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I. INTRODUCTION

The Reissner-Mindlin theory is the most used model to approximate the deformation of a thin
or moderately thick elastic plate. Nowadays, it is very well understood that, due to the so
called locking phenomenon, standard finite element methods applied to the classical transverse
displacement-rotations formulation of this model lead to wrong results when the thickness t is
small with respect to the other dimensions of the plate. Nevertheless, adopting for instance a
reduced integration or a mixed interpolation technique, this phenomenon can be avoided. Indeed,
several families of methods have been rigorously shown to be free from locking and optimally
convergent. We mention the recent monograph by Falk [1] for a thorough description of the state
of the art and further references.

Among the existing techniques, a large success has been shared by the mixed interpolation
of tensorial components (MITC) methods introduced by Bathe and Dvorkin in [2] or variants of
them (for instance, [3]). Other methods are based on using a Helmholtz decomposition of the
shear stress, as in [4], to write an equivalent formulation of the plate equations in terms of an
uncoupled system of two Poisson equations and a rotated Stokes system and using adequate finite
element methods for each of these problems. An alternative approach is proposed and analyzed
in [5] by Amara et al., where a conforming finite element method for the Reissner-Mindlin model
satisfying various boundary conditions is introduced. In their analysis the bending moment is
written in terms of three auxiliary variables belonging to classical Sobolev spaces. A mixed for-
mulation in terms of these new variables is discretized by standard finite elements. Under some
regularity assumptions on the exact solution, optimal error estimates with constants independent
of the plate thickness are proved in [5].

More recently, another approach has been presented by Behrens and Guzmán in [6]. In this
case the plate bending problem is written as a system of first order equations and all the resulting
variables are approximated. A discretization in terms of discontinuous polynomials and enriched
Raviart-Thomas elements is proposed. A hybrid form of the method allows reducing the total
number of variables. Error estimates with t-independent constants are proved. These estimates
are quasi optimal in regularity, since they involve a norm of the shear stress which can not be a
priori bounded independently of t .

In this article, we consider a bending moment formulation for the plate problem based on the
Hellinger-Reissner principle. We introduce these moments (which in practice usually represent
the quantities of interest in applications) as new unknowns, together with the shear stress, the
rotations and the transverse displacement. We obtain a mixed variational formulation involving
an elasticity-like system with weakly imposed symmetry. An advantage of this approach is that
there are several well studied mixed finite element methods for the elasticity problem with weakly
imposed symmetry (see for instance [7–11]). Using the Babuška-Brezzi theory, we show that the
proposed variational formulation is well posed and stable in appropriate t-dependent norms. For
the numerical approximation, classical Raviart-Thomas elements are used for the shear stress and
piecewise constants for the transverse displacement, while for the elasticity-like problem with
weakly imposed symmetry, we use PEERS finite elements [7,8] for the bending moment and the
rotations. We prove a uniform inf-sup condition with respect to the discretization parameter h and
the thickness t , without the need of introducing any reduction operator. The convergence rate is
proved to be optimal in terms of the mesh size h. These estimates are not fully independent of
the plate thickness t . However, this dependence is very mild since it only involves a term ( h

t
)ε

for arbitrarily small ε > 0. Therefore, in practice, the method is locking-free and this is con-
firmed by our numerical experiments. We note that our method approximates directly the bending
moments and the shear stress in classical L2 norms, which is distinctive of this approach. In
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fact, standard methods based on a transverse displacement and rotation discretization only lead to
approximations of the shear stress in weaker norms. In addition, we propose a local postprocess-
ing procedure which gives piecewise linear rotations and transverse displacement that converge
to the exact solution in a stronger H 1-type discrete norm. Moreover, a hybridization procedure
is introduced to reduce the computer cost to that of solving an equivalent linear system that is
smaller and positive definite. This process makes our approach computationally competitive with
other methods.

The outline of this article is as follows: In Section II, we first recall the Reissner-Mindlin
equations and some regularity results. Then, we prove the unique solvability and stability prop-
erties of the proposed formulation. In Section III, we present the finite element scheme, prove a
stability result and obtain error estimates for the method. In addition, we introduce and analyze a
local postprocessing procedure for transverse displacements and rotations, and the hybridization
process to eliminate some variables leading to a linear system smaller and positive definite. In
Section IV, we report a numerical test which allows us to assess the performance of the proposed
method. We end the article with some concluding remarks.

Throughout the article we will use standard notations for Sobolev spaces, norms and semi-
norms. Moreover, we will denote with c and C, with or without subscripts, tildes or hats, generic
constants independent of the mesh parameter h and the plate thickness t , which may take differ-
ent values in different occurrences. Moreover, we use the following notation for any tensor field
τ = (τij )i,j=1,2, any vector field η = (ηi)i=1,2 and any scalar field v:

div η := ∂1η1 + ∂2η2, rot η := ∂1η2 − ∂2η1, ∇v :=
(

∂1v

∂2v

)
, curl v :=

(
∂2v

−∂1v

)
,

div τ :=
(

∂1τ11 + ∂2τ12

∂1τ21 + ∂2τ22

)
, Curl η :=

(
∂2η1 −∂1η1

∂2η2 −∂1η2

)
, ∇η :=

(
∂1η1 ∂2η1

∂1η2 ∂2η2

)
,

τ t := (τji), tr(τ ) :=
2∑

i=1

τii , τ a : τ b :=
2∑

i,j=1

τ a
ij τ

b
ij .

Finally, we denote

I :=
(

1 0
0 1

)
, J :=

(
0 1

−1 0

)
.

II. THE PLATE MODEL

Consider an elastic plate of thickness t , 0 < t ≤ 1, with reference configuration � × (− t

2 , t

2 ),
where � is a convex polygonal domain of R

2 occupied by the mid-section of the plate. The
deformation of the plate is described by means of the Reissner-Mindlin model in terms of the
rotations β = (β1, β2) of the fibers initially normal to the plate mid-surface, the scaled shear
stress γ = (γ1, γ2), and the transverse displacement w. Assuming that the plate is clamped on its
whole boundary ∂�, the following equations describe the plate response to a conveniently scaled
transverse load g ∈ L2(�):

−div (C(ε(β))) − γ = 0 in �, (2.1)

−div γ = g in �, (2.2)
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γ = κ

t2
(∇w − β) in �, (2.3)

w = 0, β = 0 on ∂�, (2.4)

where κ := Ek/2(1 + ν) is the shear modulus, with E being the Young modulus, ν the Poisson
ratio, and k a correction factor usually taken as 5/6 for clamped plates, ε(β) := 1

2 (∇β + (∇β)t) is
the standard strain tensor, and C is the tensor of bending moduli, given by (for isotropic materials)

Cτ := E

12(1 − ν2)
[(1 − ν)τ + νtr(τ )I], τ ∈ L2(�)2×2.

The tensor C is invertible with its inverse given by

C−1τ := 12

E
[(1 + ν)τ − νtr(τ )I], τ ∈ L2(�)2×2.

To write a variational formulation of the Reissner-Mindlin plate problem, we introduce as a
new unknown the bending moment σ = (σ ij )i,j=1,2 defined by

σ := C(ε(β)).

We rewrite the equation above as follows:

C−1σ = ∇β +
(

1

2
rot β

)
J.

Then, introducing the auxiliary unknown r := − 1
2 rot β, multiplying by a test function τ and

integrating by parts, we obtain∫
�

(C−1σ ) : τ +
∫

�

β · div τ +
∫

�

r(τ12 − τ21) = 0. (2.5)

Now, by testing (2.1)–(2.3) with adequate functions, integrating by parts, using (2.5) and (2.4),
and imposing weakly the symmetry of σ , we obtain the following mixed variational formulation:

Find ((σ , γ ), (β, r , w)) ∈ H × Q such that∫
�

(C−1σ ) : τ + t2

κ

∫
�

γ · ξ +
∫

�

β · (div τ + ξ) +
∫

�

r(τ12 − τ21) +
∫

�

wdiv ξ = 0,

∫
�

η · (div σ + γ ) +
∫

�

s(σ12 − σ21) +
∫

�

vdiv γ = −
∫

�

gv,

for all ((τ , ξ), (η, s, v)) ∈ H × Q.
The spaces above are defined as follows:

H := H(div ; �) × H(div ; �),

Q := L2(�)2 × L2(�) × L2(�),

with

H(div ; �) := {τ ∈ L2(�)2×2 : div τ ∈ L2(�)2},
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and

H(div ; �) := {ξ ∈ L2(�)2 : div ξ ∈ L2(�)}.
We endow H with the following t-dependent norm:

‖(τ , ξ)‖H := ‖τ‖0,� + ‖div τ + ξ‖0,� + t‖ξ‖0,� + ‖div ξ‖0,�,

while for the space Q we use

‖(η, s, v)‖Q := ‖η‖0,� + ‖s‖0,� + ‖v‖0,�.

Finally, we endow H × Q with the corresponding product norm.
We rewrite this variational problem as follows:
Find ((σ , γ ), (β, r , w)) ∈ H × Q such that

a((σ , γ ), (τ , ξ)) + b((τ , ξ), (β, r , w)) = 0 ∀(τ , ξ) ∈ H, (2.6)

b((σ , γ ), (η, s, v)) = F(η, s, v) ∀(η, s, v) ∈ Q, (2.7)

where the bilinear forms a : H × H → R and b : H × Q → R and the linear functional
F : Q → R are defined by

a((σ , γ ), (τ , ξ)) :=
∫

�

(C−1σ ) : τ + t2

κ

∫
�

γ · ξ (2.8)

=12

E
[(1 + ν)

∫
�

σ : τ − ν

∫
�

tr(σ )tr(τ )] + t2

κ

∫
�

γ · ξ ,

b((τ , ξ), (η, s, v)) :=
∫

�

η · (div τ + ξ) +
∫

�

s(τ12 − τ21) +
∫

�

v div ξ , (2.9)

and

F(η, s, v) := −
∫

�

gv,

for all (σ , γ ), (τ , ξ) ∈ H and (η, s, v) ∈ Q.
Next, we will prove that problem (2.6)–(2.7) satisfies the hypotheses of the Babuška-Brezzi the-

ory, which yields the unique solvability and continuous dependence on the data of this variational
formulation.

We first observe that the bilinear forms a and b and the linear functional F are bounded with
constants independent of the plate thickness t .

Let

V := {(τ , ξ) ∈ H : b((τ , ξ), (η, s, v)) = 0 ∀(η, s, v) ∈ Q}
be the so-called continuous kernel; hence (cf. (2.9))

V = {(τ , ξ) ∈ H : ξ + div τ = 0, τ = τ t and div ξ = 0 in �}.
The following lemma shows that the bilinear form a is V-elliptic uniformly in t .
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Lemma 2.1. There exists α > 0, independent of t , such that

a((τ , ξ), (τ , ξ)) ≥ α‖(τ , ξ)‖2
H ∀(τ , ξ) ∈ V.

Proof. Given (τ , ξ) ∈ V, using that tr(τ )2 ≤ 2(τ : τ ), from (2.8) we obtain

a((τ , ξ), (τ , ξ)) ≥ 12(1 − ν)

E
‖τ‖2

0,� + t2

κ
‖ξ‖2

0,�.

Thus, since ‖div τ + ξ‖0,� = 0 and ‖div ξ‖0,� = 0, we have that

a((τ , ξ), (τ , ξ)) ≥ α‖(τ , ξ)‖2
H,

with α := min{6(1 − ν)/E, 1/2κ}. Therefore, we end the proof.

To obtain the corresponding inf-sup condition, we first prove the following lemma.

Lemma 2.2. There exists c > 0, independent of t , such that, ∀s ∈ L2(�), there exists
τ s ∈ H(div ; �) satisfying (τ s

12 − τ s
21) = s, div τ s = 0 in �, and ‖τ s‖H(div ;�) ≤ c‖s‖0,�.

Proof. For s ∈ L2(�), let

s̄ := 1

|�|
∫

�

s,

and λ := s−s̄. We have that λ ∈ L2
0(�) := {u ∈ L2(�) :

∫
�

u = 0} and, clearly, ‖λ‖0,� ≤ ‖s‖0,�.
Then, there exists v = (v1, v2) ∈ H 1

0 (�)2 such that div v = λ in � and ‖v‖1,� ≤ ĉ‖λ‖0,� (cf.
[12]). Now, we consider the following function

ϕ := v + s̄

2

(
x

y

)
,

which satisfies div ϕ = s and ‖ϕ‖1,� ≤ ‖v‖1,� + c̃‖s‖0,�. Next, we define

τ s := −Curl ϕ = −
(

∂2v1 −∂1v1 − 1
2 s̄

∂2v2 + 1
2 s̄ −∂1v2

)
∈ L2(�)2×2.

From this, we have that div τ s = 0, so that τ s ∈ H(div ; �). Moreover,

(
τ s

12 − τ s
21

) = div v + s̄ = λ + s̄ = s

and it is easy to check that

‖τ s‖H(div ;�) ≤ c‖s‖0,�.

Thus, we end the proof.

Now, we are in a position to prove an inf-sup condition for the bilinear form b.
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Lemma 2.3. There exists C > 0, independent of t , such that

sup
(τ ,ξ)∈H
(τ ,ξ)	=0

b((τ , ξ), (η, s, v))

‖(τ , ξ)‖H
≥ C‖(η, s, v)‖Q ∀(η, s, v) ∈ Q.

Proof. Let (η, s, v) ∈ Q and τ s as in Lemma 2.2. Then,

sup
(τ ,ξ)∈H
(τ ,ξ)	=0

b((τ , ξ), (η, s, v))

‖(τ , ξ)‖H
≥ b((τ s , 0), (η, s, v))|

‖τ s‖0,� + ‖div τ s‖0,�
= ‖s‖2

0,�

‖τ s‖0,�
≥ 1

c
‖s‖0,�. (2.10)

Now, let τ̃ := −ε(z), where z ∈ H 1
0 (�)2 is the unique solution of the following auxiliary

problem:

−div ε(z) = η in �,

z = 0 on ∂�.

Notice that this problem is well posed (as a consequence of Korn’s inequality) and ‖ε(z)‖0,� ≤
C̃‖η‖0,�. Hence τ̃ ∈ H(div ; �), τ̃ = τ̃ t and

‖τ̃‖0,� + ‖div τ̃‖0,� ≤ (C̃ + 1)‖η‖0,�.

Therefore,

sup
(τ ,ξ)∈H
(τ ,ξ)	=0

b((τ , ξ), (η, s, v))

‖(τ , ξ)‖H
≥ b((̃τ , 0), (η, s, v))

‖τ̃‖0,� + ‖div τ̃‖0,�
(2.11)

= ‖η‖2
0,�

‖τ̃‖0,� + ‖div τ̃‖0,�
≥ 1

C̃ + 1
‖η‖0,�.

Finally, let ξ̃ := −∇ z̃, where z̃ ∈ H 1
0 (�) is the unique solution of the auxiliary problem:

−�z̃ = v in �,

z̃ = 0 on ∂�.

The same arguments as above allow us to prove that there exists ĉ > 0, depending only on �,
such that

‖̃ξ‖0,� + ‖div ξ̃‖0,� ≤ ĉ‖v‖0,�.

Hence, it follows that

sup
(τ ,ξ)∈H
(τ ,ξ)	=0

b((τ , ξ), (η, s, v))

‖(τ , ξ)‖H
≥ b((0, ξ̃ ), (η, s, v))

(1 + t)‖̃ξ‖0,� + ‖div ξ̃‖0,�

≥ 1

2(‖̃ξ‖0,� + ‖div ξ̃‖0,�)

(∫
�

η · ξ̃ + ‖v‖2
0,�

)
≥ 1

2ĉ
‖v‖0,� − 1

2
‖η‖0,�.
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From this inequality and (2.11), it is immediate to show that

sup
(τ ,ξ)∈H
(τ ,ξ)	=0

b((τ , ξ), (η, s, v))

‖(τ , ξ)‖H
≥ 1

ĉ(C̃ + 1)
‖v‖0,�.

Thus, the proof follows from this estimate, (2.10) and (2.11).

We are now in a position to state the main result of this section which yields the solvability of
the continuous problem (2.6)–(2.7).

Theorem 2.4. There exists a unique solution ((σ , γ ), (β, r , w)) ∈ H×Q to problem (2.6)–(2.7)
and the following continuous dependence result holds:

‖((σ , γ ), (β, r , w))‖H×Q ≤ C‖g‖0,�,

where C is independent of t .

Proof. By virtue of Lemmas 2.1 and 2.3, the proof follows from a straightforward application
of [13, Theorem II.1.1].

Testing (2.6)–(2.7) with different functions, it is straightforward to show that β ∈ H 1(�)2,
w ∈ H 1(�) and Eqs. (2.1)–(2.4) hold true. Therefore, we can apply the results from [4] to prove
the following additional regularity result.

Proposition 2.5. Suppose that � is a convex polygon or a smoothly bounded domain in the
plane and g ∈ L2(�). Let ((σ , γ ), (β, r , w)) be the solution to problem (2.6)–(2.7). Then, there
exists a constant C, independent of t and g, such that

‖w‖2,� + ‖β‖2,� + ‖γ ‖H(div ;�) + t‖γ ‖1,� + ‖σ‖1,� + t‖div σ‖1,� + ‖r‖1,� ≤ C‖g‖0,�.

III. THE FINITE ELEMENT SCHEME

Let Th be a regular family of triangulations of the polygonal region �̄ by triangles T of diameter
hT with mesh size h := max{hT : T ∈ Th}. In addition, given an integer k ≥ 0 and a subset S of
R

2, we denote by Pk(S) the space of polynomials in two variables defined in S of total degree at
most k. For each T ∈ Th we define the local Raviart-Thomas space of order zero

RT0(T ) := span

{(
1
0

)
,

(
0
1

)
,

(
x

y

)}
.

On the other hand, for each triangle T ∈ Th, we denote by bT the unique polynomial in P3(T )

that vanishes on ∂T and is normalized by
∫

T
bT = 1. This cubic bubble function is extended by

zero to � \ T and therefore it becomes an element of H 1
0 (�). We define

B(Th) := {τ h ∈ H(div , �) : (τi1h, τi2h) ∈ Z(T ), i = 1, 2, ∀T ∈ Th},
where

Z(T ) := span{curl (bT ), T ∈ Th}.
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Next, we define the following finite element subspaces:

H σ
h := Xh ⊕ B(Th),

where

Xh := {τ h ∈ H(div , �) : τ h|T ∈ [RT0(T )t]2 ∀T ∈ Th}
is the global lowest-order Raviart-Thomas space,

H
γ

h := {ξh ∈ H(div , �) : ξh|T ∈ RT0(T ) ∀T ∈ Th},
Qw

h := {vh ∈ L2(�) : vh|T ∈ P0(T ) ∀T ∈ Th},
Q

β

h := {ηh ∈ L2(�)2 : ηh|T ∈ P0(T )2 ∀T ∈ Th},
Qr

h := {sh ∈ H 1(�) : sh|T ∈ P1(T ) ∀T ∈ Th}.

At this point we recall that H σ
h × Q

β

h × Qr
h corresponds to the PEERS finite elements introduced

by Arnold, Brezzi and Douglas in [7].
Defining Hh := H σ

h × H
γ

h and Qh := Q
β

h × Qr
h × Qw

h , our mixed finite element scheme
associated with the continuous formulation (2.6)–(2.7) reads as follows:

Find ((σ h, γh), (βh, rh, wh)) ∈ Hh × Qh such that

a((σ h, γh), (τ h, ξh)) + b((τ h, ξh), (βh, rh, wh)) = 0 ∀(τ h, ξh) ∈ Hh, (3.1)

b((σ h, γh), (ηh, sh, vh)) = F(ηh, sh, vh) ∀(ηh, sh, vh) ∈ Qh. (3.2)

A. Convergence

Our next goal is to prove the corresponding discrete versions of Lemmas 2.1 and 2.3 and to use
them to conclude the unique solvability and stability of problem (3.1)–(3.2). With this aim, we
denote by Vh the so-called discrete kernel: Vh := {(τ h, ξh) ∈ Hh : b((τ h, ξh), (ηh, sh, vh)) =
0 ∀(ηh, sh, vh) ∈ Qh}; namely

Vh =
{
(τ h, ξh) ∈ Hh :

∫
�

ηh · (div τ h + ξh) +
∫

�

sh(τ12h − τ21h)

+
∫

�

vhdiv ξh = 0 ∀(ηh, sh, vh) ∈ Qh

}
.

Let (τ h, ξh) ∈ Vh. Taking (0, 0, vh) ∈ Qh and using that div ξh|T is a constant, we conclude that
div ξh = 0 in �. On the other hand, since div τ h = 0 in � ∀τ h ∈ B(Th), we have that div τ h|T is a
constant vector. Moreover, since div ξh = 0, we have that ξh|T is also a constant vector. Therefore,
by taking (ηh, 0, 0) ∈ Qh, we conclude that div τ h + ξh = 0 in �. Thus, we obtain that

Vh =
{
(τ h, ξh) ∈ Hh : ξh + div τ h = 0 in �, div ξh = 0 in �

and
∫

�

sh(τ12h − τ21h) = 0 ∀sh ∈ Qr
h

}
.
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Note that the third condition above does not guarantee the symmetry of the tensors in H σ
h , as it

was the case for the continuous kernel V. Hence, we have that Vh is not included in V. However,
the proof of Lemma 2.1 can be repeated (since we have not used that τ = τ t in this proof) to
obtain the following result:

Lemma 3.1. There exists α� > 0, independent of h and t , such that

a((τ h, ξh), (τ h, ξh)) ≥ α�‖(τ h, ξh)‖2
H ∀(τ h, ξh) ∈ Vh.

We introduce the Raviart-Thomas interpolation operator R : H 1(�)2 → H
γ

h . Let us review
some properties of this operator that we will use in the sequel (see, for instance, [12, 13]):

• Let P be the orthogonal projection from L2(�) onto the finite element subspace Qw
h . Then,

for all ξ ∈ H 1(�)2, we have that

div Rξ = P(div ξ). (3.3)

• There exists C > 0, independent of h, such that

‖ξ − Rξ‖0,� ≤ Ch‖ξ‖1,� ∀ξ ∈ H 1(�)2. (3.4)

Now, let R̃ : H 1(�)2×2 → Xh be the operator defined on each row of H 1(�)2×2 by means
of the Raviart-Thomas interpolation operator R. Since Xh ⊂ H σ

h , the operator R̃ can be seen as
acting from H 1(�)2×2 into H σ

h . The above properties of R lead to similar ones for R̃:

• Let P̃ be the orthogonal projection from L2(�)2 onto the finite element subspace Q
β

h . Then,
for all τ ∈ H 1(�)2×2, we have that

div R̃τ = P̃(div τ ). (3.5)

• There exists C > 0, independent of h, such that

‖τ − R̃τ‖0,� ≤ Ch‖τ‖1,� ∀τ ∈ H 1(�)2×2. (3.6)

Moreover, let � : L2(�) → Qr
h be the orthogonal projection. Then, it is well known that

‖s − �s‖0,� ≤ Ch‖s‖1,� ∀s ∈ H 1(�). (3.7)

The following lemma establishes the discrete analogue of Lemma 2.3.

Lemma 3.2. There exists C > 0, independent of h and t , such that

sup
(τh ,ξh)∈Hh
(τh ,ξh)	=0

b((τ h, ξh), (ηh, sh, vh))

‖(τ h, ξh)‖H
≥ C‖(ηh, sh, vh)‖Q ∀(ηh, sh, vh) ∈ Qh.

Proof. Let (ηh, sh, vh) ∈ Qh. From Lemma 4.4 in [7], we know that there exists τ̃ h ∈ H σ
h

and c̃ > 0 such that,∫
�

ηh · div τ̃ h + ∫
�

sh(τ̃12h − τ̃21h)

‖τ̃ h‖0,� + ‖div τ̃ h‖0,�
≥ c̃(‖ηh‖0,� + ‖sh‖0,�).
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Hence, we have

sup
(τh ,ξh)∈Hh
(τh ,ξh)	=0

b((τ h, ξh), (ηh, sh, vh))

‖(τ h, ξh)‖H
≥ b((̃τ h, 0), (ηh, sh, vh))

‖τ̃ h‖0,� + ‖div τ̃ h‖0,�

≥ c̃(‖ηh‖0,� + ‖sh‖0,�).

Next, let z be the unique solution of the following problem:

−�z = vh in �,

z = 0 on ∂�.

Since vh ∈ L2(�) and � is a convex domain, a classical elliptic regularity result guaran-
tees that z ∈ H 2(�) and that there exists c̄ > 0 such that ‖z‖2,� ≤ c̄‖vh‖0,�. Now, we define
ξ̂ := −∇z ∈ H 1(�)2. We note that div ξ̂ = vh in � and

‖ξ̂‖1,� = ‖∇z‖1,� ≤ ‖z‖2,� ≤ c̄‖vh‖0,�.

Let ξ̂h := Rξ̂ . From (3.3) and the fact that div ξ̂ = vh, we have that div ξ̂h = vh in �. Hence,
using the estimate (3.4), we deduce that

‖ξ̂h‖0,� + ‖div ξ̂h‖0,� ≤ ‖ξ̂h − ξ̂‖0,� + ‖ξ̂‖0,� + ‖div ξ̂‖0,�

≤ Ch‖ξ̂‖1,� + ‖ξ̂‖1,� ≤ Ĉ‖vh‖0,�.

Therefore, it follows that

sup
(τh ,ξh)∈Hh
(τh ,ξh)	=0

b((τ h, ξh), (ηh, sh, vh))

‖(τ h, ξh)‖H
≥ b((0, ξ̂h), (ηh, sh, vh))

(1 + t)‖ξ̂h‖0,� + ‖div ξ̂h‖0,�

≥ 1

2(‖ξ̂h‖0,� + ‖div ξ̂h‖0,�)

(∫
�

ηh · ξ̂h +
∫

�

vhdiv ξ̂h

)

≥ 1

2(‖ξ̂h‖0,� + ‖div ξ̂h‖0,�)
(‖vh‖2

0,� − ‖ηh‖0,�‖ξ̂h‖0,�)

≥ 1

2ĉ
‖vh‖0,� − 1

2
‖ηh‖0,�.

Thus, the same arguments used at the last step of the proof of Lemma 2.3, allow us to conclude
the proof.

We are now in a position to establish the unique solvability, and the convergence properties of
the discrete problem (3.1)–(3.2).

Theorem 3.3. There exists a unique ((σ h, γh), (βh, rh, wh)) ∈ Hh × Qh solution to problem
(3.1)–(3.2). Moreover, there exists C > 0, independent of h and t , such that

‖((σ , γ ), (β, r , w)) − ((σ h, γh), (βh, rh, wh))‖H×Q

≤ C inf
((τh ,ξh),(ηh ,sh ,vh))∈Hh×Qh

‖((σ , γ ), (β, r , w)) − ((τ h, ξh), (ηh, sh, vh))‖H×Q,

where ((σ , γ ), (β, r , w)) ∈ H × Q is the unique solution to problem (2.6)–(2.7).
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Proof. It is a direct application of [13, Theorem II.2.1].

B. Error Estimates

To establish the rate of convergence of the method, first we introduce some notation and prove
some results that will be used in the sequel.

In the following, we indicate with e a general edge of the triangulation and with Eh the set of
all such edges. Moreover, we indicate with he the length of e ∈ Eh and associate to each edge a
unit normal vector ne, chosen once and for all. Moreover, te denotes the tangent vector defined as
the counterclockwise rotation of ne by 90◦. For each internal edge e of Eh, we indicate with T +

and T − the two triangles of the mesh which have the edge e in common, where ne corresponds
to the outward normal for T + and the opposite for T −. Then, given any piecewise regular (scalar
or vector) function v in �, for each e ∈ Eh we define the jump on internal edges

[[v]] := v+|e − v−|e,
where v± is the restriction of v to T ±. On boundary edges, the ‘jump’ [[v]] is simply given by the
value of v on the edge. We introduce the following H 1-type discrete norm on piecewise constant
vector functions:

‖qh‖2
�,h := ‖qh‖2

0,� +
∑
e∈Eh

h−1
e ‖[[qh]]‖2

0,e.

The following inf-sup condition holds true.

Lemma 3.4. There exists C > 0, independent of h, such that

sup
τh∈Xh
τh 	=0

∫
�

qh · div τ h

‖τ h‖0,�
≥ C‖qh‖�,h ∀qh ∈ Q

β

h .

Proof. The proof of the above inf-sup condition is simple; thus, we give only a brief sketch.
Given qh ∈ Q

β

h , let τ 1
h ∈ Xh with degrees of freedom τ 1

hne := h−1
e [[qh]] for all e ∈ Eh. An

element-wise integration by parts and the definition of the jump operator yield∫
�

qh · div τ 1
h =

∑
e∈Eh

h−1
e ‖[[qh]]‖2

0,e.

Moreover, by a scaling argument, we have that ‖τ 1
h‖0,� ≤ c1‖qh‖�,h. On the other hand, by repeat-

ing the arguments used to prove the standard inf-sup condition for Raviart-Thomas elements, we
have that there exists τ 2

h ∈ Xh such that div τ 2
h = qh and ‖τ 2

h‖0,� ≤ c2‖qh‖0,�. This allows us to
end the proof.

To establish the rate of convergence of the method, we will use Theorem 3.3 and the following
result.

Proposition 3.5. Let ((σ , γ ), (β, r , w)) ∈ H×Q be the unique solution of problem (2.6)–(2.7).
Then, there exist σ I ∈ Xh such that∫

�

(div σ I + Rγ ) · qh = 0 ∀qh ∈ Q
β

h . (3.8)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



52 BEIRÃO DA VEIGA, MORA, AND RODRÍGUEZ

Moreover, for all ε ∈ (0, 1), there exists Cε > 0 such that

‖σ − σ I‖0,� ≤ Cεh

[
1 +

(
h

t

)ε ]
‖g‖0,�. (3.9)

Proof. Let (σ I , ph) ∈ Xh × Q
β

h be the solution of the following discrete mixed problem:∫
�

σ I : τ h +
∫

�

div τ h · ph =
∫

�

R̃σ : τ h ∀τ h ∈ Xh, (3.10)

∫
�

div σ I · qh = −
∫

�

Rγ · qh ∀qh ∈ Q
β

h . (3.11)

By using standard results for mixed problems, we know that there exists a unique solution to the
above problem. Moreover, using (3.5) and the fact that div σ + γ = 0 in �, it is easy to obtain
from (3.10) and (3.11) that

‖σ I − R̃σ‖2
0,� =

∫
�

(Rγ − γ ) · ph. (3.12)

On the other hand, from Lemma 3.4 and (3.10), we obtain that

C‖ph‖�,h ≤ sup
τh∈Xh
τh 	=0

∫
�

ph · div τ h

‖τ h‖0,�
= sup

τh∈Xh
τh 	=0

∫
�
(R̃σ − σ I ) : τ h

‖τ h‖0,�
≤ ‖R̃σ − σ I‖0,�. (3.13)

Now, since ph ∈ Q
β

h , on each element T we can write ph|T = ∇(φh|T ), with φh being a
piecewise linear discontinuous function. Moreover, φh can be chosen such that

∫
T

φh = 0 for all
T ∈ Th; therefore, we have that

‖φh‖0,T ≤ Ch‖∇φh‖0,T = Ch‖ph‖0,T ∀T ∈ Th. (3.14)

From (3.12), first integrating by parts, then using that (γ − Rγ ) · ne is single valued and has zero
average on each edge, we obtain

‖σ I − R̃σ‖2
0,� =

∫
�

(Rγ − γ ) · ph =
∑
T ∈Th

∫
T

(Rγ − γ ) · ∇φh

=
∑
T ∈Th

[∫
T

div (γ − Rγ )φh +
∫

∂T

(Rγ − γ ) · nT φh

]

=
∑
T ∈Th

∫
T

div (γ − Rγ )φh

︸ ︷︷ ︸
E1

+
∑
e∈Eh

∫
e

(Rγ − γ ) · ne([[φh]] − [[φh]])
︸ ︷︷ ︸

E2

, (3.15)

where [[φh]] ∈ R denotes the average of [[φh]] on the edge e ∈ Eh.
Our next goal is to bound the two terms on the right hand side above. For the first one, we

recall that div Rγ = P(div γ ) = −Pg, and use (3.14) and (3.13) to obtain

E1 ≤ C
∑
T ∈Th

‖g‖0,T ‖φh‖0,T ≤ Ch‖g‖0,� ‖σ I − R̃σ‖0,�. (3.16)
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To bound the second term, first we note that, for all e ∈ Eh, by using an inverse inequality and
standard approximation results, it follows that

‖[[φh]] − [[φh]]‖L∞(e) ≤ Ch−1/2
e ‖[[φh]] − [[φh]]‖0,e ≤ Ch1/2

e

∥∥∥∥∂[[φh]]
∂te

∥∥∥∥
0,e

= Ch1/2
e ‖[[∇φh · te]]‖0,e = Ch1/2

e ‖[[ph · te]]‖0,e.

Therefore, since Rγ · ne is constant on each edge,

E2 =
∑
e∈Eh

∫
e

γ · ne([[φh]] − [[φh]])

≤ C
∑
e∈Eh

‖γ · ne‖L1(e)‖[[φh]] − [[φh]]‖L∞(e)

≤ C
∑
e∈Eh

‖γ · ne‖L1(e)h
1/2
e ‖[[ph · te]]‖0,e

≤ C
∑
T ∈Th

hT ‖γ · nT ‖L1(∂T )

∑
e∈∂T

h−1/2
e ‖[[ph]]‖0,e. (3.17)

On the other hand, the arguments from [13, Section III.3.3] can be used to prove that, for all
p > 2, there exist Cp > 0 such that

‖γ · nT ‖L1(∂T ) ≤ Cp

(
hε

T ‖γ ‖Lp(T ) + hT ‖div γ ‖0,T

)
, (3.18)

where ε := (1−2/p) ∈ (0, 1). Moreover, from the Sobolev embedding theorem (see, for instance,
[14]), it follows that Hε(T ) ↪→ Lp(T ) for all T ∈ Th. Due to the shape regularity of the mesh, a
standard scaling immediately yields the bound

‖γ ‖2
Lp(T ) ≤ C

(
h−2ε‖γ ‖2

0,T + |γ |2Hε(T )

)
. (3.19)

Thus, first using (3.17) and (3.18), then the Cauchy-Schwarz inequality and finally (3.19), we
obtain

E2 ≤ Cp

∑
T ∈Th

(
h1+ε

T ‖γ ‖Lp(T ) + h2
T ‖div γ ‖0,T

) ∑
e∈∂T

h−1/2
e ‖[[ph]]‖0,e

≤ Cp

⎛
⎝∑

T ∈Th

h2+2ε
T ‖γ ‖2

Lp(T )

⎞
⎠

1/2 ⎛
⎝∑

e∈Eh

h−1
e ‖[[ph]]‖2

0,e

⎞
⎠

1/2

+ Cph
2‖div γ ‖0,�

⎛
⎝∑

e∈Eh

h−1
e ‖[[ph]]‖2

0,e

⎞
⎠

1/2
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≤ Cp

⎛
⎝∑

T ∈Th

h2
T ‖γ ‖2

0,T + h2+2ε
T |γ |2Hε(T )

⎞
⎠

1/2 ⎛
⎝∑

e∈Eh

h−1
e ‖[[ph]]‖2

0,e

⎞
⎠

1/2

+ Cph
2‖div γ ‖0,�

⎛
⎝∑

e∈Eh

h−1
e ‖[[ph]]‖2

0,e

⎞
⎠

1/2

.

Using the above estimate and recalling (3.13), we obtain that, for all ε ∈ (0, 1),

E2 ≤ Cεh(‖γ ‖0,� + hε|γ |Hε(�) + h‖g‖0,�)‖σ I − R̃σ‖0,�

≤ Cεh

[
1 +

(
h

t

)ε ]
‖g‖0,� ‖σ I − R̃σ‖0,�, (3.20)

where in the last step we have used that, since ‖γ ‖0,� + t‖γ ‖1,� ≤ C‖g‖0,� (cf. Proposition 2.5),
t ε‖γ ‖Hε(�) ≤ C‖g‖0,� for all ε ∈ [0, 1] (see for instance [12, Theorem I.1.4]).

Finally, the proof follows by substituting (3.16) and (3.20) into (3.15) and using the triangular
inequality, (3.6) and Proposition 2.5.

To prove the rate of convergence of the method, we will also use the following result.

Lemma 3.6. There exists C > 0, independent of h, such that

‖ξh − P̃ξh‖0,� ≤ Ch‖div ξh‖0,� ∀ξh ∈ H
γ

h .

Proof. Let ξh ∈ H
γ

h . Then, by using standard error estimates,

‖ξh − P̃ξh‖2
0,� =

∑
T ∈Th

‖ξh − P̃ξh‖2
0,T ≤ C1

∑
T ∈Th

h2
T |ξh|21,T ≤ Ch2‖div ξh‖2

0,�.

where we have used that, for Raviart-Thomas elements, |ξh|21,T = 1
2‖div ξh‖2

0,T .

The following theorem provides the rate of convergence of our mixed finite element scheme.

Theorem 3.7. Let ((σ , γ ), (β, r , w)) ∈ H × Q and ((σ h, γh), (βh, rh, wh)) ∈ Hh × Qh be the
unique solutions to the continuous and discrete problems (2.6)–(2.7) and (3.1)–(3.2), respectively.
If g ∈ H 1(�), then, for all ε ∈ (0, 1), there exists Cε > 0 such that

‖((σ , γ ), (β, r , w)) − ((σ h, γh), (βh, rh, wh))‖H×Q ≤ Cεh

[
1 +

(
h

t

)ε ]
‖g‖1,�.

Proof. Let σ I ∈ Xh be as in Proposition 3.5. According to Theorem 3.3, we have that

‖((σ , γ ), (β, r , w)) − ((σ h, γh), (βh, rh, wh))‖H×Q

≤ C‖((σ , γ ), (β, r , w)) − ((σ I , Rγ ), (P̃β, �r , Pw))‖H×Q

= C(‖(σ , γ ) − (σ I , Rγ )‖H + ‖(β, r , w) − (P̃β, �r , Pw)‖Q).
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The second term is easily bounded by using standard error estimates for P and P̃ , (3.7) and
Proposition 2.5:

‖(β, r , w) − (P̃β, �r , Pw)‖Q ≤ Ch‖g‖0,�. (3.21)

For the first term, we write

‖(σ , γ ) − (σ I , Rγ )‖H = ‖σ − σ I‖0,� + ‖div (σ − σ I ) + (γ − Rγ )‖0,�

+ t‖γ − Rγ ‖0,� + ‖div (γ − Rγ )‖0,�

≤ Cεh

[
1 +

(
h

t

)ε ]
‖g‖0,� + Ch‖g‖0,�

+ Cht‖γ ‖1,� + Ch‖g‖1,�, (3.22)

where we have used (3.9) for the first term and standard error estimates for Raviart-Thomas ele-
ments for the third and the fourth. Regarding the second term, the estimate follows from the fact
that div σ + γ = 0 in � and, hence,

‖div (σ − σ I ) + (γ − Rγ )‖0,� = ‖div σ I + Rγ ‖0,� = ‖Rγ − P̃(Rγ )‖0,�,

the latter because of (3.8). Finally, from Lemma 3.6, we have

‖div (σ − σ I ) + (γ − Rγ )‖0,� ≤ Ch‖g‖0,�.

Thus, the proof follows from (3.21), (3.22) and Proposition 2.5.

Remark 3.1. The error estimate from the previous theorem is optimal with respect to the mesh
size h and only involves the problem data. It is not thoroughly independent of the thickness t , but
this dependence is very mild, since the estimate holds for any ε > 0. On the other hand, the term
‖g‖1,� could actually be replaced by (

∑
T ∈T ‖g‖2

1,T )1/2. In fact, this norm is only used to derive
(3.22) and this relies on a Raviart-Thomas interpolation error estimate which holds true element
by element. Therefore, the theorem holds for piecewise smooth loads, too.

C. A Postprocessing of Transverse Displacement and Rotations

In this section we present an element-wise postprocessing procedure, which allows us to build
piecewise linear transverse displacement and rotations with improved approximation properties.
With this aim, we introduce another H 1-type discrete norm for all sufficiently regular (scalar or
vector) functions v.

‖v‖2
1,h :=

∑
T ∈Th

‖∇v‖2
0,T +

∑
e∈Eh

h−1
e ‖[[v]]‖2

0,e.

Given the discrete solution ((σ h, γh), (βh, rh, wh)) ∈ Hh × Qh, we define a postprocessed
transverse displacement w�

h ∈ L2(�) as follows. For all T ∈ Th let w�
h ∈ P1(T ) be such that

Pw�
h = wh, (3.23)

∇w�
h = P̃(βh + t2κ−1γh). (3.24)
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It is immediate to check that w�
h is well defined and unique.

We start proving the following preliminary result.

Lemma 3.9. There holds

‖Pw − wh‖1,h ≤ Ch

[
1 +

(
h

t

)ε ]
‖g‖1,�.

Proof. To prove the result we will apply the following inf-sup condition, whose proof we do
not include since is very similar to that of Lemma 3.4: for all vh ∈ Qw

h , there exists ξh ∈ H
γ

h such
that ∫

�

vhdiv ξh = ‖vh‖2
1,h and ‖ξh‖0,� ≤ C‖vh‖1,h. (3.25)

Taking vh = (wh − Pw), noting that div ξh is piecewise constant and finally using (2.6) and
(3.1), we obtain

‖Pw − wh‖2
1,h =

∫
�

(Pw − wh)div ξh =
∫

�

(w − wh)div ξh

=
∫

�

(β − βh)ξh + t2κ−1

∫
�

(γ − γh)ξh.

The proof follows from the above equation by using a Cauchy-Schwarz inequality, recalling
Theorem 3.7 and using (3.25).

Now we are in a position to prove an improved convergence result for the postprocessed
transverse displacement.

Proposition 3.10. There holds

∥∥w − w�
h

∥∥
1,h

≤ Ch

[
1 +

(
h

t

)ε ]
‖g‖1,�.

Proof. Let w̃h and w̃ be such that

w�
h = wh + w̃h and w = Pw + w̃. (3.26)

Since w̃h and w̃ have zero average on each element T , by applying a scaled trace inequality we
have that

∑
e∈Eh

h−1
e ‖[[w̃h − w̃]]‖2

0,e ≤
∑
T ∈Th

(
h−2

T ‖w̃h − w̃‖2
0,T + |w̃h − w̃|21,T

)

≤ C
∑
T ∈Th

‖∇(w̃h − w̃)‖2
0,T . (3.27)
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We now observe that, due to (3.26), there hold ∇w�
h|T = ∇w̃h|T and ∇w|T = ∇w̃|T for all

T ∈ Th. Therefore, first we use (3.23) and (2.3) and then standard properties of the projector P̃ ,
to obtain for all T ∈ Th

‖∇(w̃h − w̃)‖2
0,T = ‖P̃(βh + t2κ−1γh) − (β + t2κ−1γ )‖2

0,T

≤ ‖P̃(βh + t2κ−1γh) − P̃(β + t2κ−1γ )‖2
0,T

+ ‖P̃(β + t2κ−1γ ) − (β + t2κ−1γ )‖2
0,T

≤ ‖(βh + t2κ−1γh) − (β + t2κ−1γ )‖2
0,T + Ch2

T |(β + t2κ−1γ )|21,T

≤ C
(‖βh − β‖2

0,T + t4‖γh − γ ‖2
0,T + h2

T |β|21,T + h2
T t4|γ |21,T

)
.

The above estimate, combined with Theorem 3.7 and Proposition 2.5, immediately yield

∑
T ∈Th

‖∇(w̃h − w̃)‖2
0,T ≤ Ch2

[
1 +

(
h

t

)ε ]2

‖g‖2
1,�. (3.28)

From (3.27), (3.28) and the definition of ‖ · ‖1,h, we finally obtain

‖w̃h − w̃‖1,h ≤ Ch

[
1 +

(
h

t

)ε ]
‖g‖1,�,

which combined with Lemma 3.9 and a triangle inequality lead to

∥∥w − w�
h

∥∥
1,h

≤ ‖Pw − wh‖1,h + ‖w̃h − w̃‖1,h ≤ Ch

[
1 +

(
h

t

)ε ]
‖g‖1,�.

Thus we conclude the proof.

We define also a postprocessed rotation field β�
h ∈ L2(�)2 as follows: For all T ∈ Th, let

β�
h ∈ P1(T )2 be such that

P̃β�
h = βh, ∇β�

h = P̂(C−1σ h + rhJ),

where P̂ is the L2 projection onto the space of piecewise constant R
2×2 tensor fields. It is

immediate to check that β�
h is well defined and unique. Moreover, the following result can be

proved by following the same lines as above.

Proposition 3.11. There holds

∥∥β − β�
h

∥∥
1,h

≤ Ch

[
1 +

(
h

t

)ε ]
‖g‖1,�.

Finally note that both postprocessing procedures are fully local and therefore have a negligible
computational cost.
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Remark 3.2. Although the main purpose of this scheme is to compute a better approximation of
the bending moments and the shear stress, using this postprocessing, a piecewise linear approxi-
mation of transverse displacement and rotations converging in an H 1-type norm can be recovered.
Note in particular that, from the definition of the norm ‖ · ‖1,h and the fact that the jumps of w and
β are null, it follows that at the limit for h → 0 the postprocessed discrete functions will also be
continuous.

D. Hybridization of the Discrete Problem

Similarly as in [7] the solution of the discrete problem (3.1)–(3.2) can be computed by solving
an equivalent linear system significantly smaller and positive definite. We will show briefly such
construction. We start introducing the following ‘broken’ spaces:

X̃h := {τ h ∈ L2(�)2×2 : τ h|T ∈ [RT0(T )t]2 ∀T ∈ Th},
H̃

γ

h := {ξh ∈ L2(�)2 : ξh|T ∈ RT0(T ) ∀T ∈ Th},
H̃ σ

h := X̃h ⊕ B(Th),

H̃h := H̃ σ
h × H̃

γ

h .

Note that no inter-element continuity is required for the above spaces. Furthermore, we introduce
a space of Lagrange multipliers that we use to enforce the continuity condition on the solution.
This is a discrete space of piecewise constant (vector) functions defined on the set E int

h of internal
edges of the triangulation:

�h := {
(kh, dh) : E int

h → R
2 × R

}
.

Since such functions (kh, dh) are constant on each edge, they can be identified with the collec-
tion of its values (ke, de) on the internal edges e ∈ E int

h . We also introduce the bilinear form
ϑ : H̃h × �h → R defined by

ϑ((τ h, ξh), (kh, dh)) :=
∑

e∈E int
h

(ke ·
∫

e

[[τ hne]] + de

∫
e

[[ξh · ne]]),

where [[·]] is the jump operator defined above. It is easy to check that the original discrete problem
(3.1)–(3.2) is equivalent to the following one:

Find ((σ h, γh), (βh, rh, wh), (xh, zh)) ∈ H̃h × Qh × �h such that

a((σ h, γh), (τ h, ξh)) + b((τ h, ξh), (βh, rh, wh)) + ϑ((τ h, ξh), (xh, zh)) = 0 (3.29)

∀(τ h, ξh) ∈ H̃h,

b((σ h, γh), (ηh, 0, vh)) = F(ηh, 0, vh) ∀(ηh, vh) ∈ Q
β

h × Qw
h , (3.30)

b((σ h, γh), (0, sh, 0)) = F(0, sh, 0) ∀sh ∈ Qr
h, (3.31)

ϑ((σ h, γh), (kh, dh)) = 0 ∀(kh, dh) ∈ �h. (3.32)

The advantage is that most variables in the above system can be eliminated with the following
static condensation procedure:
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FIG. 1. Square plate: uniform meshes.

1. Due to the full inter-element discontinuity of the functions in H̃h, from (3.29) one can
compute (σ h, γh) as a function of the remaining variables by solving an 11 × 11 system for
each element of the mesh.

2. Substituting (σ h, γh) as a function of the remaining variables in (3.30), one calculates
(βh, wh) as a function of F (namely of g), rh and (xh, zh). Note again that, due to the inter-
element discontinuity of the functions in Q

β

h × Qw
h , such operation reduces to solving a

3 × 3 linear system for each element of the mesh.
3. Substituting back the result (βh, wh) of item 2 into item 1, allows computing also (σ h, γh) as

a function of F , rh and (xh, zh). Therefore, Eqs. (3.31)–(3.32) now become a linear system
that can be solved for rh and (xh, zh), which constitutes the main bulk of the computations.

It can be checked that the final system obtained in item 3 above is symmetric and positive
definite. The dimension of such a system corresponds to that of the space Qr

h × �h, i.e., the
number of vertices plus three times the number of internal edges. Therefore, the size of the final
system is similar to that of more standard finite elements. For instance, the well known low-order
Durán-Liberman element adopts a total of three degrees of freedom per vertex plus one degree of
freedom per edge.

IV. NUMERICAL RESULTS

This numerical method has been implemented in a MATLAB code. We report in this section some
numerical experiments which confirm the theoretical results proved above.

We have taken as a test problem an isotropic and homogeneous plate � := (0, 1) × (0, 1)

clamped on its whole boundary, for which the analytical solution is explicitly known (see [15]).
We analyze the convergence properties of the method by considering different uniform meshes
as those shown in Fig. 1, and keeping the thickness fixed to t = 0.001.

Choosing the following transverse load,

g(x, y) = E

12(1 − ν2)

× {12y(y − 1)(5x2 − 5x + 1)[2y2(y − 1)2 + x(x − 1)(5y2 − 5y + 1)]
+ 12x(x − 1)(5y2 − 5y + 1)[2x2(x − 1)2 + y(y − 1)(5x2 − 5x + 1)]},
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TABLE I. Errors and experimental rates of convergence for σ , (div σ + γ ), γ , r , β and w.

N err(σ ) rc(σ ) err(σ , γ ) rc(σ , γ ) err(γ ) rc(γ )

609 0.40270e-04 — 0.29609e-03 — 0.31715e-02 —
2497 0.19649e-04 1.054 0.14805e-03 1.018 0.15876e-02 1.016
10113 0.09760e-04 1.019 0.07404e-03 1.009 0.07942e-02 1.008
40705 0.04868e-04 1.008 0.03702e-03 1.004 0.03971e-02 1.004
163329 0.02431e-04 1.004 0.01851e-03 1.002 0.01986e-02 1.002

N err(r) rc(r) err(β) rc(β) err(w) rc(w)
609 0.87462e-04 — 0.39713e-04 — 0.66226e-05 —
2497 0.39217e-04 1.178 0.18189e-04 1.147 0.27707e-05 1.280
10113 0.15009e-04 1.398 0.08884e-04 1.043 0.13136e-05 1.086
40705 0.05491e-04 1.457 0.04416e-04 1.013 0.06478e-05 1.025
163329 0.01991e-04 1.466 0.02205e-04 1.004 0.03228e-05 1.007

the exact solution of problem (2.6)–(2.7) is given by

w(x, y) = 1

3
x3(x − 1)3y3(y − 1)3 − 2t2

5(1 − ν)
[y3(y − 1)3x(x − 1)(5x2 − 5x + 1)

+ x3(x − 1)3y(y − 1)(5y2 − 5y + 1)],
β1(x, y) = y3(y − 1)3x2(x − 1)2(2x − 1),

β2(x, y) = x3(x − 1)3y2(y − 1)2(2y − 1).

The material constants have been chosen E = 1 and ν = 0.30 and the shear correction factor
has been taken k = 5/6.

In what follows, N denotes the number of degrees of freedom, which according to Section D
corresponds to N := dim(Qr

h) + dim(�h). Moreover, we define the individual errors by:

err(σ ) := ‖σ − σ h‖0,�, err(σ , γ ) := ‖(div σ + γ ) − (div σ h + γh)‖0,�,

err(r) := ‖r − rh‖0,�, err(γ ) := t‖γ − γh‖0,� + ‖div (γ − γh)‖0,�,

err(β) := ‖β − βh‖0,�, err(w) := ‖w − wh‖0,�,

where ((σ , γ ), (β, r , w)) ∈ H × Q and ((σ h, γh), (βh, rh, wh)) ∈ Hh × Qh are the solutions to
problems (2.6)–(2.7) and (3.1)–(3.2), respectively.

We have also computed experimental rates of convergence for each individual error as follows:

rc(·) := −2
log(err(·)/err′(·))

log(N/N ′)
,

where N and N ′ denote the degrees of freedom of two consecutive triangulations with respective
errors err and err′.

Table I shows the convergence history of the mixed finite element scheme (3.1)–(3.2) applied
to our test problem.

We observe from these tables that a clear rate of convergence O(h) is attained for all quantities.
Actually, the computation of r seems to be superconvergent.

Figures 2–5 show the profiles of all the computed quantities obtained with the finest mesh
(N = 163329).
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FIG. 2. Transverse displacement wh. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

FIG. 3. Rotations β1h (left) and β2h (right). [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

FIG. 4. Shear stress γ1h (left) and γ2h (right). [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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FIG. 5. Bending moments σ 11h (top-left), σ 12h (top-right), σ 21h (bottom-left), and σ 22h (bottom-right).

V. CONCLUSIONS

We have introduced a finite element method to solve the bending problem for a Reissner-Mindlin
plate. The method is based on a dual mixed variational formulation, in which the unknowns
are both stresses and displacements. In addition, the symmetry of the bending moment tensor is
imposed in a weak sense.

The discretization scheme uses PEERS finite elements for the bending moments and the corre-
sponding Lagrange multiplier to recover the symmetry. Shear stresses are discretized by lowest-
order Raviart-Thomas elements, while the kinematic variables are approximated by piecewise
constant functions.

Despite the high number of the involved degrees of freedom, the actual scheme implementation
can be efficiently made by using a hybridization procedure. Therefore, the resulting approach has
a computational cost which is comparable with those of other low-order schemes.

Error estimates are derived for the bending moment σ and the shear stress γ , both in H(div ).
For these estimates to hold, an additional piecewise smoothness assumption is needed for the
load g = −div γ , which is the only data of the problem. We note that standard methods based
on a transverse displacement and rotation discretization only lead to approximations of the shear
stress in weaker norms.
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The method is proved to be practically locking-free, without the need of any reduction oper-
ator. In fact, the obtained error estimates only depend on norms of the solution which can be a
priori bounded in terms of the data g. These error estimates are not fully independent of the plate
thickness t , since they involve a term ( h

t
)ε . However the exponent ε can be arbitrarily small, so

that the dependence on t is actually very mild. This is confirmed by the numerical experiments.
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