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Abstract
We introduce a discontinuous Galerkin method for the mixed formulation of the elas-
ticity eigenproblem with reduced symmetry. The analysis of the resulting discrete
eigenproblem does not fit in the standard spectral approximation framework since
the underlying source operator is not compact and the scheme is nonconforming. We
show that the proposed scheme provides a correct approximation of the spectrum and
prove asymptotic error estimates for the eigenvalues and the eigenfunctions. Finally,
we provide several numerical tests to illustrate the performance of the method and
confirm the theoretical results.

Mathematics Subject Classification 65N30 · 65N12 · 65N15 · 74B10

1 Introduction

We present a discontinuous Galerkin (DG) approximation of the linearized vibrations
of an elastic structure. In many applications, the displacement field is not necessarily
the variable of primary interest. We consider here the dual-mixed formulation of the
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elasticity eigenproblem because it delivers a direct finite element approximation of the
Cauchy stress tensor and it permits to deal safelywith nearly incompressiblematerials.

A mixed finite element approximation of the eigenvalue elasticity problem with
reduced symmetry has been analyzed in [19]. It consists in a formulation that only
maintains the stress tensor as primary unknown, and the rotationwhose role is theweak
imposition of the symmetry restriction. It is shown that a discretization based on the
lowest order Arnold–Falk–Winther element provides a correct spectral approximation
and quasi optimal asymptotic error estimates for the eigenvalues and the eigenfunc-
tions.

The ability of DG methods to handle efficiently hp-adaptive strategies makes them
suitable for the numerical simulation of physical systems related to elastodynamics.
Our aim here is to introduce an interior penalty discontinuous Galerkin version for the
H(div)-conformingfinite element space employed in [19]. The kth-order of thismethod
amounts to approximate the Cauchy stress tensor and the rotation by discontinuous
finite element spaces of degree k and k − 1 respectively. We point out that an H(curl)-
based interior penalty discontinuous Galerkin method has also been introduced in [8]
for the Maxwell eigensystem. The DG approximation we are considering here may
be regarded as its counterpart in the H(div)–setting. As in [8], our analysis requires
conforming meshes, but the DG method still permits to employ different polynomial
element orders in the same triangulation. A further advantage of this DG scheme is that
it allows to implement high-order elements in a mixed formulation by using standard
shape functions. Let us remark that the DG method has also been analyzed in [1] for
the Laplace operator.

It is well known that the underlying source operator corresponding to mixed for-
mulations is generally not compact. In our case, this operator admits a non physical
zero eigenvalue whose eigenspace is infinite dimensional. It is then essential to use
a scheme that is safe from the pollution, which may appear in the form of spurious
eigenvalues interspersed among the physically relevant ones. It turns out (cf. [3,4])
that, for mixed eigenvalue problems, the conditions guarantying the convergence of
the source problem does not necessarily provide a correct spectral approximation (as
it happens for compact operators [2]).

It has been shown in [8] that DG methods can also benefit from the general theory
developed in [11,12] to deal with the spectral numerical analysis of non-compact
operators. We follow here the same strategy, combined with techniques from [18,19],
to prove that our numerical scheme is spurious free. We also establish asymptotic
error estimates for the eigenvalues and eigenfunctions. We treat with special care the
analysis of the limit problem obtained when one of the Lamé coefficients tends to
infinity.

We end this section with some of the notations that we will use below. Given
any Hilbert space V , let V n and V n×n denote, respectively, the space of vectors
and tensors of order n (n = 2, 3) with entries in V . In particular, I is the identity
matrix of Rn×n and 0 denotes a generic null vector or tensor. Given τ := (τi j ) and
σ := (σi j ) ∈ R

n×n , we define as usual the transpose tensor τt := (τ j i ), the trace
tr τ := ∑n

i=1 τi i , the deviatoric tensor τD := τ − 1
n (tr τ ) I , and the tensor inner

product τ : σ := ∑n
i, j=1 τi jσi j .
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Mixed discontinuous Galerkin approximation of the… 751

Let � be a polyhedral Lipschitz bounded domain of Rn with boundary ∂�. For
s ≥ 0, ‖·‖s,� stands indistinctly for the norm of the Hilbertian Sobolev spaces Hs(�),
Hs(�)n or Hs(�)n×n , with the convention H0(�) := L2(�). We also define for s ≥ 0
the Hilbert space Hs(div,�) := {τ ∈ Hs(�)n×n : div τ ∈ Hs(�)n}, whose norm is
given by ‖τ‖2Hs (div,�) := ‖τ‖2s,� + ‖div τ‖2s,� and denote H(div,�) := H0(div,�).

Henceforth, we denote by C generic constants independent of the discretization
parameter, which may take different values at different places.

2 Themodel problem

In this section, we recall the mixed variational formulation of the elasticity eigenvalue
problem analyzed in [19]. Moreover, we summarize some results from this reference.

Let � ⊂ R
n (n = 2, 3) be an open bounded Lipschitz polygon/polyhedron rep-

resenting an elastic body. We denote by n the outward unit normal vector to ∂� and
assume that ∂� = �D ∪�N , with int(�D)∩ int(�N ) = ∅. The solid is supposed to be
homogeneous, isotropic and linearly elastic with mass density ρ and Lamé constants
μ and λ. We assume that the structure is fixed at �D 	= ∅ and free of stress on �N .
We combine the constitutive law

C−1σ = ε(u) in �,

and the equilibrium equation

ω2u = −ρ−1 div σ in �, (1)

to eliminate either the displacement field u or the Cauchy stress tensor σ from the
global spectral formulation of the elasticity problem. Here, ε(u) := 1

2 [∇u + (∇u)t]
is the linearized strain tensor, and C : R

n×n → R
n×n is the Hooke operator, which is

given in terms of the Lamé coefficients λ and μ by

Cτ := λ (tr τ ) I + 2μτ ∀ τ ∈ R
n×n .

Opting for the elimination of the displacement u and maintaining the stress tensor
σ as a main variable leads to the following dual mixed formulation of the elasticity
eigenproblem: Find σ : � → R

n×n symmetric, r : � → R
n×n skew symmetric and

the corresponding natural frequencies ω ∈ R such that,

−∇ (
ρ−1 div σ

) = ω2
(
C−1σ + r

)
in �,

div σ = 0 on �D,

σn = 0 on �N .

(2)

We notice that the additional variable r := 1
2

[∇u − (∇u)t
]
is the rotation. It acts

as a Lagrange multiplier for the symmetry restriction. We also point out that the
displacement can be recovered and also post-processed at the discrete level by using
identity (1).

123



752 F. Lepe et al.

Taking into account that the Neumann boundary condition becomes essential in the
mixed formulation, we consider the closed subspace W of H(div,�) given by

W := {τ ∈ H(div,�) : τn = 0 on �N } .

The rotation r will be sought in the space

Q := {s ∈ L2(�)n×n : st = −s}.

We denote the Hilbertian product norm on H(div,�) × L2(�)n×n by

‖(τ , s)‖2 := ‖τ‖2H(div,�) + ‖s‖20,�.

In order to write the variational formulation of the spectral problem, we introduce
the following symmetric bilinear forms in W × Q:

B
(
(σ , r), (τ , s)

)
:=

∫

�

C−1σ : τ +
∫

�

r : τ +
∫

�

s : σ ,

A
(
(σ , r), (τ , s)

)
:=

∫

�

ρ−1 div σ · div τ + B
(
(σ , r), (τ , s)

)
.

The variational formulation of the eigenvalue problem (2) is given as follows in
terms of κ := 1+ω2 (see [19] for more details): Find κ ∈ R and 0 	= (σ , r) ∈ W×Q
such that

A
(
(σ , r), (τ , s)

)
= κ B

(
(σ , r), (τ , s)

)
∀(τ , s) ∈ W × Q. (3)

We observe that the definition of bilinear form A(·, ·) includes bilinear form B(·, ·).
This has been done in order to build an inf-sup stable bilinear form on the left-hand
side of the spectral problem, which will allow us to define a solution operator (cf. (8)).
The above standard procedure is called a shift argument and we notice that the original
eigenvalues ω2 have been shifted to κ .

We notice that the bilinear form

(σ , τ )C,div :=
∫

�

ρ−1 div σ · div τ +
∫

�

C−1σ : τ

also defines an inner product onW. Moreover, the following well-known result estab-
lishes that the norm induced by (·, ·)C,div is equivalent to ‖·‖H(div,�) uniformly in the
Lamé coefficient λ.

Proposition 2.1 There exist constants c2 ≥ c1 > 0 independent of λ such that

c1‖τ‖H(div,�) ≤ ‖τ‖C,div ≤ c2‖τ‖H(div,�) ∀τ ∈ W,

where ‖τ‖C,div := √
(τ , τ )C,div.
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Mixed discontinuous Galerkin approximation of the… 753

Proof The bound from above follows immediately from the fact that

∫

�

C−1σ : τ = 1

2μ

∫

�

σD : τD + 1

n(nλ + 2μ)

∫

�

(tr σ )(tr τ ) (4)

is bounded with a constant independent of λ. The left inequality may be found, for
example, in [19, Lemma 2.1]. ��

As a consequence of Proposition 2.1, there exists a constant M > 0 independent
of λ such that

∣
∣
∣A

(
(σ , r), (τ , s)

)∣
∣
∣ ≤ M ‖(σ , r)‖‖(τ , s)‖ ∀(σ , r), (τ , s) ∈ W × Q. (5)

The following result establishes an inf-sup condition for the bilinear form A(·, ·)
uniformly in the Lamé coefficient λ.

Proposition 2.2 There exists a constant α > 0, depending on ρ, μ and � (but not on
λ), such that

sup
(τ ,s)∈W×Q

A
(
(σ , r), (τ , s)

)

‖(τ , s)‖ ≥ α‖(σ , r)‖ ∀(σ , r) ∈ W × Q. (6)

Proof It follows from Proposition 2.1 that

A
(
(τ , 0), (τ , 0)

)
= (τ , τ )C,div ≥ C2

1‖τ‖2H(div,�) ∀τ ∈ W,

with C1 > 0 independent of λ. On the other hand, there exists a constant β > 0
depending only on � (see, for instance, [5]) such that

sup
τ∈W

∫
�
s : τ

‖τ‖H(div,�)

≥ β‖s‖0,� ∀s ∈ Q. (7)

Consequently, the Babuška-Brezzi theory (see [14]) shows that, for any bounded linear
form L ∈ L(W × Q), the problem: find (σ , r) ∈ W × Q such that

A
(
(σ , r), (τ , s)

)
= L

(
τ , s

) ∀(τ , s) ∈ W × Q

is well-posed, which is equivalent to (6). ��
We deduce from Proposition 2.2 and from the symmetry of A(·, ·) that the solution

operator T : [L2(�)n×n]2 → W × Q, defined for any ( f , g) ∈ [L2(�)n×n]2 by

A
(
T ( f , g), (τ , s)

)
= B

(
( f , g), (τ , s)

)
∀(τ , s) ∈ W × Q (8)
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is well-defined and symmetric with respect to A(·, ·). Moreover, there exists a constant
C > 0 independent of λ such that

‖T ( f , g)‖ ≤ C‖( f , g)‖0,� ∀( f , g) ∈ [L2(�)n×n]2. (9)

It is clear that (κ, (σ , r)) is a solution of (3) if and only if
(
η = 1

κ
, (σ , r)

)
is an

eigenpair for T . Let
K := {τ ∈ W : div τ = 0 in �}. (10)

From the definition of T , it is clear that T |K×Q : K×Q −→ K×Q reduces to the
identity. Thus, η = 1 is an eigenvalue of T with eigenspaceK×Q. We introduce the
orthogonal subspace toK × Q inW × Q with respect to the bilinear form B:

[K × Q]⊥B :=
{
(σ , r) ∈ W × Q : B

(
(σ , r), (τ , s)

)
= 0 ∀(τ , s) ∈ K × Q

}
.

Lemma 2.1 The subspace [K × Q]⊥B is invariant for T , i.e.,

T ([K × Q]⊥B ) ⊂ [K × Q]⊥B .

Moreover, we have the direct and stable decomposition

W × Q = [K × Q] ⊕ [K × Q]⊥B . (11)

Proof See Lemmas 3.3 and 3.4 of [19]. ��
To the best of the authors’ knowledge no intrinsic characterization of [K×Q]⊥B is

known (see [19] for some further details). Nevertheless, we deduce from Lemma 2.1
that there exists a unique projection P : W×Q → W×Q with range [K×Q]⊥B

and kernel K × Q associated to the splitting (11). This is all what is needed for the
ongoing analysis.

Let us consider the elasticity problem posed in � with a volume load in L2(�)n

and with homogeneous Dirichlet and Neumann boundary conditions on �D and �N ,
respectively: Given f ∈ L2(�)n , let (̃u, σ̃ ) ∈ H1(�)n × H(div,�) be such that

−div σ̃ = f in �,

σ̃ = Cε(̃u) in �,

σ̃n = 0 on�N ,

ũ = 0 on�D.

This problem has a unique solution and, according to [10,15], there exists ŝ ∈ (0, 1]
and Ĉ > 0 that depend on �, λ and μ such that ũ ∈ H1+s(�)n and

‖ũ‖H1+s (�)n ≤ Ĉ‖ f ‖0,� ∀s ∈ (0, ŝ). (12)

We point out that, in principle, the exponent ŝ and the constant Ĉ in (12) depend on
the Lamé coefficient λ. However, we know that (12) also holds true when λ = +∞
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Mixed discontinuous Galerkin approximation of the… 755

(see the “Appendix”). Hence, it is natural to expect (12) to be satisfied uniformly in λ.
To the best of the authors’ knowledge, such a result is not available in the literature.
For this reason, from now on we make the following assumption.

Assumption 2.1 Constants ŝ and Ĉ in (12) are independent of λ.

Now, we are in a position to show that P and T ◦ P are regularizing operators.

Lemma 2.2 For all s ∈ (0, ŝ), P(W×Q) ⊂ Hs(�)n×n ×Hs(�)n×n and T (P(W×
Q)) ⊂ {(τ , s) ∈ Hs(�)n×n×Hs(�)n×n : div τ ∈ H1+s(�)n}. Moreover, there exists
a constant C > 0, independent of λ, such that

‖P(τ , s)‖Hs (�)n×n×Hs (�)n×n ≤ C‖div τ‖0,� ∀(τ , s) ∈ W × Q (13)

and, if (σ̃ , r̃) := T ◦ P(τ , s), then

‖(σ̃ , r̃)‖Hs (�)n×n×Hs (�)n×n + ‖div σ̃‖H1+s (�)n ≤ C‖div τ‖0,� ∀(τ , s) ∈ W × Q.

(14)

Proof Estimate (13) is proved in [19, Lemma 3.2] and (14) follows as a consequence
of (13) by an argument essentially identical to that of [19, Proposition 3.5]. ��

The next result gives the spectral characterization for the solution operator T .

Proposition 2.3 The spectrum of T , sp(T ), decomposes as follows

sp(T ) = {0, 1} ∪ {ηk}k∈N
where {ηk}k ⊂ (0, 1) is a real sequence of finite-multiplicity eigenvalues of T which
converges to 0. The ascent of each of these eigenvalues is 1 and the corresponding
eigenfunctions lie in P(W×Q).Moreover, η = 1 is an infinite-multiplicity eigenvalue
of T with associated eigenspace K × Q and η = 0 is not an eigenvalue.

Proof See [19, Theorem 3.7]. ��
As an immediate consequence of the above proposition and Lemma 2.2, we have
the following additional regularity result for eigenfunctions of T corresponding to
eigenvalues other than 1.

Proposition 2.4 Let (σ , r) be an eigenfunction of T corresponding to an eigenvalue
ηκ ∈ (0, 1). Then, (σ , r) ∈ {(τ , s) ∈ Hs(�)n×n × Hs(�)n×n : div τ ∈ H1+s(�)n}
and

‖(σ , r)‖Hs (�)n×n×Hs (�)n×n + ‖div σ‖H1+s (�)n ≤ C‖div σ‖0,�.

We end this section by providing a bound of the resolvent
(
z I − T

)−1.

Proposition 2.5 If z /∈ sp(T ), then there exists a constant C > 0 independent of λ and
z such that

‖(z I − T
)
(σ , r)‖ ≥ C dist

(
z, sp(T )

) ‖(σ , r)‖ ∀(σ , r) ∈ W × Q,
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where dist
(
z, sp(T )

)
represents the distance between z and the spectrum of T in the

complex plane, which in principle depends on λ.

Proof See Proposition 2.4 in [18]. ��

3 A discontinuous Galerkin discretization

We consider shape regular affine meshes Th that subdivide �̄ into triangles/tetrahedra
K of diameter hK . The parameter h := maxK∈Th {hK } represents the mesh size of Th .
Hereafter, given an integer m ≥ 0 and a domain D ⊂ R

n , Pm(D) denotes the space
of polynomials of degree at most m on D.

We say that a closed subset F ⊂ � is an interior edge/face if F has a positive
(n − 1)-dimensional measure and if there are distinct elements K and K ′ such that
F = K̄ ∩ K̄ ′. A closed subset F ⊂ � is a boundary edge/face if there exists K ∈ Th
such that F is an edge/face of K and F = K̄ ∩ ∂�. We consider the set F0

h of interior
edges/faces and the set F∂

h of boundary edges/faces. We assume that the boundary
mesh F∂

h is compatible with the partition ∂� = �D ∪ �N , i.e.,

⋃

F∈FD
h

F = �D and
⋃

F∈FN
h

F = �N ,

where FD
h := {F ∈ F∂

h; F ⊂ �D} and FN
h := {F ∈ F∂

h; F ⊂ �N }. We denote

Fh := F0
h ∪ F∂

h and F∗
h := F0

h ∪ FN
h ,

and for any element K ∈ Th , we introduce the set

F(K ) := {F ∈ Fh; F ⊂ ∂K }

of edges/faces composing the boundary of K . The space of piecewise polynomial
functions of degree at most m relatively to Th is denoted by

Pm(Th) := {v ∈ L2(�); v|K ∈ Pm(K ) ∀K ∈ Th}.

For any k ≥ 1, we consider the finite element spaces

Wh := Pk(Th)n×n, Wc
h := Wh ∩ W and Qh := Pk−1(Th)n×n ∩ Q.

The discrete space Wc
h corresponds to the well-known Brezzi-Douglas-Marini

(BDM) mixed finite element (see [7]) and will be useful in the forthcoming analysis.
Let us now recall some well-known properties of Wc

h . For t > 1/2, the tensorial
version of the BDM-interpolation operator �h : Ht (�)n×n → Wc

h , satisfies the
following classical error estimate, see [6, Proposition 2.5.4],

‖τ − �hτ‖0,� ≤ Chmin{t,k+1}‖τ‖t,� ∀τ ∈ Ht (�)n×n, t > 1/2. (15)
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For less regular tensorial fields we also have the following error estimate

‖τ − �hτ‖0,� ≤ Cht (‖τ‖t,� + ‖τ‖H(div,�)) ∀τ ∈ Ht (�)n×n ∩ H(div, �), t ∈ (0, 1/2].
(16)

Moreover, thanks to the commutativity property, if div τ ∈ Ht (�)n , then

‖div(τ − �hτ )‖0,� = ‖div τ − Rh div τ‖0,� ≤ Chmin{t,k}‖div τ‖t,�, (17)

where Rh is the L2(�)n-orthogonal projection onto Pk−1(Th)n . Finally, we denote
by Sh : Q → Qh the orthogonal projector with respect to the L2(�)n×n-norm. It is
well-known that, for any t > 0, we have

‖s − Sh s‖0,� ≤ Chmin{t,k}‖s‖t,� ∀s ∈ Ht (�)n×n ∩ Q. (18)

For the analysis we need to decompose adequately the spaceWc
h ×Qh . We consider,

Kh = {
τ ∈ Wc

h; div τ = 0
} ⊂ K.

Lemma 3.1 There exists a projection Ph : Wc
h × Qh → Wc

h × Qh with kernel
Kh × Qh such that for all s ∈ (0, ŝ), there exists a constant C independent of h and
λ such that

‖(P − Ph)(σ h, rh)‖ ≤ C hs‖div σ h‖0,� ∀(σ h, rh) ∈ Wc
h × Qh .

Proof The proof is similar to that of estimate (ii) of Lemma 4.2 from [19] ��
For any t ≥ 0, we consider the broken Sobolev space

Ht (Th) := {v ∈ L2(�)n; v|K ∈ Ht (K )n ∀K ∈ Th}.

For each v := {vK } ∈ Ht (Th)n and τ := {τ K } ∈ Ht (Th)n×n the components vK and
τ K represent the restrictions v|K and τ |K . When no confusion arises, the restrictions
of these functions will be written without any subscript. We will also need the space
given on the skeletons of the triangulations Th by

L2(Fh) :=
∏

F∈Fh

L2(F).

Similarly, the components χF of χ := {χF } ∈ L2(Fh) coincide with the restrictions
χ |F and we denote

∫

Fh

χ :=
∑

F∈Fh

∫

F
χF and ‖χ‖20,Fh

:=
∫

Fh

χ2 ∀χ ∈ L2(Fh).

Analogously, ‖χ‖20,F∗
h

:= ∑
F∈F∗

h

∫
F χ2

F for all χ ∈ L2(F∗
h) := ∏

F∈F∗
h
L2(F).
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From now on, hF ∈ L2(Fh) is the piecewise constant function defined by hF|F :=
hF for all F ∈ Fh with hF denoting the diameter of edge/face F .

Given a vector valued function v ∈ Ht (Th)n with t > 1/2, we define averages
{v} ∈ L2(Fh)

n and jumps �v� ∈ L2(Fh) by

{v}F := (vK + vK ′)/2 and �v�F := vK · nK + vK ′ · nK ′ ∀F ∈ F(K ) ∩ F(K ′),

where nK is the outward unit normal vector to ∂K . On the boundary of � we use the
following conventions for averages and jumps:

{v}F := vK and �v�F := vK · n ∀F ∈ F(K ) ∩ ∂�.

Similarly, for matrix valued functions τ ∈ Ht (Th)n×n , we define {τ } ∈ L2(Fh)
n×n

and �τ� ∈ L2(Fh)
n by

{τ }F := (τ K + τ K ′)/2 and �τ�F := τ K nK + τ K ′nK ′ ∀F ∈ F(K ) ∩ F(K ′)

and on the boundary of � we set

{τ }F := τ K and �τ�F := τ K n ∀F ∈ F(K ) ∩ ∂�.

Given τ ∈ Wh we define divh τ ∈ L2(�)n by divh τ |K = div(τ |K ) for all K ∈ Th
and endow W(h) := W + Wh with the seminorm

|τ |2W(h) := ‖divh τ‖20,� + ‖h−1/2
F �τ�‖20,F∗

h
.

Let us remark that this seminorm is actually well defined for any function τ ∈ W +
Wh . Indeed, although in principle the jump �τ �F appearing in this seminorm is defined
for τ ∈ Ht (Th)n×n with t > 1/2, this definition remains valid for any τ ∈ H(div,�)

since, in such a case, �τ�F vanishes (see [8], for a similar analysis in H(curl,�)).
Then, for all τ ∈ W(h) we define the norm

‖τ‖2W(h) := |τ |2W(h) + ‖τ‖20,�.

For the sake of simplicity, we will also use the notation

‖(τ , s)‖2DG := ‖τ‖2W(h) + ‖s‖20,�

which is the norm inW(h) × Q.
The following result will be used in the sequel to ultimately derive a method free of

spurious modes. Since, according to Proposition 2.3, the spectrum of T lies in the unit
disk D := {z ∈ C : |z| ≤ 1}, we restrict our attention to this subset of the complex
plane.
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Lemma 3.2 There exists a constant C > 0 independent of h and λ such that, for all
z ∈ D \ sp(T ) with |z| ≤ 1, there holds

‖(z I − T )(τ , s)‖DG ≥ C dist
(
z, sp(T )

)|z| ‖(τ , s)‖DG ∀(τ , s) ∈ W(h) × Q.

Proof We introduce

(σ ∗, r∗) := T (τ , s) ∈ W × Q

and notice that

(z I − T )(σ ∗, r∗) = T (z I − T )(τ , s).

By virtue of Proposition 2.5 and the boundedness of T : [L2(�)n×n]2 → W × Q
we have that

C dist
(
z, sp(T )

)‖(σ ∗, r∗)‖ ≤ ‖(z I − T )(σ ∗, r∗)‖ ≤ ‖T (z I − T )(τ , s)‖
≤ ‖T‖‖(z I − T )(τ , s)‖0 ≤ ‖T‖‖(z I − T )(τ , s)‖DG .

Finally, by the triangle inequality,

‖(τ , s)‖DG ≤ |z|−1‖(σ ∗, r∗)‖ + |z|−1‖(z I − T )(τ , s)‖DG

≤ |z|−1

(

1 + ‖T‖
C dist

(
z, sp(T )

)

)

‖(z I − T )(τ , s)‖DG

≤ |z|−1

(
C dist

(
z, sp(T )

) + ‖T‖
C dist

(
z, sp(T )

)

)

‖(z I − T )(τ , s)‖DG .

Hence,

C |z|
(

dist
(
z, sp(T )

)

‖T‖ + dist
(
z, sp(T )

)

)

‖(τ , s)‖DG ≤ ‖(z I − T )(τ , s)‖DG .

Since dist
(
z, sp(T )

) ≤ |z| ≤ 1 and ‖T‖ ≤ C ′ (with C ′ independent of λ), we derive
from the above estimate that

C |z|
1 + C ′ dist

(
z, sp(T )

)‖(τ , s)‖DG ≤ ‖(z I − T )(τ , s)‖DG ,

and the result follows. ��
Remark 3.1 If E is a compact subset of D \ sp(T ), we deduce from Lemma 3.2 that
there exists a constant C > 0 independent of h and λ such that, for all z ∈ E ,

‖(z I − T
)−1‖L(W(h)×Q,W(h)×Q) ≤ C

dist
(
E, sp(T )

)|z| .
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Let us now introduce the discrete counterpart of (3). Given a parameter aS > 0,
we introduce the symmetric bilinear form

Ah

(
(σ , r), (τ , s)

)
:=

∫

�

ρ−1 divh σ · divh τ + B
(
(σ , r), (τ , s)

)
+

∫

F∗
h

aSh
−1
F �σ � · �τ�

−
∫

F∗
h

({ρ−1 divh σ } · �τ� + {ρ−1 divh τ } · �σ �
)

(19)

and consider the DG method: Find κh ∈ R and 0 	= (σ h, rh) ∈ Wh × Qh such that

Ah

(
(σ h, rh), (τ h, sh)

)
= κh B

(
(σ h, rh), (τ h, sh)

)
∀(τ h, sh) ∈ Wh × Qh .

(20)
We notice that, as it is usually the case for DG methods, the essential boundary con-
dition is directly incorporated within the scheme.

A straightforward application of the Cauchy–Schwarz inequality shows that, for
all (σ , r), (τ , s) ∈ W(h) × Q such that div σ ,div τ ∈ Ht (�)n with t > 1/2, there
exists a constant M∗ > 0 independent of h and λ such that

∣
∣
∣Ah

(
(σ , r), (τ , s)

)∣
∣
∣ ≤ M∗‖(σ , r)‖∗

DG ‖(τ , s)‖∗
DG, (21)

where

‖(σ , r)‖∗
DG :=

(
‖(σ , r)‖2DG + ‖h1/2F {div σ }‖20,F∗

h

)1/2
.

Moreover, we deduce from the following discrete trace inequality (see [13]),

‖h1/2F {v}‖0,Fh ≤ C‖v‖0,� ∀v ∈ Pk(Th), (22)

that for all (τ h, sh) ∈ Wh × Qh ,

∣
∣
∣Ah

(
(σ , r), (τ h, sh)

)∣
∣
∣ ≤ MDG‖(σ , r)‖∗

DG ‖(τ h, sh)‖DG, (23)

with MDG > 0 independent of h and λ.

4 The DG-discrete source operator

The following discrete projection operator from theDG-spaceWh onto theH(div,�)-
conforming mixed finite element space Wc will be used in the forthcoming analysis
to deduce the stability of the DG source problem by taking advantage of the inf-sup
condition (27).
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Proposition 4.1 There exists a projection Ih : Wh → Wc
h such that the norm equiv-

alence

C ‖τ‖W(h) ≤
(
‖Ihτ‖2H(div,�) + ‖h−1/2

F �τ�‖20,F∗
h

)1/2 ≤ C̄‖τ‖W(h) (24)

holds true on Wh with constants C > 0 and C̄ > 0 independent of h. Moreover, we
have that

‖divh(τ − Ihτ )‖20,� +
∑

K∈Th
h−2
K ‖τ − Ihτ‖20,K ≤ C0‖h−1/2

F �τ�‖20,F∗
h
, (25)

with C0 > 0 independent of h.

Proof See [18, Proposition 5.2]. ��

We can prove, with the aid of this result, that the bilinear form Ah , which according
to its definition (19) depends on aS , satisfies the following inf-sup condition.

Proposition 4.2 Let Ah be defined as in (19). Then, there exists a positive parameter
a∗
S such that, for all aS ≥ a∗

S,

sup
(τ h ,sh)∈Wh×Qh

Ah

(
(σ h, rh), (τ h, sh)

)

‖(τ h, sh)‖DG
≥ αDG‖(σ h, rh)‖DG ∀(σ h, rh)∈Wh×Qh

(26)
with αDG > 0 independent of h and λ.

Proof It is shown in [18, Proposition 3.1] that there exists a constant αc
A > 0 indepen-

dent of h and λ such that

sup
(τ h ,sh)∈Wc

h×Qh

A
(
(σ h, rh), (τ h, sh)

)

‖(τ h, sh)‖ ≥ αc
A‖(σ h, rh)‖ ∀(σ h, rh) ∈ Wc

h × Qh .

(27)
It follows that there exists an operator �h : Wc

h × Qh → Wc
h × Qh satisfying

A
(
(σ h, rh),�h(σ h, rh)

)
= αc

A‖(σ h, rh)‖2 and ‖�h(σ h, rh)‖ ≤ ‖(σ h, rh)‖
(28)

for all (σ h, rh) ∈ Wc
h × Qh .
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Given (τ h, sh) ∈ Wh × Qh , the decomposition τ h = τ c
h + τ̃ h with τ c

h := Ihτ h

and τ̃ h := τ h − Ihτ h and (28) yield

Ah

(
(τ h, sh),�h(τ

c
h, sh) + (τ̃ h, 0)

)
= αc

A‖(τ c
h, sh)‖2 + Ah

(
(τ c

h, sh), (τ̃ h, 0)
)

+Ah

(
(τ̃ h, 0),�h(τ

c
h, sh)

)
+ Ah

(
(τ̃ h, 0), (τ̃ h, 0)

)
. (29)

By the Cauchy–Schwarz inequality,

Ah

(
(τ̃ h, 0), (τ̃ h, 0)

)
= ρ−1‖divh τ̃ h‖20,� + aS‖h−1/2

F �τ h�‖20,F∗
h
+

∫

�

C−1τ̃ h : τ̃ h

−2
∫

F∗
h

{ρ−1 divh τ̃ h} · �τ̃ h�

≥ aS‖h−1/2
F �τ h�‖20,F∗

h

−2ρ−1‖h1/2F {divh τ̃ h}‖0,F∗
h
‖h−1/2

F �τ h�‖0,F∗
h

and we deduce from (22) and (25) that

Ah

(
(τ̃ h, 0), (τ̃ h, 0)

)
≥ (aS − C1)‖h−1/2

F �τ h�‖20,F∗
h
,

with a constant C1 independent of h and λ.
We proceed similarly for the terms in the right-hand side of (29). Indeed, it is

straightforward to check that

Ah

(
(τ c

h, sh), (τ̃ h, 0)
)

≥ − ρ−1‖div τ c
h‖0,�‖divh τ̃ h‖0,�

− C2‖τ̃ h‖0,�(‖τ c
h‖0,� + ‖sh‖0,�)

− ρ−1‖h1/2F {div τ c
h}‖0,F∗

h
‖h−1/2

F �τ h�‖0,F∗
h

and using again (22) and (25) we obtain

Ah

(
(τ c

h, sh), (τ̃ h, 0)
)

≥ −C3‖h−1/2
F �τ h�‖0,F∗

h
‖(τ c

h, sh)‖

≥ − αc
A

4
‖(τ c

h, sh)‖2 − C4‖h−1/2
F �τ h�‖20,F∗

h

with C4 > 0 independent of h and λ. Similar estimates lead to

Ah

(
(τ̃ h, 0),�h(τ

c
h, sh)

)
≥ −C5‖h−1/2

F �τ h�‖0,F∗
h
‖�h(τ

c
h, sh)‖

≥ −C5‖h−1/2
F �τ h�‖0,F∗

h
‖(τ c

h, sh)‖,

123



Mixed discontinuous Galerkin approximation of the… 763

where the last inequality follows from (28). We conclude that there exists C6 > 0
independent of h and λ such that

Ah

(
(τ̃ h, 0),�h(τ

c
h, sh)

)
≥ −αc

D

4
‖(τ c

h, sh)‖2 − C6‖h−1/2
F �τ h�‖20,F∗

h
.

Then, we have shown that

Ah

(
(τ h, sh),�h(τ

c
h, sh)+ (τ̃ h, 0)

)
≥ αc

A

2
‖(τ c

h, sh)‖2 + (
aS −C7

)‖h−1/2
F �τ h�‖20,Fh

with C7 := C1 + C4 + C6. Consequently, if aS > a∗
S := C7 + αc

A
2 , then

Ah

(
(τ h, sh),�h(τ

c
h, sh) + (τ̃ h, 0)

)
≥ αc

A

2

(
‖(τ c

h, sh)‖2 + ‖h−1/2
F �τ�‖20,F∗

h

)

and, thanks to (24), we conclude that there exists αDG > 0 such that,

Ah

(
(τ h, sh),�h(τ

c
h, sh) + (τ̃ h, 0)

)
≥ αDG‖(τ h, sh)‖DG

(
‖�h(τ

c
h, sh) + (τ̃ h, 0)‖DG

)
,

which yields (26). ��

In the sequel, we assume that the stabilization parameter is large enough (namely
aS ≥ a∗

S) so that the inf-sup condition (26) is guaranteed. The first consequence of this
inf-sup condition is that the discrete solution operator T h : L2(�)n×n ×L2(�)n×n →
Wh × Qh characterized for any ( f , g) ∈ [L2(�)n×n]2 by

Ah

(
T h( f , g), (τ h, sh)

)
= B

(
( f , g), (τ h, sh)

)
∀(τ h, sh) ∈ Wh × Qh (30)

is well-defined, symmetric with respect to Ah(·, ·) and there exists a constant C > 0
independent of λ and h such that

‖T h( f , g)‖DG ≤ C‖( f , g)‖0,� ∀( f , g) ∈ [L2(�)n×n]2. (31)

We observe that (κh, (σ h, rh)) ∈ R × Wh × Qh is a solution of problem (20) if
and only if (μh, (σ h, rh)) with μh = 1/(1 + κh) is an eigenpair of T h , i.e.

T h(σ h, rh) = 1

1 + κh
(σ h, rh).

The following result establishes the convergence properties (Céa estimate) for the
solution operators T and T h . We recall that ŝ is the Sobolev exponent for which (12)
holds true.
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Theorem 4.1 Let ( f , g) ∈ P(W × Q) and (σ̃ , r̃) := T ( f , g). Then,

‖(T − T h)( f , g)‖DG ≤
(

1 + MDG

αDG

)

inf
(τ h ,sh)∈Wh×Qh

‖(σ̃ , r̃) − (τ h, sh)‖∗
DG, (32)

with MDG and αDG as in (23) and (26), respectively. Moreover, for all s ∈ (0, ŝ), the
error estimate

‖(T−T h)( f , g)‖DG ≤ C hs
(
‖σ̃‖Hs (�)n×n +‖r̃‖Hs (�)n×n+‖div σ̃‖H1+s (�)n

)
, (33)

holds true with a constant C > 0 independent of h and λ.

Proof We first notice that the DG approximation (30) is consistent with regards to its
continuous counterpart (8) in the sense that

Ah

(
(T − T h)( f , g), (τ h, sh)

)
= 0 ∀(τ h, sh) ∈ Wh × Qh . (34)

Indeed, by definition,

Ah

(
(σ̃ , r̃), (τ h, sh)

)
=

∫

�

ρ−1 div σ̃ · divh τ h + B
(
(σ̃ , r̃), (τ h, sh)

)

−
∫

F∗
h

{ρ−1 div σ̃ } · �τ h�. (35)

Note that the average in the last term above is well defined since, according to
Lemma 2.2, div σ̃ ∈ H1+s(�)n .

It is straightforward to deduce from (8) that

∇
(
ρ−1 div σ̃

)
= C−1(σ̃ − f ) + r̃ − g and (σ̃ − σ̃t)/2 = ( f − f t)/2. (36)

Moreover, an integration by parts yields

∫

�

ρ−1 div σ̃ · divh τ h = −
∑

K∈Th

∫

K
∇(ρ−1 div σ̃ ) : τ h+

∑

K∈Th

∫

∂K
ρ−1 div σ̃ · τ hnK

= −
∑

K∈Th

∫

K
∇(ρ−1 div σ̃ ) : τ h +

∫

F∗
h

{ρ−1 div σ̃ } · �τ h�.

Substituting back the last identity and (36) into (35), we obtain

Ah

(
(σ̃ , r̃), (τ h, sh)

)
= B

(
( f , g), (τ h, sh)

)
∀(τ h, sh) ∈ Wh × Qh

and (34) follows.
The Céa estimate (32) follows now in the usual way by taking advantage of (34),

the inf-sup condition (26), estimate (23), and the triangle inequality.
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Now, in order to obtain (33) from (32), we have that

‖(T − T h)( f , g)‖DG ≤
(

1 + MDG

αDG

)

‖(σ̃ , r̃) − (�h σ̃ ,Sh r̃)‖∗
DG . (37)

Using the interpolation error estimates (15) and (17), (18) and the additional regularity
proved in Lemma 2.2, we immediately obtain for all s ∈ (0, ŝ)

‖(σ̃ , r̃) − (�h σ̃ ,Sh r̃)‖DG = ‖(σ̃ , r̃) − (�h σ̃ ,Sh r̃)‖
≤ C0 h

s
(
‖σ̃‖Hs (�)n×n +‖r̃‖Hs (�)n×n +‖div σ̃‖H1+s (�)n

)
.

(38)

Moreover, we notice that

‖h1/2F {div(σ̃ − �h σ̃ )}‖20,F∗
h

≤
∑

K∈Th

∑

F∈F(K )

hF‖div(σ̃ − �h σ̃ )‖20,F .

Under the regularity hypotheses on σ̃ , the commuting diagram property satisfied by
�h , the trace theorem and standard scaling arguments yield

hF‖div(σ̃ − �h σ̃ )‖20,F = hF‖div σ̃ − RK div σ̃‖20,F ≤ C2h
2+2s
K ‖div σ̃‖2H1+s (K )n

for all F ∈ F(K ), where the L2(K )-orthogonal projection RK := Rh |K onto
Pk−1(K ) is applied componentwise. It follows that

‖h1/2F {div(σ̃ − �h σ̃ )}‖0,F∗
h

≤ C3h
1+s
K

⎛

⎝
∑

K∈Th
‖div σ̃‖2H1+s (K )n

⎞

⎠

1/2

≤ C3h
1+s
K ‖div σ̃‖H1+s (�)n . (39)

Combining (39) and (38) with (37) allows us to prove the asymptotic error estimate
(33). ��

Weend this section by providing some technical results that will be used to establish
the spectral approximation properties of the proposed DG method.

Corollary 4.1 For all s ∈ (0, ŝ), there exists a constant C > 0 independent of h and λ

such that for all (σ , r) ∈ W × Q

‖(T − T h)P(σ , r)‖DG ≤ C hs ‖div σ‖0,�.

Proof The result is a consequence of Theorem 4.1 and Lemma 2.2. ��
Lemma 4.1 For all s ∈ (0, ŝ), there exists a constant C > 0 independent of h and λ

such that

‖(T − T h)(τ h, sh)‖DG ≤ C hs ‖(τ h, sh)‖DG ∀(τ h, sh) ∈ Wh × Qh .
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Proof For any τ h ∈ Wh , we consider the splitting τ h = τ c
h + τ̃ h with τ c

h := Ihτ h ∈
Wc

h . Then, we have that

(T − T h)(τ h, sh) = (T − T h)(τ̃ h, 0) + (T − T h)(τ
c
h, sh)

= (T − T h)(τ̃ h, 0) + (T − T h)Ph(τ
c
h, sh),

where the last identity is due to the facts that (I− Ph)(τ
c
h, sh) ∈ Kh×Qh and T−T h

vanishes identically on this subspace. It follows that

(T − T h)(τ h, sh) = (T − T h)(τ̃ h, 0) + (T − T h)(Ph − P)(τ c
h, sh)

+(T − T h)P(τ c
h, sh).

Then, the triangle inequality together with (9) and (31) yield

‖(T − T h)(τ h, sh)‖DG ≤ ‖(T − T h)(τ̃ h, 0)‖DG + ‖(T − T h)(Ph − P)(τ c
h, sh)‖DG

+ ‖(T − T h)P(τ c
h, sh)‖DG

≤
(
‖T‖L([L2(�)n×n ]2,W×Q) + ‖T h‖L([L2(�)n×n ]2,Wh×Qh )

)

×
(
‖τ̃ h‖0,� + ‖(Ph − P)(τ c

h, sh)‖
)

+ ‖(T − T h)P(τ c
h, sh)‖DG .

Using (25) with τ = τ h , Lemma 3.1 and Corollary 4.1, we have that

‖τ̃ h‖0,� ≤ Ch‖τ h‖W(h),

‖(Ph − P)(τ c
h, sh)‖ ≤ Chs‖div τ c

h‖0,� ≤ Chs‖τ h‖W(h)

and

‖(T − T h)P(τ c
h, sh)‖DG ≤ Chs‖div τ c

h‖0,� ≤ Chs‖τ h‖W(h),

respectively, which gives the result. ��

5 Spectral correctness of the DGmethod

The convergence analysis follows the same steps introduced in [11,12]. We only need
to adapt it to the DG context (cf. also [8]).

For the sake of brevity, we will denote in this section X := W × Q, Xh :=
Wh × Qh and X(h) := W(h) × Q. Moreover, when no confusion can arise, we
will use indistinctly x, y, etc. to denote elements in X and, analogously, xh , yh , etc.
for those in Xh . Finally, we will use ‖·‖L(Xh ,X(h)) to denote the norm of an operator
restricted to the discrete subspace Xh ; namely, if S : X(h) → X(h), then

‖S‖L(Xh ,X(h)) := sup
0 	=xh∈Xh

‖Sxh‖DG

‖xh‖DG
. (40)
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The following result will be used to establish that the proposed DG scheme does
not introduce spurious eigenvalues.

Lemma 5.1 If z ∈ D \ sp(T ), there exists h0 > 0 such that if h ≤ h0,

‖(z I − T h)xh‖DG ≥ C dist
(
z, sp(T )

)|z| ‖xh‖DG ∀xh ∈ Xh

with C > 0 independent of h and λ.

Proof It follows from

(z I − T h)xh = (z I − T )xh + (T − T h)xh

and Lemma 3.2 that

‖(z I − T h)xh‖DG ≥
(
C dist

(
z, sp(T )

)|z| − ‖T − T h‖L(Xh ,X(h))

)
‖xh‖DG

and the result follows from Lemma 4.1. ��
Analogously to the continuous case, we prove that the discrete resolvent associated

to the discrete operator T h is bounded.

Lemma 5.2 If z ∈ D \ sp(T ), then there exists h0 > 0 such that for h ≤ h0

‖(z I − T h)x‖DG ≥ C dist
(
z, sp(T )

)|z|2 ‖x‖DG ∀x ∈ X(h)

with C > 0 independent of h and λ.

Proof Given x ∈ X(h), let

x∗
h := T hx ∈ Xh .

We deduce from the identity

(z I − T h)x∗
h = T h(z I − T h)x

and from Lemma 5.1, that

C dist
(
z, sp(T )

)|z|‖x∗
h‖DG ≤ ‖(z I−T h)x∗

h‖DG ≤‖T h‖L(X(h),Xh)‖(z I − T h)x‖DG .

This and the triangle inequality leads to

‖x‖DG ≤ |z|−1‖x∗
h‖DG + |z|−1‖(z I − T h)x‖DG

≤ |z|−1

(

1 + ‖T h‖L(X(h),Xh)

C dist
(
z, sp(T )

)|z|

)

‖(z I − T h)x‖DG .
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≤ |z|−1

(
C dist

(
z, sp(T )

)|z| + ‖T h‖L(X(h),Xh)

C dist
(
z, sp(T )

)|z|

)

‖(z I − T h)x‖DG .

Hence,

C |z|
(

C dist
(
z, sp(T )

)|z|
‖T h‖L(X(h),Xh) + C dist

(
z, sp(T )

)|z|

)

‖x‖DG ≤ ‖(z I − T h)x‖DG .

Now, using that dist
(
z, sp(T )

) ≤ |z| ≤ 1 and ‖T h‖L(X(h),Xh) ≤ C ′ (with C ′ indepen-
dent of λ), from the estimate above we derive

C |z|2 dist (z, sp(T )
)‖x‖DG ≤ ‖(z I − T )(τ , s)‖DG,

and the result follows. ��
Remark 5.1 If E is a compact subset of D \ sp(T ) and h is small enough, we deduce
from Lemma 5.2 that (z I − T h) : X(h) → X(h) is invertible for all z ∈ E . Hence,
E ⊂ D\ sp(T h). Consequently, for h small enough, the numerical method does not
introduce spurious eigenvalues. Moreover, we have that there exists a constant C > 0
independent of h and λ such that, for all z ∈ E ,

‖(z I − T h
)−1‖L(X(h),X(h)) ≤ C

dist(E, sp(T ))|z|2 .

For x ∈ X(h) andE andF closed subspaces ofX(h), we set δ(x,E) := inf y∈E‖x−
y‖DG , δ(E,F) := sup y∈E: ‖ y‖DG=1 δ( y,F), and δ̂(E,F) := max{δ(E,F), δ(F,E)},
the latter being the so called gap between subspaces E and F.

Given an isolated eigenvalue κ 	= 1 of T , we define

dκ := 1

2
dist

(
κ, sp(T ) \ {κ}).

It follows that the closed disk Dκ := {z ∈ C : |z − κ| ≤ dκ} of the complex plane,
with center κ and boundary γ is such that Dκ ∩sp(T ) = {κ}. We deduce fromRemark
3.1 that the operator E := 1

2π i

∫
γ (z I − T )−1 dz : X(h) −→ X(h) is well-defined

and bounded uniformly in h. Moreover, E|X is a spectral projection in X onto the
(finite dimensional) eigenspace E(X) corresponding to the eigenvalue κ of T . In fact,

E(X(h)) = E(X). (41)

To prove this, let κ∗ ∈ Dκ be an eigenvalue of T : X(h) → X(h) and x∗ ∈ X(h)

be the corresponding eigenfunction. Since κ∗ 	= 0 and T (X(h)) ⊂ X, we actually
have that x∗ ∈ X. Then, necessarily κ∗ = κ and taking into account that E(X) is the
eigenspace associated with κ , we deduce (41).

Similarly, we deduce from Remark 5.1 that, for h small enough, the operator Eh :=
1

2π i

∫
γ (z I − T h)

−1 dz : X(h) −→ X(h) is also well-defined and bounded uniformly
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in h. Moreover, Eh |Xh is a projector in Xh onto the eigenspace Eh(Xh) corresponding
to the eigenvalues of T h : Xh → Xh contained in Dκ . The same arguments as above
show that we also have

Eh(X(h)) = Eh(Xh).

Our aim now is to compare Eh(Xh) with E(X) in terms of the gap δ̂.

Lemma 5.3 There exists C > 0, independent of h and λ, such that

‖E − Eh‖L(Xh ,X(h)) ≤ C

dκ

‖T − T h‖L(Xh ,X(h)). (42)

Proof We deduce from the identity

(z I − T )−1 − (z I − T h)
−1 = (z I − T )−1 (T − T h) (z I − T h)

−1

that, for any xh ∈ Xh ,

‖(E − Eh)xh‖DG ≤ 1

2π

∫

γ

‖[(z I − T )−1 − (z I − T h)
−1]xh‖DG |dz|

= 1

2π

∫

γ

‖[(z I − T )−1 (T − T h) (z I − T h)
−1]xh‖DG |dz|

≤ 1

2π

∫

γ

‖(z I − T )−1‖L(X(h),X(h))‖T − T h‖L(Xh ,X(h))

×‖(z I − T h)
−1‖L(Xh ,Xh)‖xh‖DG |dz|

and the result follows from Lemmas 3.2 and 5.2, the definition (40) and the fact that
for all z ∈ γ , |z| ≥ κ − dκ ≥ 1

2κ.

The following theorem will be used to establish the approximation properties of
the eigenfunctions of problem (3) by means of those of problem (20).

Theorem 5.1 There exists a constant C > 0 independent of h and λ such that

δ̂(E(X),Eh(Xh)) ≤ C

(‖T − T h‖L(Xh ,X(h))

dκ

+ δ(E(X),Xh)

)

.

Proof Since Eh is a projector, for h sufficiently small, we have that Ehxh = xh for all
xh ∈ Eh(Xh). It follows from (41) that Exh ∈ E(X), which leads to

δ(xh,E(X)) ≤ ‖Ehxh − Exh‖DG ≤ ‖Eh − E‖L(Xh ,X(h))‖xh‖DG

for all xh ∈ Eh(Xh). We deduce from (42) that

δ(Eh(Xh),E(X)) ≤ C

dκ

‖T − T h‖L(Xh ,X(h)). (43)
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On the other hand, sinceEx = x for all x ∈ E(X), for h small enough and yh ∈ Xh ,

‖x − Eh yh‖DG ≤ ‖E(x − yh)‖DG + ‖(E − Eh) yh‖DG

≤ ‖E‖L(X(h),X(h))‖(x − yh)‖DG + ‖(E − Eh)‖L(Xh ,X(h))‖ yh‖DG

≤ (‖Eh‖L(X(h),X(h)) + 2‖E‖L(X(h),X(h))

)‖x − yh‖DG

+‖E − Eh‖L(Xh ,X(h))‖x‖DG .

Consequently,

δ(x,Eh(Xh)) ≤ C(δ(x,Xh) + ‖E − Eh‖L(Xh ,X(h)))

for all x ∈ E(X) such that ‖x‖DG = 1. Then, using that the eigenspace E(X) is finite
dimensional, we deduce that

δ(E(X),Eh(Xh)) ≤ C(δ(E(X),Xh) + ‖E − Eh‖L(Xh ,X(h)))

and the result follows from this estimate and (43). ��
We end this section with a result that establishes the convergence properties of the

eigenvalues and eigenfunctions.

Theorem 5.2 Let κ 	= 1 be an eigenvalue of T of algebraic multiplicity m and let
Dκ be a closed disk in the complex plane centered at κ with boundary γ such that
Dκ ∩sp(T ) = {κ}. Let κ1,h, . . . , κm(h),h be the eigenvalues of T h : Xh → Xh lying in
Dκ , repeated according to their algebraic multiplicity. Then, we have that m(h) = m
for h sufficiently small and

lim
h→0

max
1≤i≤m

|κ − κi,h | = 0.

Moreover, ifE(X) is the eigenspace corresponding to κ andEh(Xh) is the T h-invariant
subspace of Xh spanned by the eigenspaces corresponding to {κi,h, i = 1, . . . ,m}
then

lim
h→0

δ̂(E(X),Eh(Xh)) = 0.

Proof To prove the result, we will use Theorem 5.1. First, we deduce from Lemma
4.1 that

lim
h→0

‖T − T h‖L(Xh ,X(h)) = 0.

Moreover, since E(X) ⊂ T ◦ P(σ , r) ⊂ {(τ , s) ∈ [Hs(�)n×n]2 : div τ ∈ H1+s(�)n}
for all s ∈ (0, ŝ), it follows from (33) that

lim
h→0

δ(E(X),Xh) = 0.
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Hence, by virtue of Theorem 5.1, we have that

lim
h→0

δ̂(E(X),Eh(Xh)) = 0

and, as a consequence, E(X) and Eh(Xh) have the same dimension provided h is
sufficiently small. Finally, being κ an isolated eigenvalue and the radius of the circle
γ arbitrary, we deduce that

lim
h→0

max
1≤i≤m

|κ − κi,h | = 0.

��

6 Asymptotic error estimates

Along this section we fix a particular eigenvalue κ 	= 1 of T . We wish to obtain error
estimates for the eigenfunctions and the eigenvalues in terms of the quantity

δ∗(E(X),Xh) := sup
x∈E(X),‖x‖DG=1

inf
xh∈Xh

‖x − xh‖∗
DG .

Theorem 6.1 For h small enough, there exists a constant C independent of h such that

δ̂
(E(X),Eh(Xh)

) ≤ C

dκ

δ∗(E(X),Xh). (44)

Proof Since E(X(h)) = E(X) and Eh(X(h)) = Eh(Xh), it is equivalent to show that

δ̂
(
E(X(h)),Eh(X(h))

)
≤ C

dκ

δ∗(E(X),Xh).

We consider here again the disk Dκ centered at κ with radius dκ and boundary γ . We
first notice that for all z ∈ γ

(z I − T )−1 − (z I − T h)
−1 = (z I − T h)

−1 (T − T h) (z I − T )−1 ,

which, by virtue of Remarks 3.1 and 5.1, implies

‖(E − Eh)|E(X)‖ ≤ 1

2π

∫

γ

‖(z I − T )−1 − (z I − T h)
−1 |E(X)‖|dz|

= 1

2π

∫

γ

‖(z I − T h)
−1 (T − T h) (z I − T )−1 |E(X)‖|dz|

≤ 1

2π

∫

γ

‖(z I − T h)
−1‖L(X(h),X(h))

×‖(T − T h)|E(X)‖L(X,X(h))‖(z I − T )−1‖L(X,X(h))|dz|
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≤ C

dκ

‖(T − T h)|E(X)‖L(X,X(h)). (45)

Now, on the one hand, it is clear that

δ
(
E(X(h)),Eh(X(h))

)
≤ ‖(E − Eh)|E(X)‖L(X,X(h)).

On the other hand, (45), the Céa estimate given by (32) and the fact that E(X) is finite
dimensional yield

‖(E − Eh)|E(X)‖L(X,X(h)) ≤ C

dκ

δ∗(E(X),Xh), (46)

which proves that

δ
(
E(X(h)),Eh(X(h))

)
≤ C

dκ

δ∗(E(X),Xh). (47)

Consequently, since E(X) ⊂ T (P(W × Q)) ∈ [Hs(�)n×n]2 : div τ ∈ H1+s(�)n}
for all s ∈ (0, ŝ), we have that

lim
h→0

δ
(
E(X(h)),Eh(X(h))

)
= 0. (48)

Hence, it is shown in [12] that, for h small enough,�h := Eh |E(X) : E(X) → Eh(X(h))

is bijective and �−1
h is uniformly bounded with respect to h. Furthermore,

sup
xh∈Eh(X(h)),‖xh‖DG=1

‖�−1
h xh − xh‖DG ≤ 2 sup

y∈E(X(h)),‖ y‖DG=1
‖�h y − y‖DG .

Then,

δ
(
Eh(X(h)),E(X(h))

)
≤ sup

xh∈Eh(X(h)),‖xh‖DG=1
‖xh − �−1

h x‖DG

≤ 2 sup
y∈E(X),‖ y‖DG=1

‖E y − Eh y‖DG .

Since (46) and the above estimate show that δ(Eh(X(h)),E(X(h))) ≤ C

dκ

δ∗(E(X),

Xh), the result follows from this and (47). ��
Finally, we prove the following rates of convergence for the eigenfunctions and

eigenvalues.

Theorem 6.2 Let r > 0 be such that E(X) ⊂ {(τ , s) ∈ [Hr (�)n×n]2 : div τ ∈
H1+r (�)n} with

‖τ‖Hr (�)n×n + ‖s‖Hr (�)n×n + ‖div τ‖H1+r (�)n ≤ C‖div τ‖0,� ∀(τ , s) ∈ E(X).
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Then, there exists C > 0 independent of h and λ such that, for h small enough,

δ̂(E(X),Eh(Xh)) ≤ C

dκ

hmin{r ,k}. (49)

Moreover, there exists C ′ > 0 independent of h such that

max
1≤i≤m

|κ − κi,h | ≤ C ′

dκ

h2min{r ,k}. (50)

Proof Let (σ , r) ∈ E(X) with ‖(σ , r)‖DG = 1. Then, by proceeding as in the proof
of (33) with s substituted by r , we have that

inf
(σ h ,rh)∈Xh

‖(σ , r) − (σ h, rh)‖∗
DG ≤ Chmin{r ,k}(‖σ‖Hr (�)n×n

+ ‖r‖Hr (�)n×n + ‖div σ‖H1+r (�)n )

≤ Chmin{r ,k}‖div σ‖0,� ≤ Chmin{r ,k},

the second inequality because of the assumed regularity of the eigenfunctions in
E(X). Therefore, δ∗(E(X),Xh) ≤ Chmin{r ,k} and thus (49) follows from (44) and
this inequality.

Let κ1,h, . . . , κm,h be the eigenvalues of T h : Xh → Xh lying in Dκ , repeated
according to their algebraic multiplicity. We denote by xi,h an eigenfunction corre-
sponding to κi,h satisfying ‖xi,h‖DG = 1. We know from Theorem 6.1 that, if h is
sufficiently small, then

δ(xi,h,E(X)) ≤ C

dκ

δ∗(E(X),Xh).

Hence, there exists an eigenfunction x := (σ , r) ∈ E(X) satisfying

‖xi,h − x‖DG ≤ Cδ(xi,h,E(X)) ≤ C δ̂(Eh(Xh),E(X))

≤ C

dκ

δ∗(E(X),Xh) → 0 as h → 0, (51)

which proves that, for h small enough, ‖x‖DG is bounded from below and above by a
constant independent of h. Now, proceeding as in the proof of the consistency property
in Theorem 4.1, we readily obtain that

Ah(x, yh) = κB(x, yh) (52)

for all yh ∈ Xh . With the aid of (52), it is easy to check that the identity

Ah(x − xi,h, x − xi,h) − κB(x − xi,h, x − xi,h) = (
κi,h − κ

)
B(xi,h, xi,h)

123



774 F. Lepe et al.

holds true. Now, according to Lemma 3.6 from [19], for any x ∈ E(X), x 	= 0,
there holds that B(x, x) > 0. Thus, since E(X) is finite-dimensional, there exists
c > 0, independent of h, such that B(x, x) ≥ c‖x‖DG ∀x ∈ E(X). This proves that
B(xih, xih) ≥ c

2 for h sufficiently small. We obtain from (21) that

c

2
|κi,h−κ| ≤ |Ah(x−xi,h, x−xi,h)|+|κ| |B(x−xi,h, x−xi,h)| ≤ C(‖x−xi,h‖∗

DG)2.

(53)
Let us write x = (σ , r) and xi,h = (σ h, rh). Then, by the definition of ‖ · ‖∗

DG we
have

‖x − xi,h‖∗
DG := ‖(σ , r) − (σ h, rh)‖∗

DG

= ‖(σ , r) − (σ h, rh)‖DG + ‖h1/2F {divh(σ − σ h)}‖F∗
h
.

Now, we bound separately the two terms on the right hand side of the last identity. For
the first one, from (51) we immediately obtain that

‖(σ , r) − (σ h, rh)‖DG ≤ C

dκ

δ∗(E(X),Xh)

≤ C

dκ

hmin{r ,k} (‖σ‖Hr (�)n×n + ‖r‖Hr (�)n×n + ‖div σ‖H1+r (�)n
)
.

(54)
On the other hand,

‖h1/2F {divh(σ −σ h)}‖F∗
h

≤ ‖h1/2F {divh(σ −�hσ )}‖F∗
h
+‖h1/2F {divh(�hσ −σ h)}‖F∗

h
(55)

and proceeding as to derive (39) in the proof of Theorem 4.1, we have that

‖h1/2F {divh(σ − �hσ )}‖F∗
h

≤ Chmin{1+r ,k}‖div σ‖H1+r (�)n . (56)

Finally, (22), (17) and (54) yield

‖h1/2F {divh(�hσ − σ h)}‖F∗
h

≤ C‖ divh(�hσ − σ h)‖0,�
≤ C

(‖ div(�hσ − σ )‖0,� + ‖divh(σ − σ h)‖0,�
)

≤ C
(‖ div(�hσ − σ )‖0,� + ‖(σ , r) − (σ h, rh)‖DG

)

≤ C

dκ

hr
(‖σ‖Hr (�)n×n + ‖r‖Hr (�)n×n + ‖div σ‖H1+r (�)n

)
.

(57)

This, combining (53), (55)–(57) and (54), we obtain (50). ��
Remark 6.1 In the proof provided above for the error estimate (50), the constant C ′
is not independent of λ. Indeed, according to the proof of Lemma 3.6 from [19], we
have that
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B((σ , r), (σ , r)) =
∫

�

C−1σ : σ ≥ min

{
n

nλ + 2μ
,
1

2μ

}

‖σ‖20,� ≥ 0.

Therefore, the constant c in the proof above tends to zero when λ goes to infinity.
However, the numerical experiments presented below suggest that (50) holds true
uniformly in λ.

Remark 6.2 We notice that in (49) and (50) there is a hidden dependence on λ through
the constant dκ := 1

2 dist
(
κ, sp(T ) \ {κ}), because sp(T ) depends on λ. The constant

dκ measures the deterioration of the error estimates given in Theorem 6.2 when the
eigenvalue κ gets close to other eigenvalue of T .

Remark 6.3 We point out that, thanks to Proposition 2.4, we have that E(X) ⊂
{(τ , r) ∈ [Hs(�)n×n]2 : div τ ∈ H1+s(�)n} for all s ∈ (0, ŝ). Consequently, the
error estimates given in Theorem 6.2 will always hold true for any r ∈ (0, ŝ). How-
ever, it may happen that some eigenspaces satisfy the regularity assumption of the
theorem with r ≥ ŝ (see, for instance, the last tests in the following section). In such
a case, estimates (49) and (50) holds true even though r ≥ ŝ.

7 Numerical results

We report a series of numerical tests to solve the elasticity eigenproblem in mixed
form with the DG scheme (20). All the numerical results have been obtained by using
the FEniCS Problem Solving Environment [17]. For simplicity we consider a two-
dimensional model problem. We choose � := (0, 1)× (0, 1), fixed at its bottom (�D)
and free at the rest of the boundary (�N ). The material constants have been chosen
ρ = 1 and Young modulus E = 1. We will let the Poisson ratio ν take different values
in (0, 1/2]. We recall that the Lamé coefficients are related to E and ν by

λ := Eν

(1 + ν)(1 − 2ν)
and μ := E

2(1 + ν)
.

The limit problem λ = ∞ corresponds to taking ν = 1/2. In all our tests we use
uniformmeshes with the symmetry pattern shown in Fig. 1. The refinement parameter
N represents the number of elements on each edge.

In the first test we are concerned with the determination of a reliable stabiliza-
tion parameter aS . We point out that, the hp-DGFEM analysis given in [16] for the
Maxwell source problem shows that the stabilization parameter should be sufficiently
large and proportional to k2. Moreover, the numerical tests presented in [9] confirm
this fact for DG formulations of the Maxwell eigenproblem. We conjecture here the
same behaviour in the H(div)-setting and take aS := ak2. We know that the spectral
correctness of the method can only be guaranteed if a is sufficiently large (Proposi-
tion 4.2) and if the meshsize h is sufficiently small (Remark 5.1). In a first stage, we fix
the refinement level to N = 8 and report in Tables 1, 2, 3 and 4 the 10 smallest vibration
frequencies ωhi := √

κhi − 1 computed for different values of a = 1/2, 1, 2, 4, 8.
The polynomial degrees are given by k = 3, . . . , 6, respectively. The bold numbers
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N = 4 N = 6

Fig. 1 Uniform meshes

Table 1 Computed lowest vibration frequencies for k = 3, aS = ak2 and ν = 0.35

a = 1/2 a = 1 a = 2 a = 4 a = 8

0.6804473 0.6804477 0.6804462 0.6804472 0.6804472

1.6988806 1.6879653 1.6988720 1.6988796 1.6988800

1.8222055 1.6916177 1.8222037 1.8222050 1.8222051

2.9476928 1.6989049 2.9476908 2.9476927 2.9476933

3.0174155 1.8222057 3.0173631 3.0174089 3.0174112

3.4432205 2.9476990 3.4432037 3.4432155 3.4432167

4.1416494 3.0174223 4.1417279 4.1417682 4.1417745

4.6308330 3.4432178 4.6307482 4.6308440 4.6308541

4.6871661 3.6678401 4.7616006 4.7616214 4.7616310

4.7614527 3.6812705 4.7878815 4.7880137 4.7880286

Table 2 Computed lowest vibration frequencies for k = 4, aS = ak2 and ν = 0.35

a = 1/2 a = 1 a = 2 a = 4 a = 8

0.6805737 0.6805734 0.6805736 0.6805737 0.6805737

1.6990333 1.6990335 1.6990325 1.6990330 1.6990331

1.8222096 1.8222095 1.8222093 1.8222096 1.8222096

2.9476922 2.9476921 2.9476918 2.9476922 2.9476922

3.0176437 3.0176229 3.0176395 3.0176427 3.0176430

3.4432474 3.4432468 3.4432456 3.4432472 3.4432472

4.1417705 4.1417583 4.1417494 4.1417709 4.1417710

4.6309442 4.4935293 4.5057494 4.6309431 4.6309435

4.7615804 4.6309218 4.6310303 4.7615811 4.7615813

4.7882418 4.7615802 4.6536939 4.7882397 4.7882404
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Table 3 Computed lowest vibration frequencies for k = 5, aS = ak2 and ν = 0.35

a = 1/2 a = 1 a = 2 a = 4 a = 8

0.6806522 0.6806522 0.6806522 0.6806522 0.6806522

1.6991251 1.6991236 1.6991253 1.6991254 1.6991254

1.8222137 1.8222137 1.8222137 1.8222137 1.8222137

1.8708971 2.6889275 2.9476935 2.9476935 2.9476935

1.9500361 2.7330944 3.0177841 3.0177845 3.0177845

2.9476935 2.9476937 3.4432655 3.4432656 3.4432656

3.0177850 3.0177865 4.1417851 4.1417852 4.1417852

3.4432657 3.4432669 4.6310192 4.6310196 4.6310197

4.1417854 4.1417852 4.7615802 4.7615803 4.7615803

4.6310206 4.6310213 4.7883870 4.7883879 4.7883881

Table 4 Computed lowest vibration frequencies for k = 6, aS = ak2 and ν = 0.35

a = 1/2 a = 1 a = 2 a = 4 a = 8

0.6807025 0.6807025 0.6807025 0.6807025 0.6807025

1.6991836 1.6991836 1.6991835 1.6991835 1.6991836

1.8222164 1.8222165 1.8222164 1.8222164 1.8222164

2.9476943 2.9476943 2.9476943 2.9476943 2.9476943

3.0178747 3.0178750 3.0178744 3.0178745 3.0178746

3.4432767 3.4432768 3.4432767 3.4432767 3.4432767

4.1417945 4.1417946 4.1417945 4.1417945 4.1417945

4.6310704 4.6310708 4.6310700 4.6310701 4.6310702

4.7615808 4.7615808 4.7615808 4.7615808 4.7615808

4.7884816 4.7884823 4.7884809 4.7884811 4.7884812

are spurious eigenvalues. We observe that they emerge at random positions when we
vary a and k and disappear when a is sufficiently large.

It can be seen from the previous results that in this particular configuration of the
problem, there is no presence of spurious eigenvalues for a ≥ 4. Therefore, in the
forthcoming tests, we will consider a = 8 to lie on the safe side.

The subsequent numerical tests are aimed to determine the convergence rate of the
scheme. With the boundary conditions considered in our model problem, it turns out
that the regularity exponents ŝ defined in Lemma 2.2 are those given in Table 5 for
different values of the Poisson ratio ν (cf. [19] and the references therein).

We present in Tables 6, 7 and 8 (corresponding to polynomial degrees k = 2, 3, 4,
respectively) the first two vibration frequencies computed on a series of nested meshes
for Poisson ratios ν = 0.35, 0.49 and 0.5. We also report in these tables an estimate
of the order of convergence α and, in the last column, more accurate values ωextr
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Table 5 Sobolev regularity
exponents

ν ŝ

0.35 0.6797

0.49 0.5999

0.5 0.5946

Table 6 Computed lowest vibration frequencies for and convergence order for k = 2, a = 8

ν N = 8 N = 16 N = 32 N = 64 α ωextr

0.35 0.6802582 0.6806068 0.6807466 0.6808020 1.32 0.6808396

1.6986433 1.6990669 1.6992327 1.6992969 1.36 1.6993379

0.49 0.6977449 0.6987401 0.6991833 0.6993779 1.17 0.6995361

1.8344291 1.8359932 1.8366759 1.8369722 1.20 1.8372006

0.5 0.6996601 0.7007297 0.7012091 0.7014210 1.16 0.7015956

1.8455448 1.8472376 1.8479823 1.8483081 1.19 1.8485615

Table 7 Computed lowest vibration frequencies and convergence order for k = 3, a = 8

ν N = 8 N = 16 N = 32 N = 64 α ωextr

0.35 0.6804472 0.6806839 0.6807775 0.6808142 1.34 0.6808384

1.6988800 1.6991607 1.6992690 1.6993109 1.37 1.6993375

0.49 0.6982883 0.6989872 0.6992929 0.6994258 1.20 0.6995276

1.8353134 1.8363810 1.8368436 1.8370450 1.20 1.8372013

0.5 0.7002455 0.7009976 0.7013286 0.7014736 1.19 0.7015862

1.8465030 1.8476611 1.8481669 1.8483888 1.19 1.8485627

of the vibration frequencies, extrapolated from the computed ones by means of a
least-squares fitting of the model

ωhi ≈ ωi + Cih
αi .

This fitting has been done for each vibration mode separately. The fitted parameters
ωi and αi are the reported extrapolated vibration frequency ωextr and estimated order
of convergence, respectively.

Comparing with the exponents given in Table 5, we observe that our method pro-
vides a double order of convergence for the vibration frequencies. Namely, in all
cases we have α � 2min{r , k} ≈ 2̂s, which corresponds to the the best possible
order of convergence for this problem. Finally, we point out that the method is clearly
locking-free.

In the following test, we apply themethod to a problemwith smooth eigenfunctions,
so that the rate of convergence becomes α � 2min{r , k} = 2k. With this end, we
consider an homogeneous Dirichlet condition on the whole boundary. We report in
Table 9 the three lowest vibration frequencies computed using different polynomial
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Table 8 Computed lowest vibration frequencies for and convergence order k = 4, a = 8

ν N = 8 N = 16 N = 32 N = 64 α ωextr

0.35 0.6805737 0.6807342 0.6807973 0.6808219 1.35 0.6808379

1.6990331 1.6992195 1.6992917 1.6993198 1.37 1.6993373

0.49 0.6986578 0.6991499 0.6993638 0.6994567 1.20 0.6995287

1.8358862 1.8366281 1.8369510 1.8370917 1.20 1.8372000

0.5 0.7006432 0.7011738 0.7014060 0.7015075 1.19 0.7015872

1.8471238 1.8479310 1.8482851 1.8484407 1.19 1.8485615

Table 9 Computed lowest vibration frequencies for k = 1, 2, 3 and a = 8 on uniform structured meshes

k N = 8 N = 16 N = 32 N = 64 α ωextr

1 4.2516344 4.1966068 4.1820501 4.1783476 1.93 4.1769698

5.7081001 5.5864483 5.5529737 5.5443780 1.88 5.5408823

5.7081001 5.5864483 5.5529737 5.5443780 1.88 5.5408823

2 4.1787987 4.1772158 4.1771146 4.1771083 3.97 4.1771078

5.5478350 5.5418999 5.5415174 5.5414933 3.96 5.5414917

5.5478350 5.5418999 5.5415174 5.5414933 3.96 5.5414917

3 4.1771256 4.1771082 4.1771079 4.1771078 5.81 4.1771078

5.5415936 5.5414935 5.5414918 5.5414917 5.87 5.5414917

5.5415936 5.5414935 5.5414918 5.5414917 5.87 5.5414917

degrees k = 1, 2, 3 on uniform meshes (as in the previous tests) and ν = 0.5 (for
other values of ν the results are similar). The table also includes the estimated order of
convergence α, as well as the more accurate values ωextr of the vibration frequencies
extrapolated by means of the least-squares fitting described above.

In this case, it can be clearly seen that,when using degree k, the order of convergence
is 2k as the theory predicts.

Secondly, we solve the last problemwith smooth eigenfunctions using non uniform
meshes.We built thesemeshes with FEniCS command “generate-mesh” with dif-
ferent levels of the refinement parameter N (which, roughly speaking, is proportional
to h−1). We report in Table 10 the three lowest vibration frequencies computed using
different polynomial degrees k = 1, 2, 3 and ν = 0.5 (for other values of ν the
results are similar). The table includes the estimated order of convergence α, as well
as more accurate values ωextr of the vibration frequencies extrapolated by means of
the least-squares fitting described above. Once more, an order 2k can be clearly seen
(see Remark 6.3).

8 Conclusions

Wehave introduced and analyzed a DGmethod for the elasticity eigensystem based on
a mixed variational formulation in terms of the Cauchy stress tensor and the rotation.
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Table 10 Computed lowest vibration frequencies for k = 1, 2, 3 and a = 8 on unstructured meshes

k N = 8 N = 16 N = 32 N = 64 α ωextr

1 4.2455146 4.1950552 4.1814794 4.1782299 1.92 4.1768498

5.6900257 5.5823076 5.5515379 5.5440925 1.85 5.5405808

5.7091630 5.5829516 5.5518302 5.5441243 2.02 5.5416336

2 4.1781906 4.1771768 4.1771120 4.1771081 3.97 4.1771077

5.5452977 5.5417578 5.5415081 5.5414928 3.83 5.5414903

5.5461186 5.5417695 5.5415085 5.5414928 4.06 5.5414919

3 4.1771172 4.1771080 4.1771079 4.1771078 6.11 4.1771078

5.5415400 5.5414926 5.5414918 5.5414917 5.77 5.5414917

5.5415537 5.5414927 5.5414918 5.5414917 6.05 5.5414917

We have proved that, if the penalty parameter is large enough, the numerical scheme
provides a correct spectral approximation and error estimates of optimal order for the
eigenfunctions and eigenvalues. We have reported several numerical experiments that
validate our theoretical results. Our numerical tests have also confirmed the stability
of our scheme in the nearly incompressible case, even in the limit case λ = ∞.

9 Appendix: The limit problem

As was shown in the previous section, the proposed method works fine also for the
limit problem (λ = +∞), namely, for perfectly incompressible elasticity. In this
“Appendix”, we will establish a spectral characterization in this case. Also, we will
prove that the eigenvalues of the nearly incompressible elasticity problem converge to
those of the incompressible elasticity problem as λ → ∞.

In the limit case λ = +∞, the bilinear forms A and B change in their definitions,
since the termwhere λ appears in (4) vanishes. Therefore, the limit eigenvalue problem
reads as follows: Find κ ∈ R and (σ , r) ∈ W × Q such that

A∞((σ , r), (τ , s)) = κB∞((σ , r), (τ , s)) ∀(τ , s) ∈ W × Q (58)

with

B∞((σ , r), (τ , s)) := 1

2μ

∫

�

σD : τD +
∫

�

r : τ +
∫

�

s : σ

and

A∞((σ , r), (τ , s)) :=
∫

�

ρ−1 div σ · div τ + B∞((σ , r), (τ , s))

for all (σ , r), (τ , s) ∈ W × Q.
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It is easy to check that A∞ is a bounded bilinear form. Moreover, the arguments
used in the proofs of Propositions 2.1 and 2.2 hold true for λ = +∞, so that A∞
satisfies the following inf-sup condition:

sup
(τ ,s)∈W×Q

A∞((σ , r), (τ , s))
‖(τ , s)‖ ≥ α‖(σ , r)‖ ∀(σ ,r) ∈ W × Q.

In consequence, we are in a position to introduce a solution operator for the limit eigen-
value problem: T∞ : [L2(�)n×n]2 → W×Q, defined for any ( f , g) ∈ [L2(�)n×n]2
by

A∞(T∞( f , g), (τ , s)) = B∞(( f , g), (τ , s)) ∀(τ , s) ∈ W × Q.

It is easy to check that μ is a non-zero eigenvalue of T∞ with eigenfunction
(σ∞, r∞) if and only if κ = 1/μ is a non-vanishing eigenvalue of problem (58)
with the same eigenfunction.

Our first goal is to prove that the operators T defined by (8) converges to T∞ as λ

goes to infinity. To recall that T actually depends on λ, in what follows we will denote
it by Tλ.

Before proving the convergence of Tλ to T∞, we will characterize the spectrum
of T∞. Let K be defined as in (10) and

[K × Q]⊥B∞ := {(σ , r) ∈ W × Q : B∞((σ , r), (τ , s)) = 0 ∀(τ , s) ∈ K × Q} .

We observe that T∞|K×Q : K×Q → K×Q reduces to the identity, so that μ = 1
is an eigenvalue of T∞. Moreover, its associated eigenspace is precisely K × Q.

Let us introduce the following operator which will play a role similar to that of P
in the limit problem:

P∞ : W × Q → W × Q,

(σ , r) �→ P∞σ := (σ̃ , r̃).

where (σ̃ , (̃u, r̃)) ∈ W × [L2(�)n × Q] is the solution of the following problem:

1

2μ

∫

�

σ̃D : τD +
∫

�

ũ · div τ +
∫

�

τ : r̃ = 0 ∀τ ∈ W, (59)
∫

�

v · div σ̃ +
∫

�

σ̃ : s =
∫

�

v · div σ ∀(v, s) ∈ L2(�)n × Q. (60)

The previous problem is well posed, since the ellipticity of
∫
�

σD : τD in the
corresponding kernel has been established in Lemma 2.3 of [20] and the following
inf-sup condition holds true (see [5]):

sup
τ∈W

∫
�

v · div τ + ∫
�
s : τ

‖τ‖H(div,�)

≥ β(‖v‖0,� + ‖s‖0,�) ∀(v, s) ∈ L2(�)n × Q.
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We observe that problem (59)–(60) is a dual mixed formulation with weakly
imposed symmetry of the following incompressible elasticity problemwith volumetric
force density −div σ

−div σ̃ = −div σ in�, (61)

1

2μ
σ̃D = ε(̃u) in�, (62)

σ̃n = 0 on�N , (63)

ũ = 0 on�D. (64)

It is easy to check that (σ̃ , ũ) ∈ H(div,�)×H1(�)n satisfies (61)–(64) if and only if
(σ̃ , (̃u, r̃)) ∈ W×[L2(�)n×Q] is the solution of (59)–(60)with r̃ = 1

2 [∇ ũ−(∇ ũ)t].
Now, by resorting to the relation between the incompressible elasticity and the

Stokes problem, we conclude that there exists ŝ∞ ∈ (0, 1) depending only on � and
μ (see for instance [14]) such that, for all s ∈ (0, ŝ∞) the solution ũ of (61)–(64)
belongs to H1+s(�)n and the following estimate hold true

‖ũ‖1+s,� ≤ C‖div σ‖0,�,

with a constant C independent of σ .
The following lemma is a consequence of this regularity result.

Lemma 9.1 For all s ∈ (0, ŝ) and (σ , r) ∈ W × Q, if (σ̃ , (̃u, r̃)) is the solution of
(59)–(60), then σ̃ ∈ Hs(�)n×n, ũ ∈ H1+s(�)n×n, r̃ ∈ Hs(�)n×n and

‖σ̃‖s,� + ‖ũ‖1+s,� + ‖̃r‖s,� ≤ C‖div σ‖0,�,

with a constant C independent of σ . Consequently, P∞(W × Q) ⊂ Hs(�)n×n ×
Hs(�)n×n .

We observe that P∞ is idempotent and that ker(P∞) = K × Q. Moreover, being
P∞ a projector, the orthogonal decomposition W × Q = (K × Q) ⊕ P∞(W ×
Q) holds true. On the other hand, P∞(W × Q) is an invariant space of T∞ (see
Proposition A.1 in [19]).

The following is the key point for the spectral characterization of T∞.

Lemma 9.2 For all s ∈ (0, ŝ)

T∞(P∞(W × Q)) ⊂ {(σ ∗, r∗) ∈ Hs(�)n×n × Hs(�)n×n : div σ ∗ ∈ H1+s(�)n},
(65)

and there exists C > 0 such that for all ( f , g) ∈ P∞(W × Q), if (σ ∗, r∗) =
T∞( f , g), then

‖σ ∗‖s,� + ‖div σ ∗‖1+s,� + ‖r∗‖s,� ≤ C‖( f , g)‖. (66)

Moreover, T∞|P∞(W×Q) : P∞(W × Q) → P∞(W × Q) is a compact operator.
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Proof Let ( f , g) ∈ P∞(W × Q) and (σ ∗, r∗) = T∞( f , g). Hence, we have

∫

�

ρ−1 div σ ∗ · div τ + 1

2μ

∫

�

σ ∗D : τD +
∫

�

r∗ : τ

= 1

2μ

∫

�

f D : τD +
∫

�

g : τ ∀τ ∈ W,

∫

�

σ ∗ : s =
∫

�

f : s ∀s ∈ Q.

Then, testing the first equation of the system above with τ ∈ D(�)n×n ⊂ W, we have
that

−ρ−1∇(div σ ∗) + 1

2μ
σ ∗D + r∗ = 1

2μ
f D + g.

Hence, since ρ and μ are constants, we conclude that div σ ∗ ∈ H1+s(�)n .

Since P∞(W×Q) is invariant with respect to T∞, applying Lemma 9.1 we obtain
directly (65). and (66). Finally, the compactness of T∞|P∞(W×Q) is a consequence
of the compact embedding

{(σ ∗, r∗) ∈ Hs(�)n×n × Hs(�)n×n : div σ ∗ ∈ H1+s(�)n} ↪→ W × Q,

which allows us to conclude the proof. ��
Now we are in a position to establish a spectral characterization for T∞.

Theorem 9.1 The spectrum of T∞ decomposes as follows: sp(T∞) = {0, 1} ∪
{μk}k∈N, where:
(i) μ = 1 is an infinite-multiplicity eigenvalue of T∞ and its associated eigenspace

isK × Q.

(ii) μ = 0 is an eigenvalue of T∞ and its associated eigenspace is Z × Q, where

Z := {τ ∈ W : τD = 0} = {q I : q ∈ H1(�)with q = 0 on �N }.

(iii) {μk}k∈N ⊂ (0, 1) is a sequence of nondefective finite-multiplicity eigenvalues of
T∞ that converge to zero and the corresponding eigenspaces lie in P∞(W×Q).

Proof It is enough to follow the steps of Theorem 3.5 from [20]. ��
The following convergence result also holds true.

Lemma 9.3 There exists a constant C > 0 such that

‖(Tλ − T∞)(( f , g))‖ ≤ C

λ
‖( f , g)‖0,� ∀( f , g) ∈ [L2(�)n×n]2.

Proof Let ( f , g) ∈ [L2(�)n×n]2 and let (σ λ, rλ) := Tλ( f , g) and (σ∞, r∞) :=
T∞( f , g). Then, from (8) and the definition of C we have
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∫

�

ρ−1 div σ λ · div τ + 1

2μ

∫

�

σD
λ : τD + 1

n(nλ + 2μ)

∫

�

tr(σ λ) tr(τ ) +
∫

�

rλ : τ

= 1

2μ

∫

�

f D : τD + 1

n(nλ + 2μ)

∫

�

tr( f ) tr(τ ) +
∫

�

g : τ ∀τ ∈ W,

∫

�

σ λ : s =
∫

�

f : s ∀s ∈ Q,

whereas
∫

�

ρ−1 div σ∞ · div τ + 1

2μ

∫

�

σD∞ : τD +
∫

�

r∞ : τ

= 1

2μ

∫

�

f D : τD +
∫

�

g : τ ∀τ ∈ W,

∫

�

σ∞ : s =
∫

�

f : s ∀s ∈ Q.

Subtracting the above equations we have

∫

�

ρ−1 div(σ λ − σ∞) · div τ + 1

2μ

∫

�

(σD
λ − σD∞) : τD +

∫

�

(rλ − r∞) : τ

= 1

n(nλ + 2μ)

∫

�

tr( f − σ λ) tr(τ ) ∀τ ∈ W, (67)
∫

�

(σ λ−σ∞) : s = 0 ∀s ∈ Q. (68)

Testing this equation with τ := σ λ − σ∞ and s := rλ − r∞ we have that

ρ−1‖div(σ λ − σ∞)‖20,� + 1

2μ
‖σD

λ − σD∞‖20,�

= 1

n(nλ + 2μ)

∫

�

(tr( f ) − tr(σ λ)) tr(σ λ − σ∞)

≤ C

λ
‖( f , g)‖0,�‖σ λ − σ∞‖0,�.

We observe that (σ λ − σ∞) ∈ W is symmetric due to Eq. (68). Then,

C‖σ λ − σ∞‖20,� ≤ ‖σD
λ − σD∞‖20,� + ‖div(σ λ − σ∞)‖20,�

with C > 0 (see [6] for instance).

C‖σ λ − σ∞‖H(div,�) ≤ (‖σD
λ − σD∞‖20,� + ‖div(σ λ − σ∞)‖20,�)1/2.

Hence

‖σ λ − σ∞‖2H(div,�) + ‖σD
λ − σD∞‖20,� ≤ C

λ
‖( f , g)‖0,�‖σ λ − σ∞‖0,� (69)
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and, finally,

‖σ λ − σ∞‖H(div,�) ≤ C

λ
‖( f , g)‖0,�, (70)

with C a positive constant depending on ρ, μ and n.
On the other hand, taking into account the inf-sup condition (7), (67), Cauchy–

Schwarz inequality, (9), (69) and (70), we have

β‖rλ − r∞‖0,�

≤ sup
τ∈W

1
n(nλ+2μ)

∫
�
tr( f − σ λ) tr(τ ) − ∫

�
ρ−1 div(σ λ − σ∞) · div τ − 1

2μ

∫
�
(σD

λ − σD∞) : τD

‖τ‖H(div,�)

≤ sup
τ∈W

C
nλ+2μ ‖( f , g)‖0,�‖τ‖0,� + ρ−1‖div(σ λ − σ∞)‖0,�‖ div τ‖0,� + 1

2μ ‖σD
λ − σD∞‖0,�‖τD‖0,�

‖τ‖H(div,�)

≤ C

λ
‖( f , g)‖0,�. (71)

Thus, the proof follows by combining (70) and (71). ��
Finally, we have the following result which is a well known consequence of the con-
vergence in norm established in the previous lemma (see [2], for instance).

Theorem 9.2 Let μ∞ > 0 be an eigenvalue of T∞ of multiplicity m. Let D be any
disc of the complex plane centered atμ∞ containing no other element of the spectrum
of T∞. Then, for λ large enough, D contains exactly m eigenvalues of Tλ (repeated
according to their respective multiplicities). Consequently, each eigenvalue μ∞ > 0
of T∞ is a limit of eigenvalues μ of Tλ, as λ goes to infinity.
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