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Abstract

In the present work we propose and analyze a fully-coupled virtual element method of high order for solving the two
imensional nonstationary Boussinesq system in terms of the stream-function and temperature fields. The discretization for the
patial variables is based on the coupling C1- and C0-conforming virtual element approaches, while a backward Euler scheme

is employed for the temporal variable. Well-posedness and unconditional stability of the fully-discrete problem are provided.
Moreover, error estimates in H2- and H1-norms are derived for the stream-function and temperature, respectively. Finally, a set
of benchmark tests are reported to confirm the theoretical error bounds and illustrate the behavior of the fully-discrete scheme.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

The Boussinesq system is typically used to describe the natural convection in a viscous incompressible fluid,
hich consists of coupling between the Navier–Stokes equations with a convection–diffusion equation. Such

oupling is done by means of a buoyancy term (in the momentum equation of the Navier–Stokes system) and
onvective heat transfer (in the energy equation). Applications of this fluid–thermal system appears in several
ngineering processes, such as, industrial ovens, cooling procedures (cooling of steel industries, electronic and
lectric equipments, nuclear reactors, etc.). Moreover, this physical phenomena appears in oceanography and
eophysics when studying oceanic flows and climate predictions.

Due its relevance and presence in different applications, several works have been devoted to study these equations
and some variants). For the analysis of existence, uniqueness and regularity of the solution, we refer to [1,2].
esides, over the last decades several discretizations have been employed to solve this system; see for instance
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3–12] and the references therein, where the steady and unsteady regimens, temperature-dependent parameters
roblems have been studied, considering the classical velocity–pressure–temperature and pseudostress–velocity–
emperature formulations.

Typically, in the existing literature, the majority of the discretizations for the fluid part involve the standard
elocity–pressure formulation for the Boussinesq system. However, some researchers have developed numerical
ethods by using the stream-function–vorticity and pure stream-function approaches to approximate this system.
or instance, in [13] a finite element discretization is considered to solve the problem in stream-function–vorticity–

emperature form, numerical solutions are obtained for the natural convection in a square cavity and compared
ith some results available in the literature. In [14] a fourth-order compact finite difference scheme is formulated

or solving the steady regimen, by using also the stream-function–vorticity–temperature formulation. Numerical
xperiments are also presented. More recently, in [15,16], the authors present an analysis of stability and convergence
or a fourth-order finite difference method for the unsteady regimen of Boussinesq equations with the stream-
unction–vorticity–temperature approach. Numerical results are provided in [15]. On the other hand, in [17], the
uthors employed a C1 finite element method to approximate the stream-function variable. Numerical solution for
he 2D natural convection in a square cavity are presented and compared with benchmark results [18].

For two dimensional fluid problems, the formulation in terms of the stream-function presents several attractive
eatures, among these we can mention: the velocity vector and pressure fields are not present in the formulation,
nstead only one scalar variable (the stream-function) is the main unknown to approximate. By construction the
ncompressibility constraint is automatically satisfied. Moreover, the resulting trilinear form in the momentum
quation is naturally skew-symmetric, which allows more direct stability and convergence arguments. On the other
and, in comparison with the stream-function–vorticity form, our approach avoid the difficulties related with the
efinition of the boundary values for the vorticity field, present in such formulation.

Nevertheless, the construction of subspaces of H2 (space where the stream-function belongs) by using finite
lement method involve high order polynomials and a large number of degrees of freedom, which are considered a
ifficult task principally from the computational viewpoint, even for triangular decompositions. As an alternative to
void the aforementioned drawback, we consider the approach presented in [19,20] to introduce C1-virtual element
chemes of arbitrary order k ≥ 2, to approximate the stream-function variable of the Boussinesq system.

The Virtual Element Method (VEM) were introduced in the seminal work [21] as an extension of Finite Elements
ethod (FEM) to polygonal or polyhedral decompositions. In this first work the Poisson equation is used to illustrate

he main ideas of VEM approach. The virtual element spaces are constituted by polynomial and nonpolynomial
unctions, the degrees of freedom must be chosen appropriately so that the stiffness matrix and load term can be
omputed without computing these nonpolynomial functions. Later on, in [19] is introduced a new family of C1-
irtual element of high order k ≥ 2, to solve Kirchhoff–Love plate problems, which in the lowest order polynomial
egree employed only 3 degrees of freedom per mesh vertex (the function and its gradient values vertex). This fact
epresents a very significant advantage over C1 schemes based on FEM. Moreover, in [22,23], the authors discuss
he application of VEM to construct finite dimensional spaces of arbitrarily regular Cα , with α ≥ 1, where promising
esults have been observed to solve equations involving high order PDEs. In the last year a wide variety of second-
nd fourth-order problems have been discretized by using VEM. Due to the large number of papers available in
he literature, we here limit ourselves in citing some representative articles within the area of fluid mechanics,
here several models have been addressed with the conforming VEM approach: the Stokes equations [24–27], the
rinkman model [28,29], Navier–Stokes and incompressible flows [30–35], the Quasi-Geostrophic equations of the
cean [36] and Boussinesq system [37,38], where different formulations have been considered.

According to the previously discussed, in the present contribution, we are interested in further exploring the
bility of VEM to approximate coupled nonlinear fluid flow problems considering the stream-function approach.
ore precisely, we develop and analyze a fully-discrete VE scheme for solving the nonstationary Boussinesq system.
nder assumption that the domain is simply connected and by using the incompressibility condition of the velocity
eld, we write a equivalent variational formulation in terms of the stream-function and temperature unknowns.
he discretization for the spatial variables is based on the coupling of C1- and C0- conforming virtual element
pproaches [19,21], for the stream-function and temperature fields, respectively, and we handle the time derivatives
ith a classical backward Euler implicit method. Employing the discretizations mentioned above, we propose a

ully-discrete scheme of high order, which is fully-coupled, implicit in the nonlinear terms and unconditionally

table. By using the fixed point theory, we establish the corresponding existence of a discrete solution and, under
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small time step assumption, we prove that such discrete solution is also unique. Moreover, employing the natural
kew-symmetry property of the resulting discrete trilinear form (in the momentum equation) we provide optimal
rror estimates in H2- and H1-norms for the stream-function and temperature, respectively.

The remainder of this paper has been organized as follows: In Section 2 we provide preliminaries notations and
ecall the unsteady Boussinesq equations in its standard velocity–pressure–temperature formulation. Moreover, we
rite a weak form of the system in terms of the stream-function and temperature variables. We finish this section by

ecalling the corresponding stability and well-posedness results for the continuous problem. In Section 3 we present
he VE discretization, introducing the polygonal decomposition and mesh notations, the construction of stream-
unction and temperature VE spaces along with their corresponding degrees of freedom, the polynomial projections
nd the construction of the multilinear forms. In Section 4 we present the fully-discrete VE formulation and provide
ts stability and well-posedness. In Section 5 we derive error estimates for the stream-function and temperature fields.
inally, three numerical experiments, including the solution of the 2D natural convection benchmark problem, are
resented in Section 6, to illustrate the good performance of the scheme and confirm our theoretical predictions.

. Preliminaries and the continuous problem

We start this section introducing some preliminary notations that will be used throughout this work. Thenceforth,
will denote a simply connected bounded domain of R2, with Lipschitz-continuous boundary Γ := ∂Ω and

n = (ni )1≤i≤2 is the outward unit normal vector to the boundary Γ and t = (ti )i=1,2 := (−n2, n1) is the unit tangent
ector to Γ . Moreover, we denote by ∂n to the normal derivative. According to [39], for any open measurable
ounded domain D ⊆ Ω , we will employ the usual notation for the Banach spaces Lp(D) and the Sobolev spaces

s
p(D), with s ≥ 0 and p ∈ [1,+∞], with the corresponding seminorms and norms are denoted by | · |Ws

p(D) and
· ∥Ws

p(D), respectively. We adopt the convention W0
p(D) := Lp(D) and in particular when p = 2, we write Hs(D)

nstead to Ws
2(D), the corresponding seminorm and norm of these space will be denoted by | · |s,D and ∥ · ∥s,D,

espectively. Furthermore, we denote by S the corresponding vectorial version of a generic scalar S, examples of
his are: Lp(D) := [Lp(D)]2 and Ws

p(D) := [Ws
p(D)]2.

We denote by t the temporal variable with values in the interval I := (0, T ], where T > 0 is a given final time.
Moreover, given a Banach space V endowed with the norm ∥ · ∥V , we define the space Lp(0, T ; V ) as the space of
classes of functions φ : (0, T ) → V that are Bochner measurable and such that ∥φ∥Lp(0,T ;V ) < ∞, with

∥φ∥Lp(0,T ;V ) :=

(∫ T

0
∥φ(t)∥p

V dt
)1/p

and ∥φ∥L∞(0,T ;V ) := ess sup
t∈[0,T ]

∥φ(t)∥V .

2.1. The time dependent Boussinesq system

In this work we are interested in approximating the solution of the nonstationary Boussinesq system, modeling
incompressible nonisothermal fluid flows. The system consists of a coupling between the Navier–Stokes equations
with a convection–diffusion equation for the temperature variable. The coupling is by means of a buoyancy term (in
the momentum equation of the Navier–Stokes system) and convective heat transfer (in the energy equation). More
precisely, given suitable initial data (u0, θ0), the aforementioned system of equations are given by (see [1]):

∂t u − ν∆u + (u · ∇)u + ∇ p − gθ = fψ in Ω × (0, T ),
div u = 0 in Ω × (0, T ),

u = 0 on Γ × (0, T ),
u(0) = u0 in Ω at t = 0,

(p, 1)0,Ω = 0
∂tθ − κ∆θ + u · ∇θ = fθ in Ω × (0, T ),

θ = 0 on Γ × (0, T ),
θ (0) = θ0 in Ω at t = 0,

(2.1)

here u : Ω × (0, T ) → R2, p : Ω × (0, T ) → R and θ : Ω × (0, T ) → R denote the velocity, pressure and

emperature fields. The parameters ν > 0 and κ > 0 are the viscosity fluid and the thermal conductivity, respectively.
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he functions fψ : Ω × (0, T ) → R2, fθ : Ω × (0, T ) → R is a set of external forces and g : Ω × (0, T ) → R2 is
a force per unit mass.

In next subsection, by using the incompressibility property of the velocity field, we will write an equivalent weak
formulation of the system (2.1) in terms of the stream-function and temperature variables.

2.2. The time dependent stream-function–temperature formulation

Let us introduce the following space of functions belonging to H1
0(Ω ) with vanishing divergence:

Z :=
{
v ∈ H1

0(Ω ) : div v = 0
}
.

Since Ω ⊂ R2 is simply connected, a well known result states that a vector function v ∈ Z if and only if there
xists a scalar function ϕ ∈ H2(Ω ) (called stream-function), such that

v = curl ϕ ∈ H1
0(Ω ).

he function ϕ is defined up to a constant (see [40]). Thus, we consider the following space

H2
0(Ω ) =

{
ϕ ∈ H2(Ω ) : ϕ = ∂nϕ = 0 on Γ

}
.

hen, choosing ψ(t) ∈ H2
0(Ω ) the stream-function of the velocity field u(t) ∈ Z (i.e. u(t) = curl ψ(t)) in the

omentum equation of system (2.1), testing against a function v = curl φ with φ ∈ H2
0(Ω ) and applying twice an

ntegration by parts, we have∫
Ω

curl(∂tψ)·curlφ+ν

∫
Ω

D2ψ : D2φ+

∫
Ω

∆ψ curlψ ·∇φ−

∫
Ω

gθ ·curlφ =

∫
Ω

fψ ·curlφ ∀φ ∈ H2
0(Ω ).

n other hand, multiplying by v ∈ H1
0(Ω ) and integrating by parts in the energy equation of system (2.1), we obtain∫

Ω

∂tθv + κ

∫
Ω

∇θ · ∇v +

∫
Ω

(curl ψ · ∇θ )v =

∫
Ω

fθv ∀v ∈ H1
0(Ω ).

rom the above identities, we obtain the following weak formulation for system (2.1): given ψ0 ∈ H1
0(Ω ),

0 ∈ L2(Ω ), g ∈ L∞(0, T ; L∞(Ω )), and the external forces fψ ∈ L2(0, T ; L2(Ω )), fθ ∈ L2(0, T ; L2(Ω )), find
ψ, θ) ∈ L2(0, T ; H2

0(Ω )) × L2(0, T ; H1
0(Ω )) such that

MF (∂tψ, φ) + νAF (ψ, φ) + BF (ψ;ψ, φ) − C(θ, φ) = Fψ (φ) ∀φ ∈ H2
0(Ω ), for a.e. t ∈ (0, T ),

MT (∂tθ, v) + κAT (θ, v) + BT (ψ; θ, v) = Fθ (v) ∀v ∈ H1
0(Ω ), for a.e. t ∈ (0, T ),

ψ(0) = ψ0, θ(0) = θ0,

(2.2)

here the bilinear forms MF (·, ·), MT (·, ·), AF (·, ·) and AT (·, ·) are given by

MF (·, ·) : H2
0(Ω ) × H2

0(Ω ) → R, MF (ϕ, φ) :=

∫
Ω

curl ϕ · curl φ, (2.3)

MT (·, ·) : H1
0(Ω ) × H1

0(Ω ) → R, MT (v,w) :=

∫
Ω

vw, (2.4)

AF : H2
0(Ω ) × H2

0(Ω ) → R, AF (ϕ, φ) :=

∫
Ω

D2ϕ : D2φ, (2.5)

AT : H1
0(Ω ) × H1

0(Ω ) → R, AT (v,w) :=

∫
Ω

∇v · ∇w, (2.6)

hereas the convective trilinear forms BF (·; ·, ·) and BT (·; ·, ·) are defined by

BF : H2
0(Ω ) × H2

0(Ω ) × H2
0(Ω ) → R, BF (ζ ;ϕ, φ) :=

∫
Ω

∆ζ curl ϕ · ∇φ, (2.7)

BT : H2
0(Ω ) × H1

0(Ω ) × H1
0(Ω ) → R, BT (ϕ; v,w) :=

∫
Ω

(curl ϕ · ∇v)w. (2.8)

he bilinear form C(·, ·) associated to the buoyancy term is given by

C : H1
0(Ω ) × H2

0(Ω ) → R, C(v, φ) :=

∫
gv · curl φ (2.9)
Ω

4
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nd the functionals Fψ (·) and Fθ (·) are given by

Fψ : H2
0(Ω ) → R, Fψ (φ) :=

∫
Ω

fψ · curl φ, (2.10)

Fθ : H1
0(Ω ) → R, Fθ (v) :=

∫
Ω

fθv. (2.11)

e can observe by a direct computation that the trilinear form BT (·; ·, ·) defined in (2.8) is skew-symmetric, i.e.,

BT (ϕ; v,w) = −BT (ϕ;w, v) ∀ϕ ∈ H2
0(Ω ) and ∀v,w ∈ H1

0(Ω ).

herefore, the bilinear form BT (·; ·, ·) is equal to its skew-symmetric part, defined by

Bskew(ϕ; v,w) :=
1
2

(BT (ϕ; v,w) − BT (ϕ;w, v)) ∀ϕ ∈ H2
0(Ω ) and ∀v,w ∈ H1

0(Ω ). (2.12)

ccording with the above discussion, we rewrite system (2.2) in the following equivalent formulation: given the
nitial conditions (ψ0, θ0) ∈ H1

0(Ω ) × L2(Ω ) and the forces fψ ∈ L2(0, T ; L2(Ω )), fθ ∈ L2(0, T ; L2(Ω )) and
∈ L∞(0, T ; L∞(Ω )), find (ψ, θ) ∈ L2(0, T ; H2

0(Ω )) × L2(0, T ; H1
0(Ω )) such that

MF (∂tψ, φ) + νAF (ψ, φ) + BF (ψ;ψ, φ) − C(θ, φ) = Fψ (φ) ∀φ ∈ H2
0(Ω ), for a.e. t ∈ (0, T ),

MT (∂tθ, v) + κAT (θ, v) + Bskew(ψ; θ, v) = Fθ (v) ∀v ∈ H1
0(Ω ), for a.e. t ∈ (0, T ),

ψ(0) = ψ0, θ(0) = θ0.

(2.13)

.3. Well-posedness of the weak formulation

In this subsection we recall some basic properties of the continuous forms and the existence and uniqueness
roperties of the solution to problem (2.13).

emma 2.1. For all ζ, ϕ, φ ∈ H2
0(Ω ) and for each v,w ∈ H1

0(Ω ), the forms defined in (2.3)–(2.12) satisfy the
ollowing properties:

|MF (ϕ, φ)| ≤ CMF ∥ϕ∥1,Ω∥φ∥1,Ω and MF (φ, φ) ≥ |φ|
2
1,Ω ,

|MT (v,w)| ≤ CMT ∥v∥0,Ω∥w∥0,Ω and MT (v, v) ≥ ∥v∥2
0,Ω ,

|AF (ϕ, φ)| ≤ CAF ∥ϕ∥2,Ω∥φ∥2,Ω and AF (φ, φ) ≥ αAF ∥φ∥
2
2,Ω ,

|AT (v,w)| ≤ CAT ∥v∥1,Ω∥w∥1,Ω and AT (v, v) ≥ αAT ∥v∥2
1,Ω ,

|BF (ζ ;ϕ, φ)| ≤ CBF ∥ζ∥2,Ω∥ϕ∥2,Ω∥φ∥2,Ω and BF (ζ ;φ, φ) = 0,
|Bskew(ζ ; v,w)| ≤ CBT ∥ζ∥2,Ω∥v∥1,Ω∥w∥1,Ω and Bskew(ζ ; v, v) = 0,

|C(v, φ)| ≤ ∥g∥∞,Ω∥v∥0,Ω∥φ∥1,Ω , |Fψ (φ)| ≤ CFψ ∥fψ∥0,Ω∥φ∥1,Ω , |Fθ (v)| ≤ CFθ ∥ fθ∥0,Ω∥v∥0,Ω .

The equivalence between the (weak form of) problem (2.1) and its stream-function formulation (2.13) is well
nown and easy to check. The couple (ψ, θ) satisfies (2.13) if and only if there exists a unique p such that the
riple (u, θ, p) in L2(0, T ; H1

0(Ω ))×L2(0, T ; H1
0(Ω ))×L2(0, T ; L2

0(Ω )) solves (the variational formulation of) (2.1),
here u = curl ψ . Therefore the existence result for problem (2.13) follow immediately from known results for

2.1) (see for instance [5]) and the uniqueness follow by combining the arguments used in [1].

heorem 2.1. Problem (2.13) admits a unique solution (ψ, θ), satisfying ψ ∈ L2(0, T ; H2
0(Ω )) ∩ L∞(0, T ; H1

0(Ω ))
nd θ ∈ L2(0, T ; H1

0(Ω )) ∩ L∞(0, T ; L2(Ω )). Furthermore there exists a positive constant C, such that

∥ψ∥L∞(0,T ;H1
0(Ω)) + ∥ψ∥L2(0,T ;H2

0(Ω)) + ∥θ∥L∞(0,T ;L2(Ω)) + ∥θ∥L2(0,T ;H1
0(Ω))

≤ C
(
∥fψ∥L2(0,T ;L2(Ω)) + ∥ fθ∥L2(0,T ;L2(Ω)) + ∥θ0∥0,Ω + |ψ0|1,Ω

)
.

Now, we recall the Ladyzhenskaya inequality (see for instance [12, Lemma 2.2]), needed in the sequel:

∥v∥L4(Ω) ≤ 2
1
4 ∥v∥

1
2
1,Ω∥v∥

1
2
0,Ω ∀v ∈ H1

0(Ω ). (2.14)

We close this section with the following remark.
5
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emark 2.1. For the bilinear form AF (·, ·) defined in (2.5), we have the following classical identity:

AF (ϕ, φ) =

∫
Ω

∆ϕ∆φ ∀ϕ, φ ∈ H2
0(Ω ). (2.15)

e recall that at discrete level the representations (2.5) and (2.15) will lead to different approximations, in general.
n next section we will consider the representation (2.5), i.e., AF (ϕ, φ) =

∫
Ω D2ϕ : D2φ, in order to construct the

rojection Π D,k
E (see (3.2)). However, we also propose an alternative discretization inspired by (2.15) in Remark 3.2

elow.

. Virtual elements discretization

In this section we will introduce C1- and C0-conforming schemes of arbitrary order k ≥ 2 and ℓ ≥ 1, for the
umerical approximation of the stream-function and temperature unknowns of problem (2.13), respectively. First,
e start by introducing some mesh notations together with the respective local and global virtual spaces and their
egrees of freedom. Moreover, we introduce the classical VEM polynomial projections and we present the discrete
ultilinear forms.

.1. Polygonal decompositions and notations

Henceforth, we will denote by E a general polygon, e a general edge of ∂E , hE the diameter of the element E
nd by he the length of edge e. Let {Ωh}h>0 be a sequence of decompositions of Ω into non-overlapping polygons

E , where h := maxE∈Ωh hE . Moreover, NE denotes the number of vertices of E and we define the unit normal
ector nE , that points outside of E and the unit tangent vector tE to E obtained by a counterclockwise rotation of
E .

For each integer n ≥ 0, we introduce the following spaces:

• For every open bounded subdomain D ⊂ R2 we define Pn(D) as the space of polynomials on D of degree up
to n and we denote by Pn(D) its vectorial version, i.e., Pn(D) := [Pn(D)]2;

• We define the discontinuous piecewise n-order polynomial by

Pn(Ωh) :=
{
q ∈ L2(Ω ) : q|E ∈ Pn(E) ∀E ∈ Ωh

}
.

Besides, for s > 0, we consider the broken spaces

Hs(Ωh) :=
{
φ ∈ L2(Ω ) : φ|E ∈ Hs(E) ∀E ∈ Ωh

}
ndowed with the following broken seminorm: |φ|s,h :=

(∑
E∈Ωh

|φ|
2
s,E

)1/2
.

For the theoretical convergence analysis, we suppose that for all h, each element E in the mesh family {Ωh}h>0

atisfies the following assumptions [20,21] for a uniform constant ρ > 0:

A1 : E is star-shaped with respect to every point of a ball of radius greater or equal to ρhE ;
A2 : every edge e ∈ ∂E has the length greater or equal to ρhE .

.2. Virtual element space for the stream-function

In the present section we introduce a virtual space of order k ≥ 2 used to approximate the stream-function
nknown.

For each polygon E ∈ Ωh and every integer k ≥ 2, let k̂ := max{k, 3} and W̃h
k (E) be the finite dimensional

pace introduced in [20]:

W̃h
k (E) :=

{
φh ∈ H2(E) : ∆2φh ∈ Pk−2(E), φh |∂E ∈ C0(∂E), φh |e ∈ Pk̂(e) ∀e ∈ ∂E,

∇φh |∂E ∈ C0(∂E), ∂ne φh ∈ Pk−1(e) ∀e ∈ ∂E
}
.

E

6
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ext, for φh ∈ W̃h
k (E), we introduce the following set of linear operators:

• DW1 : the values of φh(vi ), for all vertex vi of the polygon E ;
• DW2 : the values of hvi ∇φh(vi ), for all vertex vi of the polygon E ;
• DW3 : for k ≥ 3, the moments on edges up to degree k − 3:

(q, ∂ne
E
φh)0,e ∀q ∈ Mk−3(e), ∀ edge e;

• DW4 : for k ≥ 4, the moments on edges up to degree k − 4:

h−1
e (q, φh)0,e ∀q ∈ Mk−4(e), ∀ edge e;

• DW5 : for k ≥ 4, the moments on polygons up to degree k − 4:

h−2
E (q, φh)0,E ∀q ∈ Mk−4(E), ∀ polygon E,

here for each vertex vi , we chose hvi as the average of the diameters of the elements having vi as a vertex and
n(E) denote the scaled monomials of degree n, for each n ≥ 0 (for further details see [19]).
In order to construct an approximation for the bilinear form AF (·, ·), we consider the operator P0 : C0(∂E) →

0(E) defined by the following average:

P0φh =
1

NE

NE∑
i=1

φh(vi ), (3.1)

where vi , 1 ≤ i ≤ NE , are the vertices of E . Then, for each polygon E , we define the projector:

Π D,k
E : W̃h

k (E) → Pk(E) ⊂ W̃h
k (E),

as the solution of the local problems

AE
F (φh − Π D,k

E φh, qk) = 0 ∀qk ∈ Pk(E),

P0(φh − Π D,k
E φh) = 0, P0(∇(φ − Π D,k

E φh)) = 0,
(3.2)

where AE
F (·, ·) is the restriction of the global bilinear form AF (·, ·) (cf. (2.5)) on each polygon E .

Remark 3.1. The operator Π D,k
E : W̃h

k (E) → Pk(E) is explicitly computable for every φh ∈ W̃h
k (E), using only

the information of the linear operators DW1 − DW5; see for instance [20,29].

Now, we will present the local stream-function virtual space. For any E ∈ Ωh and each integer k ≥ 2, we
consider the following local enhanced virtual space

Wh
k (E) :=

{
φh ∈ W̃h

k (E) : (q∗ , φh − Π D,k
E φh)0,E = 0 ∀q∗

∈ M∗

k−3(E) ∪ M∗

k−2(E)
}
, (3.3)

where M∗

k−3(E) and M∗

k−2(E) are scaled monomials of degree k − 3 and k − 2, respectively (see [41]), with the
convention that M∗

−1(E) := ∅. For further details, see for instance [20] (see also [19,29,42]).
For k ≥ 2, we introduce an additional projector, which will be used to build an approximation of the bilinear

form MF (·, ·). Such projector Π c,k
E : W̃h

k (E) → Pk(E) ⊂ W̃h
k (E) is defined as the solution of the local problems:

M E
F (φh − Π c,k

E φh, qk) = 0 ∀qk ∈ Pk(E),

P0(∇(φh − Π c,k
E φh)) = 0,

where M E
F (·, ·) is the restriction of the global bilinear form MF (·, ·) (cf. (2.3)) on each polygon E .

We summarize the main properties of the local virtual space Wh
k (E) defined in (3.3) (for the proof, we refer

to [19,20,29,41]).

• Pk(E) ⊂ Wh
k (E) ⊂ W̃h

k (E);
• The sets of linear operators DW1 − DW5 constitutes a set of degrees of freedom for Wh

k (E);
• The operators Π D,k

E : Wh
k (E) → Pk(E) and Π c,k

E : Wh
k (E) → Pk(E) are computable using only the degrees of
freedom DW1 − DW5.

7
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Now, we present our global virtual space to approximate the stream-function of the Boussinesq system (2.13).
or each decomposition Ωh of Ω into simple polygons E , we define

Wh
k :=

{
φh ∈ H2

0(Ω ) : φh |E ∈ Wh
k (E) ∀E ∈ Ωh

}
.

3.3. Virtual element space for the temperature

In this subsection we will introduce a C0-virtual element space of high order ℓ ≥ 1 to approximate the
temperature field of problem (2.13). To this end, for each polygon E ∈ Ωh , we consider the following finite

imensional space (see [41,43,44]):

H̃h
ℓ (E) :=

{
wh ∈ H1(E) ∩ C0(∂E) : ∆wh ∈ Pℓ(E), wh |e ∈ Pℓ(e) ∀e ∈ ∂E

}
.

or each wh ∈ H̃h
ℓ (E) we consider the following set of linear operators:

• DH1 : the values of wh(vi ), for all vertex vi of the polygon E .
• DH2 : for ℓ ≥ 2, the moments on edges up to degree ℓ− 2:

h−1
e (q, wh)0,e ∀q ∈ Mℓ−2(e), ∀ edge e;

• DH3 : for ℓ ≥ 2, the moments on element E up to degree ℓ− 2:

h−2
E (q, wh)0,E ∀q ∈ Mℓ−2(E), ∀ polygon E,

here Mn(E) denote the scaled monomials of degree n, for each n ≥ 0 (for further details see [41,44]). Now, we
efine the projector Π ∇,ℓ

E : H̃h
ℓ (E) → Pℓ(E) ⊂ H̃h

ℓ (E), as the solution of the local problems:

AE
T (wh − Π ∇,ℓ

E wh, rℓ) = 0 ∀rℓ ∈ Pℓ(E),

P0(wh − Π ∇,ℓ
E wh) = 0,

(3.4)

here AE
T (·, ·) is the restriction of the global bilinear form AT (·, ·) (cf. (2.6)) on each polygon E and the operator

0(·) is defined in (3.1). We have that the operator Π ∇,ℓ
E : H̃h

ℓ (E) → Pℓ(E) is computable using the set DH1 − DH3
see for instance, [41,43,44]). In addition, by using this projection and the definition of space H̃h

ℓ (E), we introduce
ur local virtual space to approximate the temperature field:

Hh
ℓ (E) :=

{
wh ∈ H̃h

ℓ (E) : (r∗, wh − Π ∇,ℓ
E wh)0,E = 0 ∀r∗

∈ M∗

ℓ(E) ∪ M∗

ℓ−1(E)
}
,

here M∗

ℓ(E) and M∗

ℓ−1(E) are scaled monomials of degree ℓ and ℓ − 1, respectively, with the convention that
∗

−1(E) := ∅ (see [41,44]).
Now, we summarize the main properties of the local virtual spaces Hh

ℓ (E) (for a proof we refer to [41,43,44]):

• Pℓ(E) ⊂ Hh
ℓ (E) ⊂ H̃h

ℓ (E);
• The sets of linear operators DH1 − DH3 constitutes a set of degrees of freedom for Hh

ℓ (E);
• The operator Π ∇,ℓ

E : Hh
ℓ (E) → Pℓ(E) is also computable using the degrees of freedom DH1 − DH3.

Next, we present our global virtual space to approximate the fluid temperature of the Boussinesq system (2.13).
or each decomposition Ωh of Ω into simple polygons E , we define

Hh
ℓ :=

{
wh ∈ H1

0(Ω ) : wh |E ∈ Hh
ℓ (E) ∀E ∈ Ωh

}
.

.4. L2-Projections and the discrete forms

In this subsection we introduce some functions built from the classical L2-polynomial projections, which will be
seful to construct an approximation for the continuous multilinear forms defined in Section 2.2. We start recalling
he usual L2(E)-projection onto the scalar polynomial space Pn(E), with n ∈ N ∪ {0}: for each φ ∈ L2(E), the
unction Π n

Eφ ∈ Pn(E) is defined as the unique function, such that( n )

qn, φ − ΠEφ 0,E = 0 ∀qn ∈ Pn(E). (3.5)

8
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An analogous definition holds for the L2(E)-projection onto the vectorial polynomial space Pn(E), which we
will denote by Π n

E .
We recall that for all sufficiently regular φ (for the right hand side to make sense) there exists C > 0, independent

of E and hE , such that (see [30, Page 10]):

∥Π n
Eφ∥L4(E) ≤ C∥φ∥L4(E) and ∥Π n

Eφ∥0,E ≤ ∥φ∥0,E . (3.6)

The same properties hold for the vectorial version.
The following lemma establishes that certain polynomial functions are computable on Wh

k (E), using only the
information of the degrees of freedom DW1 − DW5 (see for instance [20,29]).

Lemma 3.1. For k ≥ 2, let Π k−2
E : L2(E) → Pk−2(E) and Π k−1

E : L2(E) → Pk−1(E) be the operators defined by
the relation (3.5) and by its vectorial version. Then, for each φh ∈ Wh

k (E) the polynomial functions

Π k−2
E φh, Π k−2

E ∆φh, Π k−1
E ∇φh and Π k−1

E curl φh

are computable using only the information of the degrees of freedom DW1 − DW5.

For the space Hh
ℓ (E) and its degrees of freedom DH1 − DH3, we have the following result (see for instance [43,

44]).

Lemma 3.2. For ℓ ≥ 1, let Π ℓ−1
E : L2(E) → Pℓ−1(E), Π ℓ

E : L2(E) → Pℓ(E) and Π ℓ−1
E : L2(E) → Pℓ−1(E) be

the operators defined by the relation (3.5) and by its vectorial version, respectively. Then, for each wh ∈ Hh
ℓ (E) the

polynomial functions

Π ℓ−1
E wh, Π ℓ

Ewh and Π ℓ−1
E ∇wh

are computable using only the information of the degrees of freedom DH1 − DH3.

Now, using the functions introduced above, we will construct the discrete version of the forms defined in
ection 2.2. First, let sc

E : Wh
k (E) × Wh

k (E) → R and sD
E : Wh

k (E) × Wh
k (E) → R be any symmetric positive

efinite bilinear forms to be chosen to satisfy:

c0 M E
F (φh, φh) ≤ sc

E (φh, φh) ≤ c1 M E
F (φh, φh) ∀φh ∈ Ker(Π c,k

E ),

c2 AE
F (φh, φh) ≤ sD

E (φh, φh) ≤ c3 AE
F (φh, φh) ∀φh ∈ Ker(Π D,k

E ),
(3.7)

with c0, c1, c2 and c3 are positive constants independent of h and E . We will choose the following representation
satisfying (3.7) (see [29, Proposition 3.5]):

sD
E (ϕh, φh) := h−2

E

Ndof
E∑

i=1

dof
Wh

k (E)
i (ϕh)dof

Wh
k (E)

i (φh) and sc
E (ϕh, φh) :=

N dof
E∑

i=1

dof
Wh

k (E)
i (ϕh)dof

Wh
k (E)

i (φh),

where N dof
E := dim(Wh

k (E)) and the operator dof
Wh

k (E)
j (φ) associates to each smooth enough function φ the j th local

degree of freedom dof
Wh

k (E)
j (φ), with 1 ≤ j ≤ N dof

E .
On each polygon E , we define the local discrete bilinear forms Mh,E

F (·, ·) and Ah,E
F (·, ·) as follows

Mh,E
F (ϕh, φh) := M E

F

(
Π c,k

E ϕh,Π
c,k
E φh

)
+ sc

E

(
(I − Π c,k

E )ϕh, (I − Π c,k
E )φh

)
∀ϕh, φh ∈ Wh

k (E), (3.8)

Ah,E
F (ϕh, φh) := AE

F

(
Π D,k

E ϕh,Π
D,k
E φh

)
+ sD

E

(
(I − Π D,k

E )ϕh, (I − Π D,k
E )φh

)
∀ϕh, φh ∈ Wh

k (E). (3.9)

For the approximation of the local trilinear form B E
F (·; ·, ·), we consider

Bh,E
F (ζh;ϕh, φh) :=

∫
E

[(
Π k−2

E ∆ζh
)(
Π k−1

E curl ϕh
)]

· Π k−1
E ∇φh ∀ζh, ϕh, φh ∈ Wh

k (E). (3.10)

For the treatment of the right-hand side associate to the fluid equation, we set the following local load term:

Fh,E
ψ (φh) =

∫
E
Π k−1

E fψ (t) · curl φh ≡

∫
E

fψ (t) · Π k−1
E curl φh ∀φh ∈ Wh

k (E), for a.e. t ∈ (0, T ).

The following result establishes the usual k-consistency and stability properties for the discrete local forms
h,E h,E
MF (·, ·) and AF (·, ·).

9
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roposition 3.1. The local bilinear forms defined in (2.3), (2.5), (3.8) and (3.9), satisfy the following properties:

• k-consistency: for all E ∈ Ωh , we have that

Mh,E
F (q, φh) = M E

F (q, φh), Ah,E
F (q, φh) = AE

F (q, φh) ∀q ∈ Pk(E), ∀φh ∈ Wh
k (E).

• stability and boundedness: there exist positive constants αi , i = 1, . . . , 4, independent of E, such that:

α1 M E
F (φh, φh) ≤ Mh,E

F (φh, φh) ≤ α2 M E
F (φh, φh) ∀φh ∈ Wh

k (E),

α3 AE
F (φh, φh) ≤ Ah,E

F (φh, φh) ≤ α4 AE
F (φh, φh) ∀φh ∈ Wh

k (E).

Proof. The proof follows standard arguments in the VEM literature (see [21,42,43]). □

Now, we continue with the construction of the forms associated to the energy equation. First, let s0
E (·, ·) and

s∇

E (·, ·) be any symmetric positive definite bilinear forms such that

c4 M E
T (vh, vh) ≤ s0

E (vh, vh) ≤ c5 M E
T (vh, vh) ∀vh ∈ Ker(Π ℓ

E ),

c6 AE
T (vh, vh) ≤ s∇

E (vh, vh) ≤ c7 AE
T (vh, vh) ∀vh ∈ Ker(Π ∇,ℓ

E ),
(3.11)

or some positive constants c4, c5, c6 and c7, independent of h and E . We will choose the classical representation
or these stabilizing forms satisfying property (3.11) (see [44–46]):

s0
E (vh, wh) := h2

E

dim(Hh
ℓ

(E))∑
j=1

dof
Hh
ℓ

(E)
j (vh)dof

Hh
ℓ

(E)
j (wh), s∇

E (vh, wh) :=

dim(Hh
ℓ

(E))∑
j=1

dof
Hh
ℓ

(E)
j (vh)dof

Hh
ℓ

(E)
j (wh),

here the operator dof
Hh
ℓ

(E)
j (v) associates to each smooth enough function v the j th local degree of freedom

of
Hh
ℓ

(E)
j (v), with 1 ≤ j ≤ dim(Hh

ℓ (E)). Then, we set the following approximation for the forms M E
T (·, ·) and

AE
T (·, ·) (cf. (2.4) and (2.6))

Mh,E
T (vh, wh) := M E

T

(
Π ℓ

Evh,Π
ℓ
Ewh

)
+ s0

E

(
(I − Π ℓ

E )vh, (I − Π ℓ
E )wh

)
∀vh, wh ∈ Hh

ℓ (E),

Ah,E
T (vh, wh) :=

∫
E
Π ℓ−1

E ∇vh · Π ℓ−1
E ∇wh + s∇

E

(
(I − Π ∇,ℓ

E )vh, (I − Π ∇,ℓ
E )wh

)
∀vh, wh ∈ Hh

ℓ (E).

We have that the bilinear forms Mh,E
T (·, ·) and Ah,E

T (·, ·) satisfy the classical ℓ-consistency and stability properties
analogous to Proposition 3.1). For further details, see [21,43,44].

To approximate of bilinear form C E (·, ·), we set

Ch,E (wh, φh) :=

∫
E

gΠ ℓ−1
E wh · Π k−1

E curl φh ∀wh ∈ Hh
ℓ (E), ∀φh ∈ Wh

k (E).

Now, we consider the following discrete trilinear form

Bh,E
T (ϕh; vh, wh) :=

∫
E

(
Π k−1

E curl ϕh · Π ℓ−1
E ∇vh

)
Π ℓ−1

E wh ∀ϕh ∈ Wh
k (E), ∀wh, vh ∈ Hh

ℓ (E).

hen, for the skew-symmetric trilinear form B E
skew(·; ·, ·) (cf. (2.12)), we set the following approximation:

Bh,E
skew(ϕh; vh, wh) :=

1
2

(Bh,E
T (ϕh; vh, wh) − Bh,E

T (ϕh;wh, vh)) ∀ϕh ∈ Wh
k (E), ∀wh, vh ∈ Hh

ℓ (E).

For the treatment of the right-hand side associated to the temperature discretization, we set following local load
erm

Fh,E
θ (vh) :=

∫
E
Π ℓ−1

E fθ (t)vh ≡

∫
E

fθ (t)Π ℓ−1
E vh ∀vh ∈ Hh

ℓ (E) for a.e. t ∈ (0, T ).

Thus, for all ζh, ϕh, φh ∈ Wh
k , we define the associated global forms Mh

F , Ah
F , Bh

F , Fh
ψ in the usual way, by sum-

ing the local forms on all mesh elements. Analogously, we define the associated global forms Mh
T ,Ch, Bh

skew, Fh
θ

or all vh, wh ∈ Hh
ℓ . For instance

Mh
F : Wh

k × Wh
k → R, Mh

F (ϕh, φh) :=

∑
Mh,E

F (ϕh, φh).

E∈Ωh

10
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We recall that the forms defined above are computable using the degrees of freedom. In addition, we have that
he trilinear forms are immediately extendable to the whole continuous spaces.

In next result we summarize some properties of the discrete global forms defined above.

emma 3.3. For each ζh, ϕh, φh ∈ Wh
k and each vh, wh ∈ Hh

ℓ , the global forms defined above satisfy the following
roperties:

|Mh
F (ϕh, φh)| ≤ ĈMF ∥ϕh∥1,Ω∥φh∥1,Ω and Mh

F (φh, φh) ≥ α̂MF ∥φh∥
2
1,Ω ,

|Mh
T (vh, wh)| ≤ ĈMT ∥vh∥0,Ω∥wh∥0,Ω and Mh

T (vh, vh) ≥ α̂MT ∥vh∥
2
0,Ω ,

|Ah
F (ϕh, φh)| ≤ ĈAF ∥ϕh∥2,Ω∥φh∥2,Ω and Ah

F (φh, φh) ≥ α̂AF ∥φh∥
2
2,Ω ,

|Ah
T (vh, wh)| ≤ ĈAT ∥vh∥1,Ω∥wh∥1,Ω and Ah

T (vh, vh) ≥ α̂AT ∥vh∥
2
1,Ω ,

|Bh
F (ζh;ϕh, φh)| ≤ ĈBF ∥ζh∥2,Ω∥ϕh∥2,Ω∥φh∥2,Ω and Bh

F (ζh;φh, φh) = 0,

|Bh
skew(ζh; vh, wh)| ≤ ĈBT ∥ζh∥2,Ω∥vh∥1,Ω∥wh∥1,Ω and Bh

skew(ζh; vh, vh) = 0,

|Ch(vh, φh)| ≤ ∥g∥∞,Ω∥vh∥0,Ω∥φh∥1,Ω , |Fh
ψ (φh)| ≤ ĈFψ ∥fψ∥0,Ω∥φh∥1,Ω and

|Fh
θ (vh)| ≤ ĈFθ ∥ fθ∥0,Ω∥vh∥0,Ω ,

here all the constants involved are positive and independent of mesh size h.

We close this section with the following remarks.

emark 3.2. We can propose an alternative discretization inspired by (2.15), which is given by:

Ah
F (ϕh, φh) :=

∑
E∈Ωh

∫
E
∆Π D,k

E ϕh ∆Π D,k
E φh + sD

E

(
(I − Π D,k

E )ϕh, (I − Π D,k
E )φh

)
∀ϕh, φh ∈ Wh

k ,

hich is also fully computable by using the degrees of freedom DW1 − DW5. Nevertheless, in the present work we
ill stick to the choice (3.9).

emark 3.3. If fψ is given as an explicit function, then we can consider the following alternative discrete load
erm

Fh
ψ (φh) :=

∑
E∈Ωh

∫
E

rot fψ (t)Π k−2
E φh ∀φh ∈ Wh

k ,

hich is also computable using the degrees of freedom DW1 − DW5.

. Fully-discrete formulation and its well posedness

In order to present a full discretization of problem (2.13) we introduce a sequence of time steps tn = n∆t ,
= 0, 1, 2, . . . , N , where ∆t = T/N is the time step. Moreover, we consider the following approximations at each

ime tn: ψn
h ≈ ψh(tn) and θn

h ≈ θh(tn). For the external forces, we introduce the following notation: fn
ψ := fψ (tn),

f n
θ := fθ (tn) and gn

:= g(tn).
We consider the backward Euler method coupled with the VE discretization presented in Section 3, which read

s follows: given (ψ0
h , θ

0
h ), find {(ψn

h , θ
n
h )}N

n=1 ∈ Wh
k × Hh

ℓ , such that

Mh
F

(
ψn

h − ψn−1
h

∆t
, φh

)
+ νAh

F (ψn
h , φh) + Bh

F (ψn
h ;ψn

h , φh) − Ch(θn
h , φh) = Fh

ψ (φh) ∀φh ∈ Wh
k ,

Mh
T

(
θn

h − θn−1
h

∆t
, vh

)
+ κAh

T (θn
h , vh) + Bh

skew(ψn
h ; θn

h , vh) = Fh
θ (vh) ∀vh ∈ Hh

ℓ .

(4.1)

The functions (ψ0
h , θ

0
h ) are initial approximations of (ψh, θh) at t = 0. For instance, we will consider ψ0

h := Shψ0

(see (5.1) below) and θ0
h := Phθ0, with Ph(·) being the energy operator associated to the H1-inner product (for further
etails, see for instance [47, Equation (9)]).

11
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We now recall local inverse inequalities for the virtual spaces Wh
k (E) and Hh

ℓ (E) (see [48,49]):

|φh |2,E ≤ Cinvh−1
E |φh |1,E ∀φh ∈ Wh

k (E) and |vh |1,E ≤ Cinvh−1
E ∥vh∥0,E ∀vh ∈ Hh

ℓ (E). (4.2)

In what follows, we will provide the well-posedness of the fully-discrete formulation (4.1).

heorem 4.1. Let α̂ := min
{
α̂MF , α̂MT

}
and γ := min

{
α̂AF ν, α̂AT κ

}
, where α̂MF , α̂MT , α̂AF and α̂AT are the

onstants in Lemma 3.3. Assume that

α̂ + ∆t
(
γ − Cg

)
> 0, (4.3)

here Cg := ∥g∥L∞(0,T ;L∞(Ω)). Then the fully-discrete scheme (4.1) admits at least one solution (ψn
h , θ

n
h ) ∈ Wh

k ×Hh
ℓ

t every time step tn , with n = 1, . . . , N.

roof. For simplicity we set Xh
k,ℓ := Wh

k × Hh
ℓ and we endow this space with the following equivalent norm:

|||(φh, wh)||| := (∥φh∥
2
1,Ω + ∥wh∥

2
0,Ω )

1
2 ∀(φh, wh) ∈ Xh

k,ℓ.

Next, for 1 ≤ n ≤ N , let (ψn−1
h , θn−1

h ) ∈ Xh
k,ℓ. Thus, for any (ψh, θh) ∈ Xh

k,ℓ, we consider the operator
Φ : Xh

k,ℓ → (Xh
k,ℓ)

∗ defined by

⟨Φ(ψh, θh), (φh, wh)⟩ := Mh
F (ψh, φh) − Mh

F (ψn−1
h , φh) + ν∆t Ah

F (ψh, φh) + ∆t Bh
F (ψh;ψh, φh)

− ∆t Fh
ψ (φh) + Mh

T (θh, wh) − Mh
T (θn−1

h , wh) + κ∆t Ah
T (θh, wh)

+ ∆t Bh
skew(ψh; θh, wh) − ∆t Fh

θ (wh) − ∆tCh(θh, φh) ∀(φh, wh) ∈ Xh
k,ℓ.

(4.4)

From the definition of operator Φ, we observe that for each 1 ≤ n ≤ N a solution (ψn
h , θ

n
h ) ∈ Xh

k,ℓ of
problem (4.1) is characterized by Φ(ψn

h , θ
n
h ) = 0. Thus, we will prove that this operator satisfies the hypothesis of

he fixed point result [40, Chap. IV, Corollary 1.1].
First we will prove its continuity. Indeed, by using of operator Φ and Lemma 3.3, for all (φh, wh) ∈ Xh

k,ℓ have

⟨Φ(ψh, θh) − Φ(ψ⋆
h , θ

⋆
h ), (φh, wh)⟩ := Mh

F (ψh − ψ⋆
h , φh) + ν∆t Ah

F (ψh − ψ⋆
h , φh)

+ ∆t(Bh
F (ψh;ψh, φh) − Bh

F (ψ⋆
h ;ψ⋆

h , φh))

+ Mh
T (θh − θ ⋆h , wh) + κ∆t Ah

T (θh − θ ⋆h , wh)

+ ∆t(Bh
skew(ψh; θh, wh) − Bh

skew(ψ⋆
h ; θ ⋆h , wh)) + ∆tCh(θ ⋆h − θh, φh)

≤ ĈMF ∥ψh − ψ⋆
h∥1,Ω∥φh∥1,Ω + ν∆tĈAF ∥ψh − ψ⋆

h∥2,Ω∥φh∥2,Ω

+ ∆t(Bh
F (ψh;ψh, φh) − Bh

F (ψ⋆
h ;ψ⋆

h , φh))

+ ĈMT ∥θh − θ ⋆h∥0,Ω∥wh∥0,Ω + κ∆tĈAT ∥θh − θ ⋆h∥1,Ω∥wh∥1,Ω

+ ∆t(Bh
skew(ψh; θh, wh) − Bh

skew(ψ⋆
h ; θ ⋆h , wh)) + ∆t∥g∥∞,Ω∥θh − θ ⋆h∥0,Ω∥φh∥1,Ω .

(4.5)

Now, we add and subtract the term Bh
F (ψ⋆

h ;ψh, φh), then by using the linearity in each entry and the continuity
of the trilinear form Bh

F (·; ·, ·) (cf. Lemma 3.3), we obtain

Bh
F (ψh;ψh, φh) − Bh

F (ψ⋆
h ;ψ⋆

h , φh) = Bh
F (ψh − ψ⋆

h ;ψh, φh) + Bh
F (ψ⋆

h ;ψh − ψ⋆
h , φh)

≤ ĈBF (∥ψh − ψ⋆
h∥2,Ω∥ψh∥2,Ω + ∥ψ⋆

h∥2,Ω∥ψh − ψ⋆
h∥2,Ω )∥φh∥2,Ω .

Following analogous steps, we get

Bh
skew(ψh; θh, wh) − Bh

skew(ψ⋆
h ; θ ⋆h , wh) = Bh

skew(ψh − ψ⋆
h ; θh, wh) + Bh

skew(ψ⋆
h ; θh − θ ⋆h , wh)

≤ ĈBT (∥ψh − ψ⋆
h∥2,Ω∥θh∥1,Ω + ∥ψ⋆

h∥2,Ω∥θh − θ ⋆h∥1,Ω )∥wh∥1,Ω .

By combining (4.5), the above estimates, the inverse inequalities (4.2) and the Cauchy–Schwarz inequality, for all
(φh, wh) ∈ Xh

k,ℓ, it holds

⋆ ⋆ −2 −3 ⋆ ⋆

|⟨Φ(ψh, θh) − Φ(ψh , θh ), (φh, wh)⟩| ≤ C(1 + ∆thmin + ∆thmin)|||(ψh − ψh , θh − θh )||| |||(φh, wh)|||.

12
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T

w

T

herefore, we deduce that for h and ∆t fixed

∥Φ(ψh, θh) − Φ(ψ⋆
h , θ

⋆
h )∥(Xh

k,ℓ)∗ −→ 0, when (ψh, θh)
|||·|||

−−→ (ψ⋆
h , θ

⋆
h ),

i.e., Φ is continuous.
On the other hand, by employing again Lemma 3.3 and the Young inequality, for all (ψh, θh) ∈ Xh

k,ℓ, we obtain

⟨Φ(ψh, θh), (ψh, θh)⟩ ≥ α̂MF ∥ψh∥
2
1,Ω −

Ĉ2
MF

2α̂MF

∥ψn−1
h ∥

2
1,Ω −

α̂MF

2
∥ψh∥

2
1,Ω

+ α̂AF ν∆t∥ψh∥
2
2,Ω −

Ĉ2
Fψ
∆t

2α̂AF ν
∥fn
ψ∥

2
0,Ω

−
α̂AF ν∆t

2
∥ψh∥

2
2,Ω + α̂MT ∥θh∥

2
0,Ω −

Ĉ2
MT

2α̂MT

∥θn−1
h ∥

2
0,Ω −

α̂MT

2
∥θh∥

2
0,Ω + α̂AT κ∆t∥θh∥

2
1,Ω

−
Ĉ2

Fθ
∆t

2α̂AT κ
∥ f n

θ ∥
2
0,Ω −

α̂AT κ∆t
2

∥θh∥
2
1,Ω −

∆tCg

2
(∥ψh∥

2
1,Ω + ∥θh∥

2
0,Ω )

≥
1
2

min
{
α̂MF , α̂MT

}
(∥ψh∥

2
1,Ω + ∥θh∥

2
0,Ω ) +

∆t
2

min
{
α̂AF ν, α̂AT κ

}
(∥ψh∥

2
2,Ω + ∥θh∥

2
1,Ω )

−
∆tCg

2
(∥ψh∥

2
1,Ω + ∥θh∥

2
0,Ω ) −

Ĉ2
MF

2α̂MF

∥ψn−1
h ∥

2
1,Ω −

Ĉ2
MT

2α̂MT

∥θn−1
h ∥

2
0,Ω

−

Ĉ2
Fψ
∆t

2α̂AF ν
∥fn
ψ∥

2
0,Ω −

Ĉ2
Fθ
∆t

2α̂AT κ
∥ f n

θ ∥
2
0,Ω

≥
1
2

(̂
α + ∆t

(
γ − Cg

))
(∥ψh∥

2
1,Ω + ∥θh∥

2
0,Ω ) −

Ĉ2
MF

2α̂MF

∥ψn−1
h ∥

2
1,Ω −

Ĉ2
MT

2α̂MT

∥θn−1
h ∥

2
0,Ω

−

Ĉ2
Fψ
∆t

2α̂AF ν
∥fn
ψ∥

2
0,Ω −

Ĉ2
Fθ
∆t

2α̂AT κ
∥ f n

θ ∥
2
0,Ω ,

here we have used the facts that ∥ψh∥1,Ω ≤ ∥ψh∥2,Ω , ∥θh∥0,Ω ≤ ∥θh∥1,Ω and ∆t
2 min

{
α̂AF ν, α̂AT κ

}
(∥ψh∥

2
2,Ω +

∥θh∥
2
1,Ω ) ≥ 0.

Thus, from assumption (4.3), we can set

ρ :=
(̂
α + ∆t

(
γ − Cg

))− 1
2

(
Ĉ2

MF

α̂MF

∥ψn−1
h ∥

2
1,Ω +

Ĉ2
MT

α̂MT

∥θn−1
h ∥

2
0,Ω +

Ĉ2
Fψ
∆t

α̂AF ν
∥fn
ψ∥

2
0,Ω +

Ĉ2
Fθ
∆t

α̂AT κ
∥ f n

θ ∥
2
0,Ω

) 1
2

,

and S :=
{
(ϕh, wh) ∈ Xh

k,ℓ : |||(ϕh, wh)||| ≤ ρ
}
. Then, we have that

⟨Φ(ψh, θh), (ψh, θh)⟩ ≥ 0 for any (ψh, θh) ∈ ∂S.

hen, by employing the fixed point Theorem [40, Chap. IV, Corollary 1.1], there exists (ψn
h , θ

n
h ) ∈ S, such that

Φ(ψn
h , θ

n
h ) = 0, i.e., the fully-discrete problem (4.1) admits at least one solution (ψn

h , θ
n
h ) ∈ S at every time step

tn . □

Remark 4.1. From assumption (4.3) it follows that if Cg ≤ γ then the condition (4.3) is always satisfied. Instead,
if Cg > γ , that is when the buoyancy term is strong when compared to the diffusion terms, a “small time step
condition” ∆t < α̂/(Cg − γ ) is needed in order to guarantee the existence of a discrete solution.

The following result establishes that the fully-discrete scheme (4.1) is unconditionally stable.

Theorem 4.2. Assume that fψ ∈ L2(0, T ; L2(Ω )), fθ ∈ L2(0, T ; L2(Ω )), g ∈ L∞(0, T ; L∞(Ω )). Moreover, suppose
2 1
that the initial data satisfy ψ0 ∈ H0(Ω ) and θ0 ∈ H0(Ω ). Then, the fully-discrete scheme (4.1) is unconditionally

13
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s
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P
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ψ

t

table and satisfy the following estimate for any 0 < m ≤ N

∥(ψm
h , θ

m
h )∥H1(Ω)×L2(Ω) +

(
∆t

m∑
n=1

∥(ψn
h , θ

n
h )∥2

H2(Ω)×H1(Ω)

) 1
2

≤ C
((

∆t
m∑

n=1

∥(fn
ψ , f n

θ )∥2
L2(Ω)×L2(Ω)

) 1
2

+ ∥(ψ0, θ0)∥H2(Ω)×H1(Ω)

)
=: δ,

here C > 0 is independent of h and ∆t .

roof. Let (ψn
h , θ

n
h ) ∈ Wh

k × Hh
ℓ be a solution of fully-discrete problem (4.1). We consider the following equivalent

orms:

|||φh |||F,h := (Mh
F (φh, φh))1/2, |||vh |||T,h := (Mh

T (vh, vh))1/2 φh ∈ Wh
k , ∀vh ∈ Hh

ℓ . (4.6)

Taking vh = θn
h ∈ Hh

ℓ in the second equation of (4.1), using Lemma 3.3, the Young inequality and some identities
f real numbers, we obtain

1
2∆t

(|||θn
h |||

2
T,h − |||θn−1

h |||
2
T,h) + α̂AT κ∥θ

n
h ∥

2
1,Ω ≤ CFθ ∥ f n

θ ∥0,Ω∥θn
h ∥1,Ω ≤ C∥ f n

θ ∥
2
0,Ω +

1
2
α̂AT κ∥θ

n
h ∥

2
1,Ω .

Then, multiplying by 2∆t , using the equivalence of norms and summing for n = 1, . . . ,m, we have that

∥θm
h ∥

2
0,Ω + ∆t

m∑
n=1

∥θn
h ∥

2
1,Ω ≤ C

(
∆t

m∑
n=1

∥ f n
θ ∥

2
0,Ω + ∥θ0

h ∥
2
0,Ω

)
. (4.7)

Analogously, taking φh = ψn
h ∈ Wh

k in the first equation of (4.1) and repeating the same arguments, we obtain

|||ψn
h |||

2
F,h − |||ψn−1

h |||
2
F,h + α̂AF ν∆t∥ψn

h ∥
2
2,Ω ≤ C∆tCg∥θ

n
h ∥

2
0,Ω + C∆t∥fn

ψ∥
2
0,Ω , (4.8)

where the constant Cg is defined in Theorem 4.1.
Now, summing for n = 1, . . . ,m, inserting (4.7) in (4.8) and using the equivalence of norms and, we get

∥ψm
h ∥

2
1,Ω + ∆t

m∑
n=1

∥ψn
h ∥

2
2,Ω ≤ C

(
∆t

m∑
n=1

(
∥fn
ψ∥

2
0,Ω + ∥ f n

θ ∥
2
0,Ω

)
+ ∥ψ0

h ∥
2
1,Ω + ∥θ0

h ∥
2
0,Ω

)
, (4.9)

where the constant Cg was included in the constant C to shorten the bound.
Finally, the desired result follows adding (4.7) and (4.9). □

The following result establishes that the solution of scheme (4.1) is unique for small values of ∆t .

Theorem 4.3. Let α̂MF , α̂MT , ĈBF and ĈBT be the constants in Lemma 3.3. Moreover, let δ be the upper bound
in Theorem 4.2, Cg be the constant defined in Theorem 4.1 and Cinv be the constant in (4.2). Assume that

∆t < min{̂αMF , α̂MT } min
{

h2
min

2C2
inv(ĈBF + ĈBT )δ

,
1

2Cg

}
. (4.10)

Then, for each n = 1, . . . , N the solution of the fully-discrete scheme (4.1) is unique.

Proof. Let 1 ≤ n ≤ N and (ψn
h1, θ

n
h1), (ψn

h2, θ
n
h2) ∈ Wh

k × Hh
ℓ be two solutions of problem (4.1). Then, setting

ñ
h := ψn

h1 − ψn
h2, θ̃n

h := θn
h1 − θn

h2 and using the definition of operator (4.4), for all (φh, vh) ∈ Wh
k × Hh

ℓ , we have
hat

Mh
F (ψ̃n

h , φh) + Mh
T (θ̃n

h , vh) + ν∆t Ah
F (ψ̃n

h , φh) + κ∆t Ah
T (θ̃n

h , vh) − ∆tCh(θ̃n
h , φh)

+ ∆t(Bh
F (ψn

h1;ψ
n
h1, φh) − Bh

F (ψn
h2;ψ

n
h2, φh)) + ∆t(Bh

skew(ψn
h1; θ

n
h1, vh) − Bh

skew(ψn
h2; θ

n
h2, vh)) = 0.

(4.11)

Adding and subtracting Bh
F (ψn

h2;ψ
n
h1, φh) and Bh

skew(ψn
h2; θ

n
h1, vh) we obtain

Bh
F (ψn

h1;ψ
n
h1, φh) − Bh

F (ψn
h2;ψ

n
h2, φh) = Bh

F (ψ̃n
h ;ψn

h1, φh) + Bh
F (ψn

h2; ψ̃
n
h , φh)

Bh
skew(ψn

h1; θ
n
h1, vh) − Bh

skew(ψn
h2; θ

n
h2, vh) = Bh

skew(ψ̃n
h ; θn

h1, vh) + Bh
skew(ψn

h2; θ̃
n
h , vh).
14
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Next, taking φh = ψ̃n
h and vh = θ̃n

h in (4.11), from the above identities, the skew-symmetry of trilinear forms,
the continuity and coercivity properties of the multilinear forms involved (cf. Lemma 3.3), it follows

α̂MF ∥ψ̃n
h ∥

2
1,Ω + α̂MT ∥θ̃n

h ∥
2
0,Ω + α̂AF ν∆t∥ψ̃n

h ∥
2
2,Ω + α̂AT κ∆t∥θ̃n

h ∥
2
1,Ω

≤ ∆tĈBF ∥ψ̃n
h ∥2,Ω∥ψn

h1∥2,Ω∥ψ̃n
h ∥2,Ω + ∆tĈBT ∥ψ̃n

h ∥2,Ω∥θn
h1∥1,Ω∥θ̃n

h ∥1,Ω + ∆tCg∥θ̃
n
h ∥0,Ω∥ψ̃n

h ∥1,Ω

≤ ∆tĈBF ∥ψ̃n
h ∥

2
2,Ω∥ψn

h1∥2,Ω +
1
2
∆tĈBT ∥θn

h1∥1,Ω (∥ψ̃n
h ∥

2
2,Ω + ∥θ̃n

h ∥
2
1,Ω ) +

1
2
∆tCg(∥ψ̃n

h ∥
2
1,Ω + ∥θ̃n

h ∥
2
0,Ω )

≤ ∆t
(
ĈBF ∥ψn

h1∥2,Ω + ĈBT ∥θn
h1∥1,Ω

)
∥(ψ̃n

h , θ̃
n
h )∥2

H2(Ω)×H1(Ω) + ∆tCg∥(ψ̃n
h , θ̃

n
h )∥2

H1(Ω)×L2(Ω).

Now, employing local inverse inequalities (4.2) in the above estimate and Theorem 4.2, we get

min{̂αMF , α̂MF }∥(ψ̃n
h , θ̃

n
h )∥2

H1(Ω)×L2(Ω) ≤
[
Cinvh−1

min∆t
(
(ĈBF + ĈBT )Cinvh−1

minδ
)
+ ∆tCg

]
× ∥(ψ̃n

h , θ̃
n
h )∥2

H1(Ω)×L2(Ω).

From the assumption (4.10), we have that

1
min{̂αMF , α̂MF }

(
Cinvh−1

min(ĈBF + ĈBT )Cinvh−1
minδ + Cg

)
< 1. (4.12)

hus, ψ̃n
h = 0 and θ̃n

h = 0, which implies ψn
h1 = ψn

h2 and θn
h1 = θn

h2. The proof is complete. □

emark 4.2. Exploiting the fact that we are in the two dimensional case and using sharper Sobolev bounds for the
onvective terms (i.e., employing the Hölder inequality, Sobolev bounds with adequate exponents and an inverse
nequality), we could get a power h−ϵ

min, for all ϵ > 0, instead of h−1
min in the term h−1

minδ (see Eq. (4.12)).

. Convergence analysis

This section is devoted to the convergence analysis of the fully-discrete formulation (4.1) introduced in the
revious section. We start recalling some preliminary results of approximation in the polynomial and virtual spaces.
oreover, we introduce an energy operator associated to the H2-inner product with its corresponding approximation

roperties. Later on, we state technical results, which will be useful to provide the convergence result of our
ully-discrete virtual scheme.

.1. Preliminary results

First, we recall the following polynomial approximation result (see for instance [50]). Here below E represents
s usual a generic element of {Ωh}h>0, which we recall satisfies assumptions A1, A2 in Section 3.1.

roposition 5.1. Let m ∈ R and n ∈ N ∪ {0}. Then, for each φ ∈ Hm(E), there exist φπ ∈ Pn(E), and C > 0
ndependent of hE , such that

∥φ − φπ∥t,E ≤ Chm−t
E |φ|m,E , 0 ≤ m ≤ n + 1, t = 0, . . . , [m],

ith [m] denoting the largest integer equal or smaller than m.

Standard arguments and (3.6) lead easily to following approximation properties for the projectors Π n
E (an

nalogous result can be obtained the vectorial version).

roposition 5.2. Let m ∈ R, n ∈ N∪{0} and let Π n
E be the projection defined in (3.5). Then, for each φ ∈ Hm(E),

here exists a constant C, independent of E and hE , such that

∥φ − Π n
Eφ∥t,E ≤ Chm−t

E |φ|m,E , 0 ≤ m ≤ n + 1, t = 0, . . . , [m],

ith [m] denoting the largest integer equal or smaller than m.

Now, we continue with the following approximation for the stream-function and temperature virtual element

paces, which can be found in [19,43,44,51–53], respectively.
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roposition 5.3. Let m ∈ R. Then, for each φ ∈ Hm(Ω ), there exist φI ∈ Wh
k and C I > 0, independent of h, such

hat

∥φ − φI ∥t,Ω ≤ C I hm−t
|φ|m,Ω , t = 0, 1, 2, 2 < m ≤ k + 1, k ≥ 2.

For the temperature variable, we present local and global approximation properties.

roposition 5.4. Let m ∈ R. Then, for each v ∈ Hm(Ω ), there exist vI ∈ Hh
ℓ and C I > 0, independent of h, such

hat
∥v − vI ∥t,E ≤ C I hm−t

E |v|m,E ∀E ∈ Ωh; ∥v − vI ∥t,Ω ≤ C I hm−t
|v|m,Ω , t = 0, 1, 1 < m ≤ ℓ+ 1,

ℓ ≥ 1.

Now, we will introduce the following discrete biharmonic projection associated with the stream-function
iscretization. For each ϕ ∈ H2

0(Ω ), we consider the operator Sh : H2
0(Ω ) → Wh

k , defined as the solution of
roblem:

Ah
F (Shϕ, φh) = AF (ϕ, φh) ∀φh ∈ Wh

k , (5.1)

here AF (·, ·) was defined in (2.5) and we recall that Ah
F (·, ·) is the global version of the form defined in (3.9). By

sing the ellipticity and continuity of the bilinear form Ah
F (·, ·) (cf. Lemma 3.3) and the Lax–Milgram Lemma, we

ave that the above problem (5.1) is well-posed.
By using Propositions 3.1, 5.1 and 5.3, the following approximation result for the energy projection Sh(·) holds

rue (see [54, Lemma 5.3]).

roposition 5.5. For each ϕ ∈ H2
0(Ω ), there exists a unique function Shϕ ∈ Wh

k satisfying (5.1). Moreover, if
∈ H2+s(Ω ), with 1

2 < s ≤ k − 1, then the following approximation property holds:

∥ϕ − Shϕ∥1,Ω + h s̃
∥ϕ − Shϕ∥2,Ω ≤ Ch s̃+s

|ϕ|2+s,Ω ,

here C is a positive constant, independent of h and s̃ ∈ ( 1
2 , 1] depends on the largest reentrant angle of the domain

Ω . In particular, when Ω is a convex domain it holds s̃ = 1.

In what follows, we will establish four technical lemmas involving the trilinear forms associated to trans-
ort/convection and the bilinear form associated to the buoyancy term; these results will be useful in Section 5.2.

emma 5.1. For all ζh;ϕh, φh ∈ Wh
k , there exists ĈBF > 0, independent of h, such that

|Bh
F (ζh;ϕh, φh)| ≤ ĈBF ∥ζh∥2,Ω∥ϕh∥2,Ω∥φh∥

1
2
2,Ω∥φh∥

1
2
1,Ω .

Proof. We use the definition of the trilinear form Bh
F (·; ·, ·) (cf. (3.10)), the Hölder inequality, the continuity of the

operators Π k−2
E and Π k−1

E with respect to the L2- and L4-norms, respectively (cf. properties (3.6)), and the Hölder
inequality for sequences, to obtain

Bh
F (ζh;ϕh, φh) ≤

∑
E∈Ωh

∥Π k−2
E ∆ζh∥0,E∥Π k−1

E curl ϕh∥L4(E)∥Π
k−1
E ∇φh∥L4(E)

≤ C∥∆ζh∥0,Ω∥curl ϕh∥L4(Ω)∥∇φh∥L4(Ω)

≤ C∥∆ζh∥0,Ω∥ϕh∥2,Ω∥∇φh∥L4(Ω),

where we have used the Sobolev inclusion H1(Ω ) ↪→ L4(Ω ). Now, applying the Ladyzhenskaya inequality (2.14)
with v = ∇φh we obtain the desired result. □

Lemma 5.2. For all ζ, ϕ, φ ∈ H2
0(Ω ), we have that

Bh
F (ϕ;ϕ, φ) − Bh

F (ζ ; ζ, φ) = Bh
F (ϕ;ϕ − ζ + φ, φ) + Bh

F (ϕ − ζ + φ; ζ, φ) − Bh
F (φ; ζ, φ).

Proof. The proof follows by adding and subtracting suitable terms, and using the trilineality and skew-symmetry
h
properties of the form BF (·; ·, ·). □
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Next lemmas give us the measure of the variational crime in the discretization of the trilinear forms BF (·; ·, ·)
and Bskew(·; ·, ·) and the bilinear form C(·, ·).

Lemma 5.3. Let ϕ(t) ∈ H2
0(Ω ) ∩ H2+s(Ω ), with 1

2 < s ≤ k − 1, for almost all t ∈ (0, T ). Then, there exists C > 0,
ndependent of mesh size h, such that

|BF (ϕ;ϕ, φh) − Bh
F (ϕ;ϕ, φh)| ≤ Chs(

∥ϕ∥1+s,Ω + ∥ϕ∥2,Ω
)
∥ϕ∥2+s,Ω∥φh∥2,Ω ∀φh ∈ Wh

k .

Proof. The proof has been established in [54, Lemma 5.4]. □

Lemma 5.4. Let 1
2 < γ ≤ min{k − 1, ℓ}. Assume that ϕ(t) ∈ H2

0(Ω ) ∩ H2+γ (Ω ) and v(t) ∈ H1
0(Ω ) ∩ H1+γ (Ω ), for

lmost all t ∈ (0, T ). Then, there exists C > 0, independent of mesh size h, such that, a.e. t ∈ (0, T ),

|Bskew(ϕ; v,wh) − Bh
skew(ϕ; v,wh)| ≤ Chγ ∥ϕ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω ∀wh ∈ Hh

ℓ . (5.2)

oreover, assume that g(t) ∈ Hγ (Ω ) ∩ L∞(Ω ), for almost all t ∈ (0, T ). Then, a.e. t ∈ (0, T ),

|C(v, φh) − Ch(v, φh)| ≤ Chγ max{∥g∥γ,Ω , ∥g∥∞,Ω }∥v∥1+γ,Ω∥φh∥1,Ω ∀φh ∈ Wh
k . (5.3)

roof. To prove estimate (5.2), we split the consistency error as

Bskew(ϕ; v,wh) − Bh
skew(ϕ; v,wh) =

1
2
(β1(wh) + β2(wh)) , (5.4)

here

β1(wh) :=

∑
E∈Ωh

(
B E

T (ϕ; v,wh) − Bh,E
T (ϕ; v,wh)

)
and β2(wh) :=

∑
E∈Ωh

(
B E

T (ϕ;wh, v) − Bh,E
T (ϕ;wh, v)

)
.

In what follows, we will establish bounds for the terms β1(wh) and β2(wh). Indeed, for the term β1(wh) we have

β1(wh) =

∑
E∈Ωh

∫
E

(curl ϕ · ∇v)wh −

∫
E

(Π k−1
E curl ϕ · Π ℓ−1

E ∇v)Π ℓ−1
E wh

=

∑
E∈Ωh

∫
E

(curl ϕ · ∇v)(wh − Π ℓ−1
E wh) +

∑
E∈Ωh

∫
E

(
curl ϕ · (∇v − Π ℓ−1

E ∇v)
)
Π ℓ−1

E wh

+

∑
E∈Ωh

∫
E

(
(curl ϕ − Π k−1

E curl ϕ) · Π ℓ−1
E ∇v

)
Π ℓ−1

E wh

=: T1 + T2 + T3.

(5.5)

In order to bound the terms T1, first we consider the case 1/2 < γ ≤ 1. Then, by using approximation property
f Π ℓ−1

E and the Hölder inequality, it follows

T1 ≤

∑
E∈Ωh

∥curl ϕ∥L4(E)∥∇v∥L4(E)∥wh − Π ℓ−1
E wh∥0,E

≤ C
∑

E∈Ωh

∥curl ϕ∥L4(E)∥∇v∥L4(E)hE |wh |1,E

≤ Chγ ∥ϕ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω .

On the other hand, for the case 1 < γ ≤ ℓ, we use orthogonality property of Π ℓ−1
E , the Hölder inequality (for

equences), to obtain

T1 =

∑
E∈Ωh

∫
E

(curl ϕ · ∇v − Π ℓ−1
E (curl ϕ · ∇v))(wh − Π ℓ−1

E wh).

ow, we apply [55, Theorem 7.4], with s = γ − 1, s1 = s2 = γ and p = p1 = p2 = 2 to obtain
γ−1
url ϕ · ∇v ∈ H (Ω ) and |curl ϕ · ∇v|γ−1,Ω ≤ C∥ϕ∥1+γ,Ω∥v∥1+γ,Ω .
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Thus, by using Proposition 5.2 and the above facts, we arrive

T1 ≤ Chγ−1
|curl ϕ · ∇v|γ−1,Ωh∥wh∥1,Ω ≤ Chγ ∥ϕ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω .

Collecting the above inequalities, for 1
2 < γ ≤ ℓ, we have

T1 ≤ Chγ ∥ϕ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω . (5.6)

Now, for the term T2 we proceed as follows. First, we apply the Hölder inequality, then by using stability and
pproximation properties of the L2-projectors (cf. properties (3.6) and Proposition 5.2), Sobolev embedding and the
ölder inequality for sequences, we get

T2 ≤

∑
E∈Ωh

∥curl ϕ∥L4(E)∥∇v − Π ℓ−1
E ∇v∥0,E∥Π ℓ−1

E wh∥L4(E) ≤ Chγ ∥ϕ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω . (5.7)

For the term T3, we follow similar arguments, to obtain

T3 ≤ Chγ ∥ϕ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω . (5.8)

From the bounds (5.5)–(5.8), we conclude that

β1(wh) ≤ Chγ ∥ϕ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω . (5.9)

Now, we will focus on the term β2(wh). To estimate this term, first we add and subtract suitable expressions to
obtain

β2(wh) =

∑
E∈Ωh

∫
E

(curl ϕ · ∇wh)v −

∫
E

(Π k−1
E curl ϕ · Π ℓ−1

E ∇wh)Π ℓ−1
E v

=

∑
E∈Ωh

∫
E
v(curl ϕ) · (∇wh − Π ℓ−1

E ∇wh) +

∑
E∈Ωh

∫
E

(
curl ϕ − Π k−1

E curl ϕ
)
· vΠ ℓ−1

E ∇wh

+

∑
E∈Ωh

∫
E

(
Π k−1

E curl ϕ · Π ℓ−1
E ∇wh

)
(v − Π ℓ−1

E v)

=: I1 + I2 + I3.

Applying orthogonality and approximation properties of Π ℓ−1
E , we have

I1 =

∑
E∈Ωh

∫
E

(v(curl ϕ) − Π ℓ−1
E (v(curl ϕ))) · (∇wh − Π ℓ−1

E ∇wh)

≤ C
∑

E∈Ωh

hγE |v(curl ϕ)|γ,E |wh |1,E ≤ Chγ |v(curl ϕ)|γ,Ω∥wh∥1,Ω .

Then, applying again [55, Theorem 7.4], now with s = γ , s1 = γ + 1, s2 = γ and p = p1 = p2 = 2, we get

|v(curl ϕ)|γ,Ω ≤ C∥v∥1+γ,Ω∥ϕ∥1+γ,Ω .

From the two bounds above, we obtain

I1 ≤ Chγ ∥ϕ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω .

The terms I2 and I3 can be estimated using similar arguments. We conclude that

β2(wh) ≤ Chγ ∥ϕ∥2+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω . (5.10)
The proof of (5.2) follows from (5.4), (5.9) and (5.10).
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Next, we will prove property (5.3). Let φh ∈ Wh
k , then adding and subtracting the term gv ·Π k−1

E curlφh and by
using orthogonality, stability and approximations properties of the L2-projections, we have

C(v, φh) − Ch(v, φh) =

∑
E∈Ωh

∫
E

(gv − Π k−1
E (gv)) · (curl φh − Π k−1

E curl φh)

+

∫
E

g(v − Π ℓ−1
E v) · Π k−1

E curl φh

≤ C
∑

E∈Ωh

(hγE |gv|γ,E∥curl φh∥0,E + hγE∥g∥L∞(E)∥v∥γ,E∥curl φh∥0,E )

≤ Chγ (∥g∥γ,Ω∥v∥1+γ,Ω∥φh∥1,Ω + hγE∥g∥∞,Ω∥v∥γ,Ω∥φh∥1,Ω ),

here we have used analogous step to those used to bound I1. The proof is complete. □

We finish this subsection recalling a discrete Gronwall inequality, which will be useful to derive the error estimate
f the fully-discrete virtual scheme (4.1).

emma 5.5. Let D ≥ 0, a j , b j , c j and λ j be non negative numbers for any integer j ≥ 0, such that

an + ∆t
n∑

j=0

b j ≤ ∆t
n∑

j=0

λ j a j + ∆t
n∑

j=0

c j + D, n ≥ 0.

uppose that ∆tλ j < 1 for all j , and set σ j := (1 − ∆tλ j )−1. Then, the following bound holds

an + ∆t
n∑

j=0

b j ≤ exp
(
∆t

n∑
j=0

σ jλ j

)(
∆t

n∑
j=0

c j + D
)
.

roof. See [56, Lemma 5.1]. □

.2. Error estimates for the fully-discrete scheme

In this subsection we will provide a convergence result for the fully-discrete problem (4.1) under suitable
egularity conditions for the exact solution.

We start denoting (ψ(tn), θ(tn)) as (ψn, θn) at each time level tn , and splitting the stream-function error as follows:

ψn
− ψn

h = (ψn
− Shψ

n) − (ψn
h − Shψ

n) =: ηn
ψ − ϕn

ψ .

For the temperature variable we will exploit the virtual interpolant presented in Proposition 5.4, to split the error
s:

θn
− θn

h = (θn
− θn

I ) − (θn
h − θn

I ) =: ηn
θ − ϕn

θ ,

here θn
I is the interpolant of θn in the virtual space Hh

ℓ .
Error estimates for the terms ηn

θ and ηn
ψ are given by Propositions 5.4 and 5.5, respectively. Therefore, we will

ocus on the terms ϕn
ψ and ϕn

θ .
We start establishing error equations of the momentum and energy identities. Indeed, by using the fully-discrete

cheme (4.1), the continuous weak formulation (2.13) and the biharmonic energy projection Sh defined in (5.1), we
ave the following error equation for the momentum identity (where we have taken φh = ϕn

ψ ∈ Wh
k )

Mh
F

(
ϕn
ψ − ϕn−1

ψ

∆t
, ϕn

ψ

)
+ νAh

F (ϕn
ψ , ϕ

n
ψ ) =

(
Fh
ψ (ϕn

ψ ) − Fψ (ϕn
ψ )
)

+

(
BF (ψn

;ψn, ϕn
ψ ) − Bh

F (ψn
h ;ψn

h , ϕ
n
ψ )
)

+

(
MF (∂tψ

n, ϕn
ψ ) − Mh

F

(Shψ
n
− Shψ

n−1

∆t
, ϕn

ψ

))
+

(
Ch(θn

h , ϕ
n
ψ ) − C(θn, ϕn

ψ )
)

=: TF + TB + TM + TC .

(5.11)
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nalogously, recalling that ϕn
θ = θn

h − θn
I , and using the definition of the continuous and discrete problems (cf.

(2.13) and (4.1), respectively) for the energy equation, we have that

Mh
T

(
ϕn
θ − ϕn−1

θ

∆t
, ϕn

θ

)
+ κAh

T (ϕn
θ , ϕ

n
θ ) =

(
Fh
θ (ϕn

θ ) − Fθ (ϕn
θ )
)

+

(
Bskew(ψn

; θn, ϕn
θ ) − Bh

skew(ψn
h ; θn

h , ϕ
n
θ )
)

+

(
MT (∂tθ

n, ϕn
θ ) − Mh

T

(θn
I − θn−1

I

∆t
, ϕn

θ

))
+ κ

(
AT (θn, ϕn

θ ) − Ah
T (θn

I , ϕ
n
θ )
)

=: IF + IB + IM + IA.

(5.12)

The next step is to establish error estimates for the momentum and energy Eqs. (5.11) and (5.12). The following two
lemmas provide such bounds and will be useful to obtain the convergence result for the fully-discrete problem (4.1).

Lemma 5.6 (Error Estimate for the Momentum Equation). Suppose that the external forces satisfy fψ ∈ L∞(0, T ;

Hs(Ω )) and g ∈ L∞(0, T ; Hmin{s,r}(Ω )∩L∞(Ω )), with 1
2 < s ≤ k −1 and 1 ≤ r ≤ ℓ. Let (ψn, θn) ∈ H2

0(Ω )×H1
0(Ω )

e the solution of problem (2.13) at time t = tn . Moreover, assume that

ψ ∈ L∞(0, T ; H2+s(Ω )), ∂tψ ∈ L1(0, T ; H1+s(Ω )), ∂t tψ ∈ L1(0, T ; H1(Ω )),
and θ ∈ L∞(0, T ; Hr (Ω )).

et (ψn
h , θ

n
h ) ∈ Wh

k × Hh
ℓ be the virtual element solution generated by scheme (4.1). Then, the following error

stimate holds

1
2∆t

(
|||ϕn

ψ |||
2
F,h − |||ϕn−1

ψ |||
2
F,h

)
+
α̂AF ν

2
∥ϕn

ψ∥
2
2,Ω ≤ C

[
1 + ν−3 (

∥ηn
ψ∥

4
2,Ω + ∥ψn

∥
4
2,Ω

)]
|||ϕn

ψ |||
2
F,h

+ C
[
ν−1(∥ψn

∥
2
2,Ω + ∥ηn

ψ∥
2
2,Ω )

]
∥ηn

ψ∥
2
2,Ω + ∥gn

∥
2
∞,Ω (∥ηn

θ∥
2
0,Ω + ∥ϕn

θ ∥
2
0,Ω )

+ Ch2s
(
∥fψ∥

2
L∞(tn−1,tn ;Hs (Ωh )) + ν−1

∥ψn
∥

2
2+s,Ω

)
+ Ch2 min{s,r} max{∥gn

∥
2
min{s,r},Ω , ∥gn

∥
2
∞,Ω }∥θn

∥
2
r,Ω

+ C∥∂t tψ∥L1(tn−1,tn ;H1(Ω))|||ϕ
n
ψ |||F,h +

C
∆t

hs
∥∂tψ∥L1(tn−1,tn ;H1+s (Ω))|||ϕ

n
ψ |||F,h .

(5.13)

roof. We will estimate each terms in (5.11). Indeed, by using the definition of the functionals Fψ (·) and Fh
ψ (·),

he Cauchy–Schwarz and Young inequalities for the term TF holds

TF ≤
C
2c

h2s
∥fψ∥

2
L∞(tn−1,tn ;Hs (Ωh )) +

c
2
∥ϕn

ψ∥
2
1,Ω . (5.14)

For the term TM , we proceed similarly as in [54, Theorem 5.6] to obtain

TM := MF (∂tψ
n, ϕn

ψ ) − Mh
F

(
Shψ

n
− Shψ

n−1

∆t
, ϕn

ψ

)
= MF

(
∂tψ

n
−
ψn

− ψn−1

∆t
, ϕn

ψ

)
+

∑
E∈Ωh

M E
F

(
ψn

− ψn−1

∆t
−

(
Π D,k

E (ψn
− ψn−1)

∆t

)
, ϕn

ψ

)

+

∑
E∈Ωh

M E,h
F

((
Π D,k

E (ψn
− ψn−1)

∆t

)
−

Shψ
n
− Shψ

n−1

∆t
, ϕn

ψ

)

≤ C∥∂t tψ∥ 1 1 ∥ϕn
∥1,Ω +

C
hs

∥∂tψ∥ 1 1+s ∥ϕn
∥1,Ω .

(5.15)
L (tn−1,tn ;H (Ω)) ψ ∆t L (tn−1,tn ;H (Ω)) ψ
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Next, to estimate TC , we add and subtract the term Ch(θn, ϕn
ψ ) to get

TC := Ch(θn
h , ϕ

n
ψ ) − C(θn, ϕn

ψ ) = Ch(θn
h − θn, ϕn

ψ ) + (Ch(θn, ϕn
ψ ) − C(θn, ϕn

ψ ))

= (Ch(ϕn
θ , ϕ

n
ψ ) − Ch(ηn

θ , ϕ
n
ψ )) + (Ch(θn, ϕn

ψ ) − C(θn, ϕn
ψ ))

≤ ∥gn
∥∞,Ω

(
∥ϕn

θ ∥0,Ω + ∥ηn
θ∥0,Ω

)
∥ϕn

ψ∥1,Ω + Chmin{s,r} max{∥gn
∥min{s,r},Ω , ∥gn

∥∞,Ω }∥θn
∥r,Ω∥ϕn

ψ∥1,Ω

≤ C∥gn
∥

2
∞,Ω (∥ϕn

θ ∥
2
0,Ω + ∥ϕn

ψ∥
2
1,Ω ) + Ch2 min{s,r} max{∥gn

∥
2
min{s,r},Ω , ∥gn

∥
2
∞,Ω }∥θn

∥
2
r,Ω + c∥ϕn

ψ∥
2
1,Ω ,

(5.16)

where we have used the Hölder inequality, bound (5.3) (with γ = min{s, r}) and the Young inequality.
For the term TB , we have

TB := BF (ψn
;ψn, ϕn

ψ ) − Bh
F (ψn

h ;ψn
h , ϕ

n
ψ ) =

(
BF (ψn

;ψn, ϕn
ψ ) − Bh

F (ψn
;ψn, ϕn

ψ )
)

+
(
Bh

F (ψn
;ψn, ϕn

ψ ) − Bh
F (ψn

h ;ψn
h , ϕ

n
ψ )
)

=: TB1 + TB2.
(5.17)

Now, we will bound the terms TB1 and TB2. Indeed, from Lemma 5.3 and the Young inequality we have that

TB1 := BF (ψn
;ψn, ϕn

ψ ) − Bh
F (ψn

;ψn, ϕn
ψ ) ≤ C hs(∥ψn

∥2+s,Ω + ∥ψn
∥2,Ω )∥ψn

∥2+s,Ω∥ϕn
ψ∥2,Ω

≤
4Cψ

α̂AF ν
h2s

∥ψn
∥

2
2+s,Ω +

α̂AF ν

8
∥ϕn

ψ∥
2
2,Ω

≤ Cψν
−1h2s

∥ψn
∥

2
2+s,Ω +

α̂AF ν

8
∥ϕn

ψ∥
2
2,Ω ,

(5.18)

where we have included the term (∥ψn
∥2+s,Ω + ∥ψn

∥2,Ω ) in the constant Cψ in order to shorten the inequality.
On the other hand, to bound the expression TB2, we apply Lemma 5.2, recall that ϕn

ψ = ψn
h − Shψ

n and
ηn
ψ = ψn

− Shψ
n , to arrive

TB2 := Bh
F (ψn

;ψn, ϕn
ψ ) − Bh

F (ψn
h ;ψn

h , ϕ
n
ψ )

= Bh
F (ψn

;ψn
− ψn

h + ϕn
ψ , ϕ

n
ψ ) + Bh

F (ψn
− ψn

h + ϕn
ψ ;ψn

h , ϕ
n
ψ ) − Bh

F (ϕn
ψ ;ψn

h , ϕ
n
ψ )

= Bh
F (ψn

; ηn
ψ , ϕ

n
ψ ) + Bh

F (ηn
ψ ;ψn

h , ϕ
n
ψ ) − Bh

F (ϕn
ψ ;ψn

h , ϕ
n
ψ ).

(5.19)

By using Lemma 3.3, together with the Young inequality, we have

Bh
F (ψn

; ηn
ψ , ϕ

n
ψ ) ≤

α̂AF ν

8
∥ϕn

ψ∥
2
2,Ω + Cν−1

∥ψn
∥

2
2,Ω∥ηn

ψ∥
2
2,Ω .

Now, adding and subtracting suitable terms, and employing Lemma 3.3 along with the Young inequality, we
obtain

Bh
F (ηn

ψ ;ψn
h , ϕ

n
ψ ) = Bh

F (ηn
ψ ;ψn

+ (ψn
h − ψn), ϕn

ψ )

= Bh
F (ηn

ψ ;ψn, ϕn
ψ ) + Bh

F (ηn
ψ ;ϕn

ψ − ηn
ψ , ϕ

n
ψ )

= Bh
F (ηn

ψ ;ψn, ϕn
ψ ) − Bh

F (ηn
ψ ; ηn

ψ , ϕ
n
ψ )

≤ ĈBF

(
∥ψn

∥2,Ω + ∥ηn
ψ∥2,Ω

)
∥ηn

ψ∥2,Ω∥ϕn
ψ∥2,Ω

≤
α̂AF ν

8
∥ϕn

ψ∥
2
2,Ω + Cν−1(∥ψn

∥
2
2,Ω + ∥ηn

ψ∥
2
2,Ω )∥ηn

ψ∥
2
2,Ω .

Once again adding and subtracting adequate terms, using Lemma 5.1 and the Young inequality, we get

−Bh
F (ϕn

ψ ;ψn
h , ϕ

n
ψ ) = Bh

F (ϕn
ψ ; (ψn

− ψn
h ) − ψn, ϕn

ψ ) = Bh
F (ϕn

ψ ; ηn
ψ , ϕ

n
ψ ) − Bh

F (ϕn
ψ ;ψn, ϕn

ψ )

≤ ĈBF ∥ϕn
ψ∥2,Ω

(
∥ηn

ψ∥2,Ω + ∥ψn
∥2,Ω

)
∥ϕn

ψ∥

1
2
2,Ω∥ϕn

ψ∥

1
2
1,Ω

≤
α̂AF ν

16
∥ϕn

ψ∥
2
2,Ω + 2Cν−1 (

∥ηn
ψ∥

2
2,Ω + ∥ψn

∥
2
2,Ω

)
∥ϕn

ψ∥2,Ω∥ϕn
ψ∥1,Ω

≤
α̂AF ν

16
∥ϕn

ψ∥
2
2,Ω + 2ν−2C4ν

−1 (
∥ηn

ψ∥
2
2,Ω + ∥ψn

∥
2
2,Ω

)2
∥ϕn

ψ∥
2
1,Ω +

α̂AF ν

16
∥ϕn

ψ∥
2
2,Ω

≤
α̂AF ν

∥ϕn
∥

2
+ 4C4ν

−3 (
∥ηn

∥
4

+ ∥ψn
∥

4 )
∥ϕn

∥
2 .
8 ψ 2,Ω ψ 2,Ω 2,Ω ψ 1,Ω
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Combining the estimates (5.17)–(5.19) and the three previous inequalities, we have

TB ≤ C1ν
−1h2s

∥ψn
∥

2
2+s,Ω∥ψn

∥
2
2,Ω +

α̂AF ν

2
∥ϕn

ψ∥
2
2,Ω + Cν−1

∥ψn
∥

2
2,Ω∥ηn

ψ∥
2
2,Ω

+ Cν−1(∥ψn
∥

2
2,Ω + ∥ηn

ψ∥
2
2,Ω )∥ηn

ψ∥
2
2,Ω + C4ν

−3 (
∥ηn

ψ∥
4
2,Ω + ∥ψn

∥
4
2,Ω

)
∥ϕn

ψ∥
2
1,Ω .

(5.20)

Now, from estimates (5.11), (5.14)–(5.16) and (5.20), the definition and equivalence of the norm ||| · |||F,h (cf.
(4.6)), together with the coercivity of bilinear form Ah

F (·, ·) we obtain the desired estimate. □

Lemma 5.7 (Error Estimate for the Energy Equation). Let 1
2 < s ≤ k − 1 and 1 ≤ r ≤ ℓ. Suppose that

fθ ∈ L∞(0, T ; Hr (Ω )). Moreover, let (ψn, θn) ∈ H2
0(Ω ) × H1

0(Ω ) be the solution of problem (2.13) at time t = tn
nd assume that

θ ∈ L∞(0, T ; H1+r (Ω ) ∩ W1
∞

(Ω )), ∂tθ ∈ L1(0, T ; Hr (Ω )), ∂t tθ ∈ L1(0, T ; L2(Ω ))

and ψ ∈ L∞(0, T ; H2+s(Ω )).

Let (ψn
h , θ

n
h ) ∈ Wh

k × Hh
ℓ be the virtual element solution generated by scheme (4.1). Then, the following error

stimate holds
1

2∆t

(
|||ϕn

θ |||
2
T,h − |||ϕn−1

θ |||
2
T,h

)
+
α̂AT κ

2
∥ϕn

θ ∥
2
1,Ω ≤ C∥ϕn

θ ∥
2
0,Ω + κ−1

∥θn
∥

2
1,Ω∥ηn

ψ∥
2
2,Ω

+ C
[
κ−1(∥ψn

∥
2
2,Ω + ∥ηn

ψ∥
2
2,Ω )

]
∥ηn

θ∥
2
1,Ω + C |||ϕn

θ |||
2
T,h

+ Ch2r
∥ fθ∥2

L∞(tn−1,tn ;Hr (Ωh )) + Cκ−1h2 min{s,r}
∥ψn

∥
2
2+s,Ω∥θn

∥
2
2+r,Ω

+ C∥∂t tθ∥L1(tn−1,tn ;L2(Ω))|||ϕ
n
θ |||T,h +

C
∆t

hr
∥∂tθ∥L1(tn−1,tn ;Hr (Ω))|||ϕ

n
θ |||T,h .

(5.21)

roof. We will establish estimates for each terms in the error equation (5.12). We start with the term IF , which is
ounded by using the Cauchy–Schwarz inequality and approximation properties of projection Π ℓ

E , as follows:

IF := Fh
θ (ϕn

θ ) − Fθ (ϕn
θ ) ≤

C
2c

h2r
∥ fθ∥2

L∞(tn−1,tn ;Hr (Ωh )) +
c
2
∥ϕn

θ ∥
2
0,Ω . (5.22)

For the term IM , we proceed similarly as in [47, Theorem 3.3] to obtain

IM := MT (∂tθ
n, ϕn

θ ) − Mh
F

(θn
I − θn−1

I

∆t
, ϕn

θ

)
≤ C∥∂t tθ∥L1(tn−1,tn ;L2(Ω))∥ϕ

n
θ ∥0,Ω +

C
∆t

hr
∥∂tθ∥L1(tn−1,tn ;Hr (Ω))∥ϕ

n
θ ∥0,Ω .

(5.23)

Analogously, as in (5.17) we split the term IB as follows:

IB := Bskew(ψn
; θn, ϕn

θ ) − Bh
skew(ψn

h ; θn
h , ϕ

n
ψ ) =

(
Bskew(ψn

; θn, ϕn
θ ) − Bh

skew(ψn
; θn, ϕn

θ )
)

+

(
Bh

skew(ψn
; θn, ϕn

θ ) − Bh
skew(ψn

h ; θn
h , ϕ

n
θ )
)

=: IB1 + IB2.
(5.24)

Now, applying the bound (5.2), with γ = min{s, r} and using the Young inequality, we obtain

IB1 := Bskew(ψn
; θn, ϕn

θ ) − Bh
skew(ψn

; θn, ϕn
θ ) ≤ Chmin{s,r}

∥ψn
∥2+s,Ω∥θn

∥1+r,Ω∥ϕn
θ ∥1,Ω

≤ Cκ−1h2 min{s,r}
∥ψn

∥
2
2+s,Ω∥θn

∥
2
1+r,Ω +

α̂AT κ

10
∥ϕn

θ ∥
2
1,Ω .

(5.25)

On the other hand, similarly as in (5.19) and (5.20), we can derive

IB2 = Bh
skew(ψn

; ηn
θ , ϕ

n
θ ) + Bh

skew(ηn
ψ ; θn

h , ϕ
n
θ ) − Bh

skew(ϕn
ψ ; θn

h , ϕ
n
θ )

≤
α̂AT κ

10
∥ϕn

θ ∥
2
1,Ω + Cκ−1

∥ψn
∥

2
2,Ω∥ηn

θ∥
2
1,Ω +

α̂AT κ

10
∥ϕn

θ ∥
2
1,Ω + Cκ−1(∥θn

∥
2
1,Ω + ∥ηn

θ∥
2
1,Ω )∥ηn

ψ∥
2
2,Ω

− Bh
skew(ϕn

ψ ; θn
h , ϕ

n
θ ).

(5.26)

However, since the discrete trilinear form Bh
skew(·; ·, ·) does not satisfy an analogous property to Lemma 5.1,

e will bound the last term in (5.26) by a different way. Indeed, adding and subtracting adequate terms, using
22
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t
(

(

t

L
h

he definition of trilinear form, the Hölder inequality and employing the continuity of the L2-projections involved
cf. (3.6)), we obtain

−Bh
skew(ϕn

ψ ; θn
h , ϕ

n
θ ) = Bh

skew(ϕn
ψ ; ηn

θ , ϕ
n
θ ) + Bh

skew(ϕn
ψ ; −θn, ϕn

θ )

=
1
2

(
Bh

T (ϕn
ψ ; ηn

θ , ϕ
n
θ ) − Bh

T (ϕn
ψ ;ϕn

θ , η
n
θ )
)
+ Bh

skew(ϕn
ψ ; −θn, ϕn

θ )

≤ C
∑

E∈Ωh

∥Π ℓ−1
E ∇ηn

θ∥L∞(E)∥curl ϕn
ψ∥0,E∥ϕn

θ ∥0,E

+ C
∑

E∈Ωh

∥Π ℓ−1
E ηn

θ∥L∞(E)∥curl ϕn
ψ∥0,E∥∇ϕn

θ ∥0,E + Bh
skew(ϕn

ψ ; −θn, ϕn
θ ).

(5.27)

Now, applying an inverse inequality for polynomials, the continuity of Π ℓ−1
E , and Proposition 5.4, for r ≥ 1 we

get

∥Π ℓ−1
E ∇ηn

θ∥L∞(E) ≤ Ch−1
E ∥Π ℓ−1

E ∇ηn
θ∥0,E ≤ Ch−1

E ∥ηn
θ∥1,E ≤ C∥θn

∥1+r,E ≤ Creg.

Analogously, we have that

∥Π ℓ−1
E ηn

θ∥L∞(E) ≤ C∥θn
∥1+r,E ≤ Creg.

Next, under assumption θn
∈ W1

∞
(Ω ), the definition of the form Bh

skew(·; ·, ·) and the Cauchy–Schwarz inequality,
we get

Bh
skew(ϕn

ψ ; −θn, ϕn
θ ) ≤ C1∥θ

n
∥W1

∞(Ω)∥ϕ
n
ψ∥1,Ω∥ϕn

θ ∥0,Ω ≤ Creg∥ϕ
n
ψ∥1,Ω∥ϕn

θ ∥0,Ω .

Inserting the above estimates in (5.27), and applying the Cauchy–Schwarz and Young inequalities, it follows

−Bh
skew(ϕn

ψ ; θn
h , ϕ

n
θ ) ≤ 3Creg∥ϕ

n
ψ∥1,Ω∥ϕn

θ ∥1,Ω ≤ Cκ−1
∥ϕn

ψ∥
2
1,Ω +

α̂AT κ

10
∥ϕn

θ ∥
2
1,Ω . (5.28)

Then, combining the estimates (5.24), (5.25), (5.26) and (5.28), we obtain

IB ≤ Cκ−1h2 min{s,r}
∥ψn

∥
2
2+s,Ω∥θn

∥
2
1+r,Ω + Cκ−1

∥ψn
∥

2
2,Ω∥ηn

θ∥
2
1,Ω

+ Cκ−1(∥θn
∥

2
1,Ω + ∥ηn

θ∥
2
1,Ω )∥ηn

ψ∥
2
2,Ω +

4α̂AT κ

10
∥ϕn

θ ∥
2
1,Ω + C(κ−1

+ 1)∥ϕn
ψ∥

2
1,Ω .

(5.29)

Now, for the term IA, we add and subtract θn
π ∈ Pℓ(E) such that Proposition 5.1 holds true, then applying the

consistency property of Ah,E
T (·, ·), the triangle inequality and Proposition 5.4, we have that

IA = κ
∑

E∈Ωh

(
AE

T (θn, ϕn
θ ) − Ah,E

T (θn
I , ϕ

n
θ )
)

= κ
∑

E∈Ωh

(
AE

T (θn
− θn

π , ϕ
n
θ ) + Ah,E

T (θn
π − θn

I , ϕ
n
θ )
)

≤ Cκhr
∥θn

∥1+r,Ω∥ϕn
θ ∥1,Ω

≤ Ch2r
∥θn

∥
2
1+r,Ω +

α̂AT κ

10
∥ϕn

θ ∥
2
1,Ω .

(5.30)

Now, from bounds (5.12), (5.22), (5.23), (5.29) and (5.30), the definition and equivalence of the norms ||| · |||T,h
cf. (4.6)) and ∥ · ∥0,Ω , together with the coercivity of bilinear form Ah

T (·, ·), we obtain the estimate (5.21). □

The following result establishes an error estimate for the fully-discrete virtual scheme (4.1).

Theorem 5.1. Suppose that the external forces satisfy fψ ∈ L∞(0, T ; Hs(Ω )), fθ ∈ L∞(0, T ; Hr (Ω )) and
g ∈ L∞(0, T ; Hmin{s,r}(Ω ) ∩ L∞(Ω )), with 1

2 < s ≤ k − 1 and 1 ≤ r ≤ ℓ. Let (ψn, θn) ∈ H2
0(Ω ) × H1

0(Ω ) be
he solution of problem (2.13) at time t = tn . Moreover, assume that

ψ ∈ L∞(0, T ; H2+s(Ω )), ∂tψ ∈ L1(0, T ; H1+s(Ω )), ∂t tψ ∈ L1(0, T ; H1(Ω )),

θ ∈ L∞(0, T ; H1+r (Ω ) ∩ W1
∞

(Ω )), ∂tθ ∈ L1(0, T ; Hr (Ω )), ∂t tθ ∈ L1(0, T ; L2(Ω )).

et (ψn
h , θ

n
h ) ∈ Wh

k × Hh
ℓ be the virtual element solution generated by scheme (4.1). Then, the following estimate

olds

∥(ψn
− ψn

h , θ
n
− θn

h )∥2
H1(Ω)×L2(Ω) + ∆t

n∑
∥(ψ j

− ψ
j

h , θ
j
− θ

j
h )∥2

H2(Ω)×H1(Ω) ≤ C(h2 min{s,r}
+ ∆t2),
j=1
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here the constant C is positive and depends on the physical parameters ν, κ , final time T , mesh regularity
arameter, the regularity of the Boussinesq solution fields (ψ, θ) and the external forces fψ , fθ , g, but is independent
f mesh size h and time steps ∆t .

roof. The desired estimate will follow combining Lemmas 5.6 and 5.7 with the discrete Gronwall inequality.
ndeed, we proceed to multiply by 2∆t the estimates (5.13) and (5.21), then by employing the Young inequality to
he resulting bounds and iterating j = 0, . . . , n, we have

|||ϕn
ψ |||

2
F,h + |||ϕn

θ |||
2
T,h + ∆t

n∑
j=0

∥ϕ
j
ψ∥

2
2,Ω + ∆t

n∑
j=0

∥ϕ
j
θ ∥

2
1,Ω

≤ C∆t
n∑

j=0

[
1 + ν−3

(
∥η

j
ψ∥

4
2,Ω + ∥ψ j

∥
4
2,Ω

)]
|||ϕ

j
ψ |||

2
F,h + C∆t

n∑
j=0

[
1 + ∥g j

∥
2
∞,Ω

]
|||ϕ

j
θ |||

2
T,h

+ C∆t
n∑

j=0

[
ν−1(∥ψ j

∥
2
2,Ω + ∥η

j
ψ∥

2
2,Ω ) + κ−1

∥θ j
∥

2
1,Ω

]
∥η

j
ψ∥

2
2,Ω

+ C∆t
n∑

j=0

[
κ−1(∥ψ j

∥
2
2,Ω + ∥η

j
ψ∥

2
2,Ω ) + ∥g j

∥
2
∞,Ω

]
∥η

j
θ∥

2
1,Ω

+ C∆th2s
(
∥fψ∥

2
L∞(0,tn ;Hs (Ωh )) + ∥∂tψ∥

2
L1(0,tn ;H1+s (Ω)) + ν−1

∥ψ∥
2
L∞(0,tn ;H2+s (Ω))

)
+ ∆th2 min{s,r} max{∥g∥

2
L∞(0,tn ;Hmin{s,r}(Ω)), ∥g∥

2
L∞(0,tn ;L∞(Ω))}∥θ∥

2
L∞(0,tn ;Hr (Ω))

+ C∆th2r
(
∥ fθ∥2

L∞(0,tn ;Hr (Ωh )) + ∥∂tθ∥
2
L1(0,tn ;Hr (Ω))

)
+ C∆tκ−1h2 min{s,r}

(
∥ψ∥

2
L∞(0,tn ;H2+s (Ω)) + ∥θ∥2

L∞(0,tn ;H1+r (Ω))

)
+ C∆t2

(
∥∂t tθ∥

2
L1(0,tn ;L2(Ω)) + ∥∂t tψ∥

2
L1(0,tn ;H1(Ω))

)
+ α̂MF ∥ϕ0

ψ∥
2
1,Ω + α̂MT ∥ϕ0

θ∥
2
0,Ω .

Thus, applying the discrete Gronwall inequality (cf. Lemma 5.5), choosing (ψ0
h , θ

0
h ) = (ψI (0), θI (0)) and using

ropositions 5.3 and 5.4 along with the equivalence of norms, we have

(∥ϕn
ψ∥

2
1,Ω + ∥ϕn

θ ∥
2
0,Ω ) + ∆t

n∑
j=1

(∥ϕ j
ψ∥

2
2,Ω + ∥ϕ

j
θ ∥

2
1,Ω ) ≤ C(h2 min{s,r}

+ ∆t2),

ith 1
2 < s ≤ k − 1, 1 ≤ r ≤ ℓ and C > 0 is independent of mesh size h and time step ∆t .

Finally, the desired result follows from the above estimate, triangular inequality, together with Propositions 5.4
and 5.5. □

Remark 5.1. In the present framework, the main advantage of using an energy projector Shψ
n , as we do for the

stream-function space, is to obtain a shorter proof. Nevertheless, for the temperature variable we do not use an
energy projector, but resort to a standard interpolant θn

I . The reason is that we need also some local approximation
roperties for the temperature field that the energy projection operator, being global in nature, would not have.

. Numerical results

In this section we carry out numerical experiments in order to support our analytical results and illustrate the
erformance of the proposed fully-discrete virtual scheme (4.1) for the Boussinesq system. In all examples, we use
he lowest order virtual element spaces Wh

2 and Hh
1 , for the stream-function and temperature fields, respectively. At

ach discrete time, the nonlinear fully-discrete system (4.1) is linearized by using the Newton method. For the first
ime step, we take as initial guess (ψin

h , θ
in
h ) = (0, 0), and for all n ≥ 1 we take (ψin

h , θ
in
h ) = (ψn−1

h , θn−1
h ). The

iterations are finalized when the ℓ∞-norm of the global incremental discrete solution drop below a fixed tolerance
of Tol = 10−8.

The domain Ω is partitioned using the following sequences of polygonal meshes (an example for each family is

shown in Fig. 1):
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Fig. 1. Domain discretized with different meshes.

• Ω1
h : Distorted quadrilaterals meshes;

• Ω2
h : Triangular meshes;

• Ω3
h : Voronoi meshes;

• Ω4
h : Distorted concave rhombic quadrilaterals.

In order to test the convergence properties of the proposed VEM, we measure some errors as the difference
between the exact solutions (ψ, θ) and adequate projections of the numerical solution (ψn

h , θ
n
h ). More precisely, we

consider the following quantities:

E(ψ,L2,H2) :=

(
∆t

N∑
n=1

|ψ(tn) − Π D,2ψn
h |

2
2,h

)1/2
, E(θ,L2,H1) :=

(
∆t

N∑
n=1

|θ (tn) − Π ∇,1θn
h |

2
1,h

)1/2
,

(6.1)

E(ψ,L∞,H1) := |ψ(T ) − Π D,2ψN
h |1,h, E(θ,L∞,L2) := ∥θ (T ) − Π ∇,1θ N

h ∥0,Ω . (6.2)

Accordingly to Theorem 5.1, the expected convergence rate for the sum of the above norms is O(h + ∆t).

6.1. Accuracy assessment

In our first example, we illustrate the accuracy in space and time of the proposed VEM (4.1), considering a
manufactured exact solution on the square domain Ω := (0, 1)2, the time interval [0, 1] and force per unit mass
g = (0,−1)T . We solve the Boussinesq system (2.1), taking the load terms fψ and fθ , boundary and initial conditions
in such a way that the analytical solution is given by:

u(x, y, t) =

(
u1(x, y, t)
u2(x, y, t)

)
=

(
(e10(t−1)

− e−10) x2(1 − x)2(2y − 6y2
+ 4y3)

− (e10(t−1)
− e−10)y2(1 − y)2(2x − 6x2

+ 4x3)

)
,

p(x, y, t) = (e10(t−1)
− e−10)(sin(x) cos(y) + (cos(1) − 1) sin(1)),

ψ(x, y, t) = (e10(t−1)
− e−10)x2(1 − x)2 y2(1 − y)2 and θ (x, y, t) = u1(x, y, t) + u2(x, y, t).

In order to see the linear trend of the stream-function and temperature errors (6.1), predicted by Theorem 5.1, we
efine simultaneously in space and time. More precisely, for each mesh family we consider the mesh refinements
ith h = 1/4, 1/8, 1/16, 1/32, and we use the same uniform refinements for the time variable. In particular, for the
esh Ω1

h , it can be seen along the diagonal of Table 1, the expected first order convergence for the stream-function
nd temperature errors (6.1).

In Fig. 2, we display the errors (6.1) for the same simultaneous time and space refinements (h = ∆t = 2−i , with
= 2, . . . , 5), using the four mesh families. We notice that the rates of convergence predicted in Theorem 5.1 are
ttained by both unknowns.

In order to study the trend of the stream-function and temperature errors (6.2), we show in Table 2 the results
onsidering again the mesh Ω1

h , with h = ∆t = 2−i , with i = 2, . . . , 5. In particular, we can observe that the rate
f convergence in the mesh size h seems higher than one; this is not fully surprising, since standard interpolation

stimates (in space) for the norms in (6.2) indicate that, potentially, the discrete space could approximate the exact
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Table 1
Accuracy assessment. Errors (6.1) using the VEM (4.1), with polynomial degrees (k, ℓ) = (2, 1), physical parameters ν = κ = 1 and the
mesh family Ω1

h .

E(ψ,L2
; H2)

dofs h ∆t

1/4 1/8 1/16 1/32 1/64

36 1/4 1.88912e−2 1.42183e−2 1.16131e−2 1.02912e−2 9.63665e−3

196 1/8 1.11333e−2 8.42107e−3 6.91546e−3 6.15400e−3 5.77765e−3

900 1/16 4.92223e−3 3.53363e−3 2.85747e−3 2.54826e−3 2.40427e−3

3844 1/32 3.61175e−3 2.11884e−3 1.46063e−3 1.21158e−3 1.11670e−3

15 876 1/64 3.21002e−3 1.64565e−3 9.22443e−4 6.49802e−4 5.59824e−4

E(θ,L2
; H1)

36 1/4 1.74892e−2 1.34200e−2 1.11391e−2 9.96756e−3 9.38232e−3

196 1/8 1.02277e−2 7.88174e−3 6.66404e−3 6.05736e−3 5.75702e−3

900 1/16 5.32067e−3 3.65373e−3 2.93777e−3 2.64415e−3 2.51594e−3

3844 1/32 3.80377e−3 2.18463e−3 1.49484e−3 1.24874e−3 1.16084e−3

15 876 1/64 3.37157e−3 1.71644e−3 9.52229e−4 6.64250e−4 5.69713e−4

Fig. 2. Accuracy assessment. Errors (6.1) for simultaneous space and time refinements, using the VEM (4.1) with polynomial degrees
(k, ℓ) = (2, 1), physical parameters ν = κ = 1 and the mesh families Ω i

h , i = 1, . . . , 4.

solution with order O(h2). In order to better investigate this aspect, in Fig. 3 we display the errors (6.2) for space
nd time refinements given by h = 2−i and ∆t = 4−i , with i = 2, . . . , 5, respectively, using the four mesh families.

We notice that the rates of convergence seem indeed quadratic with respect to h.

6.2. Performance of the VEM for small viscosity

In this test we consider the square domain Ω := (0, 1)2, the time interval [0, 1] and force per unit mass
g = (0,−1)T . We solve the Boussinesq system (2.1), taking the load terms fψ and fθ , boundary and initial conditions
in such a way that the analytical solution is given by:

u(x, y, t) =

(
u1(x, y, t)

)
=

(
− cos(t) sin(πx) sin(πy)

)
,
u2(x, y, t) − cos(t) cos(πx) cos(πy)
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Table 2
Accuracy assessment. Errors (6.2) using the VEM (4.1), with polynomial degrees (k, ℓ) = (2, 1), the physical parameters ν = κ = 1 and the
mesh family Ω1

h .

E(ψ,L∞
; H1)

dofs h ∆t

1/4 1/8 1/16 1/32 1/64

36 1/4 4.30301e−3 4.50090e−3 4.65255e−3 4.74590e−3 4.79749e−3
196 1/8 2.03865e−3 2.20110e−3 2.33234e−3 2.41662e−3 2.46443e−3

900 1/16 2.38767e−4 2.11074e−4 3.61809e−4 4.80109e−4 5.49619e−4
3844 1/32 7.26027e−4 4.35284e−4 2.05347e−4 6.71747e−5 4.99331e−5
15 876 1/64 8.16241e−4 5.20174e−4 2.84604e−4 1.34953e−4 5.10645e−5

E(θ,L∞
; L2)

36 1/4 3.44760e−3 3.94792e−3 4.28939e−3 4.48462e−3 4.58811e−3
196 1/8 9.85211e−4 1.44875e−3 1.82900e−3 2.06308e−3 2.19159e−3

900 1/16 5.96219e−4 2.98014e−4 3.26274e−4 4.64998e−4 5.57065e−4
3844 1/32 8.26668e−4 4.90632e−4 2.31786e−4 9.52686e−5 9.44396e−5
15 876 1/64 8.90387e−4 5.68492e−4 3.13988e−4 1.53393e−4 6.48063e−5

Fig. 3. Accuracy assessment. Errors (6.2), using the VEM (4.1) with polynomial degrees (k, ℓ) = (2, 1), the physical parameters ν = κ = 1
and the mesh families Ω i

h , i = 1, . . . , 4.

p(x, y, t) = cos(t)(sin(πx) + cos(πy) − 2/π ),

ψ(x, y, t) =
1
π

cos(t) sin(πx) cos(πy) and θ (x, y, t) = u1(x, y, t) + u2(x, y, t).

The purpose of this experiment is to investigate the performance of the VEM (4.1) for small viscosity parameters.
In Fig. 4, we post the errors (6.1) of the stream-function variable obtained with the mesh sizes h = 1/4, 1/8, 1/16
of Ω2

h , considering different values of ν and fixing the time step ∆t as 1/8 and 1/16 (see Figs. 4(a) and 4(b),
respectively). It can be observed that the solutions of our VEM are accurate even for small values of ν. Larger
stream-function errors appear for very small viscosity values.

We observe that this results are in accordance with the general observation that exactly divergence-free Galerkin
methods are more robust with respect to small diffusion parameters, see for instance [57] (and also [30] in the VEM
context). On the other hand, note that the scheme proposed here has no explicit stabilization of the convection term
27
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(

a
i
t

Fig. 4. Small viscosity test. Errors (6.1) of the VEM (4.1), for different values of ν and κ = 1, using the meshes Ω2
h , polynomial degrees

k, ℓ) = (2, 1).

Fig. 5. Natural convection cavity. Boundary conditions and domain discretized with mesh Ω5
h .

since this is not the focus of the present work (for instance, the natural norm associated to the stability of the
discrete problem does not guarantee a robust control on the convection).

6.3. Natural convection in a cavity with the left wall heating

In this last example we consider the 2D natural convection benchmark problem, describing the behaviour of a
incompressible flow in a squared cavity, which is heated at the left wall (see [6,18,58–60]). In particular, we consider
the unitary square domain Ω = (0, 1)2. The boundary conditions are given as follows: the temperature in the left
nd right walls are θL = 1 and θR = 0, respectively, while in the horizontal walls is ∂nθ = 0 (i.e., insulated, there
s no heat transfer through these walls), no-slip boundary conditions are imposed for the fluid flow at all walls. In
erms of the stream-function these conditions are given by: ψ = ∂xψ = ∂yψ = 0 on Γ × (0, T ), as shown in Fig. 5.

The initial conditions are chosen as ψ0 = −x + y and θ0 = 1 (so that the initial data does not satisfy the boundary
conditions).

We consider the forces fψ = 0, fθ = 0 and g = PrRa(0, 1)T , where Pr and Ra denote the Prandtl and
Rayleigh numbers, respectively. For the numerical experiment, we set the physical parameters as: ν = Pr = 0.71,
Ra ∈ [103, 106] and κ = 1.

In order to compare our results with the existing bibliography, we decompose the domain Ω using mesh Ω5
h

−3
conformed by uniform squares (see Fig. 5(b)). Moreover, the time step is ∆t = 10 and final time T = 1.
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Fig. 6. Natural convection cavity: streamlines (top panels) and isotherms (bottom panels), for Ra = 103, 104, 105 and 106, respectively (from
left to right), using the mesh Ω5

h (h = 1/64).

Table 3
Natural convection cavity. Comparison of maximum vertical velocity u1h := Π 1

h ∂yψ at y = 0.5 with the VEM (4.1) and mesh Ω5
h (h = 1/64)

Ra VEM Ref. [6] Ref. [18] Ref. [58] Ref. [59] Ref. [60]

104 19.56(64) 19.63(64) 19.51(41) 19.63(71) 19.90(71) 19.79(101)
105 68.46(64) 68.48(64) 68.22(81) 68.85(71) 70.00(71) 70.63(101)
106 216.37(64) 220.46(64) 216.75(81) 221.6(71) 228.0(71) 227.11(101)

Table 4
Natural convection cavity. Comparison of maximum horizontal velocity u2h := −Π 1

h ∂xψ at x = 0.5 with the VEM (4.1) and mesh Ω5
h

h = 1/64).

Ra VEM Ref. [6] Ref. [18] Ref. [59] Ref. [60]

104 16.15(64) 16.19(64) 16.18(41) 16.10(71) 16.10(101)
105 34.80(64) 34.74(64) 34.81(81) 34.0(71) 34.00(101)
106 65.91(64) 64.81(64) 65.33(81) 65.40(71) 65.40(101)

Streamlines and isotherms of the discrete solution obtained with our VEM (4.1) are posted in Fig. 6, using
a = 103, 104, 105, 106 and mesh size h = 1/64. The results show well agreement with the results presented in the
enchmark solutions in [6,18,58–60].

Tables 3 and 4 present a quantitative comparison between our results and those obtained by the benchmark
olutions in the above papers. Table 3 shows the maximum vertical velocity at y = 0.5, for Ra = 104, 105 and
06, while Table 4 shows the maximum horizontal velocity at x = 0.5, using the same values of the Rayleigh
umber. Here the numbers in the parenthesis denotes the numbers of elements along each edge of the domain, and
s therefore an indication on the mesh finesse. We can observe that the results show good agreement, even for higher
ayleigh numbers.

Finally, for the natural convection problem we investigate the heat transfer coefficient along the vertical walls
f the cavity in terms of the local Nusselt number (Nulocal), which is defined by: Nulocal(x, y) := −∂nθ (x, y).

Fig. 7 describes the variation of local Nusselt number at hot wall and cold wall, for different values of the Rayleigh
number. It can be seen that the results show good agreement with the results presented in [6,18,58–60].

7. Conclusions

In this work we have designed and analyzed a high order fully-discrete virtual element for the nonstationary
Boussinesq system in terms of the stream-function and temperature fields. We combined the C1- and C0-conforming
irtual element approaches with a backward Euler scheme and proposed a fully-coupled formulation which is
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t

Fig. 7. Natural convection cavity. Nusselt number along the hot wall (left) and the cold wall (right) for varying Rayleigh numbers, using
he VEM (4.1) and mesh Ω5

h , with h = 1/64.

implicit in the nonlinear terms. By using fixed-point arguments we proved the existence of discrete solutions and,
under a small time step condition, we have shown uniqueness of such solutions. The ensuing numerical method
is unconditionally stable. Error estimates in L2(H2) ∩ L∞(H1) and L2(H1) ∩ L∞(L2) are provided for the stream-
function and temperature, respectively. A set of benchmark numerical experiments have been reported, illustrating
the good performance of the method and the theoretical rates of convergence. We observed that the present stream-
function–temperature approach provides an attractive and competitive alternative to solve the two dimensional
nonstationary Boussinesq problem; there are only two scalar unknowns, and the incompressibility constraint is
automatically satisfied. Thus, the present approach leads to a smaller system compared with the classical velocity–
pressure–temperature form. From Test 6.2, we observed numerically that our VE scheme presents certain robustness
with respect to small diffusion parameters; this behaviour can be attributed to the fact that the incompressibility
condition is satisfied automatically, a scenario in which the partial decoupling of the velocity and pressure errors
leads a positive effect on the velocity computation. Furthermore, we observed that the resulting trilinear forms
(continuous and discrete) in the momentum equation are naturally skew-symmetric, allowing more direct stability
and convergence arguments (cf. Sections 4 and 5). The advantages described above come at the price of a scheme
without velocity and pressure fields (which need to be recovered), possibly a larger condition number due to the
higher order derivatives involved, and a more complex extension to the three dimensional case. Further developments
of this work could be to derive error estimates, possibly with the addition of stabilizing terms, that are quasi-robust
in the viscosity parameter. Another challenging aspect would be to tackle the three dimensional case. Simpler, but
yet interesting, extensions could be to consider temperature-dependent coefficients [5] or include a pressure recovery
technique [29].
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