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Abstract

In the present work we propose and analyze a fully-coupled virtual element method of high order for solving the two
dimensional nonstationary Boussinesq system in terms of the stream-function and temperature fields. The discretization for the
spatial variables is based on the coupling C I and C 0-conf0rming virtual element approaches, while a backward Euler scheme
is employed for the temporal variable. Well-posedness and unconditional stability of the fully-discrete problem are provided.
Moreover, error estimates in H2- and H!-norms are derived for the stream-function and temperature, respectively. Finally, a set
of benchmark tests are reported to confirm the theoretical error bounds and illustrate the behavior of the fully-discrete scheme.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

The Boussinesq system is typically used to describe the natural convection in a viscous incompressible fluid,
which consists of coupling between the Navier—Stokes equations with a convection—diffusion equation. Such
coupling is done by means of a buoyancy term (in the momentum equation of the Navier—Stokes system) and
convective heat transfer (in the energy equation). Applications of this fluid—thermal system appears in several
engineering processes, such as, industrial ovens, cooling procedures (cooling of steel industries, electronic and
electric equipments, nuclear reactors, etc.). Moreover, this physical phenomena appears in oceanography and
geophysics when studying oceanic flows and climate predictions.

Due its relevance and presence in different applications, several works have been devoted to study these equations
(and some variants). For the analysis of existence, uniqueness and regularity of the solution, we refer to [1,2].
Besides, over the last decades several discretizations have been employed to solve this system; see for instance
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[3-12] and the references therein, where the steady and unsteady regimens, temperature-dependent parameters
problems have been studied, considering the classical velocity—pressure—temperature and pseudostress—velocity—
temperature formulations.

Typically, in the existing literature, the majority of the discretizations for the fluid part involve the standard
velocity—pressure formulation for the Boussinesq system. However, some researchers have developed numerical
methods by using the stream-function—vorticity and pure stream-function approaches to approximate this system.
For instance, in [13] a finite element discretization is considered to solve the problem in stream-function—vorticity—
temperature form, numerical solutions are obtained for the natural convection in a square cavity and compared
with some results available in the literature. In [14] a fourth-order compact finite difference scheme is formulated
for solving the steady regimen, by using also the stream-function—vorticity—temperature formulation. Numerical
experiments are also presented. More recently, in [15,16], the authors present an analysis of stability and convergence
for a fourth-order finite difference method for the unsteady regimen of Boussinesq equations with the stream-
function—vorticity—temperature approach. Numerical results are provided in [15]. On the other hand, in [17], the
authors employed a C! finite element method to approximate the stream-function variable. Numerical solution for
the 2D natural convection in a square cavity are presented and compared with benchmark results [18].

For two dimensional fluid problems, the formulation in terms of the stream-function presents several attractive
features, among these we can mention: the velocity vector and pressure fields are not present in the formulation,
instead only one scalar variable (the stream-function) is the main unknown to approximate. By construction the
incompressibility constraint is automatically satisfied. Moreover, the resulting trilinear form in the momentum
equation is naturally skew-symmetric, which allows more direct stability and convergence arguments. On the other
hand, in comparison with the stream-function—vorticity form, our approach avoid the difficulties related with the
definition of the boundary values for the vorticity field, present in such formulation.

Nevertheless, the construction of subspaces of H? (space where the stream-function belongs) by using finite
element method involve high order polynomials and a large number of degrees of freedom, which are considered a
difficult task principally from the computational viewpoint, even for triangular decompositions. As an alternative to
avoid the aforementioned drawback, we consider the approach presented in [19,20] to introduce C'!-virtual element
schemes of arbitrary order k > 2, to approximate the stream-function variable of the Boussinesq system.

The Virtual Element Method (VEM) were introduced in the seminal work [21] as an extension of Finite Elements
Method (FEM) to polygonal or polyhedral decompositions. In this first work the Poisson equation is used to illustrate
the main ideas of VEM approach. The virtual element spaces are constituted by polynomial and nonpolynomial
functions, the degrees of freedom must be chosen appropriately so that the stiffness matrix and load term can be
computed without computing these nonpolynomial functions. Later on, in [19] is introduced a new family of C!-
virtual element of high order k > 2, to solve Kirchhoff-Love plate problems, which in the lowest order polynomial
degree employed only 3 degrees of freedom per mesh vertex (the function and its gradient values vertex). This fact
represents a very significant advantage over C! schemes based on FEM. Moreover, in [22,23], the authors discuss
the application of VEM to construct finite dimensional spaces of arbitrarily regular C*, with o > 1, where promising
results have been observed to solve equations involving high order PDEs. In the last year a wide variety of second-
and fourth-order problems have been discretized by using VEM. Due to the large number of papers available in
the literature, we here limit ourselves in citing some representative articles within the area of fluid mechanics,
where several models have been addressed with the conforming VEM approach: the Stokes equations [24-27], the
Brinkman model [28,29], Navier—Stokes and incompressible flows [30-35], the Quasi-Geostrophic equations of the
ocean [36] and Boussinesq system [37,38], where different formulations have been considered.

According to the previously discussed, in the present contribution, we are interested in further exploring the
ability of VEM to approximate coupled nonlinear fluid flow problems considering the stream-function approach.
More precisely, we develop and analyze a fully-discrete VE scheme for solving the nonstationary Boussinesq system.
Under assumption that the domain is simply connected and by using the incompressibility condition of the velocity
field, we write a equivalent variational formulation in terms of the stream-function and temperature unknowns.
The discretization for the spatial variables is based on the coupling of C'- and C°- conforming virtual element
approaches [19,21], for the stream-function and temperature fields, respectively, and we handle the time derivatives
with a classical backward Euler implicit method. Employing the discretizations mentioned above, we propose a
fully-discrete scheme of high order, which is fully-coupled, implicit in the nonlinear terms and unconditionally
stable. By using the fixed point theory, we establish the corresponding existence of a discrete solution and, under
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a small time step assumption, we prove that such discrete solution is also unique. Moreover, employing the natural
skew-symmetry property of the resulting discrete trilinear form (in the momentum equation) we provide optimal
error estimates in H?- and H'-norms for the stream-function and temperature, respectively.

The remainder of this paper has been organized as follows: In Section 2 we provide preliminaries notations and
recall the unsteady Boussinesq equations in its standard velocity—pressure—temperature formulation. Moreover, we
write a weak form of the system in terms of the stream-function and temperature variables. We finish this section by
recalling the corresponding stability and well-posedness results for the continuous problem. In Section 3 we present
the VE discretization, introducing the polygonal decomposition and mesh notations, the construction of stream-
function and temperature VE spaces along with their corresponding degrees of freedom, the polynomial projections
and the construction of the multilinear forms. In Section 4 we present the fully-discrete VE formulation and provide
its stability and well-posedness. In Section 5 we derive error estimates for the stream-function and temperature fields.
Finally, three numerical experiments, including the solution of the 2D natural convection benchmark problem, are
presented in Section 0, to illustrate the good performance of the scheme and confirm our theoretical predictions.

2. Preliminaries and the continuous problem

We start this section introducing some preliminary notations that will be used throughout this work. Thenceforth,
2 will denote a simply connected bounded domain of R?, with Lipschitz-continuous boundary I' := 92 and
n = (n;)1<i<2 is the outward unit normal vector to the boundary I" and t = (#;);=1 2 := (—n2, n1) is the unit tangent
vector to I'. Moreover, we denote by 9, to the normal derivative. According to [39], for any open measurable
bounded domain D C (2, we will employ the usual notation for the Banach spaces L?(D) and the Sobolev spaces
W;(D), with s > 0 and p € [1, +o0], with the corresponding seminorms and norms are denoted by | - |w;, D) and
I - ||W§, (p)» respectively. We adopt the convention W?,(D) = L?(D) and in particular when p = 2, we write H*(D)
instead to W3(D), the corresponding seminorm and norm of these space will be denoted by |- |, p and | - |I;,p,
respectively. Furthermore, we denote by S the corresponding vectorial version of a generic scalar S, examples of
this are: L”(D) := [L”(D)]* and W3(D) = [W3,(D)]*.

We denote by ¢ the temporal variable with values in the interval I := (0, T], where T > 0 is a given final time.
Moreover, given a Banach space V endowed with the norm || - ||y, we define the space L”(0, T; V) as the space of
classes of functions ¢ : (0, 7) — V that are Bochner measurable and such that ||@||Lr,7:v) < 00, with

T 1/p
Pl 7;v) = (/ ||¢(f)||[\;dt) and ||@llLe,7:v) = ess supllgp(®)|lv.
0

t€[0,T]

2.1. The time dependent Boussinesq system

In this work we are interested in approximating the solution of the nonstationary Boussinesq system, modeling
incompressible nonisothermal fluid flows. The system consists of a coupling between the Navier—Stokes equations
with a convection—diffusion equation for the temperature variable. The coupling is by means of a buoyancy term (in
the momentum equation of the Navier—Stokes system) and convective heat transfer (in the energy equation). More
precisely, given suitable initial data (g, 6)), the aforementioned system of equations are given by (see [1]):

ou—vAu+@w-Vu+Vp —go =1, in 2x(0,7),
divu =0 in 2x(0,T7T),
u=20 on I'x(0,7),
u(0) = uyg in 2atr=0,
(ps o2 =0
9,0 — kA0 +u-VO0 = fp in 2x(,7),
6=0 on I'x(0,7),
6(0) = 6y in 2att=0,

2.1)

where u : 2 x (0,T) - R?, p: 2x(0,T) - Rand @ : 2 x (0, T) — R denote the velocity, pressure and
temperature fields. The parameters v > 0 and « > 0 are the viscosity fluid and the thermal conductivity, respectively.
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The functions fy, : 2 x (0,T) — R?, f5: £2 x (0, T) — R is a set of external forces and g : 2 x (0, T) — R? is
a force per unit mass.

In next subsection, by using the incompressibility property of the velocity field, we will write an equivalent weak
formulation of the system (2.1) in terms of the stream-function and temperature variables.

2.2. The time dependent stream-function—temperature formulation

Let us introduce the following space of functions belonging to H})(Q) with vanishing divergence:
Z = {v e Hy(£2) : divv = 0}.

Since 2 C R? is simply connected, a well known result states that a vector function v € Z if and only if there
exists a scalar function ¢ € H2({2) (called stream-function), such that

v = curl ¢ € H\(2).
The function ¢ is defined up to a constant (see [40]). Thus, we consider the following space
HQ)={pecHB(D):9p=0y=0 on I'}.

Then, choosing (1) € H%)(Q) the stream-function of the velocity field u(z) € Z (i.e. u(t) = curl ¥ (¢)) in the
momentum equation of system (2.1), testing against a function v = curl ¢ with ¢ € HS(Q) and applying twice an
integration by parts, we have

/ curl(all//)ocurlqﬁ—i—v/ D>y : D2¢+/ Ay curh/qub—/ g0 -curlg :/ f, -curlg Vo € H?)(Q).
Q Q Q Q 2

On other hand, multiplying by v € H(l)(Q) and integrating by parts in the energy equation of system (2.1), we obtain

/ 8,01)—{—/(/ V9~VU+/(CUI‘11/I-V9)U=/ fov VveH(l)(Q).
2 Q Q 10,

From the above identities, we obtain the following weak formulation for system (2.1): given vy € H})((Z),
0y € L*(2), g € L™(0, T; L>({2)), and the external forces f, € L?(0, T; L*(£2)), fy € L*©, T; L*(£2)), find
(¥, 0) € L2(0, T; H3(£2)) x L2(0, T; H)(£2)) such that
Mp©@:y, ¢) + vAF(Y, @) + Br(Y; ¥, @) — CO, ¢) = Fy(¢) V¢ € Hj(£2), forae.te(0,T),
M7 (9,0, v) + kA7 (0, v) + Br(y; 6, v) = Fy(v) Yv € Hé(()), for a.e. r € (0, T), (2.2)
¥ (0) = o, 6(0) = 6o,
where the bilinear forms Mg(-, -), M7(-,-), Ap(-,-) and Ar(:, -) are given by

Mg, ) s HY(2) x HY(2) — R, Mg, ¢) = /chrlg0~curl¢, (2.3)
Mr (-, ) Hy(02) x H)(2) — R, Mz (v, w) ::/va, (2.4)
Ap tHy(2) x Hi() > R, Ap(p,¢) = /f 2 D’p: D¢, (2.5)
Az H)(2) x Hy(2) — R, Ar(v, w) :=/Qw -Vuw, (2.6)

whereas the convective trilinear forms Bg(:; -, -) and Br(:; -, -) are defined by
Br : HA(02) x HY(2) x HA(02) — R, Bp(C; @, ¢) = /Q Az curl ¢ - Vo, 2.7)
Bt : H%(Q) X Hé(()) X H(l,(Q) - R, Br(p; v, w) := /Q(curl(p -Vo)w. (2.8)

The bilinear form C(-, -) associated to the buoyancy term is given by
C : Hy(2) x Hy(2) — R, C(v, ¢) = / gv - curl ¢ (2.9)
Q
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and the functionals Fy(-) and Fy(-) are given by
. g2 .
Fy i HA2) > R, Fyp) = /9 £, - curl ¢, (2.10)

Fp : Hy(2) — R, Fy(v) = f fov. (2.11)
o)
We can observe by a direct computation that the trilinear form B7(:; -, -) defined in (2.8) is skew-symmetric, i.e.,
Br(¢p; v, w) = —Br(p; w,v) Vo e H)() and Vv, w € H)(2).
Therefore, the bilinear form Bz (-; -, -) is equal to its skew-symmetric part, defined by
1
Buew(g; v, w) i= S(Br(g; v, w) = Br(p;w,v)) Vo € Hy(2) and Vv, w € Hy(f). (2.12)

According with the above discussion, we rewrite system (2.2) in the following equivalent formulation: given the
initial conditions (v, 6y) € H(l)(.Q) x L2(£2) and the forces f, € L%(0, T; L)), f5 € L%, T;L*(f2)) and
g € L™(0, T; L>®(2)), find (¢, 0) € L*(0, T; H}(2)) x L?(0, T; H)(£2)) such that
Mp@iy, §) + vAp(Y, §) + Br(Y: ¥, ¢) — C(6, ¢) = Fy(¢p) Vo € Hi(12), forae. 1€ (0,T),
M7 (0,0, v) + kAr(0, v) + Bgew(W¥; 0, v) = Fy(v) Yv € H(l)(()), fora.e.r € (0,T), (2.13)
¥ (0) = o, 6(0) = 6.

2.3. Well-posedness of the weak formulation

In this subsection we recall some basic properties of the continuous forms and the existence and uniqueness
properties of the solution to problem (2.13).

Lemma 2.1. Forall ¢,¢,¢ € H%(Q) and for each v, w € H})(Q), the forms defined in (2.3)—(2.12) satisfy the
following properties:

IMp(o, )| < Cuplieliollglle  and — Mp(d, ) > |91 o,

|Mr(v, w)| < Cyyplvlloellwllo,e  and — Mp(v,v) = [v]} o
|Ar(p, ®)l < Capllollaoldlle  and — Ap(p,d) = aa,ldl o,
Az, w)| < Cazllvllielwlhe  and  Ar(v,v) = aa, vl o
IBF(&: 0. ) < Cp, ¢l olllellglle  and  Bp(g:é,¢) =0,
|Bgew($: v, W) < Cpy Il ollvlinelwlie  and  Byew(¢3v,v) =0,

[C(v, )| < lglloc,2llvllo.eli@le, [Fy@@)l < Cr,lifyllo.elelh e,  [Fo) < Crllifollo.2llvilo.o-

The equivalence between the (weak form of) problem (2.1) and its stream-function formulation (2.13) is well
known and easy to check. The couple (v, 8) satisfies (2.13) if and only if there exists a unique p such that the
triple (u, 0, p) in L2(0, T; H{(£2)) x L2(0, T; H)(£2)) x L*(0, T; L3(£2)) solves (the variational formulation of) (2.1),
where u = curl . Therefore the existence result for problem (2.13) follow immediately from known results for
(2.1) (see for instance [5]) and the uniqueness follow by combining the arguments used in [1].

Theorem 2.1. Problem (2.13) admits a unique solution (W, ), satisfying ¥ € L2(0, T; H%(Q)) NL*(, T; H(I)(Q))
and 6 € L*(0, T; H(IJ(Q)) NL>®(0, T; L2({2)). Furthermore there exists a positive constant C, such that

||¢”L°°(0,T;H(1)(Q)) + ”W”LZ(O,T;H(Z)(Q)) F 10N, 71202y + HGHLZ(O,T;H(I)(_Q))
<C (”fllf”Lz((),T;Lz(Q)) + ||f0||L2(0,T;L2(.Q)) + [16ollo, 2 + |‘/f0|1,(2) :
Now, we recall the Ladyzhenskaya inequality (see for instance [12, Lemma 2.2]), needed in the sequel:
1 1 1
1 1
Ivllso) < 2400l gllvllge Vo € Hy(92). (2.14)

We close this section with the following remark.
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Remark 2.1. For the bilinear form Af(-, -) defined in (2.5), we have the following classical identity:

Ar(p, ¢) = /Q ApAp Vo, ¢ € Hy(12). (2.15)

We recall that at discrete level the representations (2.5) and (2.15) will lead to different approximations, in general.
In next section we will consider the representation (2.5), i.e., Ap(p, @) = f o D2<p : D2¢, in order to construct the
projection I7, ,]5) * (see (3.2)). However, we also propose an alternative discretization inspired by (2.15) in Remark 3.2
below.

3. Virtual elements discretization

In this section we will introduce C'- and C%-conforming schemes of arbitrary order k > 2 and £ > 1, for the
numerical approximation of the stream-function and temperature unknowns of problem (2.13), respectively. First,
we start by introducing some mesh notations together with the respective local and global virtual spaces and their
degrees of freedom. Moreover, we introduce the classical VEM polynomial projections and we present the discrete
multilinear forms.

3.1. Polygonal decompositions and notations

Henceforth, we will denote by E a general polygon, e a general edge of dE, hp the diameter of the element E
and by h, the length of edge e. Let {{2,},-0 be a sequence of decompositions of {2 into non-overlapping polygons
E, where h = maxgecq, hg. Moreover, Ng denotes the number of vertices of E and we define the unit normal
vector ng, that points outside of E and the unit tangent vector tz to E obtained by a counterclockwise rotation of
ng.

For each integer n > 0, we introduce the following spaces:

e For every open bounded subdomain D C R? we define IP,,(D) as the space of polynomials on D of degree up
to n and we denote by P, (D) its vectorial version, i.e., P,(D) = [P,(D)]*;
e We define the discontinuous piecewise n-order polynomial by

P,(2) = {qg e LX(2) : qlg € P,(E) VE € 24}.
Besides, for s > 0, we consider the broken spaces

H'(2) = {¢ e L*() : ¢|p e H'(E) VE € ()}

1/
endowed with the following broken seminorm: |¢|; j, = (Z Ec9, |¢|§. E) .

For the theoretical convergence analysis, we suppose that for all 4, each element E in the mesh family {{2,},-0
satisfies the following assumptions [20,21] for a uniform constant p > 0:

Al : E is star-shaped with respect to every point of a ball of radius greater or equal to phg;
A2 : every edge e € OF has the length greater or equal to phg.

3.2. Virtual element space for the stream-function

In the present section we introduce a virtual space of order k > 2 used to approximate the stream-function
unknown.

For each polygon E € (2, and every integer k > 2, let k= max{k, 3} and WZ(E) be the finite dimensional
space introduced in [20]:

WH(E) = {¢n € HAE) : A’y € Pea(E), prlar € C°QE), ¢l € Prle) Ve € IE,
Voulse € C°OE), one dn € Bi_i(e) Ve e aE} .
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Next, for ¢, € WZ(E ), we introduce the following set of linear operators:

e Dw1 : the values of ¢, (v;), for all vertex v; of the polygon E;
e Dw2 : the values of &y, V@, (v;), for all vertex v; of the polygon E;
e Dw3 : for k > 3, the moments on edges up to degree k — 3:

(4, Ong. Pndoe Vg € My_s(e), Vedge e;
e Dw4 : for k > 4, the moments on edges up to degree k — 4:
h; ' (g, dn)o.e Vq € Mi_4(e), Vedgee;
e DwS5 : for k > 4, the moments on polygons up to degree k — 4:
hE*@. $no.e Vg € My_4(E), Vpolygon E,

where for each vertex v;, we chose hy, as the average of the diameters of the elements having v; as a vertex and
M,,(E) denote the scaled monomials of degree n, for each n > 0 (for further details see [19]).

In order to construct an approximation for the bilinear form Ag(-, -), we consider the operator Py : C°(0E) —
Py(E) defined by the following average:

Ng
1
Podn = - ;‘Ph(vt‘), 3.1)

where v;, 1 <i < Ng, are the vertices of E. Then, for each polygon E, we define the projector:
2+ - WhE) — P(E) c WI(E),
as the solution of the local problems

Af(n — I ¢n.q) =0 Vqi € Pu(E),
Po(gn — IIP*¢n) =0, Po(V(p — 12" ¢1)) =0,
where A£(~, -) is the restriction of the global bilinear form Ag(:, -) (cf. (2.5)) on each polygon E.

(3.2)

Remark 3.1. The operator I7 ;’ ok W’,Z(E ) — Px(E) is explicitly computable for every ¢, € WZ(E ), using only
the information of the linear operators Dw1 — DwS5; see for instance [20,29].

Now, we will present the local stream-function virtual space. For any E € (2, and each integer k > 2, we
consider the following local enhanced virtual space

WEE) = {on € WEE) : (4" .0 = TP o =0 Vg™ € M4 (E) UML), (3.3)

where Mj_;(E) and M}_,(E) are scaled monomials of degree k — 3 and k — 2, respectively (see [41]), with the
convention that M* | (E) := . For further details, see for instance [20] (see also [19,29,42]).

For k > 2, we introduce an additional projector, which will be used to build an approximation of the bilinear
form Mp(-, -). Such projector Hg‘k : VNVZ(E) — Pu(E) C VNVZ(E) is defined as the solution of the local problems:

ME@y, — g5, ) =0 Vg € Pi(E),
Po(V(gn — I ¢n)) = 0,

where M f (-, -) is the restriction of the global bilinear form Mg(-, -) (cf. (2.3)) on each polygon E.
We summarize the main properties of the local virtual space WZ(E) defined in (3.3) (for the proof, we refer
to [19,20,29,41)).

o PL(E) C WHE) Cc WI(E);

e The sets of linear operators Dw1 — Dw5 constitutes a set of degrees of freedom for WZ(E );

e The operators Hg’k : WQ(E) — P (E) and Hg‘k : W,i‘(E) — P, (E) are computable using only the degrees of
freedom Dw1 — DwS5.
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Now, we present our global virtual space to approximate the stream-function of the Boussinesq system (2.13).
For each decomposition (2, of (2 into simple polygons E, we define

Wi = {¢n € Hy(2) : ¢ulp € W(E) VE € 24}.
3.3. Virtual element space for the temperature

In this subsection we will introduce a CP-virtual element space of high order £ > 1 to approximate the
temperature field of problem (2.13). To this end, for each polygon E € (2,, we consider the following finite
dimensional space (see [41,43,44]):

HY(E) = {wy, e H(E) N CBE) : Awy, € Py(E), wyl, € Po(e) Ve € IE).
For each w, € ﬁ?(E ) we consider the following set of linear operators:
e Dyl : the values of wy,(v;), for all vertex v; of the polygon E.
e Dy2 : for £ > 2, the moments on edges up to degree £ — 2:
he'(q.wioe  ¥q € Mia(e), Vedge e:
e Dy3: for £ > 2, the moments on element E up to degree £ — 2:
hg* @ wio.e  Yq € Meo(E), ¥ polygon E,

where M,,(E) denote the scgled monomials of gegree n, for each n > 0 (for further details see [41,44]). Now, we
define the projector I Ev + HZ(E) — Py(E) C HZ(E), as the solution of the local problems:
Al(wy, — I *wy, 1) =0 Vrg € Py(E),

(3.4
Po(wp, — HEV'th) =0,

where AITE (-, -) is the restriction of the global bilinear form Ar(-, -) (cf. (2.6)) on each polygon E and the operator
Po(+) is defined in (3.1). We have that the operator HEV“z : H?(E) — P,(FE) is computable using the set Dyl — Dy3

(see for instance, [41,43,44]). In addition, by using this projection and the definition of space I?I’e’(E ), we introduce
our local virtual space to approximate the temperature field:
H!(E) = [wh e HME): (*, wp — 1) “wp)or =0 Vr* € MIX(E)U Mz_l(E)] ,

where Mj(E) and Mj_,(E) are scaled monomials of degree ¢ and £ — 1, respectively, with the convention that
M*,(E) == 0 (see [41,44]).

Now, we summarize the main properties of the local virtual spaces HZ(E ) (for a proof we refer to [41,43,44]):

e Py(E) C H!(E) c HI(E);

e The sets of linear operators Dyl — Dg3 constitutes a set of degrees of freedom for H?(E );

e The operator HEV s HZ(E ) = P¢(E) is also computable using the degrees of freedom Dyl — Dy3.

Next, we present our global virtual space to approximate the fluid temperature of the Boussinesq system (2.13).
For each decomposition (2, of (2 into simple polygons E, we define

H} = {wy, € H(2) : wylp e HI(E) VE € 24}.
3.4. L2-Projections and the discrete forms

In this subsection we introduce some functions built from the classical L?-polynomial projections, which will be
useful to construct an approximation for the continuous multilinear forms defined in Section 2.2. We start recalling
the usual L?(E)-projection onto the scalar polynomial space P,(E), with n € N U {0}: for each ¢ € L2(E), the
function II3¢ € P,(E) is defined as the unique function, such that

(an ¢ — Hg¢)05 =0 Vqn € Py(E). (3.5)
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An analogous definition holds for the L?(E)-projection onto the vectorial polynomial space P,(E), which we
will denote by IT’.

We recall that for all sufficiently regular ¢ (for the right hand side to make sense) there exists C > 0, independent
of E and hg, such that (see [30, Page 10]):

||H§¢||L4(E) = C||¢||L4(E) and Iz ollo.e < ®llo.k- (3.6)

The same properties hold for the vectorial version.
The following lemma establishes that certain polynomial functions are computable on WZ(E ), using only the
information of the degrees of freedom Dw1 — DwS5 (see for instance [20,29]).

Lemma 3.1. Fork > 2, let Hg—z :L2(E) = Pi_o(E) and H’E_l :L2(E) — Py_|(E) be the operators defined by
the relation (3.5) and by its vectorial version. Then, for each ¢y, € WQ(E) the polynomial functions

572y, IE2Ag,, 'V, and T 'curl ¢,
are computable using only the information of the degrees of freedom Dw1 — DwS.

For the space HZ‘(E ) and its degrees of freedom Dyl — D3, we have the following result (see for instance [43,
447).

Lemma 3.2. For £ > 1, let II;"" : LX(E) — Py_(E), IT; : LX(E) — Py(E) and I : LX(E) — Py_(E) be
the operators defined by the relation (3.5) and by its vectorial version, respectively. Then, for each wy, € H?(E ) the
polynomial functions

Hé‘lwh, H,fiw;, and Hé_Ilel
are computable using only the information of the degrees of freedom Dyl — Dg3.

Now, using the functions introduced above, we will construct the discrete version of the forms defined in
Section 2.2. First, let 5§ : W/(E) x WHE) — R and s2 : W{(E) x W/(E) — R be any symmetric positive
definite bilinear forms to be chosen to satisfy:

coME(@n. dn) < 5§(dn. dn) < cLME (dn. dn) Vi € Ker(IIg"),

2 AE(pn, 1) < sP(Bn, 1) < c3AE(pn, 1) Yoy € Ker(IIP),

with ¢g, ¢, ¢; and c3 are positive constants independent of 4 and E. We will choose the following representation
satisfying (3.7) (see [29, Proposition 3.5]):

3.7)

Ngof Ng(’f
_ WH(E) WH(E) WH(E) WH(E)
SR(pn. dn) = h> Y dof; © " (g)dof; ©(¢n) and  s§(gn. du) = Y _ dof; (¢ )dof; ¢

i=1 i=1

(én),

. h
where Ng"t = dim(WZ(E )) and the operator dofjv"(E)(qﬁ) associates to each smooth enough function ¢ the jth local

WQ(E) . . dof
degree of freedom dof ; (¢), with 1 < j < Nz

On each polygon E, we define the local discrete bilinear forms M’;JE (-,-) and A’;E (-, -) as follows
M (pn, dn) = ME (I on, T ) + 5 (0= T )pn, (L= TT)) Von, ¢ € WL(E), (3.8)
A (ons dn) = AR(TT ou, T ) + P (U= TR Ypn, A= T Ypn) Ve, ¢ € Wi(E). (3.9)
For the approximation of the local trilinear form BE (-; -, -), we consider
B (Chs ons dn) = / (11572 Ag) (1T 'eurl @3)] - T 'V Vi, gn, d1 € WE(E). (3.10)
E
For the treatment of the right-hand side associate to the fluid equation, we set the following local load term:
Fy(gn) = /E o', (1) - curl ¢, = /E f,(t)- I 'curl ¢, Ve, € WH(E), forae.te(0,T).

The following result establishes the usual k-consistency and stability properties for the discrete local forms
g Yy Yy prop
Mﬁ’E(-, -) and A’}’E(-, ).
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Proposition 3.1. The local bilinear forms defined in (2.3), (2.5), (3.8) and (3.9), satisfy the following properties:

e k-consistency: for all E € (J,, we have that

M (g, d1) = ME(q. ), ARTq. ¢ = Afq. ¢1) Vg € P(E), Ve, € Wi(E).
e stability and boundedness: there exist positive constants o;,i = 1, ..., 4, independent of E, such that:

a ME (@i, ¢1) < Mp" (s $1) < oM E (@, $1) Vi € WY(E),

AL (Dn. ¢n) < ALE(@n. dn) < s AL (Sn. dn) Ve € Wi(E).

Proof. The proof follows standard arguments in the VEM literature (see [21,42,43]). O

Now, we continue with the construction of the forms associated to the energy equation. First, let sg(-, -) and
s (-, -) be any symmetric positive definite bilinear forms such that
caME vy, vp) < s%(vp, vp) < esME (up, vp) Yy, € Ker(Ilf), 3.11)
CoAT (U Vi) < SE Wiy Vi) < e7AT (Ui, ) Y, € Ker(IT;),
for some positive constants c4, ¢s, ¢ and c7, independent of 2 and E. We will choose the classical representation
for these stabilizing forms satisfying property (3.11) (see [44—46]):

dim(H! (E)) : ; dim(H? (E)) § i
(E)  (E) (E) (E)
shn w) = hy Y dofy wdof, P, s w) = Y dofy P wdot; ),
j=1 j=1

h E
where the operator doflj—.I el )(v) associates to each smooth enough function v the jth local degree of freedom

h
doij{‘(E)(v), with 1 < j < dim(H’Z(E)). Then, we set the following approximation for the forms MTE(-, -) and
AL, ) (cf. (2.4) and (2.6))

MPE (o, wy) = ME (ITfvy, Tiwy) + s% (X — TEvn, (1 — ITE)wy) Yoy, w, € HI(E),
ALE (o, wy) = / 7'V, - T 'V, + sy (U= 117 Yoy, (= I Ywy,) Yoy, wy, € HY(E).
E
We have that the bilinear forms M?’E (-,)and A'}’E (-, -) satisfy the classical £-consistency and stability properties

(analogous to Proposition 3.1). For further details, see [21,43,44].
To approximate of bilinear form CE(., "), we set

CME(wp, ¢n) == / glli ™ w, - I 'eurl ¢,  VYw, € HY(E), V¢, € WI(E).
E
Now, we consider the following discrete trilinear form
B E (@i v, wp) :=f (I 'eurl gy, - I 'V, ) T wy, Yoy € WHE), Ywy, v, € H(E).
E

E

Then, for the skew-symmetric trilinear form By,

(-3 -, ) (cf. (2.12)), we set the following approximation:

1
Bfgfw(%; Up, Wy) = E(B?E((ﬂh; Up, Wy) — B}TI’E(%; Wh, Vh)) Yo, € WH(E), Ywy, v, € HY(E).

For the treatment of the right-hand side associated to the temperature discretization, we set following local load
term

B (o) = / I fo(t)uy, = / foOIT v, Vv, e HI(E) for ae. 1 € (0,T).
E E

Thus, for all &, ¢p, ¢ € Wﬁ we define the associated global forms M h A’}, BQ, F]’; in the usual way, by sum-
ming the local forms on all mesh elements. Analogously, we define the associated global forms M2, C", B!\, F}
for all vy, w, € H? For instance

M Wi X W =R, Mion, ¢n) = Y Mp(on, dn).
Ee(2y,
10
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We recall that the forms defined above are computable using the degrees of freedom. In addition, we have that
the trilinear forms are immediately extendable to the whole continuous spaces.
In next result we summarize some properties of the discrete global forms defined above.

Lemma 3.3. For each ¢y, op, ¢p € WZ and each vy, w;, € H., the global forms defined above satisfy the following
properties:

\Mi(@n, o)l < Cullgnlholignllie — and — ME(@n, di) = Gy lldnll} g,

|ME, wi)l < Cugplvallo.ellwalloe  and Mo, vi) = @uy l0nl13 o,

|A (on, ¢l < Capllgnlloclignlle  and — Al(n, ¢1) = @a, ldnl3 o,

|AL uh, wi)l < Caglonlliolwallie — and Aoy, vi) = Gy luall? o,

|BE@hs on, o) < Cop lchlloellenloelignlle  and By dn. ¢n) =0,
|BE (¢s vp, wp)| < 637 ISnll2, llvnlln, e llwalln, o and B! (¢ns vp, vp) =0,

h h =
IC" (vn, @)l < lIglloo, 2 lVnllo, i@l 2, |Fy@n)l < Cr, Ifyllo,elignlle and
p ~
[Fg (o)l < Cr,ll follo,2llvallo, 2,
where all the constants involved are positive and independent of mesh size h.

We close this section with the following remarks.

Remark 3.2. We can propose an alternative discretization inspired by (2.15), which is given by:

Alln, ) =) / AT oy ATy + 5P (U= T Ypn, A= TI2)n)  VYoou, by € WY,
Eef2, E
which is also fully computable by using the degrees of freedom Dw1 — DwS5. Nevertheless, in the present work we
will stick to the choice (3.9).

Remark 3.3. If f,, is given as an explicit function, then we can consider the following alternative discrete load
term

Fign) = )_ /E rot £, ()T 2, Ve € WE,

Ee(,

which is also computable using the degrees of freedom Dw1 — DwS5.

4. Fully-discrete formulation and its well posedness

In order to present a full discretization of problem (2.13) we introduce a sequence of time steps f, = nAt,
n=0,1,2,..., N, where At = T/N is the time step. Moreover, we consider the following approximations at each
time 1,: ¥y ~ ¥;(t,) and 6; ~ 6,(t,). For the external forces, we introduce the following notation: f’,;, = £y (1),
fen = fo(ty) and g" = g(1,).

We consider the backward Euler method coupled with the VE discretization presented in Section 3, which read
as follows: given (v, 6), find {(y], 6;))}"_, € Wi x HY, such that

n _ n—l1
Mg‘ (%A—th’ ¢h> + UAiIIT(w]{le ¢h) + Bg(‘ﬂ;’;, W}’:? ¢h) - Ch(e;ll, ¢h) = F$(¢h) V¢h c WZ’
@.1)

o — enfl
M <—h Azh , vh> + Kk ALO), vi) + Bl (Wi 6 ) = Fi(vy) Vv, € HY.

The functions (1/f,? , 9}?) are initial approximations of (Y, 6;,) at t = 0. For instance, we will consider t/f,? = S
(see (5.1) below) and 0}? := P,,0p, with P,,(-) being the energy operator associated to the H'-inner product (for further
details, see for instance [47, Equation (9)]).

11
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We now recall local inverse inequalities for the virtual spaces WQ(E ) and H?(E ) (see [48,49]):
6nla.5 < Cinchz'|onlie Yon € W(E) and  |uily g < Cinvhg [vnlloe Yon € HY(E). (4.2)

In what follows, we will provide the well-posedness of the fully-discrete formulation (4.1).

Theorem 4.1. Let & := min {&MF,&MT} and y = min {&AFV,aATK}, where Oy, Uy, G, and Wa, are the
constants in Lemma 3.3. Assume that

o+ At (y — Cg) > 0, 4.3)
where Cq := ||gllLoo0,1;L00(2))- Then the fully-discrete scheme (4.1) admits at least one solution (;, 6}) € WZ X Hé‘
at every time step t,, withn=1,..., N.

Proof. For simplicity we set X} , :== W} x Hj and we endow this space with the following equivalent norm:

! ]
I(n, wll = (lpnllT o + lwillg. )2 Yon, wa) € XL,

Next, for I < n < N, let (Y7 ', 077" € X} ,. Thus, for any (¥, 6,) € X ,, we consider the operator
b XZ,@ — (XZI)* defined by

(Pn, On). Dn. wn)) = Mp(Wn, dn) — MEG L @) + vALAL W, i) + AtBL(Wns Vi, b4)
— AtFy(¢n) + M7 O, wa) — M7(6, " wy) + k At A7 6y, wy) 4.4)
+ AtBfe (Wns O wh) = AtFy (wy) = ArC" @ ) V(gn wn) € X
From the definition of operator ®, we observe that for each 1 < n < N a solution (Y, 6;) € X,i‘,e of
problem (4.1) is characterized by @(y;/, 6;)) = 0. Thus, we will prove that this operator satisfies the hypothesis of

the fixed point result [40, Chap. IV, Corollary 1.1].
First we will prove its continuity. Indeed, by using of operator ¢ and Lemma 3.3, for all (¢, wy) € X’,: ; have

(DWn, On) — DO, O0), (bn, wi)) = My — Wi, dn) + vALAL (Y — Yf, én)
+ AtBEWns Vi, d1) — BEQUS: ¥ é0))
+ MT(BI, Oy, wy) + K At Al 7(Oh — 07, wy)
+ At(Bl o (Uni On, wi) — Bl (W5 0, wi)) + AtCH(60 — 04, 1)
Cutp 1 — Vil 2l o + vACaplVn — Yill2.ollgnll2.e
+ AtBEWn; Vi, én) — BEUS: Wi é0))
+ Cuy 16 — 6 llo. lwillo.2 + k AtCa, 16 — 6 Il lwalli.c
+ At(BL (s O, wi) — BE (U 67, wi) + Atllglloe. 2100 — 05 llo.2 ldnll1.0-

Now, we add and subtract the term Bﬁ(l/f; ; ¥, ¢n), then by using the linearity in each entry and the continuity
of the trilinear form Bﬁf-(~; -, +) (cf. Lemma 3.3), we obtain

B (s Y, &) — BEOWs Wiy dn) = Br(Wn — Wi Yn, #) + BR(Yss i — Vi én)
< Cp(I¥n — Vil 2 l¥nlz,e + 1o ollvn — ¥illao)lgnll o
Following analogous steps, we get
Bl (Uns O, wy) — skeww,,, Or, wy) = Bl (W — Vs O, wi) + Bh o (Wi 00 — 6], wy)
< CBT(HW —Yrllz. el 2 + 12,2 10h — 051l ) llwalli, -

By combining (4.5), the above estimates, the inverse inequalities (4.2) and the Cauchy—Schwarz inequality, for all
(Pn, wp) € X’,z’[, it holds

(P, On) — P, 07), (bn, wi))| < C(L + Athd + Atho 2O — Vi 61 — O I (@n, wi)l-
12

(4.5)



L. Beirdo da Veiga, D. Mora and A. Silgado Computer Methods in Applied Mechanics and Engineering 408 (2023) 115947

Therefore, we deduce that for 4 and Ar fixed

I 2Cn, 0n) = Sy, Ol xt o —> 0, when (Y, 6) — (¥, 6;),

i.e., @ is continuous.
On the other hand, by employing again Lemma 3.3 and the Young inequality, for all (Y, 6;) € Xk ¢» We obtain

~2

_ Cop G
<¢(wh,@»,<wh,@»>z:aMFn¢mn%J2—-Z§Jin¢ﬁ ‘nig-—-jzﬂnwﬁnig
’*2
+Qa VAV o — 2a nfluog
. R
oA v At ~ CM e (e%%¢ ~
-5 nwﬁﬂ+amwmﬁg—%jw@‘%Q—jfww&fumwAM@ﬁg
T
C2 At Gk A
F, . op kAt tC
—%i;wuﬁg— 2 |mﬁﬂ——3ﬁwwﬁﬁ+w@%m
L ) - At 5 o
> 2nnn{aMF,aMT}<||¢rh||m+||hno,gw— 5 min {@a, v, @a k } (all3 o + 16415 o)
A[Cg 2 2 6‘\12\/1 n—1,2 612‘4 n—12
— wwm9+wmwﬁ—miﬂm MQ—%JN% 132
~2 ~2
—C Anﬂn C“AWWW
20( 0,2 aATK 6 10,2
1 Ca, Cy
>~ (@4 At (y — Co)) Unllf o +16n115.0) — =117 o — == 167" 5.0
2 205MF ZOlMT
-, .
—Sifﬁﬁ%n—iifwm%m
204,V v 1o, 205,k ’

where we have used the facts that ||V, [l1.0 < ll¥all.2. [0hllo.c < 164ll1.2 and 5- min {@4, v, @a,c} (W13, +
164113 ) = 0.
Thus, from assumption (4.3), we can set

([ 2, C2, A &2, A :
=@+AMV—Q»Z<mf o+ 510 e + = — I 0 + = — Hﬁ%g),
F

Omy ApV

and S := {(gn, wa) € X}, : (@, w)ll < p}. Then, we have that

(P(Yn, On), (Yn, Op)) = 0 forany (Y, 6p) € 3S.

Then, by employing the fixed point Theorem [40, Chap. IV, Corollary 1.1], there exists (¢, 6;) € S, such that
DYy, 0;) = 0, i.e., the fully-discrete problem (4.1) admits at least one solution (1, 6;) € S at every time step
t,. O

Remark 4.1. From assumption (4.3) it follows that if Cy < y then the condition (4.3) is always satisfied. Instead,
if Cg > y, that is when the buoyancy term is strong when compared to the diffusion terms, a “small time step
condition” Ar < @/(Cy — y) is needed in order to guarantee the existence of a discrete solution.

The following result establishes that the fully-discrete scheme (4.1) is unconditionally stable.

Theorem 4.2. Assume that £, € L2(0, T; L2(12)), fo € L%(0, T; L2(02)), g € L>®(0, T; L®(2)). Moreover, suppose
that the initial data satisfy Vo € H2 5(2) and 6y € HO(Q) Then, the fully-discrete scheme (4.1) is unconditionally

13
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stable and satisfy the following estimate for any 0 <m < N

1

m m n n 2
I3 O lincanazcar + (A1 3 NWE 6D s )
n=1

m 1
= (A Y16 £ Ragyaey) + 100 00l i) = 5.
n=1
where C > 0 is independent of h and At.

Proof. Let (', 0;) € WZ X Hfj be a solution of fully-discrete problem (4.1). We consider the following equivalent
norms:

pnllen = (ME, > Nowllrs = (M, v)'? ¢ € WP, Vo, € HE (4.6)

Taking v, =6} € Hf} in the second equation of (4.1), using Lemma 3.3, the Young inequality and some identities
of real numbers, we obtain

1 2 —12 ~ 2 2 1 )
Z_At(me’?”lT’h =165 W7.5) +@ar <l ] o < Crell fo' llo.2 16 .2 < ClLfe 5.0 + 5%ar k011 o

2

Then, multiplying by 2A¢, using the equivalence of norms and summing for n = 1, ..., m, we have that

1613, + At D 1671 o < € (A0 YN o + 16713 0)- A7
n=I n=I

Analogously, taking ¢, = ¥} € WZ in the first equation of (4.1) and repeating the same arguments, we obtain

7% = W W+ @apv ALl 5 o < CAICI0; 115 o + CALIE 15 o (4.8)
where the constant Cy is defined in Theorem 4.1.

Now, summing for n = 1, ..., m, inserting (4.7) in (4.8) and using the equivalence of norms and, we get

1313 ¢ + At Z 1.0 < C(A0 Y (I 1.0+ 1f71.0) + 19313 o + 16515, ) (4.9)

n=1
where the constant Cy was included in the constant C to shorten the bound.
Finally, the desired result follows adding (4.7) and (4.9). U

The following result establishes that the solution of scheme (4.1) is unique for small values of At.

Theorem 4.3. Let &MF, EMT, C B and C By be the constants in Lemma 3.3. Moreover, let § be the upper bound
in Theorem 4.2, Cg be the constant defined in Theorem 4.1 and Ciny be the constant in (4.2). Assume that

h2, 1
At < min{dys .., Q- } min min 4.10
{ Mg MT} { 1nv(CBF+CBT)8 2C } ( )
Then, for each n =1, ..., N the solution of the fully-discrete scheme (4.1) is unique.

Proof Let1 <n < N and (whl,%‘l) (W, 085) € Wi x H? be two solutions of problem (4.1). Then, setting
=Y — ¥ 9,’: = 0}, — 0}, and using the deﬁnmon of operator (4.4), for all (¢, v,) € W x Hf, we have
that

MUEGEE, dn) + ME@ED, vy) + v AL ALY, i) + k AtALOF, vp) — ArCH 67, i)
+ AtBEWRy: i &) — BEWio: i dn) + At(Bley (Wit 011 V) — Bl (Vi3 01y, v4)) = 0.
Adding and subtracting B (Y/5; Y7, ¢n) and BE (W7 07, vy) we obtain
BRI Wi dn) — BE(Wih: Wi én) = Bé<wh, Vit én) + BEW: w,,,¢h>
skew(whl’ Op1> Un) — skew(th’ O Un) = skewW 1> vn) + Bskew(th’ > Un)-

14

4.11)
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Next, taking ¢, = 17/7: and v, = 97’: in (4.11), from the above identities, the skew-symmetry of trilinear forms,
the continuity and coercivity properties of the multilinear forms involved (cf. Lemma 3.3), it follows
T IVE IR 0 + Quir 16} 15 @ +@a v AL @ +@apic ALl0] 7
< AtCy Yy o, eV 12, 2 1Vy 12,0 + AtCrp 1Y 12,2116 111,105 111, + At CellOy llo, 2 1Y 11,
e~ 1~ ~ ~ 1 —~ ~
= MCyp 15,01Vl + 5 ArCa 107 .oV 15,0 + 1671 0) + 5 ArCe(IV 1 o + 16316,0)
=< At (CBF ”le ”2,9 + CBT “9;:1 ” I,Q) ”(Vf/r:v GX)HZHZ(Q)XHI(Q) + Ath”(‘(ﬂ/:l, ez)HEI(Q)XLZ(Q)'
Now, employing local inverse inequalities (4.2) in the above estimate and Theorem 4.2, we get
min{@nrye @ar W7 O s 1 xr2cy < [CimoPminAf ((Coy + Cy)Cinyhiyd) + ArCy]
ITRYNTD)
X ”(1//;:1 Ql’?)HHl(Q)XLZ(Q)'

From the assumption (4.10), we have that

1 ~ ~
——— (Cinv/tp(Chy + Cp;)Cinvhp + Cg) < 1. (4.12)

min{ayy,. , Apry } min
Thus, {l;fl‘ =0 and 07;’ = 0, which implies v}, = ¥, and 6}, = 6;,. The proof is complete. []
Remark 4.2. Exploiting the fact that we are in the two dimensional case and using sharper Sobolev bounds for the

convective terms (i.e., employing the Holder inequality, Sobolev bounds with adequate exponents and an inverse

inequality), we could get a power h_; , for all € > 0, instead of h;ﬁln in the term h;ﬁln(S (see Eq. (4.12)).

5. Convergence analysis

This section is devoted to the convergence analysis of the fully-discrete formulation (4.1) introduced in the
previous section. We start recalling some preliminary results of approximation in the polynomial and virtual spaces.
Moreover, we introduce an energy operator associated to the H>-inner product with its corresponding approximation
properties. Later on, we state technical results, which will be useful to provide the convergence result of our
fully-discrete virtual scheme.

5.1. Preliminary results

First, we recall the following polynomial approximation result (see for instance [50]). Here below E represents
as usual a generic element of {(2,},.¢, which we recall satisfies assumptions A1, A2 in Section 3.1.

Proposition 5.1. Let m € R and n € NU {0}. Then, for each ¢ € H"(E), there exist ¢, € P,(E), and C > 0
independent of hg, such that
||¢ - ¢T[”t,E S Ch?71|¢|m,E7 0 S m S n + 1a = 01 LI ) [m]7
with [m] denoting the largest integer equal or smaller than m.
Standard arguments and (3.6) lead easily to following approximation properties for the projectors IIp (an
analogous result can be obtained the vectorial version).
Proposition 5.2. Let m € R, n € NU{O} and let 11} be the projection defined in (3.5). Then, for each ¢ € H"(E),
there exists a constant C, independent of E and hg, such that
¢ — Mgpll e < ChE " |ply g, O<m<n+1,1=0,... [m],
with [m] denoting the largest integer equal or smaller than m.

Now, we continue with the following approximation for the stream-function and temperature virtual element
spaces, which can be found in [19,43,44,51-53], respectively.
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Proposition 5.3. Let m € R. Then, for each ¢ € H"({2), there exist ¢; € WZ and C; > 0, independent of h, such
that

g — @rllio < Crh" Pl t=0,1,2, 2<m<k+1, k=>2.

For the temperature variable, we present local and global approximation properties.

Proposition 5.4. Let m € R. Then, for each v € H"({2), there exist v; € HZ' and Cy; > 0, independent of h, such
that

lv—ville < Cihy e YE€ D lv—vllie <Cih" vl,o t=01 1l<m=<{+1,
£>1.

Now, we will introduce the following discrete biharmonic projection associated with the stream-function
discretization. For each ¢ € H%(Q), we consider the operator Sj, : H%(Q) — W" defined as the solution of
problem:

ARSip. b)) = Ar(p, dn) Yo € Wi, (5.1)

where Ar(-, -) was defined in (2.5) and we recall that A}}p(-, -) is the global version of the form defined in (3.9). By
using the ellipticity and continuity of the bilinear form A};(-, -) (cf. Lemma 3.3) and the Lax—Milgram Lemma, we
have that the above problem (5.1) is well-posed.

By using Propositions 3.1, 5.1 and 5.3, the following approximation result for the energy projection Sy,(-) holds
true (see [54, Lemma 5.3]).

Proposition 5.5. For each ¢ € H%(Q), there exists a unique function Sy¢ € W satisfying (5.1). Moreover; if
@ € H*(12), with % < § <k — 1, then the following approximation property holds:
lo = Suglli.e + 1l = Siglaa < CH™ |9l 0,

where C is a positive constant, independent of h and § € (%, 1] depends on the largest reentrant angle of the domain
2. In particular, when {2 is a convex domain it holds § = 1.

In what follows, we will establish four technical lemmas involving the trilinear forms associated to trans-
port/convection and the bilinear form associated to the buoyancy term; these results will be useful in Section 5.2.

Lemma 5.1. For all &y on, ¢ € WZ there exists 631, > 0, independent of h, such that
~ 1 1
|BE(Chs o, &)l < Chp gall2. 2 lnllz.lnll? o lldnllf -

Proof. We use the definition of the trilinear form Bfé(-; -, -) (cf. (3.10)), the Holder inequality, the continuity of the
operators I1 g—z and I7 ],‘5_1 with respect to the L2- and L*-norms, respectively (cf. properties (3.6)), and the Holder
inequality for sequences, to obtain

B ons ) < Y IIE 2 Agullo,£ 1T curl gyl | T Vel o,
Ee(,
< CllA%ullo. 2 lleurl 4 llp s o) IV PnllLa o)
< CllAgullo. ellenllz.2IVenllLia),

where we have used the Sobolev inclusion H!(£2) < L*(£2). Now, applying the Ladyzhenskaya inequality (2.14)
with v = V¢, we obtain the desired result. [
Lemma 5.2. For all ¢, ¢, ¢ € Hy(12), we have that

Br(¢: ¢, §) = Bp(5: 6. ¢) = BE(9i ¢ — C + . 9) + B9 — ¢ +¢:¢.¢) — BE(¢: ¢, ).

Proof. The proof follows by adding and subtracting suitable terms, and using the trilineality and skew-symmetry
properties of the form B’;(-; S
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Next lemmas give us the measure of the variational crime in the discretization of the trilinear forms Bp(:; -, -)
and Bgew(*; +, ) and the bilinear form C(, -).

Lemma 5.3. Let ¢(t) € H(%(Q)OH2+S((2), with % < s <k—1, for almost all t € (0, T). Then, there exists C > 0,
independent of mesh size h, such that

|Br(¢; @, ¢n) — Bi(@; 9, o)l < Ch* (@it 2 + ll@ll2.0) 1@l 2 nll2.0 Vo, € Wi
Proof. The proof has been established in [54, Lemma 5.4]. [

Lemma 5.4. Let % <y < minfk — 1, £}. Assume that ¢(t) € H%(Q) NH>(2) and v(t) € H(l)(()) NH'* (), for
almost all t € (0, T). Then, there exists C > 0, independent of mesh size h, such that, a.e. t € (0, T),
| Boew (93 0, Wh) = By (@3 v, wp)| < CHY [[@ll1sy.20lhsp.llwillie  Vwy € H. (5.2)

Moreover, assume that g(t) € H (£2) N L*®({2), for almost all t € (0, T). Then, a.e. t € (0,T),
|C(v, ¢n) — C" (v, ¢n)| < Ch? max{||glly. . [8lloo. 2} V14,2l dnll1. 0 Yo € WY, (5.3)

Proof. To prove estimate (5.2), we split the consistency error as

1
Buton (93 v, 01) = Bl (93 v, wi) = 5 (Bi(wn) + BaCawn)) (5:4)
where
Buwn) =" (Bfwiv.w) = ByFgsv.wn) and o) i= Y (BE(@s whv) — B (g wi, v).
Ee(, Ee(,

In what follows, we will establish bounds for the terms S;(wy) and B,(wy,). Indeed, for the term 8;(w;) we have

Bi(wy) = Z /(curhp -Vo)wy, — /(H],}_lcurhp ISV I w,
Eeq, Y E E

= Z /(curlw-Vv)(wh — I wy) + Z / (curl g - (Vv — IT5'Vv)) 11wy,
E E

Eeq, Eeq, (5.5)
+ Z / ((curl o — IT5 'eurl o) - I ' Vo) 11" wy,
Ee(, E
=T +T,+Ts.

In order to bound the terms 77, first we consider the case 1/2 < y < 1. Then, by using approximation property
of I, é‘l and the Holder inequality, it follows

—1
Ty < Y lleurl @l [ Vol lwn — T wllo.
Ee$,
<C Y leurl |l | Vollisghelwal g
Ee$,

< CH @lli+y, ellvlliy, 2 lwalli,o.

On the other hand, for the case 1 < y < ¢, we use orthogonality property of I, 571, the Holder inequality (for
sequences), to obtain

=) /(curlgo Vo — 5 (eurl ¢ - Vo)) (wy, — ITE wy).
Ee$, E

Now, we apply [55, Theorem 7.4], with s = y — 1,5y = s, = y and p = p; = p, = 2 to obtain
curl ¢ - Vo € H~(2) and leurl ¢ - Vol,_; ¢ < Cllgllisy.2llvlhy.0-
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Thus, by using Proposition 5.2 and the above facts, we arrive
Ty < Ch*Yeurl ¢ - Vol,_; ohllwallie < ChY [@lley. o0y, lwalo-
Collecting the above inequalities, for % <y < ¥, we have
Ti < ChV llglhy, 2y, ellwall, o (5.6)

Now, for the term 7, we proceed as follows. First, we apply the Holder inequality, then by using stability and
approximation properties of the L2-projectors (cf. properties (3.6) and Proposition 5.2), Sobolev embedding and the
Holder inequality for sequences, we get

-1 -1
T < Y lleurl gl Vo — T ' Vollo e | 75 willag < ChY @l 2ol ellws o 5.7)
Ee$,

For the term T3, we follow similar arguments, to obtain

T < Ch l@lity, 2lvlli4y, ellwrlli,o- (5.8)
From the bounds (5.5)—(5.8), we conclude that

Bi(wp) < ChY lolli4y, 2lVlli4y, 2wl o- 5.9

Now, we will focus on the term B,(wy). To estimate this term, first we add and subtract suitable expressions to
obtain

Bo(wy) = Z f(curl ¢ - Vwp)v — /(H’]‘E_lcurl Q- HﬁTIth)Hé_lv
Ee(, E E

=D / v(eurl g) - (Vwy — I V) + ) / (curl ¢ — I 'curl @) - vIT5 'V,
E E

Ee(, Ee(,
+ Z / (H’g_lcurlcp . HZE_Ith) (v — Hé‘lv)
Ee(, E
=L+ L+ 5.

Applying orthogonality and approximation properties of I f{l, we have

h=2 fE (v(eurl ¢) — IT;;" ' (v(eurl ¢))) - (Vwy, — Iy ' Viy)
Eecf2y,

C Y hilv(eurl @), glwal, p < Ch[o(curl )|, o llwli.o.
Ee$,

IA

Then, applying again [55, Theorem 7.4], now with s =y, s =y + 1,50 =y and p = p; = pr = 2, we get
lu(curl )[, o < Cllvllivy, ell@llivy, e
From the two bounds above, we obtain
I = Ch l@llity, 2llvlisy, ellwalli,o-
The terms I and I3 can be estimated using similar arguments. We conclude that

Bo(wn) = ChY @24y, 2 vy, 2 lwnlly, o (5.10)

The proof of (5.2) follows from (5.4), (5.9) and (5.10).
18
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Next, we will prove property (5.3). Let ¢, € W/, then adding and subtracting the term gv - IT Z_lcurl ¢, and by
using orthogonality, stability and approximations properties of the L2-projections, we have

Cv, dn) — C"(v, ) = ) /E (gv — IT}; ' (gv)) - (curl ¢, — IT ' curl ¢,)

Ee(2,
+/ g(v — IIf') - I% 'eurl ¢,
E

<C ) (hjlgvl, gleurl gullo.r + hlglioe vy, zlleurl gylo.x)
Eec$,

< Ch'(lgly.ellvlisy.cldnlh.e + hzlgloelvily.elénlo),
where we have used analogous step to those used to bound /;. The proof is complete. [

We finish this subsection recalling a discrete Gronwall inequality, which will be useful to derive the error estimate
of the fully-discrete virtual scheme (4.1).

Lemma 5.5. Let D >0, aj, bj, c; and ); be non negative numbers for any integer j > 0, such that
n n n
an + Athj < AtZAjaj + Athj +D, n>0.

=0 j=0 j=0

Suppose that Atk; < 1 for all j, and set o; == (1 — At:r;)~\. Then, the following bound holds
a, + Al‘ij < exp(At ZU}‘)\.]’)(AIZC]‘ + D)
j=0 j=0 j=0

Proof. See [56, Lemma 5.1]. O
5.2. Error estimates for the fully-discrete scheme

In this subsection we will provide a convergence result for the fully-discrete problem (4.1) under suitable
regularity conditions for the exact solution.
We start denoting (¥ (¢,), 0(t,)) as (", 6™) at each time level ¢,, and splitting the stream-function error as follows:

=y =" =S — (Y =S¥ =y, — ey

For the temperature variable we will exploit the virtual interpolant presented in Proposition 5.4, to split the error
as:

0" —6; = (0" = 0))— (6 — 0} = — ¢},

where 67 is the interpolant of 6" in the virtual space H;’

Error estimates for the terms 7y and 7y, are given by Propositions 5.4 and 5.5, respectively. Therefore, we will
focus on the terms ¢, and ¢j.

We start establishing error equations of the momentum and energy identities. Indeed, by using the fully-discrete
scheme (4.1), the continuous weak formulation (2.13) and the biharmonic energy projection S, defined in (5.1), we
have the following error equation for the momentum identity (where we have taken ¢;, = ¢}, € WZ)

n n—1
@ - (p n n n n n n n n n n n n
M ( vV Atw ,%> +vAL(e). o) = (F,’;(w,,,) - Fw(%)) + (Bmp SV 0p) — Br(Us %’%))

thp”——Sth (p")> + (C"(B{,‘, @y) — C@O", %))

+ (Mp(a,w",¢s,)—M2( v

= TF+TB+TM+TC
(5.11)
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Analogously, recalling that ¢ = 6; — 67, and using the definition of the continuous and discrete problems (cf.
(2.13) and (4.1), respectively) for the energy equation, we have that

n—1

(pn — ¢ n non n n n.gn _.n n.pgn _.n
]‘4;1~ (—9 Ate ,(,09) +KA}71~(§09»§09)= (Feil(go())_FH(we))"'(Bskew(l// ;9 a(pe)_B:lkew(w ;eh’(p6)>

on — 0}1—1

+ (Mr(a,e”,sog)—M’;( — ,¢3)> +1 (Ar©", 95) — A0}, 97))

= IF+IB+IM+IA
(5.12)

The next step is to establish error estimates for the momentum and energy Eqgs. (5.11) and (5.12). The following two
lemmas provide such bounds and will be useful to obtain the convergence result for the fully-discrete problem (4.1).

Lemma 5.6 (Error Estimate for the Momentum Equation). Suppose that the external forces satisfy f, € L>(0, T;
H!(12)) and g € L=(0, T; H™™7(2)NL®(£2)), with % <s<k—land1 <r <{ Let (y",0") € H3X(£2) x H\(©2)
be the solution of problem (2.13) at time t = t,. Moreover, assume that
¥ e L¥O, T:H(2)), 8y eL'O, T:H™(2),  3,¢ € L'(0, T H'(12)),
and 6 € L*(0, T; H (12)).

Let (Y}, 0/") € Wi x HI be the virtual element solution generated by scheme (4.1). Then, the following error
estimate holds

aAFU

2
+ C T A B, 0 + I 15 D) 1130 + 18" 1% o Ungllo. o + 5115, )

1 - n — n n n
— (I % — Mooy~ W1 ) + I3 < CIU+v72 (I 150 + 1W"13.0) ] ) I3,

2At

25 2 —1 2 2 min{s, 2 2 2
+Ch” (”fl//”Loc(fn—lxtniHS(-Qh)) +v ||Wn||2+s,9) + CRZ™™ T max{l1g" 75,0, 0 1€ 12, 016" 117

C
+ C||3tt1/f||L1(t,,,1,tn;Hl(Q))m‘/’i ll7,n + Ehs”al‘w||L1(tn71,tn;Hl+5(Q))”|(p$”lF.h-
(5.13)

Proof. We will estimate each terms in (5.11). Indeed, by using the definition of the functionals Fy(-) and sz(')’
the Cauchy—Schwarz and Young inequalities for the term 7 holds

C c
Tr = %hzs”f\l’”iw(ln—lslmHs(Qh)) + 5”‘/’3”%,9- (5.14)

For the term Ty, we proceed similarly as in [54, Theorem 5.6] to obtain

S Ut — 81 n—1 n _ . n—1
T = Mp@y", ¢}) — M} (u goi}) = Mp (a,w” - u, w&)

At At
wn _ ofn—1 HD,k(wn _ n—l) ;
+ZM‘E< Alz/f _<E Atw ),%)
Bt o 1 1 (5.15)
en ((He"W" =" )\ _Sw" =Sy,
- T () )

C
= C”aztlﬂ||Ll(z,,,1,z,,;H1(Q))||(ﬂ$ e+ Ehs||3tw||L1(t,l,l,zn;H1+S(Q))||§0$||1.Q~
20
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Next, to estimate T¢, we add and subtract the term C"(6", q)l’;/) to get

¢ =C"O}, ¢}) — CO", ¢y) = C" O — 6", ¢}) + (C"(O", ¢})) — CO", ¢})))
= (C"(¢}. ¢}) — C'(m}. ))) + (C"(0". ) — C(6", @)
< 118" o2 (165 110.2 + N3 ll0,2) 1% 1112 -+ CH™™ max{llg” llmings.r1. 2 18" oo, 2} 10" 12100 111, 2
< Cllg" 3.0 15, + 19511 o) + CR*™ ™ max{l|g" 7y ry. 0 18" 120 316" 117 o + cll@p 11T o

(5.16)
where we have used the Holder inequality, bound (5.3) (with y = min{s, r}) and the Young inequality.
For the term T, we have
Tp = Br(" 0", ¢l}) — BR(uis ¥l @) = (Be(W™ ", ¢l}) — BR(Y™s ¥, @) .,

+ (BEW™ ¥, ) — B wi. @) = Tg1 + Tpo.
Now, we will bound the terms Tp; and Tp;. Indeed, from Lemma 5.3 and the Young inequality we have that

Ty1 = Br(y"; y", %)—Bw w ) < CH UV lars.0 + I o )W s, 216 2.0
4Cy

AF

o Y e 0+ Pl 2

I /\

e s ||§0¢||2 0 (5.18)

IA

where we have included the term (||y" ||2+S’Q =+ |[¥"|l2,) in the constant Cy, in order to shorten the inequality.
On the other hand, to bound the expression T, we apply Lemma 5.2, recall that <pf; = Y, — Spy" and
ny =¥" — Sy, to arrive
Tgy = BR(Y™ ¥". @)) — BE(Wh: it )
= B " — U+ 9. 0)) + BT — i+ @l W @) — Bl v o)) (5.19)
= B’;v(l/f 77:;,7 §0 )+ BF(m,,, Vi (Pw) B)Iz*(%p’ Vs %p)-

By using Lemma 3.3, together with the Young inequality, we have

a,q v
Br(W"smy, 0)) < =

Now, adding and subtracting suitable terms, and employing Lemma 3.3 along with the Young inequality, we
obtain

BE(: W @) = Bl 0" + (W — ™), )
= BL(n}: ¥", @) + BT @), — 0l 03)
= BL(y: ¥", @) — BE(0ys mly, @)
Cop (19" 12,00 + 17 I2.02) 17 a2 1@ 1.

2 —1 2 2
g ||2Q +Cv ||1/f”||29||77?p||29

IA

IA

ApV _
—g e l5.0 + Cv AW 5.0 + I3 15, )l 1150
Once again adding and subtracting adequate terms, using Lemma 5.1 and the Young inequality, we get
—BL(@): Uit @) = BR(): (W™ — i) — ¥ @) = BR(e): ). @) — BL(l: ", @)

~ 1
Cop gl (I 2.0+ 19"11.0) PALREALS

S

< "‘A* el 130 + 200~ (I 3.0 + 19"13.0) el .ol .o

< ‘“F el 130 +2072C ™ (I 13 + 10" 13.0)" I 13 AP
s‘“F 16 13,0+ 4Cav™> (I 14, + 19" 13.0) 10 1.z
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Combining the estimates (5.17)—(5.19) and the three previous inequalities, we have

Tg < Cov ' W2 9" 154,01V 13,0 4+ AE” ||<ﬂ¢,||2 o+ O YIS ol 3 o

+Cv (Y o + ||n¢||2,9>||n¢||2,g+c4v (Il + 19" 14.0) 19513 -

Now, from estimates (5.11), (5.14)—(5.16) and (5.20), the definition and equivalence of the norm || - [|F (cf.
(4.6)), together with the coercivity of bilinear form A}},(-, -) we obtain the desired estimate. [

(5.20)

Lemma 5.7 (Error Estimate for the Energy Equation). Let % <s <k—-—1and 1 < r < (L Suppose that
fo € L™(0, T; H"(§2)). Moreover, let (y",0") € Hg(.Q) X H(l)(Q) be the solution of problem (2.13) at time t = t,
and assume that

6 e L0, T; H'" ()N WL (), 86 L0, T;H'(2)), 8.0 L0, T;L*(2))
and W € L0, T; H*(2)).

Let (Y}, 0/") € Wi x HI be the virtual element solution generated by scheme (4.1). Then, the following error
estimate holds

A

1 n—1y2 -1 n
ZA (|||‘/79 ”|Th |||<P9 ”lTh) ||(P9 ||1 0= C”‘Pe ||o otk e ||1 (3”771/;”2 0

+ C 'Y 150 + ||n¢||m>] 1115 o + Cligh 7,

o . (5.21)
+ Ch" || folliooq, | amercayy + C ™™ W 3 011671134, 0

C
+ ClloubllLig, , 2plles iz + Ehr||319||L1(tn,l,z,,;Hf(Q))|||<ﬂg llz.n-

Proof. We will establish estimates for each terms in the error equation (5.12). We start with the term Iz, which is
bounded by using the Cauchy—Schwarz inequality and approximation properties of projection II%, as follows:

n C r ¢ n
Ir = Fj (@) = Fo@)) = 5= Wl fall e, i o + 5196 16,00 (5-22)
For the term I;, we proceed similarly as in [47, Theorem 3.3] to obtain
non h 9;’ — 9771 n
Iy = My(8,0", @) — MF(T’ o)
t (5.23)

C
< ClouO i, 2y llesllo.o + Ehr||319||L1(t,,_,,zn;Hr(Q))”ﬁﬂg||0,9-

Analogously, as in (5.17) we split the term Iz as follows:

Iy = By (073 0", 9) = Blion (05 61, 0) = (Baon (W3 6", ) = Bl (073 6", 6))

/ (5.24)
+ (Blew V"5 0", 0f) = Bl (W33 67, 01)) = L1 + I
Now, applying the bound (5.2), with y = min{s, r} and using the Young inequality, we obtain
Ip1 = Baew(¥": 0", }) — Bl (¥": 0", 909) < CH™ 9" 245, 10" 1421195 1.2
—17 2min{s,r} n (525)
=Ck"'h 1" 1345 016" 1.0 4 2t ||<p9 I o
On the other hand, similarly as in (5.19) and (5. 2()) we can derive
Iy = Bl (W"s 0, 94) + Bl (0 64, 05) — skew(‘ﬂw’ O~ 6)
O5A — — n n n
< 225113 o + O I B o g1 + 225 ||go9|| Lo+ C 0T o + IngllE Dl 115, (5:26)

skew((px/f’ 9/1 ’ (pﬁ)

However, since the discrete trilinear form Bskew( ; -, -) does not satisfy an analogous property to Lemma 5.1,
we will bound the last term in (5.26) by a different way. Indeed, adding and subtracting adequate terms, using
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the definition of trilinear form, the Holder inequality and employing the continuity of the L?-projections involved
(cf. (3.6)), we obtain

— Bl (@)1 01 08) = Bl (0 0. 0) + Bliey(@l: —0", 05)

1
=3 (B (@ls m. 05) — BE(@ls 05 1)) + Bl (@) 0", 0})

<C Y 'Vl llcurd @) llo £l @4 llo.2 (5.27)
Eec(2y,
+C Y T e leurd @ llo £ V@) lo.e + Bl (@ —0", 05).
Ee(,

Now, applying an inverse inequality for polynomials, the continuity of IT ZE’l, and Proposition 5.4, for r > 1 we
get

I Vil < Chi' I ' Villo.e < Chg' lnglhe < ClO" 141k < Creg-
Analogously, we have that
||H£71773“L°°(E) = C”0””1+VE = Creg

Next, under assumption " € W oo (§2), the definition of the form B!
we get

(-5 -, -) and the Cauchy—Schwarz inequality,

skew

Bl (@l =", @) < Cill0" 1o 10 11,2019k ll0.2 < Cregll@ly 1.2 164 lo.c-
Inserting the above estimates in (5.27), and applying the Cauchy—Schwarz and Young inequalities, it follows
— Bl (@}: 01, 08) < 3Cregllgl 1. 0ll@f 1.0 < Cr gl I + 4k II% I o (5.28)
Then, combining the estimates (5.24), (5.25), (5.26) and (5.28), we obtaln
Iy < C 2™y 15, 010" 10 + Ci ™! Wn% 2lngli g
+ Ce 015 + I 1T DI 113, + ——— 4 “lepl2 o + o + DIl IR g

Now, for the term /4, we add and subtract 67 € IP’e(E ) such that Proposition 5.1 holds true, then applying the
consistency property of AI}'E (-, -), the triangle inequality and Proposition 5.4, we have that

In=w Y (Af@" g — AL Or o) = Y (AFO" =00 o) + ALE @ — 67 i)

(5.29)

Ee(y, Ee(,
< CKhr||9"||1+rQ||<P§'||1 Q (5.30)
< Ch¥ 10"}, + 2t ||€09 17 o-

Now, from bounds (5.12), (5,22), (5.23), (5.29) and (5.30), the definition and equivalence of the norms || - [|7.x
(cf. (4.6)) and | - ||o.2, together with the coercivity of bilinear form A}}(-, -), we obtain the estimate (5.21). [

The following result establishes an error estimate for the fully-discrete virtual scheme (4.1).

Theorem 5.1. Suppose that the external forces satisfy £, € L0, T; H(12)), fo € L°°(0 T;H (2)) and
g € L0, T; H™™>"1(2) N L>®(12)), wzth Les<k—1landl <r < € Let (", 0" e H? (1) x HO(Q) be
the solution of problem (2.13) at time t = t,, Moreover, assume that
Y e L0, T; P (2), oy eL'O, T;H™ (W), 9,y € L'(0, T; H'(2)),
0 e L0, T; H'" (D) NWL(2), 90 L0, T;H (1)), 3,0 € L'(0, T; L2(02)).

Let (Y, 0;) € W’,Z X H’Z be the virtual element solution generated by scheme (4.1). Then, the following estimate
holds

™ = gy, 0" — eh)||Hl(Q)xL2(m+Ar2||<wf Vi 07 = 0D ity < CHP™T 4+ Ar?),
j=1
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where the constant C is positive and depends on the physical parameters v, k, final time T, mesh regularity
parameter, the regularity of the Boussinesq solution fields (yr, 0) and the external forces £y, fy, 8, but is independent
of mesh size h and time steps At.

Proof. The desired estimate will follow combining Lemmas 5.6 and 5.7 with the discrete Gronwall inequality.
Indeed, we proceed to multiply by 2A¢ the estimates (5.13) and (5.21), then by employing the Young inequality to
the resulting bounds and iterating j =0, ..., n, we have

Iy %+ llgg 7 + A2 Y el 15 0 + A Y legll o
j=0 j=0
= CArY [1407 (In) i o + 1971 .0) | e 3 + €A D7 [1 4 1871 o] N0
j=0 j=0
+CAY v AW I3 o + I 13.0) + kM0 1 o |l 13
2,02 My ll2, 0 L1yl

J=
n

+Car Y [ U Bg + 1) B0 + I8 ] 1815
j=0

2 2 2 —1 2
+ CAth™ (||fw||L°°(o,m;H~‘(Qh>) F WYL 011452y TV ”I/[”Lm(o,t,,;HzH(.Q)))
2 min{s, 2 2 2
+ Ath mints.r} max{”g”Loo(oqtn;Hmin(.v,r)(_Q))a ”g”LOQ((),[n;LOC(Q))}”9”[‘00(0,1”;]-[’([2))

2 2 2
+CAth™ (“f@ oo 0.00spr (2 llalOHLl(O,tn;Hr(Q)))

—17 2 min{s, 2 2
+ CAIK h mints.r} (”‘Q/IHLOO(OJII;HZ‘FS(())) + “0”L°°(0,ln;H1+’"(!Z)))

2 2 2 -~ 02 o~ 02
+ CAP (104811 20+ 100V a0 i) + ot 19513 2 + @y 19513

Thus, applying the discrete Gronwall inequality (cf. Lemma 5.5), choosing (1//2, 0,?) = (¥;(0), 6;(0)) and using
Propositions 5.3 and 5.4 along with the equivalence of norms, we have

()13 o + 13 o) + A Y “(ig) 3.0 + ll9) 17 o) < CRI™MT 4 Ar?),
j=1

with % <s<k—1,1<r <¢fand C > 0 is independent of mesh size 4 and time step At.
Finally, the desired result follows from the above estimate, triangular inequality, together with Propositions 5.4
and 5.5. O

Remark 5.1. In the present framework, the main advantage of using an energy projector S,v¥", as we do for the
stream-function space, is to obtain a shorter proof. Nevertheless, for the temperature variable we do not use an
energy projector, but resort to a standard interpolant 8}. The reason is that we need also some local approximation
properties for the temperature field that the energy projection operator, being global in nature, would not have.

6. Numerical results

In this section we carry out numerical experiments in order to support our analytical results and illustrate the
performance of the proposed fully-discrete virtual scheme (4.1) for the Boussinesq system. In all examples, we use
the lowest order virtual element spaces W’; and H}l’, for the stream-function and temperature fields, respectively. At
each discrete time, the nonlinear fully-discrete system (4.1) is linearized by using the Newton method. For the first
time step, we take as initial guess (¥i*, 6i*) = (0, 0), and for all n > 1 we take (yi®, 6i) = (¥~ ', 6;""). The
iterations are finalized when the £*°-norm of the global incremental discrete solution drop below a fixed tolerance
of Tol = 1078,

The domain {2 is partitioned using the following sequences of polygonal meshes (an example for each family is
shown in Fig. 1):
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(a) mesh Q} (b) mesh Q2 (c) mesh Q3 (d) mesh Q}

Fig. 1. Domain discretized with different meshes.

° Qﬁ: Distorted quadrilaterals meshes; ° !22 : Voronoi meshes;
e (7: Triangular meshes; e (}: Distorted concave rhombic quadrilaterals.

In order to test the convergence properties of the proposed VEM, we measure some errors as the difference
between the exact solutions (1, 8) and adequate projections of the numerical solution (v}, 6;/). More precisely, we
consider the following quantities:

N 12 N 12
B L2 W) = (A ) 1) — 129705, ) . BE LA HY = (A Y166 — 1V'60,)
n=1 n=1
6.1)
E(y, L, H') = [Y(T) — Iy, . E(0, L, L%) = [6(T) — II""'6," [lo.co- (6.2)

Accordingly to Theorem 5.1, the expected convergence rate for the sum of the above norms is O(h + Af).
6.1. Accuracy assessment

In our first example, we illustrate the accuracy in space and time of the proposed VEM (4.1), considering a
manufactured exact solution on the square domain {2 = (0, 1)2, the time interval [0, 1] and force per unit mass
g = (0, —1)". We solve the Boussinesq system (2.1), taking the load terms f,, and fy, boundary and initial conditions
in such a way that the analytical solution is given by:

wCry. 1y — (163D _ (€D —e 021 272y~ 6y +4y°)
P Nalr, 3, 0)) T = (@000 — 710521 — yP2x — 63 4 4x) )

p(x, y, 1) = ("D — 7% (sin(x) cos(y) + (cos(1) — 1) sin(1)),

Yx,y, 1) = (" — e X231 —x)? Y21 — ) and  O(x,y, 1) = ui(x, y, 1) + ua(x, y, 1).

In order to see the linear trend of the stream-function and temperature errors (6.1), predicted by Theorem 5.1, we
refine simultaneously in space and time. More precisely, for each mesh family we consider the mesh refinements
with h = 1/4,1/8,1/16, 1/32, and we use the same uniform refinements for the time variable. In particular, for the
mesh {2/, it can be seen along the diagonal of Table 1, the expected first order convergence for the stream-function
and temperature errors (6.1).

In Fig. 2, we display the errors (6.1) for the same simultaneous time and space refinements (h = At =27/, with
i =2,...,5), using the four mesh families. We notice that the rates of convergence predicted in Theorem 5.1 are
attained by both unknowns.

In order to study the trend of the stream-function and temperature errors (6.2), we show in Table 2 the results
considering again the mesh 2V with h = At =27, withi =2,...,5. In particular, we can observe that the rate
of convergence in the mesh size & seems higher than one; this is not fully surprising, since standard interpolation
estimates (in space) for the norms in (6.2) indicate that, potentially, the discrete space could approximate the exact
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Table 1
Accuracy assessment. Errors (6.1) using the VEM (4.1), with polynomial degrees (k,£¢) = (2, 1), physical parameters v = k = | and the
mesh family Q}}

E(y, L?; H?)
dofs h At
1/4 1/8 1/16 1/32 1/64

36 1/4 1.42183e—2 1.16131e—2 1.02912e—2 9.63665¢—3
196 1/8 1.11333e—2 6.91546e—3 6.15400e—3 5.77765¢—3
900 1/16 4.92223¢—3 3.53363¢—3 2.85747e—3 2.54826e—3 2.40427¢—3
3844 1/32 3.61175¢—3 2.11884e—3 1.46063e—3 [1.21158e-3 1.11670e—3
15876 1/64 9.22443¢—4 6.49802e—4 5.59824e—4
E@©6, L% H")

36 1/4 1.34200e—2 1.11391e—2 9.96756e—3 9.38232¢—3
196 1/8 1.02277e—2 6.66404e—3 6.05736e—3 5.75702e—3
900 1/16 5320673 3.65373¢—3 2.93777e—3 2.64415¢—3 2.5159%4e—3
3844 1/32 3.80377e—3 2.18463e—3 1.49484e—3 [1.24874e3 1.16084e—3
15876 1/64 9.52229¢—4 6.64250e—4 5.69713e—4

e
10—2 L
E:] =
T'{ '
= 3 <
@ 107 F 5]
10 : 104 .
1072 10 107 107
h h
(a) Stream-function errors (b) Temperature errors

Fig. 2. Accuracy assessment. Errors (6.1) for simultaneous space and time refinements, using the VEM (4.1) with polynomial degrees
(k,£) = (2, 1), physical parameters v =k = 1 and the mesh families Q,i, i=1,...,4.

solution with order O(h?). In order to better investigate this aspect, in Fig. 3 we display the errors (6.2) for space
and time refinements given by 4 = 2= and At =47, withi =2,...,5, respectively, using the four mesh families.
We notice that the rates of convergence seem indeed quadratic with respect to 4.

6.2. Performance of the VEM for small viscosity
In this test we consider the square domain 2 := (0, 1), the time interval [0, 1] and force per unit mass

g = (0, —1)T. We solve the Boussinesq system (2.1), taking the load terms f,, and fy, boundary and initial conditions
in such a way that the analytical solution is given by:

 (ui(x,y,1)\ _ [ —cos(t)sin(mrx)sin(wy)
u(x, y, 1) = (uz(x, v, t)) - <— cos(t)cos(nx)cos(ny)) ’
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Table 2
Accuracy assessment. Errors (6.2) using the VEM (4.1), with polynomial degrees (k, £) = (2, 1), the physical parameters v =k = 1 and the
mesh family Q}}

E(y, L% H')
dofs h At
1/4 1/8 1/16 1/32 1/64
36 1/4 4.30301e—3 4.50090e—3 4.65255¢—3 4.74590e—3 4.79749¢—3

196 1/8 2.03865e—3 2.20110e—3 2.33234e-3 2.41662e—3 2.46443e—3
900 1/16 2.38767e—4 2.11074e—4 3.61809e—4 4.80109e—4 5.49619e—4

3844 1/32 7.26027e—4 4.35284e—4 2.05347e—4 6.71747e—5 4.99331e—5
15876 1/64 8.16241e—4 5.20174e—4 2.84604e—4 1.34953e—4 5.10645¢—5
E®,L>®;L?)

36 1/4 3.44760e—3 3.94792¢—3 4.28939¢—3 4.48462¢—3 4.58811e—3

196 1/8 9.85211e—4 1.44875e—3 1.82900e—3 2.06308e—3 2.1915%e-3
900 1/16 5.96219e—4 2.98014e—4 3.26274e—4 4.64998e—4 5.57065e—4

3844 1/32 8.26668e—4 4.90632e—4 2.31786e—4 9.52686e—5 9.44396e—5
15876 1/64 8.90387e—4 5.68492e—4 3.13988e—4 1.53393e—4 6.48063e—5

102 102

103 10% ¢
810t 8 10k
s <
=3 5]

108 10% ¢

10 2 ‘1 10° 2 ‘1

10" 10 10” 10
h h
(a) Stream-function errors (b) Temperature errors

Fig. 3. Accuracy assessment. Errors (6.2), using the VEM (4.1) with polynomial degrees (k, ) = (2, 1), the physical parameters v =k =1
and the mesh families .Q,"l, i=1,...,4

p(x, y,t) = cos(t)(sin(wrx) + cos(wy) — 2/m),

1
Y(x,y,t) = — cos(t) sin(;rx) cos(y) and Ox,y,t) =ui(x,y,t)+uyx,y,r).
b4

The purpose of this experiment is to investigate the performance of the VEM (4.1) for small viscosity parameters.
In Fig. 4, we post the errors (6.1) of the stream-function variable obtained with the mesh sizes h = 1/4,1/8,1/16
of (22, considering different values of v and fixing the time step At as 1/8 and 1/16 (see Figs. 4(a) and 4(b),
respectively). It can be observed that the solutions of our VEM are accurate even for small values of v. Larger
stream-function errors appear for very small viscosity values.

We observe that this results are in accordance with the general observation that exactly divergence-free Galerkin
methods are more robust with respect to small diffusion parameters, see for instance [57] (and also [30] in the VEM
context). On the other hand, note that the scheme proposed here has no explicit stabilization of the convection term
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0.9, i 0.9 i
OB ° 4 08—k —— g i
0.7 q 0.7 1
0.6F 9 0.6 1
—~05F 1 ~05¢ ]
= =
] 4 ] 04>—\e\A B
-~ 0.
] ]
0.3¢ 4 0.3 d
——h—1/4 —%—h=1/4
—&—h=1/8 ¢ —O—h=1/8
—O—h=1/16 —&—h=1/16
0.2 | 0.2 g
: : © ) : S © O
10 103 102 107" 10° 10 103 102 107" 10°
v v
(a) Stream-function errors with At =1/8 (b) Stream-function errors with At =1/16

Fig. 4. Small viscosity test. Errors (6.1) of the VEM (4.1), for different values of v and x = 1, using the meshes (22, polynomial degrees
(k, 0) = (2, D).

=01 =0, =0,0,0 =0

P =0 P =0
3r1/):0 aml/)zo
By =0 By =0
0L21 GR:()

Y =0, = 3y¢ =0,000=0

(a) Boundary conditions (b) mesh Q} with h =1/8

Fig. 5. Natural convection cavity. Boundary conditions and domain discretized with mesh .Q;

since this is not the focus of the present work (for instance, the natural norm associated to the stability of the
discrete problem does not guarantee a robust control on the convection).

6.3. Natural convection in a cavity with the left wall heating

In this last example we consider the 2D natural convection benchmark problem, describing the behaviour of a
incompressible flow in a squared cavity, which is heated at the left wall (see [6,18,58—60]). In particular, we consider
the unitary square domain {2 = (0, 1)>. The boundary conditions are given as follows: the temperature in the left
and right walls are 6, = 1 and 6g = 0, respectively, while in the horizontal walls is 9,60 = O (i.e., insulated, there
is no heat transfer through these walls), no-slip boundary conditions are imposed for the fluid flow at all walls. In
terms of the stream-function these conditions are given by: ¢ = 9, = 9,3 = 0 on I' x (0, T'), as shown in Fig. 5.
The initial conditions are chosen as ¥y = —x + y and 6y = 1 (so that the initial data does not satisfy the boundary
conditions).

We consider the forces fy, = 0, fy = 0 and g = PrRa(0, )T, where Pr and Ra denote the Prandtl and
Rayleigh numbers, respectively. For the numerical experiment, we set the physical parameters as: v = Pr = 0.71,
Ra € [10%,10°] and « = 1.

In order to compare our results with the existing bibliography, we decompose the domain {2 using mesh .Q;
conformed by uniform squares (see Fig. 5(b)). Moreover, the time step is At = 10~ and final time 7 = 1.
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1

01 02 03 04 05 06 07 08 08 1

BN ‘

Fig. 6. Natural convection cavity: streamlines (top panels) and isotherms (bottom panels), for Ra = 103, 10, 10° and 109, respectively (from
left to right), using the mesh Q,? (h =1/64).

Table 3

Natural convection cavity. Comparison of maximum vertical velocity uy; = th dyyr at y = 0.5 with the VEM (4.1) and mesh Q; (h =1/64).
Ra VEM Ref. [6] Ref. [18] Ref. [58] Ref. [59] Ref. [60]
10* 19.56(64) 19.63(64) 19.51(41) 19.63(71) 19.90(71) 19.79(101)
10° 68.46(64) 68.48(64) 68.22(81) 68.85(71) 70.00(71) 70.63(101)
100 216.37(64) 220.46(64) 216.75(81) 221.6(71) 228.0(71) 227.11(101)

Table 4

Natural convection cavity. Comparison of maximum horizontal velocity up; = —th dy¢¥ at x = 0.5 with the VEM (4.1) and mesh .Q;

(h =1/64).

Ra VEM Ref. [6] Ref. [18] Ref. [59] Ref. [60]

10* 16.15(64) 16.19(64) 16.18(41) 16.10(71) 16.10(101)
10° 34.80(64) 34.74(64) 34.81(81) 34.0(71) 34.00(101)
10° 65.91(64) 64.81(64) 65.33(81) 65.40(71) 65.40(101)

Streamlines and isotherms of the discrete solution obtained with our VEM (4.1) are posted in Fig. 6, using
Ra = 103, 10*, 10°, 10° and mesh size h = 1 /64. The results show well agreement with the results presented in the
benchmark solutions in [6,18,58—60].

Tables 3 and 4 present a quantitative comparison between our results and those obtained by the benchmark
solutions in the above papers. Table 3 shows the maximum vertical velocity at y = 0.5, for Ra = 10*, 10> and
10%, while Table 4 shows the maximum horizontal velocity at x = 0.5, using the same values of the Rayleigh
number. Here the numbers in the parenthesis denotes the numbers of elements along each edge of the domain, and
is therefore an indication on the mesh finesse. We can observe that the results show good agreement, even for higher
Rayleigh numbers.

Finally, for the natural convection problem we investigate the heat transfer coefficient along the vertical walls
of the cavity in terms of the local Nusselt number (Nuy,..), which is defined by: Nujyeqi(x, y) = —dhf(x, y).
Fig. 7 describes the variation of local Nusselt number at hot wall and cold wall, for different values of the Rayleigh
number. It can be seen that the results show good agreement with the results presented in [6,18,58—60].

7. Conclusions

In this work we have designed and analyzed a high order fully-discrete virtual element for the nonstationary
Boussinesq system in terms of the stream-function and temperature fields. We combined the C'- and C°-conforming
virtual element approaches with a backward Euler scheme and proposed a fully-coupled formulation which is
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| Hot wall ] Cold wall
Ra = 10°
Ra = 10*
Ra = 10°
0.8 Ra = 10° | 0.8 1
2 2
.g 0.6 8 g 0.6 [ 8
= =
= =
S S
S S
< Q
| 041 1 I 04r 1
BN EN
0.2 1 0.2 1
0 | | | 0 | | N
0 5 10 15 20 0 5 10 15 20
Nusselt Number Nuselt Number
(a) Nusselt in the hot wall (b) Nusselt in the cold wall

Fig. 7. Natural convection cavity. Nusselt number along the hot wall (left) and the cold wall (right) for varying Rayleigh numbers, using
the VEM (4.1) and mesh (27, with h = 1/64.

implicit in the nonlinear terms. By using fixed-point arguments we proved the existence of discrete solutions and,
under a small time step condition, we have shown uniqueness of such solutions. The ensuing numerical method
is unconditionally stable. Error estimates in L2(H*) N L*®(H") and L2(H") N L*®(L?) are provided for the stream-
function and temperature, respectively. A set of benchmark numerical experiments have been reported, illustrating
the good performance of the method and the theoretical rates of convergence. We observed that the present stream-
function—temperature approach provides an attractive and competitive alternative to solve the two dimensional
nonstationary Boussinesq problem; there are only two scalar unknowns, and the incompressibility constraint is
automatically satisfied. Thus, the present approach leads to a smaller system compared with the classical velocity—
pressure—temperature form. From Test 6.2, we observed numerically that our VE scheme presents certain robustness
with respect to small diffusion parameters; this behaviour can be attributed to the fact that the incompressibility
condition is satisfied automatically, a scenario in which the partial decoupling of the velocity and pressure errors
leads a positive effect on the velocity computation. Furthermore, we observed that the resulting trilinear forms
(continuous and discrete) in the momentum equation are naturally skew-symmetric, allowing more direct stability
and convergence arguments (cf. Sections 4 and 5). The advantages described above come at the price of a scheme
without velocity and pressure fields (which need to be recovered), possibly a larger condition number due to the
higher order derivatives involved, and a more complex extension to the three dimensional case. Further developments
of this work could be to derive error estimates, possibly with the addition of stabilizing terms, that are quasi-robust
in the viscosity parameter. Another challenging aspect would be to tackle the three dimensional case. Simpler, but
yet interesting, extensions could be to consider temperature-dependent coefficients [5] or include a pressure recovery
technique [29].
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