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APPROXIMATION OF THE BUCKLING PROBLEM FOR
REISSNER–MINDLIN PLATES∗
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Abstract. This paper deals with the approximation of the buckling coefficients and modes of a
clamped plate modeled by the Reissner–Mindlin equations. These coefficients are the reciprocals of
the eigenvalues of a noncompact operator. We give a spectral characterization of this operator and
show that the relevant buckling coefficients correspond to isolated nondefective eigenvalues. Then we
consider the numerical computation of these coefficients and their corresponding modes. For the finite
element approximation of Reissner–Mindlin equations, it is well known that some kind of reduced
integration or mixed interpolation has to be used to avoid locking. In particular we consider Durán–
Liberman elements, which have been already proved to be locking-free for load and vibration prob-
lems. We adapt the classical approximation theory for noncompact operators to obtain optimal order
error estimates for the eigenfunctions and a double order for the eigenvalues. These estimates are valid
with constants independent of the plate thickness. We report some numerical experiments confirming
the theoretical results. Finally, we refine the analysis in the case of a uniformly compressed plate.
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1. Introduction. This paper deals with the analysis of the elastic stability of
plates, in particular the so-called buckling problem. This problem has attracted much
interest since it is frequently encountered in engineering applications such as bridge,
ship, and aircraft design. It can be formulated as a spectral problem whose solution
is related with the limit of elastic stability of the plate (i.e., eigenvalues-buckling
coefficients and eigenfunctions-buckling modes).

The buckling problem has been studied for years by many researchers, with the
Kirchhoff–Love and the Reissner–Mindlin plate theories the most used. For the
Kirchhoff–Love theory, there exists a thorough mathematical analysis; let us men-
tion, for instance, [5, 13, 16, 17, 18]. This is not the case for the Reissner–Mindlin
theory for which only numerical experiments (cf. [15, 22]) or analytical solutions in
particular cases (cf. [24]) have been reported so far. Recently, Dauge and Suri intro-
duced in [7] the mathematical spectral analysis of a problem of this kind based on
three-dimensional elasticity. In the present paper, we will perform a similar analysis
for Reissner–Mindlin plates.

The Reissner–Mindlin theory is the most-used model to approximate the defor-
mation of a thin or moderately thick elastic plate. It is very well understood that
standard finite elements applied to this model lead to wrong results when the thick-
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ness is small with respect to the other dimensions of the plate due to the locking
phenomenon. Several families of methods have been rigorously shown to be free of
locking and optimally convergent. We mention the recent monograph by Falk [12] for
a thorough description of the state of the art and further references.

The aim of this paper is to analyze one of these methods applied to compute the
buckling coefficients and buckling modes of a clamped plate. We choose the low-order,
nonconforming finite elements introduced by Durán and Liberman in [11] (see also
[10] for the analysis of this method applied to the plate vibration problem). However,
the developed framework could be useful to analyze other methods as well.

One drawback of the Reissner–Mindlin formulation for plate buckling is the fact
that the corresponding solution operator is noncompact. This is the reason why
the essential spectrum no longer reduces to zero (as is the case for compact opera-
tors). This means that the spectrum may now contain nonzero eigenvalues of infinite
multiplicity, accumulation points, continuous spectrum, etc. Thus, our first task is
to prove that the eigenvalue corresponding to the limit of elastic stability (i.e., the
smallest buckling coefficient) can be isolated from the essential spectrum, at least for
sufficiently thin plates.

On the other hand, the abstract spectral theory for noncompact operators intro-
duced by Descloux, Nassif, and Rappaz in [8, 9] cannot be directly applied to analyze
the numerical method because we look for error estimates valid uniformly in the plate
thickness. However, using optimal order convergence results for the Durán–Liberman
elements (cf. [10, 11]) and the theoretical framework used to prove additional regu-
larity for Reissner–Mindlin equations (cf. [1]), under the assumption that the family
of meshes is quasi-uniform, we can adapt the theory from [8, 9] to obtain optimal
order error estimates for the approximation of the buckling modes, including a double
order for the buckling coefficients. Moreover, these estimates are shown to be valid
with constants independent of the plate thickness, which allows us to conclude that
the proposed method is locking-free.

An outline of the paper is as follows. In the next section we derive the buckling
problem and introduce a noncompact linear operator whose spectrum is related with
the solution of this problem. In section 3 we provide a thorough spectral character-
ization of this operator. In section 4 we introduce a finite element discretization of
the problem based on Durán–Liberman elements and prove some auxiliary results. In
section 5 we prove that the proposed numerical scheme is free of spurious modes and
that optimal order error estimates hold true. In section 6 we report some numerical
tests which confirm the theoretical results. We include in this section a benchmark
with a known analytical solution for a simply supported plate, which shows the ef-
ficiency of the method under other kind of boundary conditions as well. Finally, in
an appendix, we show that the results of sections 3, 4, and 5 can be refined when
considering the particular case of a uniformly compressed plate.

Throughout the paper we will use standard notations for Sobolev spaces, norms,
and seminorms. Moreover, we will denote with C a generic constant independent of
the mesh parameter h and the plate thickness t, which may take different values in
different occurrences.

2. The buckling problem. The first step will be to derive the equations for the
Reissner–Mindlin plate buckling problem. With this aim, we will begin by consider-
ing the plate as a three-dimensional elastic solid, and we will write the corresponding
equations for the buckling in this case. Then we will perform the dimensional reduc-
tion by means of the usual Reissner–Mindlin assumptions.
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Consider a (three-dimensional) elastic plate of thickness t > 0 with reference

configuration Ω̃ := Ω×(− t
2 ,

t
2 ), where Ω is a convex polygonal domain of R2 occupied

by the midsection of the plate. We assume that the plate is clamped on its lateral
boundary ∂Ω× (− t

2 ,
t
2 ). In what follows, we summarize the arguments given in [7] to

obtain the equations for the corresponding buckling problem (see this reference and
also [23] for further details). We will use tildes on the quantities corresponding to the

three-dimensional elastic model (as in Ω̃, for instance) to help distinguishing them
form the corresponding ones in the Reissner–Mindlin model.

Suppose that σ̃0 := (σ̃0
ij)1≤i,j≤3 is a preexisting stress state in the plate. This

stress σ̃0 is already present in the reference configuration. It satisfies the equations
of equilibrium, and it is assumed to be independent of any subsequent displacements
that the reference configuration may undergo.

Let Ṽ := {ṽ ∈ H1(Ω̃)
3
: ṽ = 0 on ∂Ω × (− t

2 ,
t
2 )} be the space of admissible

displacements of the three-dimensional plate. If the reference configuration is now
perturbed by a small change f̃ ∈ Ṽ ′ (which could be a change in loading for instance),
then the work done by σ̃0 cannot be neglected. The corresponding displacement
ũ = (ũi)1≤i≤3 may be expressed as the solution of the following problem (see [7]):

Given f̃ ∈ Ṽ ′, find ũ ∈ Ṽ such that∫
˜Ω

3∑
i,j,k,l=1

C̃ijkl ∂j ũi ∂lṽk +

∫
˜Ω

3∑
i,j,m=1

σ̃0
ij ∂iũm ∂j ṽm = 〈f̃ , ṽ〉 ∀ṽ ∈ Ṽ .

Above, (C̃ijkl)1≤i,j,k,l≤3 is the tensor of elastic constants of the material and 〈·, ·〉
denotes the duality between Ṽ ′ and Ṽ . The second term in the left-hand side is the
work done by σ̃0.

We restrict our attention to multiples of a fixed prebuckling stress σ̃, namely,

σ̃0 = −λ̃σ̃.

Then the equation above reads∫
˜Ω

3∑
i,j,k,l=1

C̃ijkl ∂j ũi ∂lṽk − λ̃

∫
˜Ω

3∑
i,j,m=1

σ̃ij ∂iũm ∂j ṽm = 〈f̃ , ṽ〉 ∀ṽ ∈ Ṽ .

According to [7], we will say that this problem is stably solvable if it has a unique

solution for every f̃ ∈ Ṽ ′ and there exists a constant C, independent of f̃ , such that

‖ũ‖
˜V ≤ C‖f̃‖

˜V ′ .

Our goal will be to find the smallest value of λ̃ for which this problem is not stably
solvable. This value, which we will denote λ̃b, is called the limit of elastic stability.
Physically, it represents the smallest multiple of the prebuckling stress σ̃ for which
a small perturbation in external conditions on the plate may cause it to buckle. As
shown in [7], this can be formulated as finding the minimum positive spectral value
of the following problem:

Find λ̃b ∈ R and 0 �= ũ ∈ Ṽ such that

(2.1)

∫
˜Ω

3∑
i,j,k,l=1

C̃ijkl ∂j ũi ∂lṽk = λ̃b

∫
˜Ω

3∑
i,j,m=1

σ̃ij ∂iũm ∂j ṽm ∀ṽ ∈ Ṽ .
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The eigenvalues of this problem are called the buckling coefficients and the eigen-
functions the buckling modes.

The above analysis is valid for any three-dimensional solid. In what follows we
use it to derive the equations for the corresponding Reissner–Mindlin plate model.
In such a case, the deformation of the plate is described by means of the rotations
β = (β1, β2) of the fibers initially normal to the plate midsurface and the transverse
displacement w, as follows:

(2.2) ũ(x, y, z) =

⎡⎣−zβ1(x, y)−zβ2(x, y)
w(x, y)

⎤⎦ .
The prebuckling stress σ̃ is assumed to arise from an elastic plane strain problem

so that

σ̃ =

[
σ 0
0 0

]
,

with σ(x, y) ∈ R2×2 a symmetric tensor. For the remaining arguments of this section,
it is enough to consider σ ∈ L∞(Ω)2×2. However, we will assume some additional
regularity which will be used in the forthcoming sections, namely,

(2.3) σ ∈ W1,∞(Ω)2×2.

Notice that we do not assume σ to be positive definite. Avoiding such an assumption
allows us to apply this approach, for instance, to shear loaded plates (cf. section 6.3).
Therefore, the buckling coefficients can be in principle positive or negative, the limit
of elastic stability being that of smallest absolute value.

Next we use Hooke’s law with the plane stress assumption and the kinematically
admissible displacements from the Reissner–Mindlin model. Thus, by substituting ũ
and ṽ in (2.1) by means of (2.2), using the appropriate elastic constants C̃ijkl , and
integrating over the thickness, we obtain the following variational spectral problem
(see [22] for an alternative derivation):

Find λb ∈ R and 0 �= (β,w) ∈ H1
0(Ω)

2 ×H1
0(Ω) such that

t3a(β, η)+κt (∇w − β,∇v − η)0,Ω(2.4)

= λb

[
t (σ∇w,∇v)0,Ω + t3 (σ∇β1,∇η1)0,Ω + t3 (σ∇β2,∇η2)0,Ω

]
∀(η, v) ∈ H1

0(Ω)
2 ×H1

0(Ω).

Above, κ := Ek/(2 (1 + ν)) is the shear modulus, with E being the Young mod-
ulus, ν the Poisson ratio, and k a correction factor (usually taken as 5/6 for clamped

plates); a(·, ·) is the H1
0(Ω)

2
elliptic bilinear form defined by

a(β, η) :=
E

12 (1− ν2)

∫
Ω

[(1− ν) ε(β) : ε(η) + ν div β div η] ,

where ε = (εij)1≤i,j≤2 is the standard strain tensor with components εij(β) :=
1
2 (∂iβj + ∂jβi), 1 ≤ i, j ≤ 2. Finally, (·, ·)0,Ω denotes the usual L2 inner product.

Since the terms involving the rotations β in the right-hand size of (2.4) are O(t3),
they are typically negligible (see, for instance, [15, 24]). Thus, neglecting these terms,
scaling the problem, and defining λ := λb/t

2, we obtain

a(β, η) +
κ

t2
(∇w − β,∇v − η)0,Ω = λ (σ∇w,∇v)0,Ω ∀(η, v) ∈ H1

0(Ω)
2 ×H1

0(Ω).
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Finally, introducing the shear stress γ :=
κ

t2
(∇w − β), we arrive at the following

problem.

Problem 2.1. Find λ ∈ R and 0 �= (β,w) ∈ H1
0(Ω)

2 ×H1
0(Ω) such that⎧⎨⎩a(β, η) + (γ,∇v − η)0,Ω = λ (σ∇w,∇v)0,Ω ∀(η, v) ∈ H1

0(Ω)
2 ×H1

0(Ω),

γ =
κ

t2
(∇w − β).

The goal of this paper is to propose and analyze a finite element method to
solve Problem 2.1. In particular, our aim is to obtain accurate approximations of the
smallest (in absolute value) eigenvalues λ, which correspond to the buckling coeffi-
cients λb = t2λ, and the associated eigenfunctions or buckling modes. For the analysis
of this problem and its finite element approximation, we will rewrite it in several dif-
ferent forms and will consider other auxiliary problems. However, Problem 2.1 is the
only one to be discretized for the numerical computations.

The first step is to obtain a thorough spectral characterization of Problem 2.1,
which will be the goal of the following section. With this end we introduce the so-
called solution operator whose spectrum is related with that of Problem 2.1. Let

(2.5)
Tt : H

1
0(Ω) → H1

0(Ω),

f �→ w,

where w is the second component of the solution to the following source problem:

Given f ∈ H1
0(Ω), find (β,w) ∈ H1

0(Ω)
2 ×H1

0(Ω) such that

(2.6)

⎧⎨⎩a(β, η) + (γ,∇v − η)0,Ω = (σ∇f,∇v)0,Ω ∀(η, v) ∈ H1
0(Ω)

2 ×H1
0(Ω),

γ =
κ

t2
(∇w − β).

The operator Tt is linear and bounded, and it is easy to see that (μ,w), with
μ �= 0, is an eigenpair of Tt (i.e., Ttw = μw, w �= 0) if and only if (λ, β, w) is a solution

of Problem 2.1 with λ = 1/μ and a suitable β ∈ H1
0(Ω)

2
. Let us recall that our aim

is to approximate the smallest eigenvalues of Problem 2.1, which correspond to the
largest eigenvalues of the operator Tt.

To end this section we prove an additional regularity result for the solution to
problem (2.6) which will be used in what follows. To do this, first we rewrite prob-
lem (2.6) in a convenient way (see [1]). Using the following Helmholtz decomposition,

(2.7) γ = ∇ψ + curl p, ψ ∈ H1
0(Ω), p ∈ H1(Ω)/R,

we have that problem (2.6) is equivalent to the following one:

Given f ∈ H1
0(Ω), find (ψ, β, p, w) ∈ H1

0(Ω) × H1
0(Ω)

2 × H1(Ω)/R × H1
0(Ω) such

that

(2.8)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(∇ψ,∇v)0,Ω = (σ∇f,∇v)0,Ω ∀v ∈ H1

0(Ω),

a(β, η)− (curl p, η)0,Ω = (∇ψ, η)0,Ω ∀η ∈ H1
0(Ω)

2
,

− (β, curl q)0,Ω − κ−1t2 (curl p, curl q)0,Ω = 0 ∀q ∈ H1(Ω)/R,

(∇w,∇ξ)0,Ω = (β,∇ξ)0,Ω + κ−1t2 (∇ψ,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).

We recall the following result for the solution of problem (2.8) (see [1]).
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Theorem 2.1. Let Ω be a convex polygon or a smoothly bounded domain in the
plane. For any t > 0, σ ∈ L∞(Ω)2×2, and f ∈ H1

0(Ω), there exists a unique solution

of problem (2.8). Moreover, β ∈ H2(Ω)
2
, p ∈ H2(Ω), and there exists a constant C,

independent of t and f , such that

‖ψ‖1,Ω + ‖β‖2,Ω + ‖p‖1,Ω + t ‖p‖2,Ω + ‖w‖1,Ω ≤ C ‖f‖1,Ω .

As a consequence of Theorem 2.1 and by virtue of (2.7) and the equivalence
between problems (2.6) and (2.8), we have that problem (2.6) is well-posed and there
exists a constant C, independent of t and f , such that

(2.9) ‖β‖2,Ω + ‖w‖1,Ω + ‖γ‖0,Ω ≤ C ‖f‖1,Ω .

3. Spectral properties. The aim of this section is threefold: (i) to prove a
spectral characterization for the operator Tt defined above, (ii) to study the conver-
gence of Tt and the behavior of its spectrum as t goes to zero, and (iii) to prove
additional regularity for the eigenfunctions of Tt.

3.1. Spectral characterization. As stated above, we are only interested in
approximating the largest eigenvalues of Tt. However, we will show that the spectrum
of this operator does not reduce to eigenvalues. In fact, Tt is not compact, and it has
a nontrivial essential spectrum. Such essential spectrum is not relevant from the
physical viewpoint, but its presence is a potential source of spectral pollution in the
numerical methods (see for instance [8]).

This will not be the case for the numerical method that we will propose, thanks
to the results that will be proved in this subsection, which can be summarized as
follows: Although Tt has a nontrivial essential spectrum, this is confined within a
small ball around the origin, which is well separated from the largest eigenvalues of
Tt (that is the goal of our numerical computation). To prove this, first we recall some
basic definitions from spectral theory.

Given a generic linear bounded operator T : X → X , defined on a Hilbert space
X , the spectrum of T is the set Sp(T ) := {z ∈ C : (zI − T ) is not invertible} and
the resolvent set of T is its complement: ρ(T ) := C \ Sp(T ). For any z ∈ ρ(T ),

Rz(T ) := (zI − T )
−1

: X → X is the resolvent operator of T corresponding to z.
We recall the definitions of the following components of the spectrum.
• Discrete spectrum:

Spd(T ) := {z ∈ C : Ker(zI − T ) �= {0} and (zI − T ) : X → X is Fredholm} .

• Essential spectrum:

Spe(T ) := {z ∈ C : (zI − T ) : X → X is not Fredholm} .

The main result of this subsection is the following theorem, which provides a
suitable spectral characterization for the operator Tt defined in (2.5).

Theorem 3.1. The spectrum of Tt decomposes as follows: Sp(Tt) = Spd(Tt) ∪
Spe(Tt) with

• Spd(Tt), the discrete spectrum, which consists of real isolated eigenvalues of
finite multiplicity and ascent one,

• Spe(Tt), the essential spectrum.
Moreover, Spe(Tt) ⊂ {z ∈ C : |z| ≤ κ−1t2 ‖σ‖∞,Ω}.
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The proof of this theorem will be given at the end of this subsection. Here and
thereafter, we denote ‖σ‖∞,Ω := maxx∈Ω̄ |σ(x)|, with | · | being the matrix norm

induced by the standard Euclidean norm in R2. Notice that the maximum above is
well defined because of (2.3) and the fact that W1,∞(Ω) ⊂ C(Ω̄).

As a consequence of this theorem we know that, although Tt may have essential
spectrum, all the points of Sp(Tt) outside a ball centered at the origin of the complex
plane are nondefective isolated eigenvalues. Moreover, the thinner the plate, the
smaller the ball containing the essential spectrum.

The proof of Theorem 3.1 will be an immediate consequence of the results that

follow. Consider the following continuous bilinear forms defined in H1
0(Ω)

2 ×H1
0(Ω):

A((β,w), (η, v)) := a(β, η) +
κ

t2
(∇w − β,∇v − η)0,Ω ,(3.1)

B((g, f), (η, v)) := (σ∇f,∇v)0,Ω .(3.2)

We notice that A(·, ·) is symmetric and elliptic (cf. [4]). Moreover, from the symmetry
of σ, it follows that B(·, ·) is symmetric too. Consider the bounded linear operator

(3.3)
T̃t : H

1
0(Ω)

2 ×H1
0(Ω) → H1

0(Ω)
2 ×H1

0(Ω),

(g, f) �→ (β,w),

where (β,w) ∈ H1
0(Ω)

2 ×H1
0(Ω) is the solution of

A((β,w), (η, v)) = B((g, f), (η, v)) ∀(η, v) ∈ H1
0(Ω)

2 ×H1
0(Ω).

We will prove in Lemma 3.4 below that the spectra of Tt and T̃t coincide.
By virtue of the symmetry of A(·, ·) and B(·, ·), we have

A(T̃t(g, f), (η, v)) = B((g, f), (η, v)) = B((η, v), (g, f)) = A((g, f), T̃t(η, v))

for every (g, f), (η, v) ∈ H1
0(Ω)

2 ×H1
0(Ω). Therefore, T̃t is self-adjoint with respect to

the inner product A(·, ·). As a consequence, we have the following theorem (see, for
instance, [7, Theorem 3.3]).

Theorem 3.2. The spectrum of T̃t is real (i.e., Sp(T̃t) ⊂ R), and it decomposes

as follows: Sp(T̃t) = Spd(T̃t) ∪ Spe(T̃t). Finally, if μ ∈ Spd(T̃t), then μ is an isolated
eigenvalue of finite multiplicity.

The following result shows that the essential spectrum of T̃t is confined in a
neighborhood of the origin of diameter proportional to t2.

Proposition 3.3. Let μ ∈ Sp(T̃t) be such that |μ| > κ−1t2 ‖σ‖∞,Ω. Then

μ ∈ Spd(T̃t).

Proof. Let μ ∈ Sp(T̃t) be such that |μ| > κ−1t2 ‖σ‖∞,Ω. By virtue of Theorem 3.2,

we have only to prove that (μĨ− T̃t) is a Fredholm operator. To this end, it is enough

to show that there exists a compact operator G̃ such that (μĨ − T̃t + G̃) is invertible.
Let us introduce the operator S as follows:

S : H1
0(Ω) → H1

0(Ω)
2
,

f �→ β,

where β is the first component of the the unique solution (β,w) of problem (2.6).
Notice that

(3.4) T̃t(g, f) = (Sf, Ttf).
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According to (2.9), we have that β ∈ H2(Ω)
2
, and hence S is compact. Let us now

define the operator G as follows:

(3.5)
G : H1

0(Ω) → H1
0(Ω),

f �→ u,

where u ∈ H1
0(Ω) is the unique solution of

(∇u,∇ξ)0,Ω = (Sf,∇ξ)0,Ω = (β,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).

The operator G is compact as a consequence of the compactness of S. Next, we define
G̃ as follows:

G̃ : H1
0(Ω)

2 × H1
0(Ω) → H1

0(Ω)
2 ×H1

0(Ω),

(g, f) �→ (Sf,Gf).

Since S and G are compact, G̃ is compact, too. In addition,

(μĨ − T̃t + G̃)(g, f) = ((μg − Sf + Sf) , (μI − Tt +G) f) = (μg, (μI − Tt +G) f).

Therefore, (μĨ − T̃t + G̃) is invertible if and only if (μI − Tt +G) is invertible.
From the fourth equation in (2.8), we notice that v := (μI − Tt +G) f satisfies

(∇v,∇ξ)0,Ω = μ (∇f,∇ξ)0,Ω − (∇w,∇ξ)0,Ω + (β,∇ξ)0,Ω
=

((
μI − κ−1t2σ

)
∇f,∇ξ

)
0,Ω

∀ξ ∈ H1
0(Ω).

Consequently, the operator (μI − Tt +G) will be invertible if and only if, given v ∈
H1

0(Ω), there exists a unique f ∈ H1
0(Ω) solution of

(3.6)
((
μI − κ−1t2σ

)
∇f,∇ξ

)
0,Ω

= (∇v,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).

Now, because of the symmetry of σ(x), there exists an orthogonal matrix P (x)
such that σ(x) = P (x)D(x)P t(x), where

D(x) :=

[
ω(x) 0
0 ω(x)

]
,

with ω(x) ≤ ω(x) being the two real eigenvalues of σ(x). Hence, we write

(
μI − κ−1t2σ

)
= P (x)

[
μ− κ−1t2ω(x) 0

0 μ− κ−1t2ω(x)

]
P (x)t.

Let us denote ωmax := maxx∈Ω̄ ω(x) and ωmin := minx∈Ω̄ ω(x). Since ‖σ‖∞,Ω =

maxx∈Ω̄ |σ(x)| = max {|ωmax| , |ωmin|}, for |μ| > κ−1t2 ‖σ‖∞,Ω, there holds either

μ > κ−1t2ωmax or μ < κ−1t2ωmin. Hence,
(
μI − κ−1t2σ

)
is uniformly positive definite

in the first case or uniformly negative definite in the second one. Therefore, in both
cases, there exists a unique solution f ∈ H1

0(Ω) of (3.6). Consequently, (μI − Tt +G)

is invertible, and hence (μĨ − T̃t + G̃) is invertible, too. Thus, we have that (μĨ − T̃t)
is Fredholm, and we conclude the proof.

The following result shows that Tt and T̃t have the same spectrum.
Lemma 3.4. If Tt and T̃t are the operators defined in (2.5) and (3.3), respectively,

then Sp(T̃t) = Sp(Tt).
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Proof. We will prove that ρ(T̃t) = ρ(Tt). Let z be such that (zĨ− T̃t) is invertible.
We will prove that (zI − Tt) is invertible too. By hypothesis, for every (β,w) ∈
H1

0(Ω)
2 ×H1

0(Ω) there exists a unique (g, f) ∈ H1
0(Ω)

2 ×H1
0(Ω) such that

(3.7) (zĨ − T̃t)(g, f) = (β,w).

Recalling (3.4), we infer that there is a unique (g, f) such that zg − Sf = β and
(zI − Tt) f = w. Hence, we deduce that the operator (zI − Tt) : H1

0(Ω) → H1
0(Ω) is

surjective. Now, let us assume that there exists another f̂ such that (zI − Tt) f̂ = w.

Taking ĝ = 1
z (Sf̂ + β), we have that (zĨ − T̃t)(ĝ, f̂) = (β,w). Since by hypothesis

(zĨ − T̃t) is invertible, from (3.7) it follows that f = f̂ . Therefore, (zI − Tt) is also
one-to-one and thus invertible.

Conversely, let z be such that (zI − Tt) is invertible. We will prove that (zĨ− T̃t)
is invertible too. Recalling (3.4) again, we have to show that for every (β,w) ∈
H1

0(Ω)
2 ×H1

0(Ω), there exists a unique (g, f) ∈ H1
0(Ω)

2 ×H1
0(Ω) such that{

zg − Sf = β,

zf − Ttf = w.

Let (β,w) ∈ H1
0(Ω)

2 × H1
0(Ω) be given. There exists a unique f ∈ H1

0(Ω) such that

(zI − Tt) f = w. Therefore, taking g := 1
z (Sf + β), we obtain (zĨ − T̃t)(g, f) =

(β,w). The uniqueness of g follows immediately from the uniqueness of f and the
first equation of the system above. The proof is complete.

The following result shows that the eigenvalues of Tt are nondefective.
Lemma 3.5. Suppose that μ �= 0 is an isolated eigenvalue of Tt. Then its ascent

is one.
Proof. We prove Lemma 3.5 by contradiction. Let (μ,w) be an eigenpair of

Tt, μ �= 0, and let us assume that Tt has a corresponding generalized eigenfunction,
namely, there exists ŵ �= 0 such that Ttŵ = μŵ + w. Since (μ,w) is an eigenpair of

Tt, there exists β ∈ H1
0(Ω)

2
such that (cf. (2.5) and Problem 2.1)

(3.8)

a(β, η) +
κ

t2
(∇w − β,∇v − η)0,Ω =

1

μ
(σ∇w,∇v)0,Ω ∀(η, v) ∈ H1

0(Ω)
2 ×H1

0(Ω).

On the other hand, since Ttŵ = μŵ + w, the definition of Tt implies the existence of

β̂ ∈ H1
0(Ω)

2
such that

a(β̂, η)+
κ

t2
(∇ (w + μŵ)− β̂,∇v − η)0,Ω

= (σ∇ŵ,∇v)0,Ω ∀(η, v) ∈ H1
0(Ω)

2 ×H1
0(Ω).

Defining β̄ := (β̂ − β)/μ, the equation above can be written as follows:

μa(β̄, η)+a(β, η)+
κμ

t2
(∇ŵ − β̄,∇v − η)0,Ω+

κ

t2
(∇w − β,∇v − η)0,Ω = (σ∇ŵ,∇v)0,Ω.

We now take (η, v) = μ(β̄, ŵ) in (3.8) and (η, v) = (β,w) in the equation above and
subtract the resulting equations. Using also the symmetry of a(·, ·) and σ, we obtain

a(β, β) +
κ

t2
‖∇w − β‖20,Ω = 0.
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Thus, from the ellipticity of a(·, ·), we infer β = 0 and hence w = 0, which is a
contradiction since w is an eigenfunction of Tt. The proof is complete.

We are now in a position to prove Theorem 3.1.
Proof of Theorem 3.1. The proof follows easily by combining Lemma 3.4 with

Theorem 3.2, Proposition 3.3, and Lemma 3.5.

3.2. Limit problem. In this subsection we study the convergence properties of
the operator Tt as t goes to zero. First, let us recall that it is well known (see [4]) that,
when t goes to zero, the solution (β,w, γ) of problem (2.6) converges to the solution
of the following problem:

Given f ∈ H1
0(Ω), find (β0, w0, γ0) ∈ H1

0(Ω)
2 ×H1

0(Ω)×H0(rot; Ω)
′ such that

(3.9)

{
a(β0, η) + 〈γ0,∇v − η〉 = (σ∇f,∇v)0,Ω ∀(η, v) ∈ H1

0(Ω)
2 ×H1

0(Ω),

∇w0 − β0 = 0.

Above, 〈·, ·〉 stands now for the duality pairing in H0(rot; Ω). Problem (3.9) is
a mixed formulation for the following well-posed problem, which corresponds to the
buckling of a Kirchhoff plate:

Given f ∈ H1
0(Ω), find w0 ∈ H2

0(Ω) such that

(3.10)
E

12 (1− ν2)
(Δw0,Δv)0,Ω = (σ∇f,∇v)0,Ω ∀v ∈ H2

0(Ω).

Let T0 be the bounded linear operator defined by

T0 : H1
0(Ω) → H1

0(Ω),

f �→ w0,

where w0 is the second component of the solution of problem (3.9). Since w0 ∈ H2
0(Ω),

the operator T0 is compact. Hence, apart from μ0 = 0, the spectrum of T0 consists of
a sequence of finite multiplicity isolated eigenvalues converging to zero. The following
lemma, which yields the convergence in norm of Tt to T0 has been essentially proved
in [10, Lemma 3.1].

Lemma 3.6. There exists a constant C, independent of t, such that

‖(Tt − T0) f‖1,Ω ≤ Ct ‖f‖1,Ω ∀f ∈ H1
0(Ω).

As a consequence of this lemma, standard properties about the separation of
isolated parts of the spectrum (see [14] for instance) yield the following result.

Lemma 3.7. Let μ0 �= 0 be an eigenvalue of T0 of multiplicity m. Let D be
any disc in the complex plane centered at μ0 and containing no other element of the
spectrum of T0. Then there exists t0 > 0 such that, ∀t < t0, D contains exactly
m isolated eigenvalues of Tt (repeated according to their respective multiplicities).
Consequently, each nonzero eigenvalue μ0 of T0 is a limit of isolated eigenvalues μt

of Tt as t goes to zero.
Our next goal is to show that the largest eigenvalues of Tt converge to the largest

eigenvalues of T0 as t goes to zero. With this aim, we prove first the following lemma.
Here and thereafter, we will use ‖ · ‖ to denote the operator norm induced by the
H1(Ω) norm.

Lemma 3.8. Let F ⊂ C be a closed set such that F ∩ Sp(T0) = ∅. Then there
exist strictly positive constants t0 and C such that, ∀t < t0, F ∩ Sp(Tt) = ∅ and

‖Rz(Tt)‖ := sup
w∈H1

0(Ω)
w �=0

‖Rz(Tt)w‖1,Ω
‖w‖1,Ω

≤ C ∀z ∈ F.
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Proof. The mapping z �→ ‖ (zI − T0)
−1 ‖ is continuous for all z ∈ ρ(T0) and

goes to zero as |z| → ∞. Consequently, it attains its maximum on any closed subset

F ⊂ ρ(T0). Let C1 := 1/maxz∈F ‖ (zI − T0)
−1 ‖; there holds

‖(zI − T0)w‖1,Ω ≥ 1

C1
‖w‖1,Ω ∀w ∈ H1

0(Ω) ∀z ∈ F.

Now, according to Lemma 3.6, there exists t1 > 0 such that, for all t < t1,

‖(Tt − T0)w‖1,Ω ≤ 1

2C1
‖w‖1,Ω ∀w ∈ H1

0(Ω).

Therefore, for all w ∈ H1
0(Ω), for all z ∈ F , and for all t < t1,

(3.11) ‖(zI − Tt)w‖1,Ω ≥ ‖(zI − T0)w‖1,Ω − ‖(Tt − T0)w‖1,Ω ≥ 1

2C1
‖w‖1,Ω

and, consequently, z /∈ Spd(Tt).
On the other hand, d := minz∈F |z| is strictly positive because Sp(T0) � 0, F ∩

Sp(T0) = ∅, and F is closed. Let t2 > 0 be such that κ−1t22 ‖σ‖∞,Ω < d. Hence, for

all z ∈ F and for all t < t2, we have |z| > κ−1t2 ‖σ‖∞,Ω and, consequently, by virtue
of Theorem 3.1, either z ∈ Spd(Tt) or z /∈ Sp(Tt).

Altogether, if t0 := min {t1, t2}, then (zI − Tt) is invertible for all t < t0 and all
z ∈ F . Moreover, because of (3.11),

‖Rz(Tt)‖ = ‖ (zI − Tt)
−1 ‖ ≤ 2C1,

and we conclude the proof.
It is easy to show that the spectrum of T0 is real; in fact, this follows readily from

the symmetric formulation (3.10). Since T0 is compact, its nonzero eigenvalues are
isolated and of finite multiplicity so that we can order the positive ones as follows:

μ
(1)
0 ≥ μ

(2)
0 ≥ · · · ≥ μ

(k)
0 ≥ · · · ,

where each eigenvalue is repeated as many times as its corresponding multiplicity. A
similar ordering holds for the negative eigenvalues, too, if they exist.

According to Lemma 3.7, for t sufficiently small there exist eigenvalues of Tt close

to each μ
(k)
0 . On the other hand, according to Theorem 3.1, the essential spectrum

of Tt is confined within a ball centered at the origin of the complex plane with radius
proportional to t2. Therefore, at least for t sufficiently small, the points of the spec-
trum of Tt largest in modulus have to be isolated eigenvalues of finite multiplicity.
Since the spectrum of Tt is also real, we order the positive eigenvalues as we did with
those of T0:

μ
(1)
t ≥ μ

(2)
t ≥ · · · ≥ μ

(k)
t ≥ · · · .

Once more, a similar ordering holds for the negative eigenvalues of Tt if they exist.
The following theorem shows that the kth positive eigenvalue of Tt converges to

the kth positive eigenvalue of T0 as t goes to zero. A similar result holds for the
negative eigenvalues as well.

Theorem 3.9. Let μ
(k)
t , k ∈ N, t ≥ 0, be as defined above. For all k ∈ N,

μ
(k)
t → μ

(k)
0 as t→ 0.
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Proof. We will prove the result for the largest eigenvalue μ
(1)
t . The proof for the

others is a straightforward modification of this one.

LetD be an open disk in the complex plane centered at μ
(1)
0 with radius r < [μ

(1)
0 −

μ
(k)
0 ]/2, where μ

(k)
0 is the largest eigenvalue of T0 satisfying μ

(k)
0 < μ

(1)
0 . Therefore,

D ∩ Sp(T0) = {μ(1)
0 }.

Let H be the half-plane {z ∈ C : Re(z) < [μ
(k)
0 +μ

(1)
0 ]/2}. Hence Sp(T0) ⊂ D∪H .

Let F := C \ (D ∪H). The set F is closed, and F ∩ Sp(T0) = ∅. Hence, according
to Lemma 3.8, there exists t0 > 0 such that, for all t < t0, F ∩ Sp(Tt) = ∅, too, and
hence Sp(Tt) ⊂ D ∪H as well.

On the other hand, because of Lemma 3.7, there exists t1 > 0 such that, for all

t < t1, D contains as many eigenvalues of Tt as the multiplicity of μ
(1)
0 . Therefore,

for all t < min {t0, t1}, the largest eigenvalue of Tt, μ
(1)
t , has to lie in D. Since D can

be taken arbitrarily small, we conclude that μ
(1)
t converges to μ

(1)
0 as t goes to zero.

Thus, we conclude the proof.

3.3. Additional regularity of the eigenfunctions. The aim of this subsec-
tion is to prove a regularity result for the eigenfunctions of Problem 2.1. More pre-
cisely, we have the following proposition.

Proposition 3.10. Let μ
(k)
t , k ∈ N, t ≥ 0, be as in Theorem 3.9. Let (λ, β, w, γ)

be a solution of Problem 2.1 with λ = 1/μ
(k)
t . Then there exists t0 > 0 such that, for

all t < t0, β ∈ H2(Ω)
2
, w ∈ H2(Ω), div γ ∈ L2(Ω), and there holds

‖β‖2,Ω ≤ C |λ| ‖w‖1,Ω ,(3.12)

‖w‖2,Ω ≤ C |λ| ‖w‖1,Ω ,(3.13)

‖div γ‖0,Ω ≤ C |λ| ‖w‖2,Ω ,(3.14)

with C a positive constant independent of t.
Proof. Using the Helmholtz decomposition (2.7), Problem 2.1 is equivalent to

finding λ ∈ R and 0 �= (ψ, β, p, w) ∈ H1
0(Ω)×H1

0(Ω)
2 ×H1(Ω)/R×H1

0(Ω) such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(∇ψ,∇v)0,Ω = λ (σ∇w,∇v)0,Ω ∀v ∈ H1

0(Ω),

a(β, η) − (curl p, η)0,Ω = (∇ψ, η)0,Ω ∀η ∈ H1
0(Ω)

2
,

− (β, curl q)0,Ω − κ−1t2 (curl p, curl q)0,Ω = 0 ∀q ∈ H1(Ω)/R,

(∇w,∇ξ)0,Ω = (β,∇ξ)0,Ω + κ−1t2 (∇ψ,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).

From Theorem 2.1 applied to the problem above, we immediately obtain that

β ∈ H2(Ω)
2
and the estimate (3.12).

On the other hand, the first and the last equations of the system above lead to((
I − λκ−1t2σ

)
∇w,∇ξ

)
0,Ω

= (β,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).

Since μ
(k)
t → μ

(k)
0 > 0 as t → 0, there exists t1 > 0 such that μ

(k)
t > μ

(k)
0 /2 ∀t < t1.

Hence λ = 1/μ
(k)
t < 2/μ

(k)
0 . We take t0 < t1 such that κ−1t20 ‖σ‖∞,Ω < μ

(k)
0 /2.

Therefore, for all t < t0,
(
I − λκ−1t2σ

)
is uniformly positive definite. Thus, since w

is the solution of the problem{
div

[(
I − λκ−1t2σ

)
∇w

]
= div β in Ω,

w = 0 on ∂Ω,
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using a standard regularity result (see [21]), we have that w ∈ H2(Ω) and

‖w‖2,Ω ≤ C ‖div β‖0,Ω ≤ C ‖β‖1,Ω ≤ C |λ| ‖w‖1,Ω ,

the last inequality because of (3.12).
Furthermore, taking η = 0 in Problem 2.1, using the estimate above, and (2.3),

it follows that

div γ = λdiv(σ∇w) ∈ L2(Ω)

and

‖div γ‖0,Ω ≤ C |λ| ‖w‖2,Ω .

The proof is complete.

Once more a similar result holds for negative eigenvalues μ
(k)
t → μ

(k)
0 < 0.

4. Spectral approximation. For the numerical approximation, we focus on
the finite element method proposed and studied in [11]. In what follows we introduce
briefly this method (see this reference for further details). Let {Th}h>0 be a regular
family of triangular meshes of Ω̄. We will define finite element spaces Hh, Wh, and
Γh for the rotations, the transverse displacements, and the shear stress, respectively.

For K ∈ Th, let α1, α2, α3 be its barycentric coordinates. We denote by τi a unit
vector tangent to the edge αi = 0 and define

pK1 = α2α3τ1, pK2 = α1α3τ2, pK3 = α1α2τ3.

The finite element space for the rotations is defined by

Hh :=
{
ηh ∈ H1

0(Ω)
2
: ηh|K ∈ P

2
1 ⊕ 〈pK1 , pK2 , pK3 〉 ∀K ∈ Th

}
.

To approximate the transverse displacements, we use the usual piecewise-linear con-
tinuous finite element space

Wh :=
{
vh ∈ H1

0(Ω) : vh|K ∈ P1(K) ∀K ∈ Th
}
.

Finally, for the shear stress, we use the lowest-order rotated Raviart–Thomas space

Γh :=
{
φ ∈ H0(rot; Ω) : φ|K ∈ P

2
0 ⊕ (x2,−x1)P0 ∀K ∈ Th

}
.

We consider as reduction operator the rotated Raviart–Thomas interpolant

R : H1(Ω)
2 ∩H0(rot; Ω) → Γh,

which is uniquely determined by∫
�

Rφ · τ� =
∫
�

φ · τ�

for every edge � of the triangulation, τ� being a unit vector tangent to �. It is well
known that

‖Rφ‖0,Ω ≤ C ‖φ‖1,Ω ∀φ ∈ H1(Ω)
2
,(4.1)

‖φ−Rφ‖0,Ω ≤ Ch ‖φ‖1,Ω ∀φ ∈ H1(Ω)
2
.(4.2)
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Moreover, the operator R can be extended continuously to Hs(Ω)
2 ∩ H0(rot; Ω) for

any s > 0, and it is also well known that, for all v ∈ H1+s(Ω) ∩ H1
0(Ω),

(4.3) R(∇v) = ∇vI,

where vI ∈ Wh is the standard piecewise-linear Lagrange interpolant of v (which is
well defined because H1+s(Ω) ⊂ C(Ω̄) ∀s > 0).

The discretization of Problem 2.1 reads as follows.
Problem 4.1. Find λh ∈ R and 0 �= (βh, wh) ∈ Hh ×Wh such that{
a(βh, ηh) + (γh,∇vh −Rηh)0,Ω = λh (σ∇wh,∇vh)0,Ω ∀(ηh, vh) ∈ Hh ×Wh,

γh =
κ

t2
(∇wh −Rβh) .

Notice that this leads to a nonconforming method, since consistency terms arise
because of the reduction operator R. The final goal of this paper is to prove that the
smallest (in absolute value) eigenvalues λh converge to the smallest (in absolute value)
eigenvalues λ of Problem 2.1. We will also prove convergence of the corresponding
eigenfunctions and error estimates.

Our first step is to obtain a characterization of the solutions to Problem 4.1.
Lemma 4.1. Let Yh := {wh ∈ Wh : (σ∇wh,∇vh)0,Ω = 0 ∀vh ∈ Wh}. Then

Problem 4.1 has exactly dimWh − dimYh eigenvalues, repeated according to their
respective multiplicities. All of them are real and nonzero.

Proof. We eliminate γh in Problem 4.1 to write it as follows:

a(βh, ηh)+
κ

t2
(∇wh −Rβh,∇vh −Rηh)0,Ω(4.4)

= λh (σ∇wh,∇vh)0,Ω ∀(ηh, vh) ∈ Hh ×Wh.

Taking particular bases of Hh and Wh, this problem can be written in matrix form
as follows:

(4.5) A
[
βh

wh

]
= λh

[
0 0
0 E

] [
βh

wh

]
,

where βh and wh denote the vectors whose entries are the components in those basis
of βh and wh, respectively. The matrix A is symmetric and positive definite because

the bilinear form on the left-hand side of (4.4) is elliptic in H1
0(Ω)

2 ×H1
0(Ω) (cf. [11]).

Consequently, λh �= 0 and, since E is also symmetric, λh ∈ R. Now, (4.5) holds true
if and only if [

0 0
0 E

] [
βh

wh

]
= μhA

[
βh

wh

]
with λh = 1/μh and μh �= 0. The latter is a well-posed generalized eigenvalue problem
with dimWh − dimKer(E) nonzero eigenvalues. Thus, we conclude the lemma by
noting that Ewh = 0 if and only if wh ∈ Yh.

Remark 4.1. If (λh, βh, wh) is a solution of Problem 4.1, then

wt
hEwh = (σ∇wh,∇wh)0,Ω �= 0.

In fact, this follows by left multiplying both sides of (4.5) by (βt
h,w

t
h) and using the

positive definiteness of A.
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As in the continuous case, we introduce for the analysis the discrete solution
operator

Tth : H1
0(Ω) →Wh ↪→ H1

0(Ω),

f �→ wh,

where wh is the second component of the solution (βh, wh) to the corresponding
discrete source problem:

Given f ∈ H1
0(Ω), find (βh, wh) ∈ Hh ×Wh such that

(4.6){
a(βh, ηh) + (γh,∇vh −Rηh)0,Ω = (σ∇f,∇vh)0,Ω ∀(ηh, vh) ∈ Hh ×Wh,

γh =
κ

t2
(∇wh −Rβh) .

The existence and the uniqueness of the solution to problem (4.6) follow easily
(see [11]). Moreover, the nonzero eigenvalues of Tth are given by μh := 1/λh, with λh
being the eigenvalues of Problem 4.1, and the corresponding eigenfunctions coincide.

Remark 4.2. The solution to (4.6) is a finite element approximation of the solution
to (2.6). However, given a generic f ∈ H1

0(Ω), the usual convergence rate in terms
of positive powers of the mesh-size h does not hold in this case because the solution
to (2.6) is not sufficiently smooth. Indeed, the right-hand side is not regular enough,
since div(σ∇f) /∈ L2(Ω). Now, whenever f is more regular, for instance assuming
f ∈ H2(Ω), by taking into account the regularity of σ (cf. (2.3)), the convergence
results of [11] can be applied to obtain

‖β − βh‖1,Ω + t ‖γ − γh‖0,Ω + ‖w − wh‖1,Ω ≤ Ch ‖f‖2,Ω .

4.1. Auxiliary results. In what follows we will prove several auxiliary results
which will be used in the following section to prove convergence and error estimates
for our spectral approximation. The first of them is the following lemma, which shows
that the operator Tth defined above is bounded uniformly in t and h.

Lemma 4.2. There exists C > 0 such that ‖Tth‖ ≤ C ∀t > 0 and all h > 0.
Proof. Let f ∈ H1

0(Ω) and (βh, wh) be the solution to problem (4.6). Taking
(ηh, vh) = (βh, wh) as test function in (4.6), we obtain

a(βh, βh) + κ−1t2 ‖γh‖20,Ω ≤ ‖σ‖∞,Ω ‖∇f‖0,Ω ‖∇wh‖0,Ω .

Hence, from the ellipticity of a(·, ·),

‖βh‖21,Ω + κ−1t2 ‖γh‖20,Ω ≤ C ‖σ‖∞,Ω ‖∇f‖0,Ω ‖∇wh‖0,Ω .

Therefore, using the definition of γh (cf. (4.6)) and (4.1),

‖∇wh‖20,Ω =
∥∥κ−1t2γh +Rβh

∥∥2
0,Ω

≤ C ‖σ‖∞,Ω ‖∇f‖0,Ω ‖∇wh‖0,Ω ,

which allows us to conclude the proof.
Next, we will adapt the theory developed in [8, 9] for noncompact operators to

our case. With this aim, we will prove the following properties:

P1. ‖T0 − Tth‖h := sup
fh∈Wh
fh �=0

‖(T0 − Tth) fh‖1,Ω
‖fh‖1,Ω

→ 0 as (h, t) → (0, 0);

P2. ∀u ∈ H1
0(Ω) inf

vh∈Wh

‖u− vh‖1,Ω → 0 as h→ 0.

From now on, we will use the operator norm ‖·‖h as defined in property P1.
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We focus on property P1, since property P2 follows from standard approximation
results. We notice first that

(4.7) ‖T0 − Tth‖h ≤ ‖T0 − Tt‖h + ‖Tt − Tth‖h ,

where Tt is the operator defined in (2.5). Since Wh ⊂ H1
0(Ω), from Lemma 3.6 we

deduce that for all h > 0

(4.8) ‖T0 − Tt‖h ≤ Ct.

Regarding the other term in the right-hand side of (4.7), we aim at proving the
following result.

Proposition 4.3. Suppose that the family {Th}h>0 is quasi-uniform. Then we
have

‖Tt − Tth‖h ≤ C (h+ t) .

The proof of Proposition 4.3 will be given at the end of this section. With this
aim, we consider problems (2.6) and (4.6) with source term in Wh:

Given fh ∈ Wh, find (β,w) ∈ H1
0(Ω)

2 ×H1
0(Ω) such that

(4.9)

⎧⎨⎩a(β, η) + (γ,∇v − η)0,Ω = (σ∇fh,∇v)0,Ω ∀(η, v) ∈ H1
0(Ω)

2 ×H1
0(Ω),

γ =
κ

t2
(∇w − β) .

Given fh ∈ Wh, find (βh, wh) ∈ Hh ×Wh such that
(4.10){

a(βh, ηh) + (γh,∇vh −Rηh)0,Ω = (σ∇fh,∇vh)0,Ω ∀(ηh, vh) ∈ Hh ×Wh,

γh =
κ

t2
(∇wh −Rβh) .

We need some results concerning the solutions of these problems. First, we apply
the Helmholtz decomposition (2.7) to the term γ from (4.9):

(4.11) γ = ∇ψ + curl p, ψ ∈ H1
0(Ω), p ∈ H1(Ω)/R.

Then we apply Theorem 2.1 and (2.9) to obtain the following a priori estimate for the
solution to problem (4.9):

(4.12) ‖ψ‖1,Ω + ‖β‖2,Ω + ‖w‖1,Ω + ‖p‖1,Ω + t ‖p‖2,Ω + ‖γ‖0,Ω ≤ C ‖fh‖1,Ω .

The following result shows that, for fh ∈ Wh, w and ψ are actually smoother. Fur-
thermore, we establish an inverse estimate which will be used to prove Proposition 4.3.

Lemma 4.4. Let w be defined by problem (4.9) and ψ as in (4.11). Then w,ψ ∈
H1+s(Ω) ∀s ∈ (0, 12 ). Moreover, if the family {Th}h>0 is quasi-uniform, then

‖ψ‖1+s,Ω ≤ Ch−s ‖fh‖1,Ω .

Proof. Recall the equivalence between problems (4.9) and (2.8), the latter with
source term fh instead of f . From the first equation of (2.8) we have that ψ is the
weak solution of

(4.13)

{
Δψ = div(σ∇fh) ∈ H−1(Ω),

ψ = 0 on ∂Ω.
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Since fh is a continuous piecewise linear function, we have that fh ∈ H1+s(Ω) ∀s ∈
(0, 12 ). Therefore, the assumption (2.3) implies σ∇fh ∈ Hs(Ω)2. Hence, div(σ∇fh) ∈
Hs−1(Ω). Then, from standard regularity results for problem (4.13), ψ ∈ H1+s(Ω)
∀s ∈ (0, 12 ) and

‖ψ‖1+s,Ω ≤ C ‖div(σ∇fh)‖s−1,Ω ≤ C ‖fh‖1+s,Ω .

If the family of meshes is quasi-uniform, then the inverse inequality ‖fh‖1+s,Ω ≤
Ch−s ‖fh‖1,Ω holds true, and from this and the estimate above we obtain

‖ψ‖1+s,Ω ≤ Ch−s ‖fh‖1,Ω .

On the other hand, from the last equation of (2.8) we have that(
∇
(
w − κ−1t2ψ

)
,∇ξ

)
0,Ω

= (β,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).

Therefore,
(
w − κ−1t2ψ

)
is the weak solution to the problem{
Δ
(
w − κ−1t2ψ

)
= div β ∈ L2(Ω),(

w − κ−1t2ψ
)
= 0 on ∂Ω.

Hence,
(
w − κ−1t2ψ

)
∈ H2(Ω) (recall Ω is convex) and w =

(
w − κ−1t2ψ

)
+κ−1t2ψ ∈

H1+s(Ω) ∀s ∈ (0, 12 ). Thus the proof is complete.
The following lemma is the key point to prove Proposition 4.3.
Lemma 4.5. If (β,w, γ) and (βh, wh, γh) as in (4.9) and (4.10), respectively, then

‖β − βh‖1,Ω + t ‖γ − γh‖0,Ω ≤ C (h+ t) ‖fh‖1,Ω .

Proof. It has been proved in [11] (see Example 4.1 from this reference) that there

exists β̃ ∈ Hh satisfying

Rβ̃ = Rβ,

‖β − β̃‖1,Ω ≤ Ch ‖β‖2,Ω .

Let

γ̃ :=
κ

t2
(∇wI −Rβ̃),

where wI ∈ Wh is the Lagrange interpolant of w, which is well defined because of
Lemma 4.4. Notice that by virtue of (4.3) and the equation above,

γ̃ = Rγ.

It has also been proved in [11] that

‖β̃ − βh‖1,Ω + t ‖γ̃ − γh‖0,Ω ≤ C
(
‖β̃ − β‖1,Ω + t ‖γ̃ − γ‖0,Ω + h ‖γ‖0,Ω

)
.

Hence, by adding and subtracting β̃ and γ̃ = Rγ, we obtain

‖β − βh‖1,Ω + t ‖γ − γh‖0,Ω ≤ C
(
‖β − β̃‖1,Ω + t ‖γ −Rγ‖0,Ω + h ‖γ‖0,Ω

)
.
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The first and last term in the right-hand side above are already bounded. To
estimate the second one, we use (4.11), Lemma 4.4, and (4.3) to obtain

(4.14) ‖γ −Rγ‖0,Ω ≤ ‖∇ψ −∇ψI‖0,Ω + ‖curl p−R(curl p)‖0,Ω .

Next, from standard error estimates for the Lagrange interpolant, we have that

‖∇ψ −∇ψI‖0,Ω ≤ Chs ‖ψ‖1+s,Ω ,

whereas from (4.2) and the fact that p ∈ H2(Ω) (cf. (4.12))

‖curl p−R(curl p)‖0,Ω ≤ Ch ‖p‖2,Ω .

Thus, by using Lemma 4.4, we conclude that

‖β − βh‖1,Ω + t ‖γ − γh‖0,Ω ≤ C
(
h ‖β‖2,Ω + t ‖fh‖1,Ω + th ‖p‖2,Ω + h ‖γ‖0,Ω

)
≤ C (h+ t) ‖fh‖1,Ω ,

where we have used (4.12) for the last inequality. The proof is complete.
We are now in a position to prove Proposition 4.3.
Proof of Proposition 4.3. Let (β,w, γ) and (βh, wh, γh) be as in (4.9) and (4.10),

respectively. We need to prove that

‖w − wh‖1,Ω ≤ C (h+ t) ‖fh‖1,Ω .

Since

∇w −∇wh = κ−1t2 (γ − γh) + (β −Rβh) ,

adding and subtracting Rβ, we obtain

(4.15) ‖∇w −∇wh‖0,Ω ≤ κ−1t2 ‖γ − γh‖0,Ω + ‖β −Rβ‖0,Ω + ‖R(β − βh)‖0,Ω .

Hence, using the Poincaré inequality, (4.1), Lemma 4.5, (4.2), and (4.12), we have

‖w − wh‖1,Ω ≤ C (h+ t) ‖fh‖1,Ω .

The proof is complete.
We end this section by proving property P1.
Lemma 4.6. Suppose that the family {Th}h>0 is quasi-uniform. Then we have

‖T0 − Tth‖h ≤ C (h+ t) .

Proof. The assertion follows immediately from estimate (4.7), by using (4.8) and
Proposition 4.3.

5. Convergence and error estimates. In this section we will adapt the ar-
guments from [9] to prove error estimates for the approximate eigenvalues and eigen-
functions. Throughout this section, we will assume that the family of meshes {Th}h>0

is quasi-uniform so that property P1 holds true, although such an assumption is not
actually necessary in some particular cases (see the appendix below).

Our first goal is to prove that, provided the plate is sufficiently thin, the numerical
method does not introduce spurious modes with eigenvalues interspersed among the
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relevant ones of Tt (namely, around μ
(k)
t for small k). Let us remark that such a

spectral pollution could be in principle expected from the fact that Tt has a nontrivial
essential spectrum. However, that this is not the case is an immediate consequence
of the following theorem, which is essentially identical to Lemma 1 from [8].

Theorem 5.1. Let F ⊂ C be a closed set such that F ∩ Sp(T0) = ∅. There exist
strictly positive constants h0, t0, and C such that, ∀h < h0 and ∀t < t0, there holds
F ∩ Sp(Tth) = ∅ and

‖Rz(Tth)‖h ≤ C ∀z ∈ F.

Proof. The same arguments used to prove Lemma 3.8 (but using Lemma 4.6
instead of Lemma 3.6) allow us to show an estimate analogous to (3.11), namely, for
all wh ∈Wh and all z ∈ F ,

‖(zI − Tth)wh‖1,Ω ≥ ‖(zI − T0)wh‖1,Ω − ‖(T0 − Tth)wh‖1,Ω ≥ 1

2C1
‖wh‖1,Ω ,

provided h and t are small enough. Since Wh is finite dimensional, the inequality
above implies that (zI − Tth) |Wh

is invertible and, hence, z /∈ Sp(Tth|Wh
). Now,

Sp(Tth) = Sp(Tth|Wh
) ∪ {0} (see, for instance, [3, Lemma 4.1]) and, for z ∈ F , z �= 0.

Thus, z /∈ Sp(Tth) either. Then (zI − Tth) is invertible too and

‖Rz(Tth)‖h = ‖ (zI − Tth)
−1 ‖h ≤ 2C1 ∀z ∈ F.

The proof is complete.
We have already proved in Theorem 3.1 that the essential spectrum of Tt is

confined to the real interval
(
−κ−1t2‖σ‖∞,Ω, κ

−1t2‖σ‖∞,Ω

)
. The spectrum of Tt

outside this interval consists of finite multiplicity isolated eigenvalues of ascent one,
which converge to eigenvalues of T0 as t goes to zero (cf. Theorem 3.9). The eigenvalue

of Tt with physical significance is the largest in modulus, μ
(1)
t , which corresponds to

the limit of elastic stability that leads to buckling effects. This eigenvalue is typically
simple and converges to a simple eigenvalue of T0 as t tends to zero. Because of this,
for simplicity, from now on we restrict our analysis to simple eigenvalues.

Let μ0 �= 0 be an eigenvalue of T0 with multiplicity m = 1. Let D be a closed
disk centered at μ0 with boundary Γ such that 0 /∈ D and D ∩ Sp(T0) = {μ0}. Let
t0 > 0 be small enough so that for all t < t0

• D contains only one eigenvalue μt of Tt, which we already know is simple (cf.
Lemma 3.7), and

• D does not intersect the real interval (−κ−1t2‖σ‖∞,Ω, κ
−1t2‖σ‖∞,Ω), which

contains the essential spectrum of Tt.
According to Theorem 5.1 there exist t0 > 0 and h0 > 0 such that ∀t < t0 and

∀h < h0, Γ ⊂ ρ(Tth). Moreover, proceeding as in [8, section 2], from properties P1
and P2 it follows that, for h small enough, Tth has exactly one eigenvalue μth ∈ D.
The theory in [9] could be adapted too, to prove error estimates for the eigenvalues
and eigenfunctions of Tth to those of T0 as h and t go to zero. However, our goal is
not this one, but to prove that μth converges to μt as h goes to zero, with t < t0 fixed,
and to provide the corresponding error estimates for eigenvalues and eigenfunctions.
With this aim, we will modify accordingly the theory from [9].

Let Πh : H1
0(Ω) → H1

0(Ω) be the projector with rangeWh defined for all u ∈ H1
0(Ω)

by

(∇ (Πhu− u) ,∇vh)0,Ω = 0 ∀vh ∈ Wh.
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The projector Πh is bounded uniformly on h, namely, ‖Πhu‖1,Ω ≤ ‖u‖1,Ω, and the
following error estimate is well known:

(5.1) ‖Πhu− u‖1,Ω ≤ Ch ‖u‖2,Ω ∀u ∈ H2(Ω).

Let us define

Bth := TthΠh : H1
0(Ω) → Wh ↪→ H1

0(Ω).

It is clear that Tth and Bth have the same nonzero eigenvalues and corresponding
eigenfunctions. Furthermore, we have the following result (cf. [9, Lemma 1]).

Lemma 5.2. There exist h0, t0, and C such that

‖Rz(Bth)‖ ≤ C ∀h < h0, ∀t < t0, ∀z ∈ Γ.

Proof. Since Bth is compact, it suffices to verify that ‖(zI−Bth)u‖1,Ω ≥ C‖u‖1,Ω
∀u ∈ H1

0(Ω) and z ∈ Γ. Taking into account that 0 /∈ Γ and using Theorem 5.1, we
have

‖u‖1,Ω ≤ ‖Πhu‖1,Ω+‖u−Πhu‖1,Ω ≤ C ‖(zI − Tth)Πhu‖1,Ω+|z|−1 ‖z (u−Πhu)‖1,Ω .

By using properties of the projector Πh, we obtain

‖u‖1,Ω ≤ C ‖(zI −Bth) Πhu‖1,Ω + |z|−1 ‖z (u−Πhu)−Bth(u−Πhu)‖1,Ω
= C ‖Πh(zI −Bth)u‖1,Ω + |z|−1 ‖(I −Πh) (zI −Bth)u‖1,Ω
≤ C ‖(zI −Bth) u‖1,Ω .

Thus we end the proof.
Next, we introduce
• Et : H1

0(Ω) → H1
0(Ω), the spectral projector of Tt corresponding to the iso-

lated eigenvalue μt, namely,

Et :=
1

2πi

∫
Γ

Rz(Tt) dz;

• Fth : H1
0(Ω) → H1

0(Ω), the spectral projector of Bth corresponding to the
eigenvalue μth, namely,

Fth :=
1

2πi

∫
Γ

Rz(Bth) dz.

As a consequence of Lemma 5.2, the spectral projectors Fth are bounded uniformly
in h and t for h and t small enough. Notice that Et(H

1
0(Ω)) is the eigenspace of

Tt associated to μt and Fth(H
1
0(Ω)) the eigenspace of Bth (and hence of Tth, too)

associated to μth. According to our assumptions, Et(H
1
0(Ω)) and Fth(H

1
0(Ω)) are

both one dimensional. The following estimate (cf. [9, Lemma 3]) will be used to prove
convergence of the eigenspaces.

Lemma 5.3. There exist positive constants h0, t1, and C such that for all h < h0
and for all t < t1,

‖ (Et − Fth) |Et(H1
0(Ω))‖ ≤ C‖ (Tt −Bth) |Et(H1

0(Ω))‖ ≤ Ch.
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Proof. The first inequality is proved using the same arguments of [9, Lemma 3]
and Lemmas 3.8 and 5.2. For the other estimate, fix w ∈ Et(H

1
0(Ω)). From Proposi-

tion 3.10, Remark 4.2, Lemma 4.2, and (5.1) we have

‖(Tt −Bth)w‖1,Ω ≤ ‖(Tt − Tth)w‖1,Ω + ‖(Tth −Bth)w‖1,Ω
≤ ‖(Tt − Tth)w‖1,Ω + ‖Tth‖ ‖(I −Πh)w‖1,Ω
≤ Ch ‖w‖2,Ω .

Therefore, by using (3.13), we conclude the proof.
To prove an error estimate for the eigenspaces, we also need the following result.
Lemma 5.4. Let

Λth := Fth|Et(H1
0(Ω)) : Et(H

1
0(Ω)) → Fth(H

1
0(Ω)).

For h and t small enough, the operator Λth is invertible and∥∥Λ−1
th

∥∥ ≤ C,

with C independent of h and t.
Proof. See the proof of Theorem 1 in [9].

We recall the definition of the gap δ̂ between two closed subspaces Y and Z of
H1

0(Ω):

δ̂(Y, Z) := max {δ(Y, Z), δ(Z, Y )} ,

where

δ(Y, Z) := sup
y∈Y

‖y‖1,Ω=1

(
inf
z∈Z

‖y − z‖1,Ω
)
.

The following theorem shows that the eigenspace of Tth (which coincides with
that of Bth) approximate the eigenspace of Tt with optimal order.

Theorem 5.5. There exist constants h0, t1, and C such that, for all h < h0 and
for all t < t1, there holds

δ̂
(
Fth(H

1
0(Ω)), Et(H

1
0(Ω))

)
≤ Ch.

Proof. It follows by arguing exactly as in the proof of Theorem 1 from [9] and
using Lemmas 5.3 and 5.4.

Next, we prove a preliminary suboptimal error estimate for |μt − μth|, which will
be improved below (cf. Theorem 5.8).

Lemma 5.6. There exists a positive constant C such that, for h and t small
enough,

|μt − μth| ≤ Ch.

Proof. We define the following operators:

T̂t := Tt|Et(H1
0(Ω)) : Et(H

1
0(Ω)) → Et(H

1
0(Ω)),

B̂th := Λ−1
th BthΛth : Et(H

1
0(Ω)) → Et(H

1
0(Ω)).

The operator T̂t has a unique eigenvalue μt of multiplicity m = 1, while the unique
eigenvalue of B̂th is μth.
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Let v ∈ Et(H
1
0(Ω)). Since (Λ−1

th Fth − I)Tt|Et(H1
0(Ω)) = 0 and Bth commutes with

its spectral projector Fth, we have

(T̂t − B̂th)v = (Tt −Bth) v +
(
Λ−1
th Fth − I

)
(Tt −Bth) v.

Therefore, using Lemmas 5.3 and 5.4 and the fact that ‖Fth‖ is bounded uniformly
in h and t, for h and t small enough, we obtain

‖(T̂t − B̂th)v‖1,Ω ≤ ‖(Tt −Bth) v‖1,Ω +
∥∥(Λ−1

th Fth − I
)
(Tt −Bth) v

∥∥
1,Ω

≤ Ch ‖v‖1,Ω .

Hence, the lemma follows from the fact that T̂t = μtI and B̂th = μthI.
Since the eigenvalue μt �= 0 of Tt corresponds to an eigenvalue λ = 1/μt of

Problem 2.1, Lemma 5.6 leads to an error estimate for the approximation of λ as
well. However, the order of convergence is O(h) as in this lemma. We now aim at
improving this result. Let λh := 1/μth, wh, βh, and γh be such that (λh, wh, βh, γh) is
a solution of Problem 4.1, with ‖wh‖1,Ω = 1. According to Theorem 5.5, there exists
a solution (λ,w, β, γ) to Problem 2.1, with ‖w‖1,Ω = 1, such that

‖w − wh‖1,Ω ≤ Ch.

The following lemma will be used to prove a double order of convergence for the
corresponding eigenvalues, but it is interesting by itself, too. In fact, it shows optimal
order convergence for the rotations of the vibration modes.

Lemma 5.7. Let (λ,w, β) be a solution of Problem 2.1, with ‖w‖1,Ω = 1, and
(λh, wh, βh) a solution of Problem 4.1, with ‖wh‖1,Ω = 1, such that

(5.2) ‖w − wh‖1,Ω ≤ Ch.

Let γ and γh be as defined in Problems 2.1 and 4.1, respectively. Then for h and t
small enough there holds

(5.3) ‖β − βh‖1,Ω + t ‖γ − γh‖0,Ω ≤ Ch.

Proof. Let ŵh ∈ Wh, β̂h ∈ Hh, and γ̂h be the solution of the auxiliary problem⎧⎨⎩ a(β̂h, ηh) + (γ̂h,∇vh −Rηh)0,Ω = λ (σ∇w,∇vh)0,Ω ∀(ηh, vh) ∈ Hh ×Wh,

γ̂h =
κ

t2
(∇ŵh −Rβ̂h).

This problem is the finite element discretization of Problem 2.1, with source
term f = λw ∈ H2(Ω) ∩ H1

0(Ω). Then, from Remark 4.2, (3.13), and the fact that
‖wh‖1,Ω = 1, we obtain the following error estimate:

(5.4) ‖β − β̂h‖1,Ω + t ‖γ − γ̂h‖0,Ω + ‖w − ŵh‖1,Ω ≤ Ch |λ| ‖w‖2,Ω ≤ Ch |λ| .

On the other hand, from Problem 4.1, we have that (βh− β̂h, wh−ŵh) ∈ Hh×Wh

satisfies⎧⎪⎨⎪⎩
a(βh − β̂h, ηh) + (γh − γ̂h,∇vh −Rηh)0,Ω = (σ∇ (λhwh − λw) ,∇vh)0,Ω

∀(ηh, vh) ∈ Hh ×Wh,
γh − γ̂h =

κ

t2
(∇ (wh − ŵh)−R(βh − β̂h)).
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Taking ηh = βh − β̂h and vh = wh − ŵh in the system above, from the ellipticity of
a(·, ·), we obtain

‖βh − β̂h‖
2

1,Ω + κ−1t2 ‖γh − γ̂h‖20,Ω
≤ C ‖λhwh − λw‖1,Ω ‖wh − ŵh‖1,Ω
≤ C

(
|λh| ‖w − wh‖1,Ω + |λ− λh| ‖w‖1,Ω

)(
‖w − wh‖1,Ω + ‖w − ŵh‖1,Ω

)
≤ Ch2,

where we have used Lemma 5.6 and estimates (5.2) and (5.4) for the last inequality.
Therefore, we have

‖βh − β̂h‖1,Ω + t ‖γh − γ̂h‖0,Ω ≤ Ch.

Thus, the lemma follows from this estimate and (5.4).
We are now in a position to prove an optimal double order error estimate for the

eigenvalues.
Theorem 5.8. There exist positive constants h0, t1, and C such that, ∀h < h0

and ∀t < t1,

|λ− λh| ≤ Ch2.

Proof. We adapt to our case a standard argument for eigenvalue problems (see
[2, Lemma 9.1]). Let (λ, β, w, γ) and (λh, βh, wh, γh) be as in Lemma 5.7. We will
use the bilinear forms A and B defined in (3.1) and (3.2), respectively, as well as the
bilinear form Ah defined in Hh ×Wh as follows:

Ah((βh, wh), (ηh, vh)) := a(βh, ηh) +
κ

t2
(∇wh −Rβh,∇vh −Rηh)0,Ω .

With this notation, Problems 2.1 and 4.1 can be written as follows:

A((β,w), (η, v)) =λB((β,w), (η, v)),

Ah((βh, wh), (ηh, vh)) =λhB((βh, wh), (ηh, vh)).

From these equations, straightforward computations lead to

(λh − λ)B((βh, wh), (βh, wh)) = A((β − βh, w − wh), (β − βh, w − wh))
(5.5)

− λB((β − βh, w − wh), (β − βh, w − wh))

+ [Ah((βh, wh), (βh, wh))−A((βh, wh), (βh, wh))] .

Next, we define γ̄h :=
κ

t2
(∇wh − βh). Recalling that R∇wh = ∇wh (cf. (4.3)),

from the definition of γh (cf. Problem 4.1) we have that γh = Rγ̄h. On the other
hand, from the definition of A and Ah we write

A((β − βh, w − wh), (β − βh, w − wh)) = a(β − βh, β − βh) + κ−1t2 ‖γ − γ̄h‖20,Ω ,

Ah((βh, wh), (βh, wh))−A((βh, wh), (βh, wh)) = κ−1t2
(
‖Rγ̄h‖20,Ω − ‖γ̄h‖20,Ω

)
.
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Therefore,

(λh − λ)B((βh, wh), (βh, wh)) = a(β − βh, β − βh)

+ κ−1t2
(
‖γ − γ̄h‖20,Ω + ‖Rγ̄h‖20,Ω − ‖γ̄h‖20,Ω

)
− λB((β − βh, w − wh), (β − βh, w − wh)).

The first and the third term in the right-hand side above are easily bounded by virtue
of (5.2) and (5.3). For the second term, we write

‖γ − γ̄h‖20,Ω + ‖Rγ̄h‖20,Ω − ‖γ̄h‖20,Ω = ‖γ −Rγ̄h‖20,Ω − 2 (γ, γ̄h −Rγ̄h)0,Ω(5.6)

= ‖γ − γh‖20,Ω +
2κ

t2
(γ, βh −Rβh)0,Ω .

For β ∈ H2(Ω)
2∩H1

0(Ω), we denote by β
I ∈ Hh the standard Clément interpolant

of β, which satisfies

(5.7)
∥∥βI

∥∥
1,Ω

≤ C ‖β‖1,Ω and
∥∥β − βI

∥∥
1,Ω

≤ Ch ‖β‖2,Ω .

It follows that

(γ, βh −Rβh)0,Ω =
(
γ,

(
βh − βI

)
−R(βh − βI)

)
0,Ω

+
(
γ, βI −RβI

)
0,Ω

≤ ‖γ‖0,Ω
∥∥(βh − βI

)
−R(βh − βI)

∥∥
0,Ω

+
(
γ, βI −RβI

)
0,Ω

.

Thus, using (4.2) and Lemma 3.3 from [10], we obtain

(γ, βh −Rβh)0,Ω ≤ Ch ‖γ‖0,Ω
∥∥βh − βI

∥∥
1,Ω

+ Ch2 ‖div γ‖0,Ω ‖β‖1,Ω

≤ Ch ‖γ‖0,Ω
(
‖β − βh‖1,Ω +

∥∥β − βI
∥∥
1,Ω

)
+ Ch2 ‖div γ‖0,Ω ‖β‖1,Ω ,

and from Lemma 5.7, (5.7), and Proposition 3.10, we have

(γ, βh −Rβh)0,Ω ≤ Ch ‖γ‖0,Ω
(
Ch+ Ch ‖β‖2,Ω

)
+ Ch2 |λ| ‖w‖2,Ω ‖β‖1,Ω ≤ Ch2 |λ| .

Finally, we use this estimate, (5.5), (5.6), and the fact that B((βh, wh), (βh, wh))
= (σ∇wh,∇wh)0,Ω �= 0 (cf. Remark 4.1) to obtain

|λ− λh| ≤ C
‖β − βh‖21,Ω + ‖w − wh‖21,Ω + κ−1t2 ‖γ − γh‖20,Ω + Ch2 |λ|

|B((βh, wh), (βh, wh))|
.

Consequently, from Lemma 5.7,

|λ− λh| ≤ Ch2,

and we conclude the proof.

6. Numerical results. In this section we report some numerical experiments
carried out with our method applied to Problem 2.1. We recall that the buckling
coefficients can be directly computed from the eigenvalues of Problem 2.1: λb = λt2.

For all of the computations we have taken Ω := (0, 6)× (0, 4) (all of the lengths
are measured in meters) and typical parameters of steel: the Young modulus has been
chosen E = 1.44×1011Pa and the Poisson ratio ν = 0.30. The shear correction factor
has been taken k = 5/6.

We have used uniform meshes as those shown in Figure 6.1; the meaning of the
refinement parameter N can be easily deduced from this figure. Notice that h ∼ N−1.
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N = 1 N = 2 N = 3

Fig. 6.1. Rectangular plate. Uniform meshes.

Table 6.1

Lowest eigenvalues λi (multiplied by 10−10) of a uniformly compressed simply supported plate
with thickness t = 0.001.

Eigenvalue N = 2 N = 4 N = 8 N = 16 Order Extrapolated Exact
λ1 1.1793 1.1759 1.1752 1.1750 2.14 1.1750 1.1749
λ2 2.2638 2.2602 2.2596 2.2595 2.68 2.2595 2.2595
λ3 3.7293 3.6441 3.6224 3.6170 1.98 3.6151 3.6152
λ4 4.1573 4.0892 4.0726 4.0685 2.03 4.0672 4.0671

6.1. Uniformly compressed rectangular plate. For this test we have used
σ = I, which corresponds to a uniformly compressed plate.

6.1.1. Simply supported plate. First, we have considered a simply supported
plate, because analytical solutions are available in this case (see [19, 20]). Even though
our theoretical analysis has been developed only for clamped plates, we think that
the results of sections 4 and 5 should hold true for more general boundary conditions
as well. The results that follow give some numerical evidence of this.

In Table 6.1 we report the four lowest eigenvalues (λi, i = 1, 2, 3, 4) computed
by our method with four different meshes (N = 2, 4, 8, 16) for a a simply supported
plate with thickness t = 0.001. The table includes computed orders of convergence,
as well as more accurate values extrapolated by means of a least-squares fitting. The
last column shows the exact eigenvalues.

It can be seen from Table 6.1 that the method converges to the exact values with
an optimal quadratic order.

Figure 6.2 shows the transverse displacements for the principal buckling mode
computed with the finest mesh (N = 16).

6.1.2. Clamped plate. In Table 6.2 we present the results for the lowest eigen-
value of a uniformly compressed clamped rectangular plate with varying thickness.
We have used the same meshes as in the previous test. Again, we have computed the
orders of convergence and more accurate values obtained by a least-squares fitting.
In the last row we report for each mesh the limit values as t goes to zero obtained by
extrapolation.

Figure 6.3 shows the transverse displacements for the principal buckling mode,
for t = 0.1, and the finest mesh (N = 16).

According to Lemma 3.7, the values on the last row of Table 6.2 should correspond
to the lowest eigenvalues of a Kirchhoff–Love uniformly compressed clamped plate
with thickness t = 1. As a further test, we have also computed the latter by using the
methods analyzed in [6] and [17]. We show the obtained results in Table 6.3, where
an excellent agreement with the last row of Table 6.2 can be appreciated.

It is clear that the results from the Reissner–Mindlin model do not deteriorate as
the plate thickness become smaller, which confirms that our method is locking-free.
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Fig. 6.2. Uniformly compressed simply supported plate; principal buckling mode.

Table 6.2

Lowest eigenvalue λ1 (multiplied by 10−10) of uniformly compressed clamped plates with varying
thickness.

Thickness N = 2 N = 4 N = 8 N = 16 Order Extrapolated
t = 0.1 3.4031 3.3440 3.3293 3.3258 2.02 3.3246
t = 0.01 3.4324 3.3723 3.3571 3.3533 1.99 3.3520
t = 0.001 3.4327 3.3726 3.3574 3.3536 1.99 3.3522
t = 0.0001 3.4327 3.3726 3.3574 3.3536 1.98 3.3522

t = 0 (extrap.) 3.4327 3.3726 3.3574 3.3536 1.99 3.3523

Fig. 6.3. Uniformly compressed clamped plate; principal buckling mode.

Table 6.3

Lowest eigenvalue λ1 (multiplied by 10−10) of a uniformly compressed clamped thin plate
(Kirchhoff–Love model) computed with the methods from [6] and [17].

Method N = 8 N = 12 N = 16 N = 20 Order Extrapolated
[6] 3.3718 3.3611 3.3573 3.3555 1.97 3.3523
[17] 3.3514 3.3519 3.3521 3.3522 1.95 3.3523
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Table 6.4

Lowest eigenvalue λ1 (multiplied by 10−10) of clamped plates with varying thickness, uniformly
compressed in one direction.

Thickness N = 2 N = 4 N = 8 N = 16 Order Extrapolated
t = 0.1 6.7969 6.7274 6.7104 6.7066 2.05 6.7052
t = 0.01 6.8825 6.8143 6.7971 6.7930 2.00 6.7915
t = 0.001 6.8834 6.8151 6.7980 6.7939 2.00 6.7924
t = 0.0001 6.8834 6.8152 6.7980 6.7939 2.00 6.7924

t = 0 (extrap.) 6.8834 6.8152 6.7980 6.7939 2.00 6.7924

Fig. 6.4. Clamped plate uniformly compressed in one direction; principal buckling mode.

Table 6.5

Lowest eigenvalue λ1 (multiplied by 10−10) of a clamped thin plate (Kirchhoff–Love model)
uniformly compressed in one direction, computed with the methods from [6] and [17].

Method N = 8 N = 12 N = 16 N = 20 Order Extrapolated
[6] 6.8450 6.8158 6.8056 6.8009 2.00 6.7925
[17] 6.7904 6.7913 6.7917 6.7920 1.92 6.7926

6.2. Clamped plate uniformly compressed in one direction. We have
used for this test

σ =

[
1 0
0 0

]
,

which corresponds to a plate uniformly compressed in one direction. Notice that
in this test σ is only positive semidefinite. Table 6.4 shows the same quantities as
Table 6.2 in this case.

Figure 6.4 shows the principal buckling mode for t = 0.1 and the finest mesh
(N = 16).

Finally, Table 6.5 shows the same quantities as Table 6.3 in this case. Once more,
an excellent agreement with the values extrapolated from the Reissner–Mindlin model
(last row of Table 6.4) can be clearly appreciated.

6.3. Shear loaded clamped plate. In this case we have used

σ =

[
0 1
1 0

]
,
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Table 6.6

Lowest eigenvalue λ1 (multiplied by 10−10) of shear loaded clamped plates with varying thickness.

Thickness N = 4 N = 8 N = 12 N = 16 Order Extrapolated
t = 0.1 9.4306 9.2179 9.1783 9.1645 1.99 9.1464
t = 0.01 9.6098 9.3923 9.3514 9.3371 1.98 9.3184
t = 0.001 9.6116 9.3942 9.3533 9.3389 1.98 9.3202
t = 0.0001 9.6117 9.3942 9.3533 9.3389 1.98 9.3202

t = 0 (extrap.) 9.6117 9.3942 9.3533 9.3389 1.98 9.3202

Fig. 6.5. Shear loaded clamped plate; principal buckling mode.

Table 6.7

Lowest eigenvalue λ1 (multiplied by 10−10) of a shear loaded clamped thin plate (Kirchhoff–Love
model) computed with the methods from [6] and [17].

Method N = 8 N = 12 N = 16 N = 20 Order Extrapolated
[6] 9.4625 9.3840 9.3563 9.3435 1.98 9.3203
[17] 9.3660 9.3408 9.3319 9.3278 1.99 9.3204

which corresponds to a uniform shear load. Notice that σ is indefinite in this test.
The numerical results are reported in Table 6.6, Figure 6.5, and Table 6.7, using the
same pattern as the previous tests.

In all cases, an excellent agreement between the numerical experiments and the
theoretical results detailed in section 5 can be noticed, and the method appears thor-
oughly locking-free.

Appendix. Uniformly compressed plates. The aim of this appendix is to
show that the results of sections 3, 4, and 5 can be refined when σ = I, which
corresponds to a uniformly compressed plate. In this case, we are able to give a
better characterization of the spectrum of Tt and to prove the spectral approximation
without assuming that the family of meshes is quasi-uniform.

A.1. Spectral characterization. We have the following counterpart of The-
orem 3.1, showing that the spectrum of Tt is simply a shift of the spectrum of a
compact operator.
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Theorem A.1. Suppose that σ = I. For all t > 0, the spectrum of Tt satisfies

Sp(Tt) = Sp(G) + κ−1t2,

where G is the compact operator defined in (3.5).
Proof. The first equation of (2.8) leads in this case to ψ = f , due to the fact that

σ = I. Therefore, (2.8) reduces to

(A.1)

⎧⎪⎨⎪⎩
a(β, η)− (curl p, η)0,Ω = (∇f, η)0,Ω ∀η ∈ H1

0(Ω)
2
,

− (β, curl q)0,Ω − κ−1t2 (curl p, curl q)0,Ω = 0 ∀q ∈ H1(Ω)/R,

(∇w,∇ξ)0,Ω = (β,∇ξ)0,Ω + κ−1t2 (∇f,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).

Next, recall that G is defined in (3.5) as the operator mapping f �→ u, with
u ∈ H1

0(Ω) such that

(∇u,∇ξ)0,Ω = (β,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω),

where β ∈ H1
0(Ω)

2
is determined in this case by the first two equations from (A.1).

Therefore, the third equation from (A.1) yields Tt = G + κ−1t2I. Since G has been
already shown to be compact, this allows us to conclude the theorem.

As a consequence of this theorem, Sp(Tt) =
{
κ−1t2

}
∪ {μn : n ∈ N}, with μn

being a sequence of finite-multiplicity eigenvalues converging to κ−1t2. Therefore, in
this particular case, the essential spectrum of Tt reduces to a unique point: κ−1t2.

A.2. Spectral approximation. In this particular case, we will improve the
error estimate shown in section 4 in that we will not need to assume quasi uniformity
of the meshes. Indeed, this property was used above only to prove Proposition 4.3.
Instead, we have now the following result.

Proposition A.2. Suppose that σ = I. Then, for any regular family of trian-
gular meshes {Th}h>0, there exists C > 0 such that, for all t > 0,

‖Tt − Tth‖h ≤ Ch.

Proof. We will simply sketch the proof, since it follows exactly the same steps
as that of Proposition 4.3. First, we notice that in the decomposition (4.11) we have
ψ = fh ∈ Wh (cf. problem (4.13) with σ = I).

As a consequence, we infer that the term ‖∇ψ −∇ψI‖0,Ω in (4.14) vanishes.
Hence, the last estimate in the proof of Lemma 4.5 changes into

‖β − βh‖1,Ω + t ‖γ − γh‖0,Ω ≤ C
(
h ‖β‖2,Ω + th ‖p‖2,Ω + h ‖γ‖0,Ω

)
≤ Ch ‖fh‖1,Ω .

By using the above estimate in the proof of Proposition 4.3 (in particular in (4.15)),
we obtain

‖(Tt − Tth) fh‖1,Ω = ‖w − wh‖1,Ω ≤ Ch ‖fh‖1,Ω ,

from which we conclude the proof.
As a consequence of Proposition A.2, we can improve Lemma 4.6. In fact, now

for t small enough there holds directly

‖Tt − Tth‖h ≤ Ch,
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with a constant C independent of h and t. By using this instead of property P1, we
could give somewhat simpler proofs for the error estimates from section 5. However,
the final results, Theorems 5.1, 5.5, and 5.8, are the same, although now valid for any
regular family of triangular meshes, without the need of being quasi-uniform.
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