ast 

h
J\bfittau K\| 20,\scrF \ast 

h
.
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On other other hand, to bound ah(\widetilde \bfittau h,\Theta \bfittau c
h) (cf. (3.11)), we repeat the previous

arguments to obtain that for any \varepsilon \in \{  - 1, 0, 1\} , there exists C7 > 0, depending on
the constants of estimates (3.4) and (3.10), such that

ah(\widetilde \bfittau h,\Theta \bfittau c
h) \geq C7\| \bfittau c

h\| \bfd \bfi \bfv ,\Omega \| h
 - 1/2
\scrF \ast 

h
J\bfittau hK\| 0,\scrF \ast 

h
.

Hence, we obtain that there exists a positive constant C8 such that

(3.14) ah(\widetilde \bfittau h,\Theta \bfittau c
h) \geq  - \alpha c

4
\| \bfittau c

h\| 2\bfd \bfi \bfv ,\Omega  - C8\| h - 1/2
\scrF \ast 

h
J\bfittau hK\| 20,\scrF \ast 

h
.

Now, adding (3.12), (3.13), and (3.14), defining \tta \ast :=
\alpha c

2
+C9 with C9 = C1+C6+C8

a constant independent of h, choosing \tta S such that \tta S > \tta \ast , and replacing this in
(3.11) we obtain

ah(\bfittau h,\Theta \bfittau c
h + \widetilde \bfittau h) \geq 

\alpha c

2

\Bigl( 
\| \bfittau c

h\| \bfd \bfi \bfv ,\Omega + \| h - 1/2
\scrF \ast 

h
J\bfittau hK\| 20,\scrF \ast 

h

\Bigr) 
.

Finally, applying (3.9) in the last estimate we conclude the proof.

Remark 3.1. Notice that Lemma 3.2 holds true for both Hermitian and non-
Hermitian methods. Moreover, the stability of the DG method depends on some
particular stabilization parameter \tta \ast . This fact will be relevant for the numerical
experiments in the sense that the appearance of possible spurious modes will depend
on how small this parameter is.

Since the bilinear form ah(\cdot , \cdot ) is coercive for any \varepsilon \in \{  - 1, 0, 1\} , we are in a
position to introduce the discrete solution operator associated to (3.5):

\bfitT \varepsilon 
h : \bfscrV \rightarrow \bfscrV h,

\bfitf \mapsto \rightarrow \bfitT \varepsilon 
h\bfitf := \widetilde \bfitsigma \varepsilon 

h,
(3.15)

where \widetilde \bfitsigma \varepsilon 
h \in \bfscrV h is the unique solution, as a consequence of Lemma 3.2 and the Lax--

Milgram theorem, of the following discrete source problem:

ah(\widetilde \bfitsigma \varepsilon 
h, \bfittau h) = b(\bfitf , \bfittau h) \forall \bfittau h \in \bfscrV h.

Clearly \bfitT \varepsilon 
h is well defined. Moreover, there exists a constant C > 0 independent of h

such that

\| \bfitT \varepsilon 
h\bfitf \| DG \leq C\| \bfitf \| \bfd \bfi \bfv ,\Omega \forall \bfitf \in \bfscrV .

It is easy to check that (\lambda h,\bfitsigma h) \in \BbbC \times \bfscrV h is a solution of problem (3.5) if and
only if (\mu h,\bfitsigma h) \in \BbbC \times \bfscrV h with \mu h = 1/\lambda h is an eigenpair of \bfitT \varepsilon 

h, i.e.,

\bfitT \varepsilon 
h\bfitsigma h =

1

\mu h
\bfitsigma h.

In what follows, we write \bfitT h instead of \bfitT \varepsilon 
h, for simplicity. The following re-

sult gives an approximation property between the continuous and discrete solution
operators.

Lemma 3.3. Let \bfitf \in \bfitP (\bfscrV ) and \widetilde \bfitsigma := \bfitT \bfitf . Then, for any \varepsilon \in \{  - 1, 0, 1\} 

(3.16) \| (\bfitT  - \bfitT h)\bfitf \| DG \leq MDG

\alpha DG
inf

\bfittau h\in \bfscrV h

\| \bfitT \bfitf  - \bfittau h\| \ast DG,
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where MDG and \alpha DG are the constants of (3.8) and Lemma 3.2, respectively. More-
over, the estimate

(3.17) \| (\bfitT  - \bfitT h)\bfitf \| DG \leq C hs (\| \widetilde \bfitsigma \| s,\Omega + \| div \widetilde \bfitsigma \| 1+s,\Omega ) ,

holds true with a constant C > 0 independent of h and s \in (0, 1] as in Proposition 2.1.

Proof. We start by noticing that the DG method is consistent. In fact, we have

(3.18) ah
\bigl( 
(\bfitT  - \bfitT h)\bfitf , \bfittau h

\bigr) 
= 0 \forall \bfittau h \in \bfscrV h.

Indeed, since div \widetilde \bfitsigma \in H1+s(\Omega )n, we have

(3.19) ah(\widetilde \bfitsigma , \bfittau h) =

\int 
\Omega 

div \widetilde \bfitsigma \cdot divh \bfittau h +

\int 
\Omega 

\widetilde \bfitsigma \ttD : \bfittau \ttD 
h  - 

\int 
\scrF \ast 

h

\{ div \widetilde \bfitsigma \} \cdot J\bfittau hK.

It is straightforward to deduce from (2.6)

(3.20)  - \nabla (div \widetilde \bfitsigma ) = \bfitf \ttD  - \widetilde \bfitsigma \ttD .

Moreover\int 
\Omega 

div \widetilde \bfitsigma \cdot divh \bfittau h =  - 
\sum 

K\in \scrT h

\int 
K

\nabla (div \widetilde \bfitsigma ) : \bfittau h +
\sum 

K\in \scrT h

\int 
\partial K

div \widetilde \bfitsigma \cdot \bfittau h\bfitn K

=  - 
\sum 

K\in \scrT h

\int 
K

\nabla (div \widetilde \bfitsigma ) : \bfittau h +

\int 
\scrF \ast 

h

\{ div \widetilde \bfitsigma \} \cdot J\bfittau hK.

Substituting the last identity and (3.20) into (3.19) we obtain

ah(\widetilde \bfitsigma , \bfittau h) = b(\bfitf , \bfittau h) \forall \bfittau h \in \bfscrV h

and (3.18) follows.
The C\'ea estimate (3.16) follows in the usual way by taking advantage of (3.18),

the discrete ellipticity, estimate (3.7), and the triangle inequality.
Moreover, we have from (3.16) that

\| (\bfitT  - \bfitT h)\bfitf \| DG \leq MDG

\alpha DG
\| \widetilde \bfitsigma  - \Pi h\widetilde \bfitsigma \| \ast DG.

Finally, to estimate the term \| \widetilde \bfitsigma  - \Pi h\widetilde \bfitsigma \| \ast DG it is enough to follow the arguments
presented in Theorem 4.1 of [18] and using the regularity result provided by Proposi-
tion 2.1.

In what follows, for a linear, continuous operator A : X \rightarrow Y , with X and Y
Hilbert spaces, we denote by \| A\| \scrL (X,Y ) the norm

\| A\| \scrL (X,Y ) := sup
0X \not =x\in X

\| A(x)\| Y
\| x\| X

.

The following two lemmas are technical results that will be used to prove conver-
gence of the proposed DG discretization.

Lemma 3.4. There exists a constant C > 0 independent of h, such that for any
\varepsilon \in \{  - 1, 0, 1\} and \bfittau \in \bfscrV 

\| (\bfitT  - \bfitT h)\bfitP \bfittau \| DG \leq C hs \| div \bfittau \| 0,\Omega ,

with s \in (0, 1] as in Proposition 2.1.
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Proof. The result is a direct consequence of Lemma 3.3 (cf. (3.17)) and Proposi-
tion 2.1.

Lemma 3.5. There exists a constant C > 0 independent of h such that

\| (\bfitT  - \bfitT h)\bfittau h\| DG \leq C hs \| \bfittau h\| DG \forall \bfittau h \in \bfscrV h,

with s \in (0, 1] as in Proposition 2.1.

Proof. For any \bfittau h \in \bfscrV h we consider the splitting \bfittau h = \bfittau c
h + \widetilde \bfittau h with \bfittau c

h :=
\scrI h\bfittau h \in \bfscrV c

h. We have that

(\bfitT  - \bfitT h)\bfittau h = (\bfitT  - \bfitT h)\widetilde \bfittau h + (\bfitT  - \bfitT h)\bfittau 
c
h = (\bfitT  - \bfitT h)\widetilde \bfittau h + (\bfitT  - \bfitT h)\bfitP h\bfittau 

c
h,

where the last identity is due to the fact that (\bfitI  - \bfitP h)\bfittau 
c
h \in \bfscrX h and \bfitT  - \bfitT h vanishes

identically on this subspace. It follows that

(\bfitT  - \bfitT h)\bfittau h = (\bfitT  - \bfitT h)\widetilde \bfittau h + (\bfitT  - \bfitT h)(\bfitP h  - \bfitP )\bfittau c
h + (\bfitT  - \bfitT h)\bfitP \bfittau c

h.

Applying the triangle inequality with the boundedness of \bfitT and \bfitT h we have

\| (\bfitT  - \bfitT h)\bfittau h\| DG \leq \| (\bfitT  - \bfitT h)\widetilde \bfittau h\| DG + \| (\bfitT  - \bfitT h)(\bfitP h  - \bfitP )\bfittau c
h\| DG

+ \| (\bfitT  - \bfitT h)\bfitP \bfittau c
h\| DG

\leq 
\Bigl( 
\| \bfitT \| \scrL ([L2(\Omega )n\times n]2,\bfscrV ) + \| \bfitT h\| \scrL ([L2(\Omega )n\times n]2,\bfscrV h)

\Bigr) \Bigl( 
\| \widetilde \bfittau h\| 0,\Omega 

+ \| (\bfitP h  - \bfitP )\bfittau c
h\| \bfd \bfi \bfv ,\Omega 

\Bigr) 
+ \| (\bfitT  - \bfitT h)\bfitP \bfittau c

h\| DG.

Using (3.10), Lemma 3.1, and Lemma 3.4 we have that

\| \widetilde \bfittau h\| 0,\Omega \leq Ch\| \bfittau h\| DG,

\| (\bfitP h  - \bfitP )\bfittau c
h\| \bfd \bfi \bfv ,\Omega \leq Chs\| div \bfittau c

h\| 0,\Omega \leq Chs\| \bfittau h\| DG,

and
\| (\bfitT  - \bfitT h)\bfitP \bfittau c

h\| DG \leq Chs\| div \bfittau c
h\| 0,\Omega \leq Chs\| \bfittau h\| DG,

respectively, which gives the result.

4. Convergence and error estimates. In this section, we will adapt the re-
sults from [8, 9] to establish spectral correctness of the proposed DG method, as well
as to obtain error estimates for the eigenvalues and eigenfunctions.

In what follows, we will denote by \| \cdot \| \scrL (\bfscrV (h),\bfscrV (h)) the corresponding norm acting
from \bfscrV (h) into the same space. In addition, we will denote by \| \cdot \| \scrL (\bfscrV h,\bfscrV (h)) the norm
of an operator restricted to the discrete subspace \bfscrV h; namely, if \bfitL : \bfscrV (h) \rightarrow \bfscrV (h),
then

\| \bfitL \| \scrL (\bfscrV h,\bfscrV (h)) := sup
\bfzero \not =\bfittau h\in \bfscrV h

\| \bfitL \bfittau h\| DG

\| \bfittau h\| DG
.

As a direct consequence of Lemma 3.4 and the density of smooth functions in
\bfscrV , we have the following properties, P1 and P2, which are all that we need to es-
tablish spectral correctness (see [8]) for all the discrete methods (symmetric or non-
symmetric).

\bullet P1. \| \bfitT  - \bfitT h\| \scrL (\bfscrV h,\bfscrV (h)) \rightarrow 0 as h \rightarrow 0.
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\bullet P2. For all \bfittau \in \bfscrV , there holds

inf
\bfittau \in \bfscrV h

\| \bfittau  - \bfittau h\| DG \rightarrow 0 as h \rightarrow 0.

As we mentioned before, the goal of this section is to obtain convergence and
error estimates of the DG schemes (see [2, 6, 18] for other DG spectral analyses). In
order to do this, first we will prove that the continuous resolvent is bounded in the
DG norm.

From now on, \BbbD denotes the unitary disk defined in the complex plane by \BbbD :=
\{ z \in \BbbC : | z| \leq 1\} where z \in sp(\bfitT ).

Lemma 4.1. There exists a constant C > 0 independent of h such that for all
z \in \BbbD \setminus sp(\bfitT ) there holds

\| (z\bfitI  - \bfitT )\bfittau \| DG \geq C| z| \| \bfittau \| DG \forall \bfittau \in \bfscrV (h).

Proof. For \bfittau \in \bfscrV (h), we introduce

\bfitsigma \ast := \bfitT \bfittau \in \bfscrV 

and notice that

(z\bfitI  - \bfitT )\bfitsigma \ast = \bfitT (z\bfitI  - \bfitT )\bfittau .

Since \bfitT : \bfscrV \rightarrow \bfscrV is a bounded operator and using the fact that \| (z\bfitI  - \bfitT )\bfitsigma \| \bfd \bfi \bfv ,\Omega \geq 
C\| \bfitsigma \| \bfd \bfi \bfv ,\Omega for z /\in sp(\bfitT ) (see Proposition 2.4 in [22], for instance), we have that

C\| \bfitsigma \ast \| \bfd \bfi \bfv ,\Omega \leq \| (z\bfitI  - \bfitT )\bfitsigma \ast \| \bfd \bfi \bfv ,\Omega \leq \| \bfitT (z\bfitI  - \bfitT )\bfittau \| \bfd \bfi \bfv ,\Omega 
\leq \| \bfitT \| \scrL ([L2(\Omega )n\times n]2,\bfscrV )\| (z\bfitI  - \bfitT )\bfittau \| DG.

On the other hand, we have

\| \bfittau \| DG \leq | z|  - 1\| \bfitsigma \ast \| \bfd \bfi \bfv ,\Omega + | z|  - 1\| (z\bfitI  - \bfitT )\bfittau \| DG

\leq | z|  - 1
\bigl( 
1 + C\| \bfitT \| \scrL ([L2(\Omega )n\times n]2,\bfscrV )

\bigr) 
\| (z\bfitI  - \bfitT )\bfittau \| DG

\leq | z|  - 1C\| (z\bfitI  - \bfitT )\bfittau \| DG.

Hence, C| z| \| \bfittau \| DG \leq \| (z\bfitI  - \bfitT )\bfittau \| DG, which conclude the proof.

Remark 4.1. Lemma 4.1 implies that the resolvent of \bfitT is bounded. This means
that if J is a compact subset of \BbbD \setminus sp(\bfitT ), then there exists C > 0, independent of h,
such that

(4.1) \| (z\bfitI  - \bfitT ) - 1\| \scrL (\bfscrV (h),\bfscrV (h)) \leq C \forall z \in J.

Our next goal is to derive the boundedness of the discrete resolvent for h small
enough. The following results give us this property and their proofs are not included
since they are similar to those in Lemmas 5.1 and 5.2 of [18].

Lemma 4.2. If z \in \BbbD \setminus sp(\bfitT ), there exists h0 > 0 such that for all h \leq h0,

\| (z\bfitI  - \bfitT h)\bfittau h\| DG \geq C \| \bfittau h\| DG \forall \bfittau h \in \bfscrV h,

with C > 0 independent of h but depending on | z| .
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Lemma 4.3. If z \in \BbbD \setminus sp(\bfitT ), there exists h0 > 0 such that for all h \leq h0,

\| (z\bfitI  - \bfitT h)\bfittau \| DG \geq C \| \bfittau \| DG \forall \bfittau \in \bfscrV (h),

with C > 0 independent of h but depending on | z| 2.
The previous lemma states that if we consider a compact subset E of the complex

plane such that E \cap sp(\bfitT ) = \emptyset for h small enough and for all z \in E, operator z\bfitI  - \bfitT h

is invertible. Moreover, there exists a positive constant C independent of h such that
\| (z\bfitI  - \bfitT h)

 - 1\| \scrL (\bfscrV (h).\bfscrV (h)) \leq C for all z \in E. This fact is important since it determines
that the numerical method is spurious free for h small enough. This is summarized
in the following result proved in [8].

Theorem 4.1. Let E \subset \BbbC be a compact subset not intersecting sp(\bfitT ). Then,
there exists h0 > 0 such that, if h \leq h0, then E \cap sp(\bfitT h) = \emptyset .

In order to prove convergence between eigenspaces, we introduce the following
definitions: let \bfitx \in \bfscrV (h) and \BbbE and \BbbF be closed subspaces of \bfscrV (h). We define

\delta (\bfitx ,\BbbE ) := inf
\bfity \in \BbbE 

\| \bfitx  - \bfity \| DG, \delta (\BbbE ,\BbbF ) := sup
\bfity \in \BbbE : \| \bfity \| DG=1

\delta (\bfity ,\BbbF ).

Hence, the gap between two closed subspaces is defined by

\widehat \delta (\BbbE ,\BbbF ) := max\{ \delta (\BbbE ,\BbbF ), \delta (\BbbF ,\BbbE )\} .

Let \kappa \in (0, 1) be an isolated eigenvalue of \bfitT and let D an open disk in the
complex plane with boundary \gamma such that \kappa is the only eigenvalue of \bfitT lying in
D and \gamma \cap sp(\bfitT ) = \emptyset . We introduce the spectral projector corresponding to the
continuous and discrete solution operators \bfitT and \bfitT h, respectively,

\bfscrE :=
1

2\pi i

\int 
\gamma 

(z\bfitI  - \bfitT )
 - 1

dz : \bfscrV (h)  - \rightarrow \bfscrV (h),

\bfscrE h :=
1

2\pi i

\int 
\gamma 

(z\bfitI  - \bfitT h)
 - 1

dz : \bfscrV (h)  - \rightarrow \bfscrV (h),

where \bfscrE h is well defined and bounded uniformly in h due to (4.1). Moreover, \bfscrE | \bfscrV is a
spectral projection in \bfscrV onto the (finite dimensional) eigenspace \bfscrE (\bfscrV ) corresponding
to the eigenvalue \kappa of \bfitT . In fact, we have that (see [18] for further details)

\bfscrE (\bfscrV (h)) = \bfscrE (\bfscrV ).

Moreover, \bfscrE h| \bfscrV h
is a projector in \bfscrV h onto the eigenspace \bfscrE h(\bfscrV h) corresponding

to the eigenvalues of \bfitT h : \bfscrV h \rightarrow \bfscrV h contained in \gamma . We also have that

\bfscrE h(\bfscrV (h)) = \bfscrE h(\bfscrV h).

Now, we will compare \bfscrE h(\bfscrV h) to \bfscrE (\bfscrV ) in terms of the gap \widehat \delta . The proof of the
next auxiliary result follows from the definition of \bfscrE and \bfscrE h.

Lemma 4.4. There exists C > 0 independent of h, such that

\| \bfscrE  - \bfscrE h\| \scrL (\bfscrV h,\bfscrV (h)) \leq C\| \bfitT  - \bfitT h\| \scrL (\bfscrV h,\bfscrV (h)).
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The following result will be used to establish the approximation properties of
the eigenfunctions of the continuous problem by means of those of the discrete DG
discretizations.

Lemma 4.5. There exists a positive constant C independent of h such that\widehat \delta (\bfscrE (\bfscrV ),\bfscrE h(\bfscrV h)) \leq C
\Bigl( 
\| \bfitT  - \bfitT h\| \scrL (\bfscrV h,\bfscrV (h)) + \delta (\bfscrE (\bfscrV ),\bfscrV h)

\Bigr) 
.

Now, we state the convergence properties of the DG methods.

Theorem 4.2. Let \kappa \in (0, 1) be an eigenvalue of \bfitT of algebraic multiplicity m
and let D\kappa be a closed disk in the complex plane centered at \kappa with boundary \gamma such
that D\kappa \cap sp(\bfitT ) = \{ \kappa \} . Let \kappa 1,h, . . . , \kappa m(h),h be the eigenvalues of \bfitT h lying in D\kappa and
repeated according to their algebraic multiplicity. Then, for any DG method defined
by \varepsilon \in \{  - 1, 0, 1\} , we have that m(h) = m for h sufficiently small and

lim
h\rightarrow 0

max
1\leq i\leq m

| \kappa  - \kappa i,h| = 0.

Moreover, if \bfscrE (\bfscrV ) is the eigenspace corresponding to \kappa and \bfscrE h(\bfscrV h) is the \bfitT h-invariant
subspace of \bfscrV h spanned by the eigenspaces corresponding to \{ \kappa i,h, i = 1, . . . ,m\} , then

lim
h\rightarrow 0

\widehat \delta (\bfscrE (\bfscrV ),\bfscrE h(\bfscrV h)) = 0.

Proof. See proof of Theorem 5.2 in [18].

Remark 4.2. The above result for the eigenvalues \kappa of \bfitT and \kappa i,h of \bfitT h yield
analogous conclusion for the eigenvalues \lambda = 1/\kappa of problem (2.4) and the eigenvalues
\lambda i,h = 1/\kappa i,h of problem (3.5).

Let us introduce the following distance:

\delta \ast (\bfscrE (\bfscrV ),\bfscrV h) := sup
\bfittau \in \bfscrE (\bfscrV ),\| \bfittau \| DG=1

inf
\bfittau h\in \bfscrV h

\| \bfittau  - \bfittau h\| \ast DG.

The following results has been proved in [18, Theorem 6.1] for a fixed eigenvalue
\kappa \in (0, 1) of \bfitT .

Theorem 4.3. For h small enough, there exists a positive constant C, indepen-
dent of h, such that \widehat \delta \bigl( \bfscrE (\bfscrV ),\bfscrE h(\bfscrV h)

\bigr) 
\leq C\delta \ast (\bfscrE (\bfscrV ),\bfscrV h).

Finally, with the aid of Proposition 2.2, we present the rates of convergence of
the proposed DG methods.

Theorem 4.4. Let r > 0 be such that \bfscrE (\bfscrV ) \subset \{ \bfittau \in Hr(\Omega )n\times n : div \bfittau \in 
H1+r(\Omega )n\} (cf. Proposition 2.2). Then, there exists C1, C2 > 0, independent of
h, such that, for \varepsilon \in \{  - 1, 0\} we have

(4.2) \widehat \delta (\bfscrE h(\bfscrV h),\bfscrE (\bfscrV )) \leq C1h
min\{ r,k\} 

and

(4.3) max
1\leq i\leq m

| \lambda  - \lambda i,h| \leq C2 h
min\{ r,k\} .

Moreover, if \varepsilon = 1, (4.2) holds true and there exists C3 > 0, independent of h, such
that

(4.4) max
1\leq i\leq m

| \lambda  - \lambda i,h| \leq C3 h
2min\{ r,k\} .
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Proof. To obtain (4.2) we follow the arguments presented in Theorem 6.2 of [18].
Notice that (4.3) is a direct consequence of (4.2).

To prove the double order of convergence in the case \varepsilon = 1, we procede as follows:
let \kappa 1,h, . . . , \kappa m,h be the eigenvalues of \bfitT h : \bfscrV h \rightarrow \bfscrV h lying in D\kappa and repeated
according to their algebraic multiplicity.

Let \bfitsigma i,h be the eigenfunction corresponding to \kappa i,h and satisfying \| \bfitsigma h\| DG = 1.
We know from Theorem 4.3 that, if h is sufficiently small,

\delta (\bfitsigma h,\bfscrE (\bfscrV )) \leq C\delta \ast (\bfscrE (\bfscrV ),\bfscrV h).

Then, there exists an eigenfunction \bfitsigma \in \bfscrE (\BbbX ) satisfying

\| \bfitsigma h  - \bfitsigma \| DG = \delta (\bfitsigma h,\bfscrE (\bfscrV )) \leq \widehat \delta (\bfscrE h(\bfscrV h),\bfscrE (\bfscrV )) \leq C\delta \ast (\bfscrE (\bfscrV ),\bfscrV h) \rightarrow 0,

as h \rightarrow 0 and hence we prove a lower and an upper bound of \| \bfitsigma \| DG with a constant
independent of h.

On the other hand, proceeding as in the proof of the consistency property in
Lemma 3.3 we obtain that

(4.5) ah(\bfitsigma , \bfittau h) = \lambda b(\bfitsigma , \bfittau h) \forall \bfittau h \in \bfscrV h,

where from now on, we work with the eigenvalues \lambda = 1/\kappa and \lambda i,h = 1/\kappa i,h (cf.
Remark 4.2).

Now, with the aid of (4.5), it is easy to show that the identity

ah(\bfitsigma  - \bfitsigma h,\bfitsigma  - \bfitsigma h) - \lambda b(\bfitsigma  - \bfitsigma h,\bfitsigma  - \bfitsigma h) = (\lambda i,h  - \lambda ) b(\bfitsigma h,\bfitsigma h)

holds true. On the other hand, due to Lemma 3.2 we have that

b(\bfitsigma h,\bfitsigma h) =
ah(\bfitsigma h,\bfitsigma h)

| \lambda i,h| 
\geq \alpha DG\| \bfitsigma h\| 2DG

| \lambda i,h| 
\geq \widehat C > 0.

Since ah(\cdot , \cdot ) and b(\cdot , \cdot ) are bounded bilinear forms, we have

\widehat C| \lambda i,h  - \lambda | \leq | ah(\bfitsigma  - \bfitsigma h,\bfitsigma  - \bfitsigma h)| + | \lambda | | b(\bfitsigma  - \bfitsigma h,\bfitsigma  - \bfitsigma h)| \leq C(\| \bfitsigma  - \bfitsigma h\| \ast DG)
2.

By definition of \| \cdot \| \ast DG we have

(4.6) \| \bfitsigma  - \bfitsigma h\| \ast DG = \| \bfitsigma  - \bfitsigma h\| DG + \| h1/2
\scrF \{ div(\bfitsigma  - \bfitsigma h)\} \| \scrF \ast 

h
.

Clearly we have

\| \bfitsigma  - \bfitsigma h\| DG \leq C\delta \ast (\bfscrE (\bfscrV ),\bfscrV h) \leq Chmin\{ r,k\} (\| \bfitsigma \| r,\Omega + \| div\bfitsigma \| 1+r,\Omega )

\leq Chmin\{ r,k\} \| div\bfitsigma \| 0,\Omega ,

where we have used Proposition 2.2.
To bound the second term in (4.6), we follow the arguments in the proof of

Theorem 6.2 of [18], which is enough to conclude the proof.

5. Numerical test. This section reports some numerical results for the three
different DG discretizations to solve the Stokes eigenvalue problem introduced in (3.5)
and obtained with \varepsilon \in \{  - 1, 0, 1\} . These results have been obtained using a FEniCS
code [19] and the MATLAB solver \tte \tti \ttg \tts . We will present two different situations:
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N = 4 N = 6

Fig. 1. Uniform meshes.

The first consists of applying the method to solve the Stokes eigenvalue problem
considering mixed boundary conditions to observe if the method introduces spurious
eigenvalues. In particular, we will analyze the influence stabilization parameter \tta S .
We note that others spectral analyses using DG methods introduce spurious eigen-
values (see, for instance, [18]). On the other hand, in the second test we apply the
method considering homogeneous Dirichlet conditions in order to approximate smooth
eigenfunctions and obtain rates of convergence. These two scenarios will be tested for
the SIP (\varepsilon = 1), NIP (\varepsilon =  - 1), and IIP (\varepsilon = 0) methods in order to compare them.

From now on, the stabilization parameter \tta S in the bilinear form ah(\cdot , \cdot ) in prob-
lem (3.5) will be chosen proportionally to the square of the polynomial degree k as
\tta S = \tta k2 with \tta > 0. Also, in the tests we will consider uniform and nonuniform
meshes. In the former case, we consider the meshes in Figure 1, where the parameter
N is the refinement level and it is related to the number of elements on each edge.
Nonuniform meshes will be considered for certain tests, which are created with the
FEniCS command \ttg \tte \ttn \tte \ttr \tta \ttt \tte -\ttm \tte \tts \tth .

5.1. The SIP method.

5.1.1. Square domain with mixed boundary conditions. In the following
experiment, we will consider the unit square \Omega := (0, 1)2 as computational domain.
We will impose mixed boundary conditions in the sense that the bottom of the square
is \Gamma D and the rest of the boundary is \Gamma N (cf. (2.1)). We start by determining a reliable
stabilization parameter \tta S for the SIP method. This is relevant since according to
Lemma 3.2, the DG method is stable when \tta S > \tta \ast . Moreover, we have proved
that the spectral correctness is guaranteed if \tta S large enough and the meshsize h is
sufficiently small.

In Tables 1, 2, 3, and 4, we report the first 10 computed eigenvalues on a fixed
uniform mesh with refinement level N = 8 and for different values of \tta = 1/2, 1, 2, 4, 8,
obtained with the SIP discrete method and with different polynomial degrees k =
2, 3, 4, 5, respectively.

In Tables 1, 2, 3, and 4, the eigenvalues inside boxes correspond to spurious eigen-
values which are identified by observing the corresponding associated eigenfunction.
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Table 1
Computed eigenvalues for k = 2, refinement level of the mesh N = 8, and different stabilization

values.

\tta = 1/2 \tta = 1 \tta = 2 \tta = 4 \tta = 8

2.4673952 2.4674098 2.4673988 2.4674009 2.4674027
6.2783711 6.2783205 6.2786077 6.2786461 6.2786916

15.2050875 13.8080740 15.2048401 15.2070648 15.2075325

22.2022769 15.2299336 22.2044904 22.2064982 22.2078141

26.9367195 17.3551502 26.9393017 26.9471212 26.9491043

43.1056252 22.2101498 27.2595556 43.1376899 43.1479911

48.2638010 26.9399936 30.8054160 48.3254124 48.3358111

61.5890137 43.1227662 43.1497375 61.6831890 61.7107090
64.1452024 48.3054908 48.3070401 64.2950564 64.3252159

74.9906822 49.7022276 61.6537505 75.1861780 75.2318836

Table 2
Computed eigenvalues for k = 3, refinement level of the mesh N = 8, and different stabilization

values.

\tta = 1/2 \tta = 1 \tta = 2 \tta = 4 \tta = 8

2.4674011 2.4674011 2.4674010 2.4674011 2.4674011
6.2791864 6.2791542 6.2791872 6.2791866 6.2791870

15.2086573 6.4680014 15.2086789 15.208673 15.208676

22.2066096 6.5053145 22.2066065 22.206612 22.206614

26.9479205 15.208699 26.9479235 26.947926 26.947935
43.1405126 22.206666 43.1407403 43.140792 43.140827
48.3293767 26.947820 48.3317069 48.331680 48.331792

50.9847437 30.970406 61.6847900 61.685202 61.685275

59.1914865 31.290172 64.2981726 64.298195 64.298384

61.6796639 43.141623 75.1925479 75.192869 75.193319

Table 3
Computed eigenvalues for k = 4, refinement level of the mesh N = 8, and different stabilization

values.

\tta = 1/2 \tta = 1 \tta = 2 \tta = 4 \tta = 8

2.4674011 2.4674011 2.4674011 2.4674011 2.4674011
6.2793050 6.2793049 6.2793047 6.2793052 6.2793052
15.2090382 15.2090394 15.2090336 15.2090388 15.2090390
22.2066099 22.2066099 22.2066099 22.2066099 22.2066099
26.9482072 26.9482055 26.9482059 26.9482120 26.9482122

43.1412120 42.2740886 42.7979738 43.1412164 43.1412169

48.3337162 43.1411912 43.1411873 48.3337694 48.3337722
61.6850268 48.3337745 48.3335293 61.6850281 61.6850284

64.2994996 61.6850277 50.2928849 64.2995149 64.2995175

75.1957131 62.7115948 61.6848550 75.1958427 75.1958505

Thus, the present DG method (SIP) introduces spurious eigenvalues if the stabiliza-
tion parameter is not sufficiently large. We observe from these tables that for all
polynomial degrees, when the parameter \tta increases, these spurious eigenvalues van-
ishes from the spectrum. From these results, we observe that for \tta = 8 there is no
presence of spurious eigenvalues in all the tables.
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Table 4
Computed eigenvalues for k = 5, refinement level of the mesh N = 8, and different stabilization

values.

\tta = 1/2 \tta = 1 \tta = 2 \tta = 4 \tta = 8

2.4674011 2.4674011 2.4674011 2.4674011 2.4674011
6.2793410 6.2793410 6.2793410 6.2793410 6.2793410

8.7584062 14.7272349 15.2091513 15.2091514 15.2091514

8.9525072 14.7446998 22.2066099 22.2066099 22.2066099

15.2091529 15.2091514 26.9482991 26.9482992 26.9482992
22.2066099 22.2066099 43.1413650 43.1413653 43.1413654
26.9482988 26.9482991 48.3344357 48.3344376 48.3344379
43.1413660 43.1413652 61.6850275 61.6850275 61.6850275
48.3344338 48.3344342 64.3000074 64.3000092 64.3000095

61.6850275 60.9324690 75.1969504 75.1969556 75.1969564

5.1.2. Square domain with smooth eigenfunctions. The aim of this test is
to determine the convergence rate of the SIP method. For this numerical experiment,
we consider the square domain \Omega := ( - 1, 1)2 as computational domain. We will
consider the boundary condition \bfitu = 0 on the whole boundary.

We report in Table 5 the six lowest eigenvalues computed with the SIP method
and with \tta = 10 (to avoid the presence of possible spurious eigenvalues). The
polynomial degrees are given by k = 1, 2, 3. We consider nonuniform meshes with
N = 10, 20, 30, 40. The table includes orders of convergence as well as accurate val-
ues extrapolated by means of a least-squares fitting. In the two last columns of the
table, we show the values obtained by extrapolating those computed with different
finite element methods, applied to solve the same problem, presented in [23] and [20],
respectively.

In this case, since \Omega is convex, the problem has smooth eigenfunctions, and as
a consequence, when using polynomial degree k, the order of convergence is 2k as

Table 5
Lowest computed eigenvalues for polynomial degrees k = 1, 2, 3, a = 10.

k N = 10 N = 20 N = 30 N = 40 Order \lambda extr [23] [20]

13.23530 13.12312 13.10301 13.09557 2.03 13.08683 13.0860 13.086
23.46703 23.14735 23.08195 23.06083 1.88 23.02751 23.0308 23.031

1
23.48255 23.14789 23.08326 23.06087 1.94 23.02986 23.0308 23.031
32.91691 32.28099 32.15261 32.10993 1.89 32.04518 32.0443 32.053
39.73787 38.85144 38.67522 38.61419 1.90 38.52632 38.5252 38.532
43.21970 42.14111 41.92730 41.85513 1.91 41.74927 41.7588 41.759
13.08798 13.08629 13.08619 13.08618 3.94 13.08617 13.0860 13.086
23.04090 23.03171 23.03122 23.03113 3.99 23.03109 23.0308 23.031

2
23.04164 23.03172 23.03123 23.03113 4.08 23.03110 23.0308 23.031
32.07787 32.05408 32.05274 32.05250 3.92 32.05239 32.0443 32.053
38.57979 38.53426 38.53194 38.53154 4.07 38.53138 38.5252 38.532
41.80864 41.76061 41.75795 41.75750 3.95 41.75728 41.7588 41.759
13.08618 13.08617 13.08617 13.08617 6.19 13.08617 13.0860 13.086
23.03117 23.03109 23.03109 23.03109 5.92 23.03109 23.0308 23.031

3
23.03118 23.03109 23.03109 23.03109 6.10 23.03109 23.0308 23.031
32.05276 32.05240 32.05239 32.05239 6.10 32.05239 32.0443 32.053
38.53189 38.53137 38.53136 38.53136 5.92 38.53136 38.5252 38.532
41.75803 41.75730 41.75729 41.75729 6.00 41.75729 41.7588 41.759
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the theory predicts (cf. Theorem 4.4). Moreover, the results obtained by the three
methods agree perfectly well.

5.2. The NIP method. Let us recall that the NIP method is obtained by taking
\varepsilon =  - 1 in (3.6). The first test consists in the observation of spurious eigenvalues with
the NIP method. As in the SIP method, we know that the appearance of spurious
eigenvalues depends on the choice of the stabilization parameter, so we are interested
in determining a reliable value of \tta S and comparing it with the observed for the SIP
method.

In this numerical test, we take the same configuration of the problem as in section
5.1.1. We also consider different polynomial degress and once more, we fix N = 8 as
the refinement level for the mesh.

We observe in Tables 6, 7, and 8 that contrary to what happened with the SIP
method for the same problem, the NIP method needs a smaller stabilization parame-
ter to avoid spurious eigenvalues. Moreover, clearly spurious eigenvalues vanish when
we increase the polynomial degree, leaving the physical spectrum clean. This phe-
nomenon does not occur with the symmetric method, and it is a clear advantage to
calculate the physical eigenvalues.

Now, our aim is to analyze the order convergence of the NIP method. With
this goal, we consider the same computational domain and boundary conditions as in
section 5.1.2.

Table 6
Computed eigenvalues for k = 2, refinement level of the mesh N = 8, and different stabilization

values.

\tta = 1/16 \tta = 1/8 \tta = 1/4 \tta = 1/2 \tta = 1

2.4721900 2.4719820 2.4716086 2.4710183 2.4702292
6.2867722 6.2876798 6.2874953 6.2864875 6.2848802
15.3436563 15.3430793 15.3344816 15.3178801 15.2945247
22.5758800 22.5672129 22.5403719 22.4944190 22.4320860
27.2535812 27.2705417 27.2565378 27.2183176 27.1617122
44.4811198 44.4559551 44.3741072 44.2123471 43.9860753

47.8366427 49.1414414 49.1512947 49.0631795 48.9128539

47.8658246 64.2105023 64.1241730 63.8165901 63.3669044

47.8658246 66.4074400 66.3880515 66.1610536 65.7894196

48.2260686 78.1827930 78.1523273 77.8113776 77.2682228

Table 7
Computed eigenvalues for k = 3, refinement level of the mesh N = 8, and different stabilization

values.

\tta = 1/16 \tta = 1/8 \tta = 1/4 \tta = 1/2 \tta = 1

2.4674071 2.4674061 2.4674050 2.4674039 2.4674030
6.2791238 6.2791444 6.2791633 6.2791814 6.2791947
15.2097172 15.2096509 15.2095048 15.2093382 15.2091780
22.2109165 22.2102393 22.2094497 22.2086809 22.2080315
26.9498165 26.9498169 26.9496152 26.9493860 26.9491478
43.1701050 43.1662597 43.1612684 43.1561487 43.1516245
48.3415270 48.3435730 48.3429551 48.3415116 48.3397671
61.7736247 61.7598178 61.7440082 61.7284035 61.7149867
64.3766118 64.3702919 64.3580404 64.3442239 64.3314399
75.2957059 75.2925537 75.2776318 75.2593133 75.2416689
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Table 8
Computed eigenvalues for k = 4, refinement level of the mesh N = 8, and different stabilization

values.

\tta = 1/16 \tta = 1/8 \tta = 1/4 \tta = 1/2 \tta = 1

2.4674007 2.4674008 2.4674008 2.4674008 2.4674009
6.2793114 6.2793111 6.2793103 6.2793092 6.2793081
15.2090047 15.2090065 15.2090084 15.2090117 15.2090170
22.2063854 22.2063998 22.2064222 22.2064539 22.2064926
26.9480089 26.9480258 26.9480473 26.9480762 26.9481107
43.1396640 43.1397720 43.1399213 43.1401316 43.1403915
48.3327684 48.3328818 48.3330010 48.3331479 48.3333152
61.6804055 61.6807669 61.6812586 61.6819186 61.6826970
64.2956445 64.2959311 64.2962817 64.2967717 64.2973955
75.1890992 75.1897554 75.1904693 75.1913947 75.1925052

Table 9
Lowest computed eigenvalues for polynomial degrees k = 1, 2, 3, 4, a = 2.

k N = 10 N = 20 N = 30 N = 40 Order \lambda extr [23] [20]

12.28911 12.88060 12.99430 13.03440 1.94 13.08900 13.0860 13.086
20.31663 22.30382 22.70387 22.84625 1.87 23.05260 23.0308 23.031

1
20.94590 22.49347 22.79091 22.89575 1.94 23.03865 23.0308 23.031
27.57492 30.83654 31.50459 31.74283 1.85 32.09233 32.0443 32.053
31.97605 36.76939 37.73881 38.08373 1.87 38.58001 38.5252 38.532
34.19537 39.69930 40.82883 41.23233 1.84 41.83386 41.7588 41.759
13.22024 13.12045 13.10147 13.09479 1.96 13.08590 13.0860 13.086
23.38718 23.12303 23.07220 23.05427 1.94 23.02991 23.0308 23.031

2
23.48972 23.15049 23.08456 23.06124 1.93 23.02951 23.0308 23.031
32.81717 32.25537 32.14363 32.10392 1.89 32.04759 32.0443 32.053
39.64207 38.82517 38.66331 38.60583 1.90 38.52547 38.5252 38.532
43.06625 42.10278 41.91235 41.84481 1.90 41.74981 41.7588 41.759
13.08747 13.08625 13.08619 13.08618 3.98 13.08617 13.0860 13.086
23.03624 23.03143 23.03116 23.03112 3.96 23.03110 23.0308 23.031

3
23.03946 23.03163 23.03120 23.03113 3.97 23.03110 23.0308 23.031
32.07150 32.05363 32.05264 32.05247 3.95 32.05239 32.0443 32.053
38.56114 38.53330 38.53175 38.53149 3.94 38.53136 38.5252 38.532
41.79517 41.75974 41.75778 41.75745 3.95 41.75729 41.7588 41.759
13.08606 13.08617 13.08617 13.08617 3.89 13.08617 13.0860 13.086
23.03042 23.03110 23.03109 23.03110 3.80 23.03110 23.0308 23.031

4
23.03067 23.03110 23.03109 23.03110 3.83 23.03110 23.0308 23.031
32.05094 32.05240 32.05237 32.05239 3.69 32.05240 32.0443 32.053
38.52909 38.53137 38.53133 38.53135 3.71 38.53137 38.5252 38.532
41.75444 41.75730 41.75725 41.75728 3.71 41.75730 41.7588 41.759

We report in Table 9 the six lowest eigenvalues computed with the NIP method
and with \tta = 2. The polynomial degrees are given by k = 1, 2, 3, 4. We consider
uniform meshes with N = 10, 20, 30, 40. The table includes orders of convergence as
well as accurate values extrapolated by means of a least-squares fitting. In the two last
columns of the table, we show the values obtained by extrapolating those computed
with different finite element methods presented in [23] and [20], respectively.

We observe in this case that the order of convergence depends on the polynomial
degree. However, we observe in the column \lambda extr that the computed extrapolated
values converge to those in the reference columns. More precisely, with respect to
the convergence rates, we note that when the polynomial degree is even, the order
convergence is \scrO (hk) as the theory predicts (cf. (4.3)). We observe that in this case
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the eigenfunctions are smooth. On the other hand, for odd polynomial degrees we see
a superconvergence of the scheme (the order is \scrO (hk+1)). This fact has been also seen
in [5], where a DG method has been analyzed for the Maxwell's eigenvalue problem.

5.3. The IIP method. In this section, we report numerical results using the IIP
method to solve the eigenvalue problem. We recall that we obtain the IIP method
considering \varepsilon = 0 in (3.6). We have repeated the same experiment presented in
section 5.1.1. We have observed that the spurious eigenvalues behave in a similar way
as in the NIP case. For that reason, we do not include tables about this subject.

Now, our aim is to analyze the orders convergence of the IIP method to see if
the behavior is similar as in the NIP method. We take the same configuration of the
domain as in section 5.1.2.

We report in Table 10 the six lowest eigenvalues computed with the IIP method
and with \tta = 2. The polynomial degrees are given by k = 1, 2, 3, 4. Once again, we
have used uniform meshes with N = 10, 20, 30, 40. The table includes orders of con-
vergence as well as accurate values extrapolated by means of a least-squares fitting.
In the two last columns of the table, we show the values obtained by extrapolat-
ing those computed with different finite element methods presented in [23] and [20],
respectively.

We observe from Table 10 the same behavior as in the NIP method (cf. Table 9).
More precisely, it can be seen that for even polynomial degrees, the order of con-
vergence is \scrO (hk), and for odd polynomial degrees we observe a superconvergence
\scrO (hk+1). Once again, the results obtained by this method agree perfectly well with
the ones reported in the references.

Remark 5.1. For the NIP and IIP (nonsymmetric) methods we have used uniform
meshes to solve the discrete eigenvalue problem and in this case we have obtained only

Table 10
Lowest computed eigenvalues for polynomial degrees k = 1, 2, 3, 4, a = 2.

k N = 10 N = 20 N = 30 N = 40 Order \lambda extr [23] [20]

12.15236 12.84090 12.97615 13.02409 1.91 13.09081 13.0860 13.086
19.95157 22.17805 22.64447 22.81211 1.81 23.06783 23.0308 23.031

1
20.58540 22.38289 22.73984 22.86663 1.89 23.04710 23.0308 23.031
26.97658 30.61619 31.39938 31.68215 1.77 32.12968 32.0443 32.053
31.16720 36.45615 37.58787 37.99639 1.78 38.63512 38.5252 38.532
33.26501 39.33555 40.65254 41.13008 1.76 41.88800 41.7588 41.759
13.19299 13.11334 13.09828 13.09299 1.97 13.08602 13.0860 13.086
23.31856 23.10478 23.06399 23.04963 1.95 23.03021 23.0308 23.031

2
23.39557 23.12509 23.07311 23.05477 1.94 23.02980 23.0308 23.031
32.66925 32.21382 32.12475 32.09321 1.92 32.04989 32.0443 32.053
39.42492 38.76485 38.63596 38.59036 1.92 38.52748 38.5252 38.532
42.80949 42.03174 41.88019 41.82660 1.92 41.75238 41.7588 41.759
13.08720 13.08624 13.08619 13.08618 3.98 13.08617 13.0860 13.086
23.03516 23.03136 23.03115 23.03111 3.96 23.03111 23.0308 23.031

3
23.03766 23.03152 23.03118 23.03113 3.96 23.03111 23.0308 23.031
32.06743 32.05337 32.05259 32.05246 3.94 32.05239 32.0443 32.053
38.55471 38.53289 38.53167 38.53146 3.93 38.53136 38.5252 38.532
41.78697 41.75922 41.75768 41.75742 3.94 41.75729 41.7588 41.759
13.08609 13.08617 13.08617 13.08617 3.90 13.08617 13.0860 13.086
23.03059 23.03106 23.03109 23.03110 3.82 23.03110 23.0308 23.031

4
23.03078 23.03108 23.03109 23.03110 3.85 23.03110 23.0308 23.031
32.05130 32.05231 32.05238 32.05239 3.73 32.05240 32.0443 32.053
38.52967 38.53124 38.53134 38.53136 3.73 38.53137 38.5252 38.532
41.75516 41.75713 41.75726 41.75728 3.73 41.75730 41.7588 41.759
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real eigenvalues. We have also tested the methods with nonuniform meshes and we
have observed the presence of complex eigenvalues with an imaginary part close to
zero. We will consider this fact in the next numerical test. This has also been observed
in other DG spectral analysis (see, for instance, [5]).

5.4. Circular domain. In this numerical test, we consider the unitary circle
centered at the origin as computational domain. We will consider the boundary
condition \bfitu = 0 on the whole boundary. We report in Table 11 the computed ei-
genvalues with the SIP, NIP, and IIP methods considering nonuniform meshes with
N = 10, 20, 30, 40. The table includes orders of convergence as well as accurate val-
ues extrapolated by means of a least-squares fitting. All these eigenvalues have been
computed considering k = 1 and \tta = 10 the stabilization parameter. In addition,
for the nonsymmetric methods we have reported the real part of the eigenvalues.
For example, for the NIP method and N = 30, we have obtained the eigenvalue
\lambda h = 26.41314\pm 0.0005i (see Remark 5.1).

We observe from the results reported in Table 11 that the order of convergence
for the three methods is quadratic. This order has also been obtained for polynomial
degrees k \geq 2 and this order is expected because of the variational crime committed
by approximating the curved domain with a polygonal one.

5.5. L-shape domain. We conclude the numerical test section considering an
L-shaped domain as computational domain: \Omega L := ( - 1, 1)\times ( - 1, 1)\setminus [ - 1, 0]\times [ - 1, 0].
We will consider the boundary condition \bfitu = 0 on the whole boundary. We report in
Table 12 the computed eigenvalues with the SIP, NIP, and IIP methods considering
nonuniform meshes. The table includes orders of convergence as well as accurate
values extrapolated by means of a least-squares fitting. All these eigenvalues have
been computed considering k = 1 and \tta = 20 the stabilization parameter.

We observe from Table 12 that for the lowest computed eigenvalue, all the methods
converge with order 1.69. We note that this order of convergence is in accordance with
the expected order, which in this case is 1.7, because of the singularity of the solution
(see [20]). For the other eigenvalues, the method converges with larger orders. In
addition, in this case we do not observe the presence of complex eigenvalues despite
the fact that we have used nonuniform meshes.

Table 11
Lowest computed eigenvalues for polynomial degree k = 1, a = 10

. Method N = 10 N = 20 N = 30 N = 40 Order \lambda extr

14.89304 14.73158 14.70416 14.69432 2.12 14.68345
26.88844 26.49685 26.43014 26.40563 2.10 26.37840

SIP
26.90350 26.49897 26.43052 26.40596 2.12 26.37862
41.77655 40.96155 40.82159 40.77115 2.10 40.71434
41.79392 40.96349 40.82301 40.77165 2.12 40.71606
14.84297 14.71973 14.69936 14.69159 2.14 14.68373
26.71760 26.46086 26.41314 26.39693 2.01 26.37580

NIP
26.73525 26.46506 26.41314 26.39802 2.01 26.37496
41.43254 40.87818 40.78447 40.75034 2.12 40.71313
41.44666 40.88314 40.78447 40.75034 2.09 40.71004
14.85704 14.72305 14.70072 14.69236 2.13 14.68359
26.76711 26.47136 26.41803 26.39937 2.04 26.37636

IIP
26.78319 26.47413 26.41803 26.40021 2.06 26.37636
41.53109 40.90134 40.79509 40.75631 2.12 40.71401
41.54620 40.90603 40.79509 40.75631 2.10 40.71139
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Table 12
Lowest computed eigenvalues for polynomial degree k = 1 and \varepsilon = 1, \varepsilon =  - 1, and \varepsilon = 0,

respectively.

Method N = 15 N = 20 N = 25 N = 30 N = 35 Order \lambda extr

32.39472 32.25431 32.19287 32.15142 32.12236 1.69 32.04017

SIP
37.70235 37.41753 37.27015 37.18208 37.14759 1.80 36.98455
42.87732 42.46229 42.27723 42.15973 42.10772 1.99 41.92851
50.24774 49.72024 49.44706 49.29865 49.22252 1.83 48.93708
32.42134 32.27024 32.20260 32.15773 32.12747 1.69 32.03797

NIP
37.73995 37.43961 37.28328 37.19082 37.15476 1.80 36.98236
42.92693 42.48970 42.29471 42.17127 42.11676 2.00 41.93012
50.31495 49.75730 49.47102 49.31477 49.23505 1.84 48.93752
32.43256 32.27689 32.20674 32.16044 32.12963 1.69 32.03707

IIP
37.75565 37.44882 37.28891 37.19451 37.15775 1.80 36.98154
42.94765 42.50123 42.30216 42.17614 42.12056 2.00 41.92997
50.34297 49.77292 49.48115 49.32154 49.24030 1.84 48.93634

6. Conclusions. We have presented DG discretizations (symmetric and non-
symmetric) to solve the Stokes eigenvalue problem where the pseudostress tensor is
the unknown. We have established spectral correctness for large enough stabilization
parameter and sufficiently small meshsize h. We have seen that the methods introduce
spurious eigenvalues for small values of the stabilization parameter. Moreover, we have
shown that for a large enough stabilization parameter, the spurious eigenvalues vanish
for all the methods. In fact, the SIP method (symmetric) needs a larger stabilization
parameter to avoid the spurious modes compared with the NIP and IIP methods
(nonsymmetric). We have obtained error estimates for eigenfunctions and eigenvalues
for each method. In particular, we have proved a double order of convergence for the
SIP method. We have seen a superconvergence for the NIP and IIP methods in the
case of odd polynomial degrees.
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