
doi:10.1093/imanum/drv015

A priori and a posteriori error analysis of a pseudostress-based mixed
formulation of the Stokes problem with varying density

Sergio Caucao

Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C,
Concepción, Chile

scaucao@ubiobio.cl

and

David Mora and Ricardo Oyarzúa∗

GIMNAP-Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C,
Concepción, Chile and Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de

Concepción, Concepción, Chile
∗Corresponding author: royarzua@ubiobio.cl dmora@ubiobio.cl

[Received on 14 August 2014; revised on 16 March 2015]

We propose and analyse a mixed finite element method for the nonstandard pseudostress–velocity for-
mulation of the Stokes problem with varying density ρ in R

d , d ∈ {2, 3}. Since the resulting variational
formulation does not have the standard dual-mixed structure, we reformulate the continuous problem as
an equivalent fixed-point problem. Then, we apply the classical Babuška–Brezzi theory to prove that the
associated mapping T is well defined, and assuming that ‖∇ρ/ρ‖L∞(Ω) is sufficiently small, we show
that T is a contraction mapping, which implies that the variational formulation is well posed. Under the
same hypothesis on ρ we prove stability of the continuous problem. Next, adapting the arguments of
the continuous analysis to the discrete case, we establish suitable hypotheses on the finite element sub-
spaces ensuring that the associated Galerkin scheme becomes well posed. A feasible choice of subspaces
is given by Raviart–Thomas elements of order k � 0 for the pseudostress and polynomials of degree k
for the velocity. In addition, we derive a reliable and efficient residual-based a posteriori error estimator
for the problem. The proof of reliability makes use of the global inf–sup condition, Helmholtz decom-
positions, and local approximation properties of the Clément interpolant and Raviart–Thomas operator.
On the other hand, inverse inequalities, the localization technique based on element-bubble and edge-
bubble functions, approximation properties of the L2-orthogonal projector and known results from pre-
vious works are the main tools for proving the efficiency of the estimator. Finally, several numerical
results illustrating the performance of the mixed finite element method, confirming the theoretical rate of
convergence and the theoretical properties of the estimator, and showing the behaviour of the associated
adaptive algorithms are reported.

Keywords: Stokes problem; varying density; pseudostress–velocity formulation; mixed finite elements;
a priori error analysis; efficiency; reliability; a posteriori error analysis.

1. Introduction

The numerical simulation of incompressible fluid flow problems, modelled by the Stokes equa-
tions, has been widely studied during the last decades. Different formulations (velocity–pressure,
vorticity–velocity–pressure and pseudostress–velocity, among others) and different numerical methods
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(conforming and nonconforming methods) have been introduced and analysed, all of them with
different advantages and disadvantages. In particular, the study of numerical methods for the stress-
and pseudostress-based formulations for the Stokes problem has become a very active research area
during the last decade (see, e.g., Figueroa et al., 2008a,b; Cai et al., 2009; Gatica et al., 2010, 2011a,b,
2012, 2014a), motivated by the fact that they provide a direct approximation of the stress or pseu-
dostress tensor (besides the approximation of the velocity and/or pressure). In particular, in the case of
the pseudostress–velocity formulation, it is possible to compute the other physical quantities of interest
such as the pressure, velocity gradient, stress and vorticity, in terms of the pseudostress, and can all be
approximated with the same accuracy as the pseudostress, applying a simple post-processing procedure.
Moreover, these kinds of formulations have a natural applicability to non-Newtonian flows. Indeed,
since in this case the constitutive equation is nonlinear, the stress cannot be eliminated, and hence it
becomes an unavoidable unknown in the corresponding solvability analysis. Actually, the main advan-
tage of this formulation is that it allows for a unified analysis for linear and nonlinear flows. Moreover,
these kinds of formulations have also been extended to the Navier–Stokes equations and multiphysics
problems, such as the coupling of fluid flow with porous media flow modelled by the Stokes–Darcy
coupled problem (see, e.g., Gatica et al., 2004, 2011c; Cai & Wang, 2010; Cai & Zhang, 2012).

Now, concerning the fluid flow problem studied in this paper, the first work in studying conforming
finite element methods for the Stokes problem with varying density is Bernardi et al. (1992), where
the authors propose and analyse two variational formulations to solve the fluid flow problem. The
first one is a velocity–pressure formulation which yields a nonsymmetric saddle-point formulation,
whereas the second one is a momentum–pressure formulation which yields a standard saddle-point
formulation. Well-posedness of the velocity–pressure formulation is analysed by using a generaliza-
tion of the Babuška–Brezzi theory introduced in Nicolaides (1982) (see also Bernardi et al., 1988),
whereas the classical Babuška–Brezzi theory is applied to prove well-posedness of the momentum–
pressure formulation. It is important to note that, in both cases, existence and uniqueness of solution
of the continuous and discrete problems are attained by assuming that the variation of the density is
not too large. Under similar assumptions, in Ern (1998) the well-posedness of the vorticity–velocity
formulation of the Stokes problem with varying density and viscosity has been analysed and the
equivalence of the vorticity–velocity and velocity–pressure formulations in appropriate functional
spaces has been proved.

In this paper we adapt the results in Gatica et al. (2012), and introduce and analyse a pseudostress–
velocity formulation for the Stokes problem with varying density which was analysed in Bernardi et al.
(1992). Since the resulting variational formulation does not have the standard dual-mixed structure, we
reformulate the continuous problem as an equivalent fixed-point problem. Then, we apply the classi-
cal Babuška–Brezzi theory to prove that the associated mapping T is well defined, and assuming that
‖∇ρ/ρ‖L∞(Ω) is sufficiently small, we show that T is a contraction mapping, which implies that the
variational formulation is well posed. We observe that this assumption is consistent with the approach
in Bernardi et al. (1992). Next, we adapt the theory developed for the continuous problem to the dis-
crete case, and derive sufficient conditions on the finite element subspaces ensuring that the associated
Galerkin scheme becomes well posed.

Next, we derive a reliable and efficient residual-based a posteriori error estimator for the mixed
problem. We observe here that it is well known that in order to guarantee good convergence behaviour
of most finite element solutions, especially under the eventual presence of singularities, one usually
needs to apply an adaptive algorithm based on a posteriori error estimates. These are represented by
global quantities Θ that are expressed in terms of local indicators ΘT defined on each element T of
a given triangulation Th. The estimator Θ is said to be efficient (respectively, reliable) if there exists
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Ceff > 0 (respectively, Crel > 0), independent of the mesh sizes, such that

CeffΘ + h.o.t. � ‖error‖ � CrelΘ + h.o.t.,

where h.o.t. is a generic expression denoting one or several terms of higher order.
The rest of this work is organized as follows. In Section 2 we introduce the model problem and

derive the mixed variational formulation. In Section 3 we analyse the well-posedness of the continuous
problem. For the existence and uniqueness of solution we introduce an equivalent fixed-point problem
and we prove, assuming that ‖∇ρ/ρ‖L∞(Ω) is sufficiently small, that it has a unique solution. Under a
similar assumption we prove that the solution is stable. Next, in Section 4 we define the Galerkin scheme
and derive general hypotheses on the finite element subspaces ensuring that, on the one hand, the dis-
crete scheme becomes well posed, and on the other hand, it satisfies a Céa’s estimate. Specific choices
of finite element subspaces satisfying these assumptions are introduced in Section 5. In Section 6 we
develop the a posteriori error analysis. We employ the global continuous inf–sup condition, Helmholtz
decomposition, the local approximation properties of the Clément and Raviart–Thomas operators, and
assume that ‖∇ρ/ρ‖0,Ω is sufficiently small to derive a reliable residual-based a posteriori error estima-
tor. On the other hand, in Section 6.2 we apply inverse inequalities, the localization technique based on
element-bubble and edge-bubble functions, and approximation properties of the L2-orthogonal projector
to prove the efficiency of the estimator. Finally, several numerical results, illustrating the performance of
the proposed mixed finite element method, confirming the reliability and efficiency of the a posteriori
estimators, and showing the good behaviour of the associated adaptive algorithms, are provided in
Section 7.

2. Continuous problem

In this section we introduce and analyse a weak dual-mixed formulation for the Stokes problem with
varying density analysed in Bernardi et al. (1992). In particular, we discuss existence, uniqueness and
stability of solution. We start by introducing some definitions and fixing some notation.

2.1 Preliminaries

Given a vector field v := (v1, . . . , vd) and a tensor field τ := (τij)i,j=1,...,d , with d = 2, 3, we define the
operators

∇v =
(

∂vi

∂xj

)
, and div τ = (div (τi1, . . . , τid)),

where div is the usual divergence operator acting on vector fields.
Now, let O be a domain in Rd , with Lipschitz boundary Γ . For r � 0 and p ∈ [1, ∞], we denote

by Lp(O) and W r,p(O) the usual Lebesgue and Sobolev spaces endowed with the norms ‖ · ‖Lp(O) and
‖ · ‖W r,p(O), respectively.

Note that W 0,p(O) = Lp(O). If p = 2, we write Hr(O) in place of W r,2(O), and denote the corre-
sponding Lebesgue and Sobolev norms by ‖ · ‖0,O and ‖ · ‖r,O, respectively. We define

Hr(O) := [Hr(O)]d , H
r(O) := [Hr(O)]d×d .

Also, we shall make use of the Hilbert space

H(div ;O) := {w ∈ L2(O) : div w ∈ L2(O)},
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which is standard in the realm of mixed problems (see Boffi et al., 2013, Section 1.2 or Girault &
Raviart, 1986, Chapter 1, Section 2.2 for instance). This space is endowed with the norm

‖w‖2
div,O = ‖w‖2

0,O + ‖div w‖2
0,O.

The space of matrix-valued functions whose rows belong to H(div ;O) will be denoted by H(div;O)

and endowed with the norm ‖ · ‖div,O, which can be characterized as

H(div;O) := {τ ∈ L
2(O) : ctτ ∈ H(div ;O) ∀c ∈ Rd}.

Note that if τ ∈ H(div;O), then div τ ∈ L2(O).
Next, for the sake of simplicity, we will also use the notation

(u, v)Ω :=
∫

Ω

uv, (u, v)Ω :=
∫

Ω

u · v, (σ , τ )Ω :=
∫

Ω

σ : τ ,

where σ : τ = tr(σ tτ ) =∑d
i,j=1 σijτij, with τ t = (τji) and tr τ =∑d

i=1 τii, for any tensor σ = (σij) and
τ = (τij). In addition, we denote by

τD := τ − 1

d
tr(τ )I

the deviatoric part of the tensor τ , where I is the identity matrix in Rd×d . It is not difficult to see that
tr(τD) = 0, which implies

(σ D, τ )Ω = (σ D, τD)Ω , (2.1)

for any tensors σ and τ . Also, there hold

‖τD‖2
0,Ω = ‖τ‖2

0,Ω − 1

d
‖tr τ‖2

0,Ω and ‖tr τ‖0,Ω �
√

d‖τ‖0,Ω . (2.2)

Furthermore, given a non-negative integer k, we denote by Pk(O) the space of polynomials defined in
O of degree � k.

In addition, it is easy to see that there holds

H(div;O) = H0(div;O) ⊕ P0(O)I, (2.3)

where

H0(div;O) :=
{

τ ∈ H(div;O) :
∫
O

tr τ = 0

}
. (2.4)

More precisely, each τ ∈ H(div;O) can be decomposed uniquely as

τ = τ 0 + cI, with τ 0 ∈ H0(div;O) and c := 1

d|O|
∫
O

tr τ ∈ R. (2.5)

This decomposition will be utilized below to analyse the weak formulation of our problem.
We end this section by mentioning that, throughout the rest of the paper, we shall frequently use the

notation C and c, with or without subscripts, bars, tildes or hats, to denote generic positive constants
independent of the discretization parameters.
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STOKES PROBLEM WITH VARYING DENSITY

2.2 Model problem

In this paper we shall consider a viscous fluid occupying a bounded domain Ω in Rd , d = 2, 3, with
Lipschitz-continuous boundary Γ = ∂Ω , governed by the Stokes equations with varying density:

σ = ν(ρ∇u) − pI in Ω , −div σ = f in Ω ,

div (ρu) = 0 in Ω , u = 0 on Γ , (p, 1)Ω = 0.
(2.6)

Here, the unknowns are the pseudostress tensor σ , the fluid velocity u and the pressure p. The given data
are the external force per unit mass f ∈ L2(Ω), the viscosity ν > 0, which is assumed to be constant, and
the density function ρ ∈ H1(Ω) ∩ W 1,∞(Ω), satisfying

∇ρ

ρ
∈ L∞(Ω) and 0 < ρ0 < ρ(x) < ρ1, a.e. in Ω , (2.7)

where ρ0 and ρ1 are positive constants.
The model in (2.6), which is derived from the full steady Navier–Stokes equations for viscous fluids,

is well justified if we make the following assumptions.

(i) Only the laminar case is considered and the second-order diffusion term in the viscous stress
tensor is neglected.

(ii) The Mach number is small enough, which implies that the coupling between the pressure and
the temperature can be neglected.

In particular, (ii) implies that the state law can be chosen as a simple equation linking the density and
the temperature, in which the temperature is approximated by a reference one. This model has been
applied in several applications in engineering, such as laminar combustion and vapour-phase epitaxy
(for details, see Ern et al., 1995, 1996, and the references therein).

Now, in order to rewrite equations (2.6) as a pseudostress–velocity formulation, we first observe
that identity div (ρu) = 0 in Ω implies

ρ div u = −u · ∇ρ in Ω . (2.8)

Then, observing that tr σ = νρ div u − dp, (2.8) implies that the pressure can be written in terms of the
pseudostress and the velocity as follows:

p = − 1

d
(νu · ∇ρ + tr σ ) in Ω . (2.9)

In this way, we eliminate the pressure from (2.6) and obtain the following equivalent system of equa-
tions:

ν−1

ρ
σ D = ∇u + 1

d

(
u · ∇ρ

ρ

)
I in Ω , −div σ = f in Ω ,

u = 0 on Γ , (tr σ , 1)Ω = −ν(u · ∇ρ, 1)Ω .

(2.10)
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2.3 Dual-mixed variational formulation

Now we introduce the variational formulation of the model problem (2.10). To do that, we test equa-
tions (2.10) by suitable test functions, integrate by parts and use the homogeneous boundary condi-
tion and identity (2.1), to obtain the variational problem: find (σ , u) ∈ H(div; Ω) × L2(Ω) such that
(tr σ + νu · ∇ρ, 1)Ω = 0 and

ν−1

(
1

ρ
σ D, τD

)
Ω

+ (div τ , u)Ω − 1

d

(
u · ∇ρ

ρ
, tr τ

)
Ω

= 0,

(div σ , v)Ω = −(f, v)Ω ,

(2.11)

for all (τ , v) ∈ H(div; Ω) × L2(Ω).
Let us now define the tensor

σ 0 := σ + ν

d|Ω| (u · ∇ρ, 1)Ω I. (2.12)

It is clear that

σ 0 ∈ H0(div; Ω) if and only if (tr σ + νu · ∇ρ, 1)Ω = 0. (2.13)

In this way, owing to (2.12) and (2.5), problem (2.11) can be reformulated equivalently as follows: find
(σ 0, u) ∈ H0(div; Ω) × L2(Ω) such that

ν−1

(
1

ρ
σ D

0 , τD

)
Ω

+ (div τ , u)Ω − 1

d

(
u · ∇ρ

ρ
, tr τ

)
Ω

= 0,

(div σ 0, v)Ω = −(f, v)Ω ,

(2.14)

for all (τ , v) ∈ H0(div; Ω) × L2(Ω).
The following lemma establishes that problems (2.11) and (2.14) are in fact equivalent.

Lemma 2.1 If (σ , u) is a solution of (2.11), then (σ 0, u) := (σ + (ν/d|Ω|)(u · ∇ρ, 1)Ω I, u) is a solution
of (2.14). Conversely, if (σ 0, u) is a solution of (2.14), then (σ , u) := (σ 0 − (ν/d|Ω|)(u · ∇ρ, 1)Ω I, u)

is a solution of (2.11).

Proof. The first assertion is evident. On the other hand, by testing the first equation of (2.14) with
τ := (ρ − (ρ, 1)Ω/|Ω|)I ∈ H0(div; Ω), it follows that (u · ∇ρ/ρ, 1)Ω = 0, which implies the second
assertion. �

As a consequence of the above, in what follows we focus on analysing problem (2.14).

3. Analysis of the continuous problem

In this section we analyse the well-posedness of problem (2.14), that is, we establish stability, existence
and uniqueness of solution. In order to do that, we start by writing our problem in the classical variational
setting and state the main properties of the bilinear forms involved.
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3.1 Variational formulation

First, let us define the spaces

H := H(div; Ω), H0 := H0(div; Ω), Q := L2(Ω),

and the product norm

‖(τ , v)‖H×Q := (‖τ‖2
div,Ω + ‖v‖2

0,Ω)1/2.

Then, defining the bilinear forms a(·, ·) : H × H → R, b(·, ·) : H × Q → R and c(·, ·) : H × Q → R as

a(σ , τ ) := ν−1

(
1

ρ
σ D, τD

)
Ω

, b(τ , v) := (div τ , v)Ω , c(τ , v) := 1

d

(
v · ∇ρ

ρ
, tr τ

)
Ω

, (3.1)

the variational formulation (2.14) reads as follows: find (σ 0, u) ∈ H0 × Q such that

a(σ 0, τ ) + b(τ , u) − c(τ , u) = 0,

b(σ 0, v) = −(f, v)Ω ,
(3.2)

for all (τ , v) ∈ H0 × Q.
It is clear that assumption (2.7), Hölder’s inequality and (2.2) imply the continuity of these bilinear

forms:

|a(σ , τ )| � 1

νρ0
‖σ‖div,Ω‖τ‖div,Ω , σ , τ ∈ H,

|b(τ , v)| � ‖τ‖div,Ω‖v‖0,Ω , τ ∈ H, v ∈ Q,

|c(τ , v)| � 1√
d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖τ‖div,Ω‖v‖0,Ω , τ ∈ H, v ∈ Q.

(3.3)

Furthermore, owing to the surjectivity of the divergence operator (see, for instance, Gatica, 2014,
Section 2.4.1 or Boffi et al., 2013, Section 4.2.5), it is well known that the bilinear form b satisfies
the inf–sup condition:

sup
τ∈H0\0

b(τ , v)

‖τ‖div,Ω
� β‖v‖0,Ω ∀v ∈ Q. (3.4)

Finally, the following inequality holds (see, for instance, Arnold et al., 1984, Lemma 3.1 or Boffi et al.,
2013, Proposition 9.1.1):

Ca‖τ‖2
0,Ω � ‖τD‖2

0,Ω + ‖div τ‖2
0,Ω ∀τ ∈ H0, (3.5)

with Ca depending only on Ω . This inequality and assumption (2.7) imply the ellipticity of the bilinear
form a(·, ·) on the subspace

K0 := {τ ∈ H0 : div τ = 0 in Ω},
that is,

a(τ , τ ) � Ca

νρ1
‖τ‖2

div,Ω ∀τ ∈ K0. (3.6)
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3.2 Stability

Now we establish the stability of (3.2).

Lemma 3.1 Let (σ 0, u) ∈ H0 × Q be a solution to (3.2). Assume that

Cdep

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

� 1

2
, (3.7)

with

Cdep := 1

β
√

d

(
1 + 2

ρ1

Caρ0

)
.

Then, there exist constants Cσ and Cu, depending only on the stability constants in (3.3)–(3.5), such that

‖σ 0‖div,Ω � Cσ‖f‖0,Ω and ‖u‖0,Ω � Cu‖f‖0,Ω . (3.8)

(Explicit expressions for Cσ and Cu can be found in (3.13) and (3.14).)

Proof. Let (σ 0, u) ∈ H0 × Q be a solution to (3.2). First, we observe that from the second equation of
(3.2), it is easy to conclude that div σ 0 = −f, which implies

‖div σ 0‖0,Ω = ‖f‖0,Ω . (3.9)

Now, from the inf–sup condition in (3.4), the first equation of (3.2), Hölder’s inequality, the inequality
in (2.2), and the continuity of the bilinear forms a and c in (3.3), we observe that

‖u‖0,Ω � 1

β
sup

τ∈H0\0

b(τ , u)

‖τ‖div,Ω
= 1

β
sup

τ∈H0\0

−a(σ 0, τ ) + c(τ , u)

‖τ‖div,Ω

� 1

νρ0β
‖σ 0‖div,Ω + 1

β
√

d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖u‖0,Ω . (3.10)

Then, owing to assumption (3.7), we obtain

‖u‖0,Ω � 2

νρ0β
‖σ 0‖div,Ω . (3.11)

On the other hand, from the first equation of (3.2) with τ = σ 0, there holds

a(σ 0, σ 0) = −b(σ 0, u) + c(σ 0, u) = (f, u)Ω + c(σ 0, u),

which, together with assumption (2.7), the continuity of the bilinear form c(·, ·) in (3.3) and Hölder’s
inequality, implies

‖σ D
0 ‖2

0,Ω � νρ1‖u‖0,Ω‖f‖0,Ω + νρ1√
d

‖u‖0,Ω

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖σ 0‖div,Ω . (3.12)
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Hence, adding (1 + Ca)‖div σ 0‖2
0,Ω to both sides of (3.12), and using (3.5), (3.9) and (3.11), we obtain

‖σ 0‖2
div,Ω � νρ1

Ca
‖u‖0,Ω

(
‖f‖0,Ω + 1√

d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖σ 0‖div,Ω

)
+ (1 + Ca)

Ca
‖σ 0‖div,Ω‖f‖0,Ω

�
(

2ρ1

Caρ0β
+ 1 + Ca

Ca

)
‖σ 0‖div,Ω‖f‖0,Ω + 2ρ1

Caρ0β
√

d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖σ 0‖2
div,Ω .

In this way, from assumption (3.7) it follows that

‖σ 0‖div,Ω � 2

(
2ρ1

Caρ0β
+ 1 + Ca

Ca

)
‖f‖0,Ω , (3.13)

which together with (3.11) implies

‖u‖0,Ω � 4

νρ0β

(
2ρ1

Caρ0β
+ 1 + Ca

Ca

)
‖f‖0,Ω , (3.14)

which completes the proof. �

3.3 Existence and uniqueness of solution

As mentioned before, in order to prove the existence and uniqueness of solution, we now introduce the
linear mapping

T : (ξ , z) ∈ H0 × Q → (σ 0, u) ∈ H0 × Q

as the solution to the following variation of problem (3.2): find (σ 0, u) ∈ H0 × Q such that

a(σ 0, τ ) + b(τ , u) = c(τ , z),

b(σ 0, v) = −(f, v)Ω ,
(3.15)

for all (τ , v) ∈ H0 × Q. With the stability properties in Section 3.1, it is not difficult to see that prob-
lem (3.15) is uniquely solvable, and hence the operator T is well defined (see Gatica et al., 2012,
Theorem 2.1).

The following lemma establishes that T is a contraction mapping and hence, according to the Banach
fixed-point theorem, it has a unique fixed point in H0 × Q.

Lemma 3.2 Assume that

CT

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

< 1, (3.16)

with

CT := 1

β
√

d

(
1 + ρ1

Caρ0

)
+ ρ1ν

Ca

√
d

. (3.17)

Then, T is a contraction mapping in H0 × Q.
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Proof. Let (σ 1, u1), (σ 2, u2), (ξ 1, z1), (ξ 2, z2) in H0 × Q, such that

T(ξ 1, z1) = (σ 1, u1) and T(ξ 2, z2) = (σ 2, u2).

From the definition of T in (3.15), it follows that

a(σ 1 − σ 2, τ ) + b(τ , u1 − u2) = c(τ , z1 − z2),

b(σ 1 − σ 2, v) = 0,
(3.18)

for all (τ , v) in H0 × Q, which implies

div(σ 1 − σ 2) = 0, (3.19)

and

a(σ 1 − σ 2, σ 1 − σ 2) = c(σ 1 − σ 2, z1 − z2). (3.20)

Then, from (3.19), (3.20), the ellipticity of a(·, ·) on K0 in (3.6) and the continuity of c in (3.3), there
holds

‖σ 1 − σ 2‖div,Ω � ρ1ν

Ca

√
d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖z1 − z2‖0,Ω . (3.21)

Now, from (3.3), (3.4) and the first equation of (3.18), we obtain

‖u1 − u2‖0,Ω � 1

β
sup

τ∈H0\0

|b(τ , u1 − u2)|
‖τ‖div,Ω

= 1

β
sup

τ∈H0\0

|c(τ , z1 − z2) − a(σ 1 − σ 1, τ )|
‖τ‖div,Ω

� 1

β
√

d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖z1 − z2‖0,Ω + 1

νρ0β
‖σ 1 − σ 2‖div,Ω ,

which together with (3.21) implies

‖u1 − u2‖0,Ω � 1

β
√

d

(
1 + ρ1

Caρ0

)∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖z1 − z2‖0,Ω . (3.22)

In this way, from (3.21) and (3.22), there holds

‖T(ξ 1, z1) − T(ξ 2, z2)‖H×Q � ‖σ 1 − σ 2‖div,Ω + ‖u1 − u2‖0,Ω

� CT

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖z1 − z2‖0,Ω

� CT

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖(ξ 1 − ξ 2, z1 − z2)‖H×Q.

Therefore, according to assumption (3.16), we obtain that T is a contraction mapping, which concludes
the proof. �
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Now we establish the main result of this section.

Theorem 3.3 Assume that

CWP

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

� 1

2
, (3.23)

with

CWP := 1

β
√

d

(
1 + 2

ρ1

Caρ0

)
+ ρ1ν

Ca

√
d

. (3.24)

Then, there exists a unique (σ 0, u) ∈ H0 × Q satisfying (3.2). Moreover, the solution is stable in the
sense that it satisfies inequalities (3.8).

Proof. It is clear that (σ 0, u) ∈ H0 × Q is the unique solution of problem (3.2) if and only if it is the
unique fixed point of the mapping T. Then, noting that CT � CWP, from Lemma 3.2 and the classical
Banach fixed-point theorem, it follows that T has a unique fixed point in H0 × Q, which implies the
first assertion.

In turn, since Cdep � CWP, the stability of (σ 0, u) follows from Lemma 3.1. �

Remark 3.4 Observe that problem (3.2) can be rewritten alternatively as a nonsymmetric mixed prob-
lem: find (σ 0, u) ∈ H0 × Q such that

a(σ 0, τ ) + b1(τ , u) = 0,

b2(σ 0, v) = −(f, v)Ω ,

for all (τ , v) ∈ H0 × Q, where

b1(τ , v) := b(τ , v) − c(τ , v) and b2(τ , v) := b(τ , v).

Then, as in Bernardi et al. (1992), one could try to prove the well-posedness of problem (3.2) by apply-
ing the results in Nicolaides (1982) and Bernardi et al. (1988). Nevertheless, in this case, the assump-
tions that the bilinear forms a, b1 and b2 must satisfy are not easily verifiable. Alternatively, one could
also try to adapt the results provided in Demkowicz (2006) and prove the well-posedness of problem
(3.2) by using the global Babuška inf–sup condition, but again, due to the nonsymmetric nature of the
mixed problem, its verification is not trivial.

We now provide the converse of the derivation of (2.11). More precisely, the following theorem
establishes that the unique solution of (2.11) solves the original problem described by (2.10). We remark
that there are no extra regularity assumptions on the data; only f ∈ L2(Ω) is required here.

Theorem 3.5 Let (σ , u) ∈ H(div; Ω) × L2(Ω) be the unique solution of the variational formu-
lation (2.11), such that (tr σ + νu · ∇ρ, 1)Ω = 0. Then (ν−1/ρ)σ D = ∇u + 1

2 (u · (∇ρ/ρ))I in Ω ,
−div σ = f in Ω , u = 0 on Γ , (tr σ , 1)Ω = −ν(u · ∇ρ, 1)Ω , and therefore u ∈ H1

0(Ω).

Proof. It basically follows by applying integration by parts backwards in (2.11) and using suitable test
functions. We omit further details. �

Remark 3.6 It is easy to see from Theorem 3.5 and equation (2.12) that σ 0 ∈ H0(div; Ω) satisfies
(ν−1/ρ)σ D

0 = ∇u + 1
2 (u · (∇ρ/ρ))I in Ω , and −div σ 0 = f in Ω .
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4. The mixed finite element scheme

In this section we introduce the Galerkin scheme of problem (3.2) and analyse its well-posedness by
establishing suitable assumptions on the finite element subspaces involved. Then, we provide specific
examples for these subspaces, satisfying the required hypotheses.

4.1 Preliminaries

We start by selecting the following arbitrary discrete spaces:

Hh ⊆ H(div; Ω), Qh ⊆ L2(Ω). (4.1)

Then, we define the subspaces

Hh := {τ ∈ H(div; Ω) : ctτ ∈ Hh ∀c ∈ Rd},
Hh,0 := Hh ∩ H0(div; Ω),

Qh := [Qh]d .

(4.2)

In this way, the Galerkin scheme for (3.2) reduces to the following: find (σ h,0, uh) ∈ Hh,0 × Qh such that

a(σ h,0, τ h) + b(τ h, uh) − c(τ h, uh) = 0,

b(σ h,0, vh) = −(f, vh)Ω ,
(4.3)

for all (τ h, vh) ∈ Hh,0 × Qh.
Now we establish general hypotheses on the finite element subspaces (4.2), ensuring later on the

well-posedness of (4.3). We start by observing that in order to have a meaningful space Hh,0, we need
to be able to eliminate multiples of the identity matrix from Hh. This request is certainly satisfied if we
assume the following.

(H.0) [P0(Ω)]d×d ⊆ Hh.
Then, it follows that I ∈ Hh for all h, and hence there holds the decomposition

Hh = Hh,0 ⊕ P0(Ω)I.

Now we look at the discrete kernel on b, which is defined by

Kh,0 := {τ h ∈ Hh,0 : b(τ h, vh) = 0 ∀vh ∈ Qh}.

In order to have a more explicit definition of Kh,0 we introduce the following assumption.

(H.1) div Hh ⊆ Qh.
Then, it follows from the definition of b that

Kh,0 := {τ h ∈ Hh,0 : div τ h = 0 in Ω} ⊆ K0.
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Next, we assume that the discrete version of (3.4) holds.
(H.2) There exists β̂ > 0, independent of h, such that

sup
τ h∈Hh,0\0

b(τ h, vh)

‖τ h‖div,Ω
� β̂‖vh‖0,Ω ∀vh ∈ Qh. (4.4)

4.2 Well-posedness of the discrete problem

In this section we adapt the analysis from Section 3 to the discrete case to prove the well-posedness of
(4.3). First, we observe that, since we are considering conforming finite element subspaces, the conti-
nuity of the bilinear forms a, b and c (cf. (3.3)) are inherited from the continuous case, with the exact
same constants. Moreover, since Kh,0 ⊆ K0, we deduce that the ellipticity of a on Kh,0 holds:

a(τ h, τ h) � Ca

νρ1
‖τ h‖2

div,Ω ∀τ h ∈ Kh,0. (4.5)

In this way, according to (3.3), (4.4), (4.5) and the classical Babuška–Brezzi theory, and similarly to the
analysis of the continuous problem, we are able to introduce the well-defined linear mapping

T̂ : (ξ h, zh) ∈ Hh,0 × Qh → (σ h,0, uh) ∈ Hh,0 × Qh

as the solution to the following problem: find (σ h,0, uh) ∈ Hh,0 × Qh such that

a(σ h,0, τ h) + b(τ h, uh) = c(τ h, zh),

b(σ h,0, vh) = −(f, vh)Ω ,
(4.6)

for all (τ h, vh) ∈ Hh,0 × Qh.

Remark 4.1 It is easy to see that (σ h,0, uh) is the solution of (4.3) if and only if T̂(σ h,0, uh) = (σ h,0, uh).
In this way, in order to prove that (4.3) is well posed, we proceed analogously to Section 3.3, and prove
that T̂ has a unique fixed point in Hh,0 × Qh.

Theorem 4.2 Assume that hypotheses (H.0), (H.1) and (H.2) hold. In addition, assume that

ĈWP

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

� 1

2
, (4.7)

with

ĈWP := 1

β̂
√

d

(
1 + 2

ρ1

Caρ0

)
+ ρ1ν

Ca

√
d

. (4.8)

Then, there exists a unique (σ h,0, uh) ∈ Hh,0 × Qh satisfying (4.3). Moreover, there exist positive con-
stants Ĉσ and Ĉu, depending only on the stability constants in (3.3), (4.4) and (4.5), such that

‖σ h,0‖div,Ω � Ĉσ‖f‖0,Ω and ‖uh‖0,Ω � Ĉu‖f‖0,Ω . (4.9)

(Explicit expressions for Ĉσ and Ĉu can be found in (4.10) and (4.11).)
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Proof. Let

Ĉ
T̂

:= 1

β̂
√

d

(
1 + ρ1

Caρ0

)
+ ρ1ν

Ca

√
d

.

It is clear that Ĉ
T̂

� ĈWP. Then, we proceed analogously to Lemma 3.2, to prove that the mapping T̂ has
a unique fixed point (σ h,0, uh) ∈ Hh,0 × Qh which, according to Remark 4.1, is also the unique solution
of (4.3).

Next, we let

Ĉdep := 1

β̂
√

d

(
1 + 2

ρ1

Caρ0

)
,

and observe that Ĉdep � ĈWP. Then, noting that from the second equation of (4.3) there holds

‖div σ h,0‖0,Ω � ‖f‖0,Ω ,

we proceed as in the proof of Lemma 3.1 to obtain that

‖σ h,0‖div,Ω � 2

(
2ρ1

Caρ0β̂
+ 1 + Ca

Ca

)
‖f‖0,Ω , (4.10)

and

‖uh‖0,Ω � 4

νρ0β̂

(
2ρ1

Caρ0β̂
+ 1 + Ca

Ca

)
‖f‖0,Ω , (4.11)

which concludes the proof. �

4.3 A priori error estimate

Now we establish the corresponding Céa a priori error estimate. To that end, we first introduce some
notation and state some previous results. We begin by defining the set

H
f
h := {τ h ∈ Hh,0 : b(τ h, vh) = −(f, vh)Ω ∀vh ∈ Qh},

which is clearly nonempty, since (4.4) holds. Also, it is not difficult to see that, due to the inf–sup
condition (4.4), the following inequality holds (see, for instance, Gatica, 2014, Theorem 2.6):

inf
τ h∈H

f
h

‖σ 0 − τ h‖div,Ω �
(

1 + 1

β̂

)
inf

τ h∈Hh,0

‖σ 0 − τ h‖div,Ω . (4.12)

In turn, in order to simplify the subsequent analysis, we write eσ = σ 0 − σ h,0 and eu = u − uh.
As usual, for a given (τ̂ h, v̂h) ∈ H

f
h × Qh, we shall then decompose these errors into

eσ = ξσ + χσ and eu = ξu + χu, (4.13)

with

ξσ := σ 0 − τ̂ h ∈ H0, χσ := τ̂ h − σ h,0 ∈ Hh,0,

ξu := u − v̂h ∈ Q, χu := v̂h − uh ∈ Qh.
(4.14)
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Finally, we observe that Galerkin orthogonality holds:

a(eσ , τ h) + b(τ h, eu) − c(τ h, eu) = 0,

b(eσ , vh) = 0,
(4.15)

for all (τ h, vh) ∈ Hh,0 × Qh.
We now establish the main result of this section.

Theorem 4.3 Assume that hypotheses (H.0), (H.1) and (H.2) hold. In addition, assume that

max{CWP, ĈWP}
∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

� 1

2
, (4.16)

with CWP and ĈWP defined in (3.24) and (4.8), respectively. Let (σ 0, u) ∈ H0 × Q and (σ h,0, uh) ∈
Hh,0 × Qh be the unique solutions of the continuous and discrete problems (3.2) and (4.3), respectively.
Then, there exists Ccea > 0, independent of h, such that

‖σ 0 − σ h,0‖div,Ω + ‖u − uh‖0,Ω � Ccea

{
inf

τ h∈Hh,0

‖σ 0 − τ h‖div,Ω + inf
vh∈Qh

‖u − vh‖0,Ω

}
. (4.17)

Proof. Let (τ̂ h, v̂h) ∈ H
f
h × Qh, and define ξσ , ξu, χσ and χu, as in (4.14). It is easy to see that the first

equation of (4.15) can be rewritten as

a(χσ , τ h) + b(τ h, χu) − c(τ h, χu) = −a(ξσ , τ h) − b(τ h, ξu) + c(τ h, ξu) ∀τ h ∈ Hh,0. (4.18)

Then, from the inf–sup condition (4.4), (4.18) and the continuity of a, b and c in (3.3), it follows that

‖χu‖0,Ω � 1

β̂
sup

τ h∈Hh,0\0

b(τ h, χu)

‖τ h‖div,Ω

= 1

β̂
sup

τ h∈Hh,0\0

−a(χσ , τ h) − a(ξσ , τ h) − b(τ h, ξu) + c(τ h, χu) + c(τ h, ξu)

‖τ h‖div,Ω

� 1

νρ0β̂
(‖ξσ‖div,Ω + ‖χσ‖div,Ω) + 1

β̂

(
1 + 1√

d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

)
‖ξu‖0,Ω

+ 1

β̂
√

d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖χu‖0,Ω ,

which together with assumption (4.16) implies

‖χu‖0,Ω � 2

νρ0β̂
(‖ξσ‖div,Ω + ‖χσ‖div,Ω) + 2

β̂

(
1 + 1√

d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

)
‖ξu‖0,Ω . (4.19)

In turn, since τ̂ h ∈ H
f
h, we observe that χσ ∈ Kh,0, and then, from (4.18) with τ h = χσ , we obtain

a(χσ , χσ ) = −a(ξσ , χσ ) + c(χσ , ξu) + c(χσ , χu),
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and using the continuity of a and c in (3.3), and the ellipticity of a in (4.5), we obtain

‖χσ‖div,Ω � ρ1

Caρ0
‖ξσ‖div,Ω + νρ1

Ca

√
d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖ξu‖0,Ω + νρ1

Ca

√
d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖χu‖0,Ω . (4.20)

In this way, combining (4.19) and (4.20) it follows that

‖χσ‖div,Ω � k1

2
‖ξσ‖div,Ω + k2

2
‖ξu‖0,Ω + 2ρ1

ρ0Caβ̂
√

d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

‖χσ‖div,Ω ,

which together with assumption (4.16) yields

‖χσ‖div,Ω � k1‖ξσ‖div,Ω + k2‖ξu‖0,Ω , (4.21)

with

k1 : = ρ1

Caρ0

(
1 + 2

β̂
√

d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

)
,

k2 : = νρ1

Ca

√
d

(
1 + 2

β̂
+ 2

β̂
√

d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

)∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

.

As a consequence, combining (4.19) and (4.21), we obtain

‖χu‖0,Ω � k3‖ξσ‖div,Ω + k4‖ξu‖0,Ω , (4.22)

with

k3 : = 2

νρ0β̂
(1 + k1),

k4 : = 2

β̂

(
1 + 1√

d

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

+ k2

νρ0

)
.

Therefore, according to the triangle inequality, from (4.21) and (4.22), we obtain

‖eσ‖div,Ω + ‖eu‖0,Ω � (1 + k1 + k3)‖ξσ‖div,Ω + (1 + k2 + k4)‖ξu‖0,Ω ,

and since (τ̂ h, v̂h) ∈ H
f
h × Qh is arbitrary, we obtain

‖eσ‖div,Ω + ‖eu‖0,Ω � (1 + k1 + k3) inf
τ h∈H

f
h

‖σ 0 − τ h‖div,Ω + (1 + k2 + k4) inf
vh∈Qh

‖u − vh‖0,Ω ,

which together with (4.12), concludes the proof. �

Remark 4.4 An alternative proof for the Céa’s estimate (4.17) can be obtained by adapting the proof
of Gatica et al. (2014b, Theorem 4.2) to our case, where the main tools are the superposition principle
and a Strang-type error estimate.
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4.4 Approximating the pressure and the original pseudostress

First, we propose a post-processing procedure to approximate the pressure. To do that, we observe that
if (σ 0, u) ∈ H0 × Q is the unique solution of (3.2), then, according to (2.9) and (2.12), it is possible to
recover the pressure p ∈ L2

0(Ω) := {q ∈ L2(Ω) : (q, 1)Ω = 0} from the identity

p = −ν

d

(
u · ∇ρ − 1

|Ω| (u, ∇ρ)Ω

)
− 1

d
tr σ 0. (4.23)

In this way, if (σ h,0, uh) ∈ Hh,0 × Qh is the unique solution of (4.3), it is reasonable to think that the
function

ph =: −ν

d

(
uh · ∇ρ − 1

|Ω| (uh, ∇ρ)Ω

)
− 1

d
tr σ h,0 (4.24)

is a good approximation for the pressure. This result is established in the following corollary.

Corollary 4.5 Assume that the hypotheses of Theorem 4.3 hold. Let (σ 0, u) ∈ H0 × Q and
(σ h,0, uh) ∈ Hh,0 × Qh be the unique solutions of the continuous and discrete problems (3.2) and (4.3),
respectively. Then, there exists C > 0, independent of h, such that

‖p − ph‖0,Ω � C

{
inf

τ h∈Hh,0

‖σ 0 − τ h‖div,Ω + inf
vh∈Qh

‖u − vh‖0,Ω

}
.

Proof. From (4.23) and (4.24), Hölder’s and the triangle inequalities, it follows that

‖p − ph‖0,Ω � ν

d
‖(u − uh) · ∇ρ‖0,Ω + ν

d|Ω|1/2
|(u − uh, ∇ρ)Ω | + 1

d
‖tr(σ 0 − σ h,0)‖0,Ω

� ν

d
‖ρ‖W 1,∞(Ω)‖u − uh‖0,Ω + ν

d|Ω|1/2
‖ρ‖1,Ω‖u − uh‖0,Ω + 1

d
‖tr(σ 0 − σ h,0)‖0,Ω .

Then, the result follows from Theorem 4.3. �

Now, in order to approximate the original pseudostress in (2.12), let us recall that in Section 2,
Lemma 2.1, we proved that formulations (2.11) and (2.14) are equivalent. That is, we proved that
(σ , u) ∈ H × Q is the unique solution of (2.11) if and only if (σ 0, u) ∈ H0 × Q is the unique solution of
(2.14), where σ 0 and σ are related by

σ = σ 0 − ν

d|Ω| (u, ∇ρ)Ω I. (4.25)

In turn, in this section we proposed a mixed finite element method to approximate the solution of
(2.14) (or equivalently (3.2)).

As a result, if (σ h,0, uh) ∈ Hh,0 × Qh is the unique solution of (4.3), it is easy to see that the tensor

σ h := σ h,0 − ν

d|Ω| (uh, ∇ρ)Ω I (4.26)

approximates σ ∈ H in (4.25). This result is established in the following corollary.
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Corollary 4.6 Assume that the hypotheses of Theorem 4.3 hold. Let (σ 0, u) ∈ H0 × Q and
(σ h,0, uh) ∈ Hh,0 × Qh be the unique solutions of the continuous and discrete problems (3.2) and (4.3),
respectively. Then, there exists C > 0, independent of h, such that

‖σ − σ h‖div,Ω � C

{
inf

τ h∈Hh,0

‖σ 0 − τ h‖div,Ω + inf
vh∈Qh

‖u − vh‖0,Ω

}
. (4.27)

Proof. First, from (4.25), (4.26) and the triangle inequality, it is easy to see that

‖σ − σ h‖div,Ω =
∥∥∥∥σ 0 − σ h,0 − ν

d|Ω| (u − uh, ∇ρ)Ω I

∥∥∥∥
div,Ω

� ‖σ 0 − σ h,0‖div,Ω + ν

d1/2|Ω|1/2
|(u − uh, ∇ρ)Ω |

� ‖σ 0 − σ h,0‖div,Ω + ν‖∇ρ‖0,Ω

d1/2|Ω|1/2
‖u − uh‖0,Ω .

Then, the result is a direct application of Theorem 4.3. �

5. Particular choices of discrete spaces

We now specify examples of finite element subspaces satisfying the hypotheses (H.0), (H.1) and (H.2).
To this end, we let Th be a regular family of triangulations of the polygonal region Ω̄ by triangles T of
diameter hT such that Ω̄ =⋃{T : T ∈ Th} and define h := max{hT : T ∈ Th}. Now, given an integer l � 0
and a subset S of Rd , we denote by Pl(S) the space of polynomials of total degree at most l defined on S.

5.1 The Raviart–Thomas element

For each integer k � 0 and for each T ∈ Th, we define the local Raviart–Thomas space of order k (see,
for instance, Boffi et al., 2013, Section 2.3.1):

RTk(T) := [Pk(T)]d ⊕ Pk(T)x,

where x := (x1, . . . , xd)
t is a generic vector of Rd . Then, we specify the discrete spaces in (4.2) by

defining

Hh := {τ ∈ H(div ; Ω) : τ |T ∈ RTk(T) ∀T ∈ Th},
Qh := {v ∈ L2(Ω) : v|T ∈ Pk(T) ∀T ∈ Th}.

(5.1)

It is well known that these subspaces satisfy the following approximation properties (see, e.g., Hiptmair,
2002, Theorem 3.16).

For each s ∈ (0, k + 1] and for each τ ∈ Hs(Ω), with div τ ∈ Hs(Ω), there exists τh ∈ Hh, such
that

‖τ − τh‖div ,Ω � Chs{‖τ‖s,Ω + ‖div τ‖s,Ω}. (5.2)

For each s ∈ [0, k + 1] and for each v ∈ Hs(Ω) there exists vh ∈ Qh such that

‖v − vh‖0,Ω � Chs‖v‖s,Ω . (5.3)
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STOKES PROBLEM WITH VARYING DENSITY

Moreover, it is easy to see that the corresponding discrete spaces Hh and Qh satisfy assumptions (H.0),
(H.1) and (H.2). In particular, the proof of the inf–sup condition (4.4) can be found in Gatica et al.
(2012, Lemma 2.4).

According to the above, and Theorem 4.3, we are able to establish the convergence of the Galerkin
scheme (4.3) for this particular choice of spaces.

Theorem 5.1 Assume that

max{CWP, ĈWP}
∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

� 1

2
, (5.4)

with CWP and ĈWP defined in (3.24) and (4.8), respectively. In addition, let Hh and Qh be the finite
element subspaces defined by (4.2) in terms of the specific discrete spaces given by (5.1). Then, the
Galerkin scheme (4.3) has a unique solution (σ h,0, uh) ∈ Hh,0 × Qh and there exists C1 > 0, independent
of h, such that

‖(σ h,0, uh)‖H×Q � C1‖f‖0,Ω .

Moreover, let (σ 0, u) ∈ H0 × Q be the unique solution of the continuous problem (3.2) and assume
that σ 0 ∈ H

s(Ω), div σ 0 ∈ Hs(Ω) and u ∈ Hs(Ω) for some s ∈ (0, k + 1]. Then, there exists C2 > 0,
independent of h, such that

‖σ 0 − σ h,0‖div,Ω + ‖u − uh‖0,Ω � C2hs{‖σ 0‖s,Ω + ‖div σ 0‖s,Ω + ‖u‖s,Ω}.

Proof. Since the finite element subspaces Hh and Qh satisfy hypotheses (H.0), (H.1) and (H.2), then
the proof is a straightforward application of Theorems 4.2 and 4.3, and properties (5.2) and (5.3). �

Finally, from Corollary 4.5 and Theorem 5.1 we obtain the optimal convergence of the post-
processed pressure introduced in (4.24).

Corollary 5.2 Let (σ 0, u) ∈ H0 × Q be the unique solution of the continuous problem (3.2), and
p ∈ L2

0(Ω) given by (4.23). In addition, let ph be the discrete pressure computed by the post-processing
formula (4.24). Assume that hypotheses of Theorem 5.1 hold. Then, there exists C > 0, independent of
h, such that

‖p − ph‖0,Ω � Chs{‖σ 0‖s,Ω + ‖div σ 0‖s,Ω + ‖u‖s,Ω}.

5.2 The Brezzi–Douglas–Marini element

Now, for each integer k � 0, we introduce the following discrete spaces in (4.2):

Hh := {τ ∈ H(div ; Ω) : τ |T ∈ [Pk+1(T)]d ∀T ∈ Th},
Qh := {v ∈ L2(Ω) : v|T ∈ Pk(T) ∀T ∈ Th}.

(5.5)

We remark that the product space Hh × Qh constitutes the finite element approximation for the mixed
problem introduced by Brezzi, Douglas and Marini (BDM) (see, e.g., Boffi et al., 2013, Section 2.3.1).
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Again, it is well known that these subspaces satisfy the following approximation properties (see, e.g.,
Hiptmair, 2002, Theorem 3.16).

For each s ∈ (0, k + 1] and for each τ ∈ Hs(Ω), with div τ ∈ Hs(Ω), there exists τh ∈ Hh, such
that

‖τ − τh‖div ,Ω � Chs{‖τ‖s,Ω + ‖div τ‖s,Ω}. (5.6)

For each s ∈ [0, k + 1] and for each v ∈ Hs(Ω) there exists vh ∈ Qh such that

‖v − vh‖0,Ω � Chs‖v‖s,Ω . (5.7)

Moreover, the corresponding discrete spaces Hh and Qh satisfy assumptions (H.0), (H.1) and (H.2).
For the proof of the inf–sup condition (4.4) in (H.2), we just comment that it follows analogously to
the Raviart–Thomas case (see again Gatica et al., 2012, Lemma 2.4), recalling that it is also possible to
construct a Fortin operator by using the BDM-projection.

Now we establish the convergence of the Galerkin scheme (4.3) for this particular choice of spaces.

Theorem 5.3 Assume that

max{CWP, ĈWP}
∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

� 1

2
, (5.8)

with CWP and ĈWP defined in (3.24) and (4.8), respectively. In addition, let Hh,0 and Qh be the finite
element subspaces defined by (4.2) in terms of the specific discrete spaces given by (5.5). Then, the
Galerkin scheme (4.3) has a unique solution (σ h,0, uh) ∈ Hh,0 × Qh and there exists C1 > 0, independent
of h, such that

‖(σ h,0, uh)‖H×Q � C1‖f‖0,Ω .

Moreover, let (σ 0, u) ∈ H0 × Q be the unique solution of the continuous problem (3.2) and assume
that σ 0 ∈ H

s(Ω), div σ 0 ∈ Hs(Ω) and u ∈ Hs(Ω) for some s ∈ (0, k + 1]. Then, there exists C2 > 0,
independent of h, such that

‖σ 0 − σ h,0‖div,Ω + ‖u − uh‖0,Ω � C2hs{‖σ 0‖s,Ω + ‖div σ 0‖s,Ω + ‖u‖s,Ω}.
Proof. Since the finite element subspaces Hh,0 and Qh satisfy hypotheses (H.0), (H.1) and (H.2), then
the proof is a straightforward application of Theorem 4.2 and 4.3, and properties (5.6) and (5.7). �

We end this section by establishing the rate of convergence of the post-processed pressure computed
by formula (4.24). Its proof follows from Corollary 4.5 and Theorem 5.3.

Corollary 5.4 Let (σ 0, u) ∈ H0 × Q be the unique solution of the continuous problem (3.2), and
p ∈ L2

0(Ω) given by (4.23). In addition, let ph be the discrete pressure computed by the post-processing
formula (4.24). Assume that the hypotheses of Theorem 5.3 hold. Then, there exists C > 0, independent
of h, such that

‖p − ph‖0,Ω � Chs{‖σ 0‖s,Ω + ‖div σ 0‖s,Ω + ‖u‖s,Ω}.

6. A residual-based a posteriori error estimator

In this section we restrict ourselves to the two-dimensional case, and derive a reliable and efficient
residual-based a posteriori error estimate for our mixed method (4.3), with the discrete spaces intro-
duced in Section 5.1. The extension to three dimensions should be quite straightforward.
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STOKES PROBLEM WITH VARYING DENSITY

We first introduce some notation. For each T ∈ Th we let E(T) be the set of edges of T , and we
denote by Eh the set of all edges of Th, subdivided as follows:

Eh = Eh(Γ ) ∪ Eh(Ω),

where Eh(Γ ) := {e ∈ Eh : e ⊆ Γ } and Eh(Ω) := {e ∈ Eh : e ⊆ Ω}. In what follows, he stands for the diam-
eter of a given edge e. Also, for each edge e ∈ Eh we fix a unit normal vector ne := (n1, n2)

T to the
edge e (its particular orientation is not relevant) and let te := (−n2, n1)

T be the corresponding fixed
unit tangential vector along e. Hence, given v ∈ L2(Ω) and τ ∈ L

2(Ω) such that v|T ∈ [C(T)]2 and
τ |T ∈ [C(T)]2×2, for each T ∈ Th, we let [v · te] and [τ te] be the tangential jumps across e of v and τ ,
respectively, that is, [v · te] := {(v|T ′)|e − (v|T ′′)|e} · te and [τ te] := {(τ |T ′)|e − (τ |T ′′)|e}te, where T ′ and
T ′′ are the triangles of Th having e as an edge. From now on, when no confusion arises, we will simply
write t and n instead of te and ne, respectively. Finally, for sufficiently smooth scalar, vector and tensor
fields q, v := (v1, v2)

T and τ := (τij)2×2, respectively, we let

curl v :=

⎛
⎜⎝

∂v1

∂x2
−∂v1

∂x1
∂v2

∂x2
−∂v2

∂x1

⎞
⎟⎠ , curl q :=

(
∂q

∂x2
, − ∂q

∂x1

)T

,

rot v := ∂v2

∂x1
− ∂v1

∂x2
and rot τ :=

(
∂τ 12

∂x1
− ∂τ 11

∂x2
,
∂τ 22

∂x1
− ∂τ 21

∂x2

)T

.

Now, let (σ 0, u) ∈ H0 × Q and (σ h,0, uh) ∈ Hh,0 × Qh be the unique solutions of the continuous and
discrete formulations (3.2) and (4.3), respectively. Then, we introduce the global a posteriori error
estimator

Θ :=
{∑

T∈Th

Θ2
T

}1/2

, (6.1)

where, for each T ∈ Th,

Θ2
T := ‖f + div σ h,0‖2

0,T + h2
T

∥∥∥∥rot
(

ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I

)∥∥∥∥
2

0,T

+ h2
T

∥∥∥∥∇uh −
(

ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I

)∥∥∥∥
2

0,T

+
∑

e∈E(T)

he

∥∥∥∥
[(

ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I

)
t
]∥∥∥∥

2

0,e

.

6.1 Reliability of the a posteriori error estimator

The main result of this section is stated in the following theorem.

Theorem 6.1 Assume that

CapCglob

∥∥∥∥∇ρ

ρ

∥∥∥∥
0,Ω

� 1

2
. (6.2)
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Then, there exists Crel > 0, independent of h, such that

‖σ 0 − σ h,0‖div,Ω + ‖u − uh‖0,Ω � CrelΘ (6.3)

(and an explicit expression for Cap is given in Lemma 6.5).

We begin the derivation of (6.3) by recalling that the continuous dependence result given by
Lemma 3.1 is equivalent to the global inf–sup condition for the continuous formulation (3.2). Then,
applying this estimate to the error (σ 0 − σ h,0, u − uh) ∈ H0 × Q, we obtain

||(σ 0 − σ h,0, u − uh)||H×Q � Cglob sup
(τ ,v)∈H0×Q

|R(τ , v)|
||(τ , v)||H×Q

, (6.4)

where R : H0 × Q → R is the residual functional

R(τ , v) := a(σ 0 − σ h,0, τ ) + b(τ , u − uh) − c(τ , u − uh) + b(σ 0 − σ h,0, v) ∀(τ , v) ∈ H0 × Q.

More precisely, according to (3.2), (4.3) and the definition of the bilinear forms a, b and c, we find that,
for any (τ , v) ∈ H0 × Q, there holds

R(τ , v) :=R1(τ ) + R2(v),

where

R1(τ ) = −(uh, div τ )Ω −
(

ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I, τ

)
Ω

and R2(v) = −(f + div σ h,0, v)Ω .

Hence, the supremum in (6.4) can be bounded in terms of R1 and R2 as follows:

‖(σ 0 − σ h,0, u − uh)‖H×Q � Cglob{‖R1‖H
′
0
+ ‖R2‖Q′ }. (6.5)

In this way, we have transformed (6.4) into an estimate involving global inf–sup conditions on H0 and
Q, separately.

Throughout the rest of this section, we provide suitable upper bounds for R1 and R2. We begin by
establishing the corresponding estimate for R2, whose proof follows from a straightforward application
of the Cauchy–Schwarz inequality.

Lemma 6.2 There holds

‖R2‖Q′ = ||f + div σ h,0||0,Ω =
{∑

T∈Th

‖f + div σ h,0‖2
0,T

}1/2

.

Our next goal is to bound the remaining term ‖R1‖H
′
0
, for which we need some preliminary results.

We begin with the following lemma showing the existence of a stable Helmholtz decomposition for
H(div; Ω). For its proof we refer the reader to Gatica et al. (2011d, Lemma 3.3).

Lemma 6.3 There exists Chel > 0, such that every τ ∈ H(div; Ω) can be decomposed as τ = η + curl χ ,
where η ∈ H

1(Ω), χ ∈ H1(Ω) and

‖η‖1,Ω + ‖χ‖1,Ω � Chel‖τ‖div,Ω .
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STOKES PROBLEM WITH VARYING DENSITY

We now recall three well-known approximation operators: the orthogonal projector from L2(Ω) into
Qh (see Di Pietro & Ern, 2012, Lemma 1.58), the Raviart–Thomas interpolator (see Boffi et al., 2013,
Section 2.3.1 or Gatica, 2014, Section 3.4.4) and the Clément operator onto the space of continuous
piecewise linear functions (see Clément, 1975).

The orthogonal projector Pk
h : L2(Ω) → Qh is characterized by the following identity:

(Pk
h (v), zh)Ω = (v, zh)Ω ∀zh ∈ Qh. (6.6)

In addition, it is well known that, for each v ∈ Hs(Ω), with s ∈ {0, . . . , k + 1}, there holds

|v − Pk
h (v)|m,T � Chs−m

T |v|s,T ∀T ∈ Th, ∀m ∈ {0, . . . , s}. (6.7)

The Raviart–Thomas interpolation operator Π k
h : H1(Ω) → Hh (recall the discrete spaces in

Section 5.1), given τ ∈ H1(Ω), is characterized by the following identities:∫
e
(Π k

h τ · n)r =
∫

e
(τ · n)r ∀ edges e of Th, ∀r ∈ Pk(e), when k � 0, (6.8)

and ∫
T

Π k
h τ · r =

∫
T

τ · r ∀T ∈ Th, ∀r ∈ [Pk−1(T)]2, when k � 1. (6.9)

As a consequence of (6.8) and (6.9), there holds

div (Π k
h τ) =Pk

h (div τ). (6.10)

In addition, the operator Π k
h satisfies the following approximation properties (see, for instance,

Boffi et al., 2013, Proposition 2.5.4 or Gatica, 2014, Lemma 3.17, Lemma 3.18):

‖τ − Π k
h (τ )‖0,T � c1hm

T |τ |m,T ∀ T ∈ Th, (6.11)

for each τ ∈ Hm(Ω), with m ∈ {1, . . . , k + 1},
‖div (τ − Π k

h (τ ))‖0,T � c2hm
T |div τ |m,T ∀ T ∈ Th, (6.12)

for each τ ∈ Hm(Ω), such that div τ ∈ Hm(Ω), with m ∈ {0, . . . , k + 1} and

‖τ · n − Π k
h (τ ) · n‖0,e � c3h1/2

e ‖τ‖1,Te ∀ edges e ∈ Th, (6.13)

for each τ ∈ H1(Ω), where Te ∈ Th contains e on its boundary.
The Clément operator Ih : H1(Ω) → Xh approximates optimally nonsmooth functions by continuous

piecewise linear functions, where

Xh := {v ∈ C(Ω̄) : v|T ∈ P1(T) ∀T ∈ Th}.
Moreover, the operator Ih satisfies the following approximation properties (see Clément, 1975):

‖v − Ihv‖k,T � c3h1−k
T ‖v‖1,ΔT ∀T ∈ Th, k = 0, 1, and ‖v − Ihv‖0,e � c4h1/2

e ‖v‖1,Δe ∀e ∈ Eh, (6.14)

for all v ∈ H1(Ω), where ΔT and Δe are the unions of all elements intersecting with T and e,
respectively.
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At this point, we recall that each operator defined above is uniformly bounded, that is, there exist
positive constants CP , CΠ and CI , independent of h, such that

‖Pk
h (v)‖0,Ω � CP‖v‖0,Ω , ‖Π k

h (τ )‖div ,Ω � CΠ‖τ‖1,Ω , ‖Ik
h (z)‖1,Ω � CI‖z‖1,Ω , (6.15)

for all v ∈ L2(Ω), τ ∈ H1(Ω) and z ∈ H1(Ω).
We conclude the description of the interpolation operators by mentioning that, in what follows,

we will make use of the vector version of Pk
h and Ih, say Pk

h : L2(Ω) → Qh and Ih : H1(Ω) → Xh :=
Xh × Xh, respectively, each of them defined component-wise by Pk

h and Ih, respectively. In addition,
we will make use of the tensor version of Π k

h , say Πk
h : H

1(Ω) → Hh, defined row-wise by Π k
h , and the

tensor version of Pk
h , say P

k
h, defined component-wise by Pk

h . Clearly, Pk
h, P

k
h, Ih and Πk

h inherit the same
approximation properties stated above.

The next lemma establishes a technical result, which is required to estimate ‖R1‖H
′
0
.

Lemma 6.4 Let η ∈ H
1(Ω), χ ∈ H1(Ω) and g = (1/2|Ω|)(tr(Πk

hη + curl (Ihχ)), 1)Ω . Then, there hold

|R1(η − Πk
hη)| � c1

∑
T∈Th

hT

∥∥∥∥∇uh −
(

ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I

)∥∥∥∥
0,T

‖η‖1,T , (6.16)

|R1(curl (χ − Ihχ))| � c2

∑
T∈Th

hT

∥∥∥∥rot
(

ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I

)∥∥∥∥
0,T

‖χ‖1,ΔT

+ c3

∑
e∈Eh(Ω)

h1/2
e

∥∥∥∥
[(

ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I

)
t
]∥∥∥∥

0,e

‖χ‖1,Δe (6.17)

and

|R1(gI)| � max{CI , CΠ }√
2|Ω|

∥∥∥∥∇ρ

ρ

∥∥∥∥
0,Ω

‖u − uh‖0,Ω
(‖η‖1,Ω + ‖χ‖1,Ω

)
. (6.18)

Proof. In what follows, we proceed similarly to the proof of Gatica et al. (2011d, Lemma 3.6). To do
that, and for the sake of simplicity, we first introduce the following notation:

ζ :=
(

ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I

)
.

Since ∇uh|T ∈ [Pk−1(T)]2×2 for all T ∈ Th, from (6.9) we obtain∫
T

∇uh : (η − Πk
hη) = 0 ∀T ∈ Th,

and according to (6.10) and the definition of R1, we deduce that

R1(η − Πk
hη) =

∑
T∈Th

∫
T
(∇uh − ζ ) : (η − Πk

hη),

which together with (6.11) yields (6.16).

970

 at U
niversidad del B

io B
io on A

pril 5, 2016
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


STOKES PROBLEM WITH VARYING DENSITY

Next, using that div (curl (χ − Ihχ)) = 0, and integrating by parts on each T ∈ Th, we obtain

R1(curl (χ − Ihχ)) =
∑
T∈Th

−
∫

T
ζ : curl (χ − Ihχ)

=
∑
T∈Th

{
−
∫

T
(χ − Ihχ) · rot (ζ ) +

∫
∂T

(ζ t) · (χ − Ihχ)

}

= −
∑
T∈Th

∫
T
(χ − Ihχ) · rot (ζ ) +

∑
e∈Eh

∫
e
[ζ t] · (χ − Ihχ),

and then, from the approximation properties of Ik
h in (6.14), and applying Hölder’s and the triangle

inequalities, we obtain (6.17).
Finally, recalling that (u · (∇ρ/ρ), 1)Ω = 0 (see Lemma 2.1), and using the continuity of Πk

h and Ih,
it is easy to obtain

|R1(gI)| =
∣∣∣∣ 1

2|Ω|
∫

Ω

tr
(
Πk

hη + curl (Ihχ)
) ∫

Ω

(uh − u) · ∇ρ

ρ

∣∣∣∣
� 1√

2|Ω|
∥∥∥∥∇ρ

ρ

∥∥∥∥
0,Ω

‖u − uh‖0,Ω(‖Πk
hη‖0,Ω + ‖curl (Ihχ)‖0,Ω)

� 1√
2|Ω|

∥∥∥∥∇ρ

ρ

∥∥∥∥
0,Ω

‖u − uh‖0,Ω(CΠ‖η‖1,Ω + CI‖χ‖1,Ω),

which yields (6.18) and completes the proof. �

The following lemma establishes the estimate for R1.

Lemma 6.5 There exist C > 0, independent of h, such that

‖R1‖H
′
0
� C

{∑
T∈Th

Θ̂2
T

}1/2

+ Cap

∥∥∥∥∇ρ

ρ

∥∥∥∥
0,Ω

‖u − uh‖0,Ω ,

where Cap = Chel max{CI , CΠ }/√2|Ω| and, for each T ∈ Th,

Θ̂2
T : = h2

T

∥∥∥∥rot
(

ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I

)∥∥∥∥
2

0,T

+ h2
T

∥∥∥∥∇uh −
(

ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I

)∥∥∥∥
2

0,T

+
∑

e∈E(T)

he

∥∥∥∥
[(

ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I

)
t
]∥∥∥∥

2

0,e

.

Proof. Let τ ∈ H0(div, Ω). It follows from Lemma 6.3 that there exist η ∈ H
1(Ω) and χ ∈ H1(Ω) such

that τ = η + curl χ in Ω and

‖η‖1,Ω + ‖χ‖1,Ω � Chel‖τ‖div,Ω . (6.19)
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Then, since R1(τ h) = 0 for all τ h ∈ Hh,0(Ω), which follows from the first equation of the Galerkin
scheme (4.3), we obtain

R1(τ ) =R1(τ − τ h) ∀τ h ∈ Hh,0(Ω).

In particular, for τ h := Π k
h η + curl (Ihχ) − gI, with g = (1/2|Ω|) ∫

Ω
tr(Πk

hη + curl (Ihχ)), we obtain

R1(τ ) =R1(η − Πk
hη) + R1(curl (χ − Ihχ)) + R1(gI).

Hence, the proof follows from Lemma 6.4, estimate (6.19) and the fact that the numbers of triangles in
#ΔT and #Δe are bounded. �

We end this section by observing that the reliability estimate (6.3) is a direct consequence of
Lemmas 6.2 and 6.5 and assumption (6.2).

6.2 Efficiency of the a posteriori error estimator

The main result of this section is stated as follows.

Theorem 6.6 There exists Ceff > 0, independent of h, such that

CeffΘ � ‖σ 0 − σ h,0‖div,Ω + ‖u − uh‖0,Ω + h.o.t., (6.20)

where h.o.t. stands for higher-order terms.

We remark in advance that the proof of (6.20) makes frequent use of the identities provided by
Theorem 3.5 and Remark 3.6. We begin with the estimate for the zero-order term appearing in the
definition of ΘT .

Lemma 6.7 There holds

‖f + div σ h,0‖0,T � ‖σ 0 − σ h,0‖div,T ∀T ∈ Th.

Proof. It suffices to recall, as established by Remark 3.6, that f = −div σ 0 in Ω . �

In order to derive the upper bounds for the remaining terms defining the global a posteriori error
estimator Θ (cf. (6.1)), we use results from Carstensen (1997), inverse inequalities, and the localization
technique based on element-bubble and edge-bubble functions. To this end, we now introduce further
notation and preliminary results. Given T ∈ Th and e ∈ E(T), we let φT and φe be the usual element-
bubble and edge-bubble functions, respectively (see Verfürth, 1996 for details). In particular, φT satisfies
φT ∈ P3(T), supp φT ⊆ T , φT = 0 on ∂T and 0 � φT � 1 in T . Similarly, φe|T ∈ P2(T), supp φe ⊆ we :=⋃{T ′ ∈ T : e ∈ E(T ′)}, φe = 0 on ∂T \e and 0 � φe � 1 in we. We also recall from Verfürth (1994) that,
given k ∈ N ∪ {0}, there exists an extension operator L : C(e) → C(we) that satisfies L(p) ∈ Pk(T) and
L(p)|e = p for all p ∈ Pk(e). A corresponding vector version of L, that is, the component-wise application
of L, is denoted by L. Additional properties of φT , φe and L are collected in the following lemma. See
Verfürth (1994, Lemma 1.3) for its proof.

Lemma 6.8 Given k ∈ N ∪ {0}, there exist positive constants c1, c2, c3 and c4, depending only on k and
the shape regularity of the triangulations (minimum angle condition), such that, for each triangle T and
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STOKES PROBLEM WITH VARYING DENSITY

e ∈ E(T), there hold

‖φT q‖2
0,T � ‖q‖2

0,T � c1‖φ1/2
T q‖2

0,T ∀q ∈ Pk(T), (6.21)

‖φeL(p)‖2
0,e � ‖p‖2

0,e � c2‖φ1/2
e p‖2

0,e ∀p ∈ Pk(e) (6.22)

and

c3h1/2
e ‖p‖0,e � ‖φ1/2

e L(p)‖0,T � c4h1/2
e ‖p‖0,e ∀p ∈ Pk(e). (6.23)

The following inverse estimate will be also used. We refer the reader to Ciarlet (1978, Theorem
3.2.6) for its proof.

Lemma 6.9 Let k, l, m ∈ N ∪ {0} such that l � m. Then, there exists c > 0, depending only on k, l, m and
the shape regularity of the triangulations, such that, for each triangle T , there holds

|q|m,t � chl−m
T |q|l,T ∀q ∈ Pk(T). (6.24)

In addition, we shall make use of the following estimate for smooth functions (see, for instance,
Di Pietro & Ern, 2012):

‖v‖2
0,e � C(h−1

e ‖v‖2
0,T + he|v|21,T ) ∀v ∈ H1(T), (6.25)

where T is a generic triangle having e as an edge, and C is a constant depending only on the minimum
angle of T .

Finally, in order to simplify the notation, we define

ζ := ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I (6.26)

and

M := ν−1

ρ
(σ D

h,0 − σ D
0 ) − 1

2

(
(uh − u) · ∇ρ

ρ

)
I. (6.27)

Observe that

‖M‖0,T � C{‖σ 0 − σ h,0‖div,T + ‖u − uh‖0,T } ∀T ∈ Th. (6.28)

In the sequel, we assume that ρ−1 and ρ−1∇ρ are at least in Hk+2(T) and [Hk+2(T)]2, respectively,
for all T ∈ Th.

Now we estimate the rest of the terms defining the a posteriori error estimator ΘT , separately.

Lemma 6.10 There exists C > 0, independent of h, such that

hT

∥∥∥∥rot
(

ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I

)∥∥∥∥
0,T

� C{‖σ 0 − σ h,0‖div,T + ‖u − uh‖0,T + h.o.t.}

for all T ∈ Th.
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Proof. First, adding and subtracting Pr
h(ζ ), with r � k + 1, and using the triangle inequality, we obtain

‖rot (ζ )‖0,T � ‖rot (ζ − Pr
hζ )‖0,T + ‖rot (Pr

hζ )‖0,T

� |ζ − Pr
hζ |1,T + ‖rot (Pr

hζ )‖0,T . (6.29)

Then, in what follows we proceed as in the proof of Carstensen (1997, Lemma 6.1) to estimate
‖rot (Pr

hζ )‖0,T . In fact, since ∇u = −ζ + M= (ν−1/ρ)σ D
0 − 1

2 (u · (∇ρ/ρ))I in Ω , from (6.21), and
integrating by parts, we find that

‖rot (Pr
hζ )‖2

0,T � c1‖φ1/2
T rot (Pr

hζ )‖2
0,T

= c1

∫
T

φT rot (Pr
hζ )rot (Pr

hζ − ζ + M)

= c1

∫
T
(Pr

hζ − ζ + M) : curl (φT rot (Pr
hζ )).

Therefore, from (6.21), (6.24), (6.28), we obtain

‖rot (Pr
hζ )‖0,T � Ch−1

T {‖ζ − Pr
hζ‖0,T + ‖σ 0 − σ h,0‖div,T + ‖u − uh‖0,T }, (6.30)

which together with (6.7) and (6.29) implies

hT‖rot (ζ )‖0,T � C{hT |ζ − Pr
hζ |1,T + ‖ζ − Pr

hζ‖0,T + ‖σ 0 − σ h,0‖div,T + ‖u − uh‖0,T }
� C{‖σ 0 − σ h,0‖div,T + ‖u − uh‖0,T + hr+1

T |ζ |r+1,T },

which concludes the proof. �

Lemma 6.11 There exists C > 0, independent of h, such that

hT‖∇uh − ζ‖0,T � C{hT‖σ 0 − σ h,0‖div,T + (hT + 1)‖u − uh‖0,T + h.o.t.}

for all T ∈ Th.

Proof. Given r � k + 1, we add and subtract Pr
hζ , and use the triangle inequality to obtain

‖∇uh − ζ‖0,T � ‖ζ − Pr
hζ‖0,T + ‖∇uh − Pr

hζ‖0,T . (6.31)

Then, proceeding similarly to the proof of Carstensen (1997, Lemma 6.3), noting that ζ − M − ∇u = 0
in Ω , integrating by parts and using (6.21), we find that

‖∇uh − Pr
hζ‖2

0,T � c1‖φ1/2
T (∇uh − Pr

hζ )‖2
0,T

= c1

∫
T

φT (∇uh − Pr
hζ )(ζ − M + ∇(uh − u) − Pr

h))

= c1

{∫
T
(ζ − Pr

hζ − M)φT (∇uh − Pr
hζ ) −

∫
T
(uh − u) · div(φT (∇uh − Pr

hζ ))

}
.
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STOKES PROBLEM WITH VARYING DENSITY

Therefore, applying the Cauchy–Schwarz and the triangle inequalities, from (6.21), (6.24) and (6.28),
we obtain

‖∇uh − Pr
hζ‖0,T � C{‖ζ − Pr

hζ‖0,T + ‖σ 0 − σ h,0‖div,T + (1 + h−1
T )‖u − uh‖0,T },

which together with (6.7) and (6.31) implies

hT‖∇uh − ζ‖0,T � C{hT‖σ 0 − σ h,0‖div,T + (hT + 1)‖u − uh‖0,T + (hT + 1)hr+1
T |ζ |r+1,T },

which concludes the proof. �

Lemma 6.12 There exists C > 0, independent of h, such that

h1/2
e

∥∥∥∥
[(

ν−1

ρ
σ D

h,0 − 1

2

(
uh · ∇ρ

ρ

)
I

)
t
]∥∥∥∥

0,e

� C
∑
T⊆we

(||σ 0 − σ h,0||div,T + ‖u − uh‖0,T ) + h.o.t. ∀e ∈ Eh.

Proof. Given e ∈ Eh and l � k + 1, we add and subtract Pl
hζ , and utilize the triangle inequality to obtain

‖[ζ t]‖0,e � ‖[(ζ − Pl
hζ )t]‖0,e + ‖[Pl

hζ t]‖0,e. (6.32)

Observe that, according to inequality (6.25), and the fact that he � hT for T ⊆ we, the following inequal-
ity holds:

h1/2
e ‖[(ζ − Pl

hζ )t]‖0,e � Ch1/2
e

{
(h−1/2

e

∑
T⊆we

‖ζ − Pl
hζ‖0,T + h1/2

e

∑
T⊆we

|ζ − Pl
hζ |1,T

}

� C
∑
T⊆we

hl+1
T |ζ |l+1,T . (6.33)

In this way, in the sequel, we proceed analogously to the proof of Carstensen (1997, Lemma 6.2) to
bound ‖[Pl

hζ t]‖0,e.
First, to simplify the notation, we let κ := [Pl

hζ t]. Then, we use (6.22) to obtain

‖κ‖2
0,e � c2‖φ1/2

e κ‖2
0,e = c2

∫
e
(φeL(κ))κ , (6.34)

where L : [C(e)]2 → [C(we)]2 is the extension operator defined above.
Now, integrating by parts on each T ∈ we, and using that −ζ + M= ∇u = (ν−1/ρ)σ D

0 −
1
2 (u · (∇ρ/ρ))I in Ω , we find that

∫
e
(φeL(κ))κ =

∑
T⊆we

{∫
T
(Pl

hζ − ζ + M) : curl (φeL(κ)) +
∫

T
(φeL(κ))rot (Pl

hζ )

}
. (6.35)

On the other hand, using estimates (6.23) and (6.24) and the fact that 0 � φe � 1, we obtain

‖φeL(κ)‖0,T � ‖φ1/2
e L(κ)‖0,T � ch1/2

e ‖κ‖0,e. (6.36)
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In this way, from (6.24), (6.34) and (6.35), we deduce that

‖κ‖2
0,e � C

∑
T⊆we

{h−1
T (‖ζ − Pl

hζ‖0,T + ‖M‖0,T ) + ‖rot (Pl
hζ )‖0,T }‖φeL(κ)‖0,T ,

which together with (6.28), (6.30) and (6.36) implies

‖κ‖0,e � Ch1/2
e

∑
T⊆we

h−1
T {‖ζ − Pl

hζ‖0,T + ‖σ 0 − σ h,0‖div,T + ‖u − uh‖0,T }. (6.37)

Therefore, from (6.32) (6.37) and the fact that he � hT for T ⊆ we, we obtain

h1/2
e ‖[ζ · t]‖0,e � C

{∑
T⊆we

‖σ 0 − σ h,0‖div,T + ‖u − uh‖0,T + hl+1
T |ζ |l+1,T

}
,

which concludes the proof. �

We end this section by observing that the efficiency estimate (6.20) follows straightforwardly from
Lemmas 6.10, 6.11 and 6.12.

7. Numerical results

In this section we present two numerical examples in R2, illustrating the performance of the mixed
finite element scheme (4.3), confirming the reliability and efficiency of the a posteriori error estimator
Θ derived in Section 6, and showing the behaviour of the associated adaptive algorithm. Here we
consider the specific finite element subspaces Hh,0 and Qh defined in terms of the specific discrete
spaces given by (5.1) with k = 0. In addition, the zero integral mean condition for tensors in the space
Hh,0 is imposed via a real Lagrange multiplier. In what follows, N stands for the total number of degrees
of freedom defining Hh,0 × Qh. Denoting by (σ 0, u) ∈ H0 × Q and (σ h,0, uh) ∈ Hh,0 × Qh, the solutions
of (3.2) and (4.3), respectively, the individual errors are defined by

e(σ 0) := ‖σ 0 − σ h,0‖div,Ω , e(u) := ‖u − uh‖0,Ω , e(p) := ‖p − ph‖0,Ω

and
e(σ 0, u) := {(e(σ 0))

2 + (e(u))2}1/2,

where the approximate pressure ph is computed by the post-processing formula (4.24). The effectivity
index with respect to Θ is given by

eff(Θ) := e(σ 0, u)/Θ .

Furthermore, we define the experimental rates of convergence

r(σ 0) := log(e(σ 0)/e′(σ 0))

log(h/h′)
, r(u) := log(e(u)/e′(u))

log(h/h′)
,

r(p) := log(e(p)/e′(p))

log(h/h′)
, r(σ 0, u) := log(e(σ 0, u)/e′(σ 0, u))

log(h/h′)
,
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STOKES PROBLEM WITH VARYING DENSITY

where h and h′ are two consecutive mesh sizes with errors e and e′, respectively. However, when the
adaptive algorithm is applied (see details below), the expression log(h/h′) appearing in the computation
of the above rates is replaced by − 1

2 log(N/N ′), where N and N ′ denote the corresponding degrees of
freedom of each triangulation.

The examples to be considered in this section are described next. For the two of them we choose
ν = 1. Example 7.1 is used to illustrate the performance of the mixed finite element scheme (4.3) and to
corroborate the reliability and efficiency of the a posteriori error estimator Θ . Example 7.2 is utilized
to illustrate the behaviour of the associated adaptive algorithm, which applies the following procedure
from Verfürth (1996).

(1) Start with a coarse mesh Th.

(2) Solve the discrete problem (4.3) for the current mesh Th.

(3) Compute ΘT := Θ for each triangle T ∈ Th.

(4) Check the stopping criterion and decide whether to finish or go to the next step.

(5) Use blue–green refinement on those T ′ ∈ Th whose indicator ΘT ′ satisfies

ΘT ′ � 1

2
max
T∈Th

{ΘT : T ∈ Th}.

(6) Define the resulting mesh as the actual mesh Th and go to step (2).

Example 7.1 We consider the region Ω := (−1, 1) × (−1, 1) and define the density function

ρ(x1, x2) := exp(μ(x1 + x2)) ∀(x1, x2) ∈ Ω ,

where μ is a parameter in R. We note that

∥∥∥∥∇ρ

ρ

∥∥∥∥
L∞(Ω)

= |μ|, (7.1)

and then, as we shall see in Fig. 1, and as predicted in (4.16), the performance of our method depends
strongly on the choice of μ.

In turn, we choose the datum f so that the exact solution is given by the smooth functions

u(x1, x2) = curl (sin2(πx1) sin2(πx2))

ρ(x1, x2)
∀(x1, x2) ∈ Ω ,

p(x1, x2) = x1 sin(x2) ∀(x1, x2) ∈ Ω ,

where curl ϕ := (∂ϕ/∂x2, −∂ϕ/∂x1)
T for any sufficiently smooth function ϕ.
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Fig. 1. Example 7.1, μ vs. condition number for h = 1
4 .

Example 7.2 We consider the L-shaped domain given by Ω := (−1, 1)2\[0, 1]2. Then, we choose the
density

ρ(x1, x2) = (x1 − 0.01)2 + (x2 − 0.01)2 ∀(x1, x2) ∈ Ω ,

and the datum f so that the exact solution is given by

u(x1, x2) = 1

ρ(x1, x2)
curl (x2

1x2
2(x

2
1 − 1)2(x2

2 − 1)2) ∀(x1, x2) ∈ Ω ,

p(x1, x2) = x1 − 0.01

(x1 − 0.01)2 + (x2 − 0.01)2
+ p0 ∀(x1, x2) ∈ Ω , p0 = 0.4153036413.

Note that the fluid velocity u and the fluid pressure p have high gradients around the origin.

The numerical results shown below were obtained using a MATLAB code. In Table 1 we sum-
marize the convergence history of our mixed finite element scheme (4.3), with μ = 2 and for a set
of shape-regular triangulations of the computational domain Ω . We observe there that, looking at
the experimental rates of convergence, the O(h) predicted by Theorem 5.1, with s = 1, is attained
in all the unknowns. In addition, we note that the effectivity index eff(Θ) remains always in a
neighbourhood of 0.1, which illustrates the reliability and efficiency of Θ in the case of a regular
solution.

Now, having in mind assumption (4.16), in Fig. 1 we display the relation between μ (cf. (7.1)) and
the condition number of the global matrix given by the left-hand side of (4.3) computed with the com-
mand condest in MATLAB, considering a fixed mesh of size h = 1

4 . We observe here that the condition
number is stable for |μ| � 6 and blows up for |μ| > 6. This phenomenon shows that assumption (4.16),
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Table 1 Example 7.1, uniform scheme

N h e(σ 0) r(σ 0) e(u) r(u) e(p) r(p)

337
1

2
3.869e+01 — 1.777e+01 — 3.353e+00 —

1313
1

4
1.351e+01 1.548 1.058e+01 0.763 1.798e+00 0.916

5185
1

8
5.882e+00 1.211 5.477e+00 0.959 9.026e−01 1.004

20609
1

16
2.812e+00 1.070 2.757e+00 0.995 4.493e−01 1.011

82177
1

32
1.389e+00 1.020 1.380e+00 1.000 2.242e−01 1.005

328193
1

64
6.924e−01 1.006 6.904e−01 1.001 1.121e−01 1.002

N h e(σ 0, u) r(σ 0, u) Θ eff(Θ)

337
1

2
4.258e+01 — 3.500e+02 0.122

1313
1

4
1.716e+01 1.337 1.682e+02 0.102

5185
1

8
8.037e+00 1.104 8.206e+01 0.098

20609
1

16
3.938e+00 1.034 3.971e+01 0.099

82177
1

32
1.958e+00 1.010 1.939e+01 0.101

328193
1

64
9.778e−01 1.003 9.567e+00 0.102

Table 2 Example 7.2, uniform scheme

N e(σ 0) e(u) e(σ 0, u) r(σ 0, u) Θ eff(Θ)

257 2.417e+00 1.955e+00 3.109e+00 — 9.418e+01 0.033
993 3.217e+00 3.074e+00 4.450e+00 −0.530 2.480e+02 0.018
3905 3.369e+00 3.974e+00 5.210e+00 −0.230 5.600e+02 0.009
15489 1.336e+00 2.108e+00 2.496e+00 1.068 3.739e+02 0.007
61697 7.222e−01 7.696e−01 1.055e+00 1.246 1.880e+02 0.006
246273 2.752e−01 2.576e−01 3.769e−01 1.488 8.918e+01 0.004

beyond being just a theoretical hypothesis, in practice ensures the performance of the numerical method
for small values of ‖∇ρ/ρ‖L∞(Ω).

Next, in Tables 2 and 3 we provide the convergence history of the uniform and adaptive schemes,
as applied to Example 7.2. We observe that the errors of the adaptive procedure decrease faster than
those obtained by the uniform one, which is confirmed by the global experimental rates of convergence
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Table 3 Example 7.2, adaptive scheme

N e(σ 0) e(u) e(σ 0, u) r(σ 0, u) Θ eff(Θ)

257 2.417e+00 1.955e+00 3.109e+00 — 9.418e+01 0.033
429 4.304e+00 3.037e+00 5.268e+00 −2.058 2.486e+02 0.021
557 3.876e+00 4.012e+00 5.578e+00 −0.439 5.836e+02 0.010
725 1.691e+00 2.018e+00 2.633e+00 5.697 3.734e+02 0.007
777 1.611e+00 1.580e+00 2.257e+00 4.448 2.385e+02 0.009
985 1.322e+00 8.983e−01 1.599e+00 2.908 1.667e+02 0.010
1325 1.113e+00 5.064e−01 1.223e+00 1.808 1.017e+02 0.012
1733 1.051e+00 4.166e−01 1.130e+00 0.585 6.965e+01 0.016
2167 1.018e+00 3.713e−01 1.084e+00 0.379 5.378e+01 0.020
3745 9.669e−01 3.107e−01 1.016e+00 0.237 3.706e+01 0.027
6269 8.605e−01 2.596e−01 8.988e−01 0.474 2.687e+01 0.033
9603 8.190e−01 2.181e−01 8.475e−01 0.276 2.089e+01 0.041
19569 5.081e−01 1.354e−01 5.258e−01 1.341 1.467e+01 0.036
35055 4.158e−01 1.039e−01 4.286e−01 0.701 1.059e+01 0.040
68769 2.662e−01 5.823e−02 2.725e−01 1.344 7.537e+00 0.036
99177 2.191e−01 4.864e−02 2.244e−01 1.062 6.150e+00 0.036
207481 1.502e−01 3.037e−02 1.533e−01 1.033 4.289e+00 0.036
311277 1.209e−01 2.371e−02 1.233e−01 1.075 3.445e+00 0.036

103 104 105

10−1

100

Fig. 2. Example 7.2, e(σ , u) vs. N for uniform/adaptive schemes.

provided there. This fact is also illustrated in Fig. 2, where we display the total errors e(σ 0, u) vs. the
number of degrees of freedom N for both refinements. As shown by the values of r(σ 0, u), the adaptive
method is able to keep the quasi-optimal rate of convergence O(h) for the total error. Furthermore, the
effectivity indexes remain bounded from above and below, which confirms the reliability and efficiency
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Fig. 3. Example 7.2, adapted meshes with 257, 777, 19569 and 311277 degrees of freedom.

of Θ in this case of a nonsmooth solution. Intermediate meshes obtained with the adaptive refinements
are displayed in Fig. 3. Note that the method is able to recognize the region with high gradients.
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