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VIRTUAL ELEMENTS FOR A SHEAR-DEFLECTION

FORMULATION OF REISSNER–MINDLIN PLATES

L. BEIRÃO DA VEIGA, D. MORA, AND G. RIVERA

Abstract. We present a virtual element method for the Reissner–Mindlin
plate bending problem which uses shear strain and deflection as discrete vari-
ables without the need of any reduction operator. The proposed method is
conforming in [H1(Ω)]2 × H2(Ω) and has the advantages of using general
polygonal meshes and yielding a direct approximation of the shear strains.
The rotations are then obtained by a simple postprocess from the shear strain
and deflection. We prove convergence estimates with involved constants that
are uniform in the thickness t of the plate. Finally, we report numerical ex-
periments which allow us to assess the performance of the method.

1. Introduction

The virtual element method (VEM), introduced in [8,9], is a recent generalization
of the finite element method which is characterized by the capability of dealing with
very general polygonal/polyhedral meshes. Interest in numerical methods that can
make use of general polytopal meshes has recently undergone significant growth in
the mathematical and engineering literature; among the large number of papers on
this subject, we cite as a minimal sample [4, 8, 11, 26, 31, 42, 45, 46].

Indeed, polytopal meshes can be very useful for a wide range of reasons, including
meshing of the domain (such as cracks) and data (such as inclusions) features,
automatic use of hanging nodes, use of moving meshes, and adaptivity. Moreover,
the VEM presents the advantage of easily implementing highly regular discrete
spaces. Indeed, by avoiding the explicit construction of the local basis functions, the
VEM can easily handle general polygons/polyhedrons without complex integrations
on the element (see [9] for details on the coding aspects of the method). The virtual
element method has been applied successfully in a large range of problems; see for
instance [1, 2, 7–9, 12, 15–17,20, 23, 25, 28, 35, 39–41,47, 48].

The Reissner–Mindlin plate bending problem is used to approximate the de-
formation of a thin or moderately thick elastic plate. Nowadays, it is very well
understood that the discretization of this problem poses difficulties due to the so-
called locking phenomenon when the thickness t is small with respect to the other
dimensions of the plate. Nevertheless, adopting for instance a reduced integration
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or a mixed interpolation technique, this phenomenon can be avoided. Indeed, sev-
eral families of methods have been rigorously shown to be free from locking and
optimally convergent. We mention [34, 37] for a thorough description and further
references.

Recently, a new approach to solving the Reissner–Mindlin bending problem was
presented in [10] by Beirão da Veiga et al. (see also [33, 36]). In this case a
variational formulation of the plate bending problem is written in terms of shear
strain and deflection with the advantage that the “shear locking phenomenon” is
avoided. A discretization of the problem by isogeometric analysis is proposed.
Under some regularity assumptions on the exact solution, optimal error estimates
with constants independent of the plate thickness are proved.

The aim of this paper is to develop a virtual element method which applies
to general polygonal (even non-convex) meshes for Reissner–Mindlin plates. We
consider a variational formulation written in terms of shear strain and deflection
presented in [10]. Here, we exploit the capability of VEM to build highly regular
discrete spaces and propose a conforming [H1(Ω)]2 ×H2(Ω) discrete formulation,
respectively for the shear strain and deflections. The resulting bilinear form is
continuous and elliptic with appropriate t-dependent norms. This method makes
use of a very simple set of degrees of freedom, namely five degrees of freedom per
vertex of the mesh plus the number of edges, and approximates directly the trans-
verse shear strain, which is distinctive of this approach. Moreover, the rotations
are obtained by a simple postprocess from the shear strain and deflection. Under
some regularity assumptions on the exact solution, optimal error estimates (in the
natural norms of the adopted formulation) with constants independent of the plate
thickness are proved for all the involved variables. In addition, we present error
estimates in weaker norms using a duality argument. Furthermore, let us remark
that it is possible to generalize the proposed scheme to a family of high-order meth-
ods, by considering the C1(Ω) family of elements in [23] and combining it with a
VEM rotation space of higher degree. Finally, we point out that, different from the
finite element method where globally building C1(Ω) functions is complicated, here
the virtual deflection space can be built with a rather simple construction due to
the flexibility of the virtual approach. Moreover, the present analysis constitutes
a stepping stone towards the more challenging goal of devising virtual element ap-
proximations for other problems, as laminated or stiffened plates, or shells. In
summary, the advantages of the proposed method are the possibility to use gen-
eral polygonal meshes and a better conformity with the limit Kirchhoff problem,
ensuing from the H2(Ω) approximation used for the discrete deflection.

The outline of this article is as follows: we introduce in Section 2 the Reissner–
Mindlin plate model, first in terms of deflection and rotation variables and then
in an equivalent form in terms of deflection and transverse shear strain variables.
In Section 3, we present the discrete spaces for the shear strain and deflection,
together with their properties, and next we construct the discrete bilinear forms
and the loading term. We end this section with the presentation of the virtual
element discrete formulation. In Section 4, we present the error analysis of the
virtual scheme. In Section 5, we report a couple of numerical tests that allow us to
assess the convergence properties of the method.

Throughout the paper, Ω is a generic Lipschitz bounded domain of R
2. For

s ≥ 0, ‖·‖s,Ω stands indistinctly for the norm of the Hilbertian Sobolev spaces
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Hs(Ω) or [Hs(Ω)]2 with the convention H0(Ω) := L2(Ω). Finally, we employ 0 to
denote a generic null vector and we will denote by C a generic constant which may
take different values in different occurrences, and which is independent of the mesh
parameter h and the plate thickness t.

2. Continuous problem

Consider an elastic plate of thickness t, 0 < t ≤ 1, with reference configuration
Ω× (−t/2, t/2), where Ω is a convex polygonal domain of R2 occupied by the mid-
section of the plate. The deformation of the plate is described by means of the
Reissner–Mindlin model in terms of the rotations θ = (θ1, θ2) of the fibers initially
normal to the plate mid-surface and the deflection w. We subdivide the boundary
Γ of Ω in three disjoint parts such that

Γ = Γc ∪ Γs ∪ Γf .

The plate is assumed to be clamped on Γc, simply supported on Γs, and free on Γf .
We assume that Γc has positive measure. We denote by n the outward unit normal
vector to Γ. The following equations describe the plate response to a conveniently
scaled transverse load g:

(1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−divCε(θ)− λt−2(∇w − θ) = 0 in Ω,
− div(λt−2(∇w − θ)) = g in Ω,
θ = 0, w = 0 on Γc,
Cε(θ)n = 0, w = 0 on Γs,
Cε(θ)n = 0, (θ −∇w) = 0 on Γf ,

where λ := Ek/2(1 + ν) is the shear modulus, with E the Young modulus, ν the
Poisson ratio, and k a correction factor, ε(θ) := 1

2 (∇θ+(∇θ)t) is the standard strain
tensor, and C is the tensor of bending moduli, given by (for isotropic materials)

Cσ :=
E

12(1− ν2)
((1− ν)σ + ν tr(σ)I) , σ ∈ [L2(Ω)]2×2,

where tr(σ) is the trace of σ and I is the identity tensor.
Let us consider the space

X̃ := {(v,η) ∈ H1(Ω)× [H1(Ω)]2 : v = 0 on Γc ∪ Γs,η = 0 on Γc}.

By testing the system (1) with (v,η) ∈ X̃, integrating by parts, and using the
boundary conditions, we write the following variational formulation.

Problem 2.1. Given g ∈ L2(Ω), find (w, θ) ∈ X̃ such that

a(θ,η) + b(θ −∇w,η −∇v) = (g, v)0,Ω ∀(v,η) ∈ X̃,

where (·, ·)0,Ω denotes the inner product in L2(Ω), and the bilinear forms are given
by

a(θ,η) := (Cε(θ), ε(η))0,Ω,
b(θ,η) := λt−2(θ,η)0,Ω.

The following result states that the bilinear form appearing in Problem 2.1 is
coercive (see [10, Proposition A.1]).
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Lemma 2.1. There exists a positive constant α depending only on the material
constants and the domain Ω such that:
(2)

a(η,η)+b(η−∇v,η−∇v) ≥ α
(
‖η‖21,Ω + t−2‖η −∇v‖20,Ω + ‖v‖21,Ω

)
∀(v,η) ∈ X̃.

It is well known that the discretization of the Reissner–Mindlin equations have
difficulties due to the so-called locking phenomenon when the thickness t is small
with respect to the other dimensions of the plate. To avoid this phenomenon we
will introduce and analyze an alternative formulation of the problem that does not
suffer from such a drawback. In order to simplify the notation, and without any
loss of generality, we will assume λ = 1 in the following.

2.1. An equivalent variational formulation. The variational formulation that
will be considered here was introduced in the context of shells in [33, 36] and has
been studied in [10] for Reissner–Mindlin plates using isogeometric analysis.

Now, we note that the equivalent formulation is derived by simply considering
the following change of variables:

(3) (w, θ) ←→ (w,γ) with θ = ∇w + γ.

We note that the physical interpretation of the variable γ corresponds to the trans-
verse shear strain.

The equivalent formulation will be obtained by using the change of variables (3)
in Problem 2.1.

For the analysis we will consider the following t-dependent energy norm:

(4) |||v, τ |||2 := ‖τ +∇v‖21,Ω + t−2‖τ‖20,Ω + ‖v‖21,Ω,

for all sufficiently regular functions τ : Ω −→ R
2 and v : Ω −→ R.

Now, we define the following variational spaces:

X̂ := C∞(Ω)× [C∞(Ω)]2
|||·,·|||

,

X := {(v, τ ) ∈ X̂ : v = 0 on Γc ∪ Γs,∇v + τ = 0 on Γc}.
It is immediately verified that

H2(Ω)× [H1(Ω)]2 ⊂ X̂ ⊂ H1(Ω)× [L2(Ω)]2.

Moreover, note that the space X exactly corresponds to X̃ up to the change of
variables (3).

Let us introduce the equivalent variational formulation for the Reissner–Mindlin
model as follows.

Problem 2.2. Given g ∈ L2(Ω), find (w,γ) ∈ X such that

a(∇w + γ,∇v + τ ) + b(γ, τ ) = (g, v)0,Ω ∀(v, τ ) ∈ X.

We have that Problem 2.2 is equivalent to Problem 2.1 up to the change of
variables (3). As a consequence, we have the following coercivity property for the
bilinear form on the left-hand side of Problem 2.2 (see (2)):

(5) a(∇v + τ ,∇v + τ ) + b(τ , τ ) ≥ α|||v, τ |||2 ∀(v, τ ) ∈ X,

with the same constant α. Moreover, bilinear forms a(·, ·) and b(·, ·) are bounded
uniformly in t.
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Therefore, Problem 2.2 has a unique solution (w,γ) ∈ X and

|||w,γ||| ≤ C‖g‖0,Ω.

3. Virtual element discretization

We begin this section by recalling the mesh construction and the shape regularity
assumptions to introduce the discrete virtual element spaces for the shear strain and
deflection, together with their properties. Next, we will introduce discrete bilinear
forms and the loading term. Finally, we end this section with the presentation of
the virtual element discretization of Problem 2.2.

3.1. Mesh regularity assumption. Let {Th}h be a sequence of decompositions
of Ω into polygons E. Let hE denote the diameter of the element E, and let
h := maxE∈Th

hE .
For the analysis, we will make the following assumptions as in [8, 14, 15]: there

exists a positive real number CT such that, for every h and every E ∈ Th,
A1: the ratio between the shortest edge and the diameter hE of E is larger than

CT ;
A2: E ∈ Th is star-shaped with respect to every point of a ball of radius CT hE .

For any subset S ⊆ R
2 and non-negative integer k, we indicate by Pk(S) the

space of polynomials of degree up to k defined on S. To keep the notation simpler,
we denote by n a general normal unit vector; in each case, its precise definition will
be clear from the context and we denote by t the tangent unit vector defined as the
anticlockwise rotation of n.

To continue the construction of the discrete scheme, we need some preliminary
definitions. First, we split the bilinear forms a(·, ·) and b(·, ·) introduced in the
previous section as follows:

a (∇w + γ,∇v + τ ) =
∑
E∈Th

aE (∇w + γ,∇v + τ ) ∀(w,γ), (v, τ ) ∈ X,(6)

b (γ, τ ) =
∑
E∈Th

bE(γ, τ ) ∀γ, τ ∈ [H1(Ω)]2,(7)

with

aE (∇w + γ,∇v + τ ) := (Cε(∇w + τ ), ε(∇v + γ))0,E

and

bE(γ, τ ) := t−2(γ, τ )0,E .

Finally, we define

A((w,γ), (v, τ )) := a(∇w + γ,∇v + τ ) + b(γ, τ )

=
∑
E∈Th

AE((w,γ), (v, τ )) ∀(w,γ), (v, τ ) ∈ X,

where

AE((w,γ), (v, τ )) = aE (∇w + γ,∇v + τ ) + bE (γ, τ ) .
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In order to construct the discrete scheme associated to Problem 2.2, in what
follows we will show that for each h > 0 it is possible to build the following:

(1) a discrete virtual space Xh ⊆ X such that

Xh := {(vh, τh) ∈ (Wh ×Vh) : vh = 0 on Γc ∪ Γs,∇vh + τh = 0 on Γc},

in which the virtual spaces Wh ⊆ H2(Ω) and Vh ⊆ [H1(Ω)]2;
(2) a symmetric bilinear form Ah : Xh ×Xh → R which can be split as

(8)

Ah((wh,γh), (vh, τh)) :=
∑
E∈Th

AE
h ((wh,γh), (vh, τh)) ∀(wh,γh), (vh, τh) ∈ Xh,

with AE
h (·, ·) local bilinear forms on Xh|E ×Xh|E ;

(3) an element gh ∈ X ′
h and a discrete duality pair 〈·, ·〉h in such a way that

the following discrete problem admits a unique solution (wh,γh) ∈ Xh and
exhibits optimal approximation properties: Find (wh,γh) ∈ Xh such that

(9) Ah((wh,γh), (vh, τh)) = 〈gh, vh〉h ∀(vh, τh) ∈ Xh.

3.2. Discrete virtual spaces for shear strain and deflection. We introduce
a pair of finite-dimensional spaces for shear strain and deflection:

Vh ⊆ [H1(Ω)]2, Wh ⊆ H2(Ω).

First, we construct the shear strain virtual space Vh, inspired from [2]. With
this aim, we consider a simple polygon E (meaning open simply connected sets
whose boundary is a non-intersecting line made of a finite number of straight line
segments) and we define

B∂E := {τh ∈ [C0(∂E)]2 : τh · t|∂E ∈ P2(e) and τh · n|∂E ∈ P1(e) ∀e ∈ ∂E}.

We then consider the finite-dimensional space defined as follows:

VE
h :=

{
τh ∈ [H1(E)]2 : τh|∂E ∈ B∂E ,{

−Δτ h + rot s = 0 in E,
rot τh ∈ P0(E),

for some s ∈ L2(E)

}
.

Note that the operators and equations above are to be interpreted in the distribu-
tional sense. The space VE

h is well defined. Indeed, given a (piecewise polynomial)
boundary value τh|∂E ∈ B∂E , the associated function τh inside the element E is
obtained by solving the Stokes-like variational problem and using that

rot τh|E =
1

|E|

∫
E

rot τh =
1

|E|

∫
∂E

τh · t.

We observe that τh minimizes the H1(E)-seminorm over all the functions in H1(E)
with constant rot and satisfying the fixed boundary condition on ∂E.

It is important to observe that, since the functions in VE
h are uniquely identified

by their boundary values, dim(VE
h ) = dim(VE

h |∂E), i.e., dim(VE
h ) = 3NE , with

NE the number of edges of E. This leads to introducing the following 3NE degrees
of freedom for the space VE

h :

• Vh
E : the values of τh (vector) at the vertices of E.
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• Eh
E : the value of

1

|e|

∫
e

τh · t ∀ edges e ∈ ∂E.

Moreover, we note that as a consequence of the definition VE
h , the output values of

the two sets of degrees of freedom Vh
E and Eh

E are sufficient to uniquely determine
τh · t and τh · n on the boundary of E, for any τh ∈ VE

h . Finally, we note that
clearly [P1(E)]2 ⊂ VE

h .
For every decomposition Th of Ω into simple polygons E, we define the global

space Vh without boundary conditions:

Vh := {τh ∈ [H1(Ω)]2 : τh|E ∈ VE
h ∀E ∈ Th}.

In agreement with the local choice of the degrees of freedom, in Vh we choose the
following degrees of freedom:

• Vh: the values of τh (vector) at the vertices of Th.
• Eh: the value of

1

|e|

∫
e

τh · t ∀ edges e ∈ Th.

Now, we will introduce the discrete virtual space Wh for the deflection; see also
[2, 23]. With this aim, we first define the following finite-dimensional space:

WE
h := {vh ∈ H2(E) : Δ2vh = 0, vh|∂E ∈ P3(e),

∇vh|∂E ∈ [C0(∂E)]2 and ∂nvh|∂E ∈ P1(e) ∀e ∈ ∂E},

where Δ2 represents the biharmonic operator. We observe that any vh ∈ WE
h

clearly satisfies the following conditions:

• The trace (and the trace of the gradient) on the boundary of E is continu-
ous.

• P2(E) ⊆ WE
h .

We choose in WE
h the degrees of freedom introduced in [3, Section 2.2], namely:

• Wh
E : the values of vh and ∇vh at the vertices of E.

We note that as a consequence of the definition WE
h , the degrees of freedom Wh

E

are sufficient to uniquely determine vh and ∇vh on the boundary of E.
We now present the global virtual space for the deflection: for every decomposi-

tion Th of Ω into simple polygons E, we define (without boundary conditions)

Wh := {vh ∈ H2(Ω) : vh|E ∈ WE
h ∀E ∈ Th}.

In agreement with the local choice of the degrees of freedom, in Wh we choose the
following degrees of freedom:

• Wh: the values of vh and ∇vh at the vertices of Th.
As a consequence of the definition of local virtual spaces VE

h and WE
h , we have

the following result which will be used in the forthcoming analysis.

Proposition 3.1. Let E be a simple polygon with NE edges. Then ∇WE
h ⊆ VE

h .

Proof. Let vh ∈ WE
h . Then we have that vh ∈ H2(E), Δ2vh = 0, vh|e ∈ P3(e), and

∇vh · n|e ∈ P1(e) for all e ∈ ∂E. Hence, ∇vh ∈ [H1(E)]2, ∇vh · t|e ∈ P2(e), and
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∇vh · n|e ∈ P1(e) for all e ∈ ∂E, i.e., ∇vh|∂E ∈ B∂E . Moreover, rot(∇vh) = 0 ∈
P0(E). On the other hand, we have that

0 = Δ2vh = Δ(Δvh) = Δ (div(∇vh)) = div (Δ(∇vh)) .

Since a star-shaped polygon E is simply connected, there exists q ∈ L2(E) such
that Δ(∇vh) = rot q (see [21, Proposition VII.3.4]). Thus, ∇vh ∈ VE

h . The proof
is complete. �

Finally, once we have defined Vh and Wh, we are able to introduce our virtual
element space Xh:

Xh := {(vh, τh) ∈ Wh ×Vh} ∩X.

3.3. Bilinear forms and the loading term. In this section we will discuss the
construction of the discrete version of the local bilinear forms aE(·, ·) (cf. (6)) and
bE(·, ·) (cf. (7)), which will be used to build the local bilinear form appearing in
(8). Moreover, we will discuss the construction of the loading term appearing in
(9).

We define the projector ΠE
ε : VE

h −→ [P1(E)]2 ⊂ VE
h for each τh ∈ VE

h as the
solution of ⎧⎨⎩ aE(p,ΠE

ε τh) = aE(p, τh) ∀p ∈ [P1(E)]2,〈〈
p,ΠE

ε τh

〉〉
= 〈〈p, τh〉〉 ∀p ∈ ker(aE(·, ·)),

(10)

where for all rh, sh in VE
h

〈〈rh, sh〉〉 :=
1

NE

NE∑
i=1

rh(vi) · sh(vi), vi = vertices of E, 1 ≤ i ≤ NE .

We note that the second equation in (10) is needed for the problem to be well-
posed. In fact, it is easy to check that it returns one (and only one) function
ΠE

ε τh ∈ [P1(E)]2. Moreover, we observe that the local degrees of freedom allow us
to exactly compute the right-hand side of (10). Indeed, for all p ∈ [P1(E)]2, we
have

aE(p, τh) =

∫
E

Cε(p) : ε(τh) = −
∫
E

div(Cε(p)) · τh +

∫
∂E

(Cε(p)n) · τh

=

∫
∂E

(Cε(p)n) · τh,

where we have used that div(Cε(p)) = 0. Therefore, since the functions τh ∈ VE
h

are explicitly known on the boundary, the right-hand side of (10) can be exactly
computed without knowing τh in the interior of E. As a consequence, the projection
operator ΠE

ε is computable solely on the basis of the degrees of freedom values.
Let ΠE

0 : VE
h → [P0(E)]2 be the [L2(E)]2-projector, defined by∫

E

ΠE
0 τh · p0 =

∫
E

τh · p0 ∀p0 ∈ [P0(E)]2.

We note that as before, the right-hand side above is computable. In fact, we consider
a simple polygon E with barycenter xE = (xE, yE)

t and we have that any p0 ∈
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[P0(E)]2 can be written as p0 = α(1, 0)t+β(0, 1)t = α rot(y−yE)+β rot(xE −x).
Thus, for all τh ∈ VE

h we have∫
E

τh · (1, 0)t =
∫
E

τh · rot(y − yE) =

∫
E

rot τh(y − yE)−
∫
∂E

(τh · t) (y − yE)

= rot τh

∫
E

(y − yE)−
∫
∂E

(τh · t) (y − yE)

= −
∫
∂E

(τh · t) (y − yE),

where we have used that for τh ∈ VE
h , rot τh ∈ P0(E). Using the same arguments,

we get ∫
E

τh · (0, 1)t = −
∫
∂E

(τh · t) (xE − x),

which shows that ΠE
0 τh is computable solely on the basis of the degrees of freedom

values.
Now let SE(·, ·) and SE

0 (·, ·) be any symmetric positive definite bilinear forms
chosen to satisfy

c0a
E(τh, τh) ≤ SE(τh, τh) ≤ c1a

E(τh, τh) ∀τh ∈ VE
h with ΠE

ε τh = 0,(11)

c̃0b
E(τh, τh) ≤ SE

0 (τh, τh) ≤ c̃1b
E(τh, τh) ∀τh ∈ VE

h ,(12)

for some positive constants c0, c1, c̃0, and c̃1 depending only on the constant CT
from mesh assumptions A1 and A2. Then, we introduce on each element E the
local (and computable) bilinear forms

aEh (γh, τh) := aE(ΠE
ε γh,Π

E
ε τh) + SE(γh −ΠE

ε γh, τh −ΠE
ε τh), γh, τh ∈ VE

h ,

bEh (γh, τh) := bE(ΠE
0 γh,Π

E
0 τh) + SE

0 (γh −ΠE
0 γh, τh −ΠE

0 τh), γh, τh ∈ VE
h .

Now, we define in a natural way

ah(γh, τh) :=
∑
E∈Th

aEh (γh, τh),

bh(γh, τh) :=
∑
E∈Th

bEh (γh, τh), γh, τh ∈ Vh.

The construction of aEh (·, ·) and bEh (·, ·) guarantees the usual consistency and sta-
bility properties of VEM, as noted in the proposition below. Since the proof follows
standard arguments in the virtual element literature (see [8, 13]) it is omitted.

Proposition 3.2. The local bilinear forms aEh (·, ·) and bEh (·, ·) on each element E
satisfy:

• Consistency: for all h > 0 and for all E ∈ Th we have that

aEh (p, τh) = aE(p, τh) ∀p ∈ [P1(E)]2, ∀τh ∈ VE
h ,(13)

bEh (p0, τh) = bE(p0, τh) ∀p0 ∈ [P0(E)]2, ∀τh ∈ VE
h .(14)

• Stability: there exist positive constants α∗, α
∗, β∗, and β∗, independent of

h and E, such that

α∗a
E(τh, τh) ≤ aEh (τh, τh) ≤ α∗aE(τh, τh) ∀τh ∈ VE

h , ∀E ∈ Th,(15)

β∗b
E(τh, τh) ≤ bEh (τh, τh) ≤ β∗bE(τh, τh) ∀τh ∈ VE

h , ∀E ∈ Th.(16)
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We note that as a consequence of (15) and (16), the bilinear forms aEh (·, ·) and
bEh (·, ·) are bounded with respect to the H1 and L2 norms, respectively.

We now discuss the construction of the loading term. For every E ∈ Th we
approximate the data g by a piecewise constant function gh on each element E
defined as the L2(E)-projection of the load g (denoted by ḡE). Define the loading
term

(17) 〈gh, vh〉h :=
∑
E∈Th

ḡE

NE∑
i=1

vh(vi)ω
i
E ,

where v1, . . . , vNE
are the vertices of E and ω1

E , . . . , ω
NE

E are positive weights chosen
to provide the exact integral on E when applied to linear functions.

3.4. Discrete problem. The results of the previous sections allow us to introduce
the discrete VEM in shear strain-deflection formulation for the approximation of
the continuous Reissner–Mindlin formulation presented in Problem 2.2.

With this aim, we first note that since ∇WE
h ⊂ VE

h (see Proposition 3.1), the
operator ΠE

ε can also be applied to ∇vh for all vh ∈ WE
h . Hence, we introduce the

following VEM discretization for the approximation of Problem 2.2.

Problem 3.1. Find (wh,γh) ∈ Xh such that

(18) ah(∇wh + γh,∇vh + τh) + bh(γh, τh) = 〈gh, vh〉h ∀(vh, τh) ∈ Xh.

The next lemma shows that the problem above is coercive in the ||| · ||| norm.

Lemma 3.1. There exists β > 0, independent of h and t, such that

ah(∇vh + τh,∇vh + τh) + bh(τh, τh) ≥ β |||(vh, τh)|||2 ∀(vh, τh) ∈ Xh.

Proof. Thanks to (15), (16), and (5), we have that

ah(∇vh + τh,∇vh + τh) + bh(τh, τh) ≥ C∗ (a(∇vh + τh,∇vh + τh) + b(τh, τh))

≥ β |||(vh, τh)|||2 ,

with β := min {C∗, α}. �

We deduce immediately from Lemma 3.1 that Problem 3.1 is well-posed.

Remark 3.1. The solution of Problem 2.2 delivers the shear strain and deflection.
In addition, it is possible to readily obtain the rotations θ by recalling (3). At
the discrete level, this strategy corresponds to computing the rotations as a post-
processing of the shear strain and deflection. If (wh,γh) ∈ Xh is the unique solution
of Problem 3.1, then the function

θh = ∇wh + γh

is an approximation of the rotations. The accuracy of such an approximation will
be established in the following section.

4. Convergence analysis

In the present section, we develop an error analysis for the discrete virtual ele-
ment scheme presented in Section 3.4. For the forthcoming analysis, we will assume
that the mesh assumptions A1 and A2, introduced in Section 3.1, are satisfied.
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For the analysis we will introduce the broken H1-norm:

‖v‖21,h,Ω :=
∑
E∈Th

‖v‖21,E ,

which is well defined for every v ∈ L2(Ω) such that v|E ∈ H1(E) for all polygons
E ∈ Th.

Moreover, we recall the following result which is derived by interpolation between
Sobolev spaces (see, for instance, [24]) from the analogous result for integer values
of s. In its turn, the result for integer values is stated in [8, Proposition 4.2] and
follows from the classical Scott-Dupont theory (see [19]).

Proposition 4.1. There exists a constant C > 0, such that for every v ∈ [Hs(E)]d,
d = 1, 2, there exists vΠ ∈ [Pk(E)]d, k ≥ 0, such that

|v − vΠ|l,E ≤ Chs−l
E |v|s,E , 0 ≤ s ≤ k + 1, l = 0, . . . , [s],

with [s] denoting the largest integer equal to or smaller than s ∈ R.

The first step is to establish the following result.

Lemma 4.1. Let (w,γ) ∈ X be the unique solution to the continuous Problem 2.2
and let θ := ∇w + γ. Let (wh,γh) ∈ Xh be the unique solution to the discrete
Problem 3.1. Then, for any (wI ,γI) ∈ Xh and (θΠ,γ0) ∈ [L2(Ω)]4 such that
θΠ|E ∈ [P1(E)]2 and γ0|E ∈ [P0(E)]2 for all E ∈ Th, there exists C > 0 independent
of h and t such that

|||w − wh,γ − γh||| ≤ C
(
t−1 (‖γ − γI‖0,Ω + ‖γ0 − γ‖0,Ω) + ‖γ − γI‖1,Ω
+ h‖g‖0,Ω +‖θ − θΠ‖1,h,Ω + ‖∇w −∇wI‖1,Ω) .

Proof. We set δγ := γh − γI , δw := wh − wI , θh := ∇wh + γh, θI := ∇wI + γI ,
and δθ := θh − θI . Thanks to Lemma 3.1 and equations (18), (13), (14) we have
that

β|||(wh − wI), (γh − γI)|||2

≤ ah(θh − θI , δθ) + bh(γh − γI , δγ)

= ah(∇wh + γh, δθ) + bh(γh, δγ)− (ah(θI , δθ) + bh(γI , δγ))

= 〈gh, δw〉h −
∑
E∈Th

(
aEh (θI − θΠ, δθ) + aE(θΠ − θ, δθ) + aE(θ, δθ)

)
−
∑
E∈Th

(
bEh (γI − γ0, δγ) + bE(γ0 − γ, δγ) + bE(γ, δγ)

)
≤ T1 + T2 + T3,

where

T1 :=
∣∣∣〈gh, δw〉h − (g, δw)0,Ω

∣∣∣ ,
T2 :=

∣∣∣∣∣ ∑
E∈Th

(
aEh (θI − θΠ, δθ)− aE(θΠ − θ, δθ)

)∣∣∣∣∣ ,
T3 :=

∣∣∣∣∣ ∑
E∈Th

(
bEh (γI − γ0, δγ)− bE(γ0 − γ, δγ)

)∣∣∣∣∣ .
We now bound each term Ti, i = 1, 2, 3, with a constant C independent of h and t.
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First, we bound the term T2. Using (15), the fact that the bilinear form a(·, ·)
is bounded, and finally adding and subtracting θ, we obtain

T2 ≤
∑
E∈Th

∣∣aEh (θI − θΠ, δθ)
∣∣+ ∑

E∈Th

∣∣aE(θΠ − θ, δθ)
∣∣

≤
∑
E∈Th

C(‖θI − θΠ‖1,E + ‖θΠ − θ‖1,E)‖δθ‖1,E

≤
∑
E∈Th

C(‖θI − θ‖1,E + ‖θΠ − θ‖1,E)‖δθ‖1,E .

For the term T3, using (16), the definition of the bilinear form b(·, ·), the Cauchy-
Schwarz inequality, and finally adding and subtracting γ, we obtain

T3 ≤
∑
E∈Th

C(‖γI − γ‖0,E + ‖γ0 − γ‖0,E)t−2‖δγ‖0,E .

Now, we bound T1. Using the definition (17) and adding and subtracting ḡE , we
rewrite the term as

T1 =

∣∣∣∣∣ ∑
E∈Th

(
ḡE

NE∑
i=1

δw(vi)ω
i
E

)
−
∑
E∈Th

∫
E

gδw

∣∣∣∣∣
=

∣∣∣∣∣ ∑
E∈Th

(
ḡE

NE∑
i=1

δw(vi)ω
i
E −
∫
E

ḡEδw

)
+
∑
E∈Th

(∫
E

(ḡE − g)(δw − p)

)∣∣∣∣∣ ,
for any p ∈ P0(E), where we have used the definition of ḡE . Therefore,

T1 ≤
∣∣∣∣∣ ∑
E∈Th

(
ḡE

NE∑
i=1

δw(vi)ω
i
E −
∫
E

ḡEδw

)∣∣∣∣∣+ ∑
E∈Th

‖g − ḡE‖0,E‖δw − p‖0,E

:= T a
1 + T b

1 .

First, T b
1 is easily bounded. In fact, taking p as in Proposition 4.1, we obtain that

T b
1 ≤ Ch‖g‖0,Ω‖δw‖1,Ω.

In what follows we will manipulate the terms T a
1 : adding and subtracting p0 ∈

P0(E), and since the integration rule in (17) is exact for constant functions, we
have

T a
1 ≤
∣∣∣∣∣ ∑
E∈Th

∫
E

ḡE(δw − p0)

∣∣∣∣∣+
∣∣∣∣∣ ∑
E∈Th

(
ḡE

(
NE∑
i=1

(δw − p0)(vi)ω
i
E

))∣∣∣∣∣
≤ ‖g‖0,Ω

(∑
E∈Th

‖δw − p0‖20,E

)1/2

+
∑
E∈Th

|E|ḡE‖δw − p0‖L∞(∂E)

≤ ‖g‖0,Ω

(∑
E∈Th

‖δw − p0‖20,E

)1/2

+ ‖g‖0,Ω

(∑
E∈Th

h2
E‖δw − p0‖2L∞(∂E)

)1/2

.(19)

Now, we fix p0 := Π0
∂E(δw) =

1
|∂E|
∫
∂E

δw. Thus, we have that δw−p0 is a (continu-

ous) piecewise polynomial on ∂E, and that the length of the edges of E is bounded
from below in the sense of assumption A1. Therefore, we can apply Lemma 3.1
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in [18], standard polynomial approximation estimates, and a trace inequality to
derive the following estimate for the second term on the right-hand side in (19):

‖δw − p0‖L∞(∂E) ≤ C|δw|1/2,∂E + h
−1/2
E ‖δw − p0‖0,∂E ≤ C|δw|1/2,∂E ≤ C|δw|1,E .

For the first term on the right-hand side in (19), we consider c ∈ P0(E) such that
Proposition 4.1 holds with respect to δw (for instance, take c as the average of δw
on E). Thus, simple calculations yield

‖δw − p0‖0,E ≤ ‖δw − c‖0,E + ‖Π0
∂E(δw − c)‖0,E

≤ ChE|δw|1,E + h
1/2
E ‖Π0

∂E(δw − c)‖0,∂E
≤ ChE|δw|1,E + h

1/2
E ‖δw − c‖0,∂E

≤ ChE|δw|1,E + ‖δw − c‖0,E + hE |δw|1,E
≤ ChE|δw|1,E ,

where we have used a scaled trace estimate on polygons (also sometimes called the
Agmon inequality in the FEM literature); see for instance [15, Lemma 14]). Hence,
from the above estimates, we obtain

T a
1 ≤Ch‖g‖0,Ω|δw|1,Ω.

Thus, since |δw|1,Ω ≤ |||δw, δγ |||, we have that

(20) T1 ≤ T a
1 + T b

1 ≤ Ch‖g‖0,Ω|||δw, δγ |||.

Therefore, by combining (20) with the above bounds for T2 and T3, we get

|||(wh − wI), (γh − γI)||| ≤C
(
t−1(‖γ − γI‖0,Ω + ‖γ0 − γ‖0,Ω)

+ ‖θ − θI‖1,Ω + ‖θΠ − θ‖1,h,Ω + h‖g‖0,Ω
)
.

Hence, the proof follows from the bound above, the triangle inequality, the definition
of ||| · ||| (see (4)), the definition of θI , and the inequality ‖θ − θI‖1,Ω ≤ ‖∇w −
∇wI‖1,Ω + ‖γ − γI‖1,Ω. In fact,

|||w − wh,γ − γh||| ≤|||w − wI ,γ − γI |||+ |||wI − wh,γI − γh|||
≤C(t−1‖γ − γI‖0,Ω + t−1‖γ0 − γ‖0,Ω + ‖γ − γI‖1,Ω
+ h‖g‖0,Ω + ‖θ − θΠ‖1,h,Ω + ‖∇w −∇wI‖1,Ω).

The proof is complete. �

The next step is to find appropriate terms (wI ,γI), (wΠ,γΠ), and γ0 that can be
used in Lemma 4.1 to prove the claimed convergence. As a preliminary construction,
we introduce, for every vertex v of the mesh laying on ∂Ω, the following function.
Let ev be any one of the two edges on ∂Ω sharing v, fixed once and for all; the only
rule being that, if one of the two edges is in Γc and the other is not, then the one in
Γc must be chosen. Then, we denote by ϕv the unique (vector-valued) polynomial
of degree 2 living on ev such that

(21)

∫
ev

p ·ϕv = p(v) ∀p ∈ [P2(ev)]
2.

Then, for the term wI ∈ Wh, we have the following result.
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Proposition 4.2. There exists a positive constant C, such that for every v ∈ H3(Ω)
there exists vI ∈ Wh that satisfies

|v − vI |l,Ω ≤ Ch3−l|v|3,Ω, l = 0, 1, 2.

Proof. Given v ∈ H3(Ω), we consider vΠ ∈ L2(Ω) defined on each E ∈ Th so that
vΠ|E ∈ P2(E) and the estimate of Proposition 4.1 holds true.

For each polygon E ∈ Th, consider the triangulation T E
h obtained by joining each

vertex of E with the center of the ball in assumption A2. Let T̂h :=
⋃

E∈Th
T E
h .

Since we are assuming A1 and A2,
{
T̂h
}
h
is a shape-regular family of triangulations

of Ω.
Let vc be the reduced Hsieh-Clough-Tocher triangle (see [29, 30]) interpolant of

v over T̂h, slightly modified as follows. For the nodes on the boundary, the value of
∇vc is given by

∇vc(v) :=

∫
ev

∇v ·ϕv

(see (21)), while the values of the remaining degrees of freedom is the same as
in the original version. This is a modification, in the spirit of the Scott-Zhang
interpolation [43], of the standard nodal value; the motivation for such modification
is not related directly to the present result (that would hold also with the original
HCT interpolant) and will be clearer in the sequel. This modified version still
satisfies similar approximation properties with respect to the original version [29,
30]; we omit the standard proof and simply state the result:

(22) |v − vc|l,Ω ≤ Ch3−l |v|3,Ω , l = 0, 1, 2.

Now, for each E ∈ Th, we define vI |E ∈ H2(E) as the solution of the following
problem: ⎧⎪⎨⎪⎩

−Δ2vI = 0 in E,

vI = vc on ∂E,

∂nvI = ∂nvc on ∂E.

Note that vI |E ∈ WE
h . Moreover, although vI is defined locally, since on the

boundary of each element it coincides with vc which belongs to H2(Ω), we have
that also vI belongs to H2(Ω) and, hence, vI ∈ Wh.

According to the above definition we have that⎧⎪⎨⎪⎩
−Δ2(vΠ − vI) = 0 in E,

vΠ − vI = vΠ − vc on ∂E,

∂n(vΠ − vI) = ∂n(vΠ − vc) on ∂E,

and, hence, it is easy to check that

|vΠ − vI |2,E = inf
{
|z|2,E , z ∈ H2(E) : z = vΠ − vc on ∂E

and ∂nz = ∂n(vΠ − vc) on ∂E}
≤ |vΠ − vc|2,E .
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Therefore,

|v − vI |2,E ≤ |v − vΠ|2,E + |vΠ − vI |2,E
≤ |v − vΠ|2,E + |vΠ − vc|2,E
≤ 2 |v − vΠ|2,E + |v − vc|2,E
≤ ChE |v|3,E + |v − vc|2,E ,

where we have used Proposition 4.1. By summing on all the elements and recall-
ing (22) (plus standard approximation estimates for polynomials on polygons) we
obtain

|v − vI |2,Ω ≤ C
(
h |v|3,Ω + |v − vc|2,Ω

)
≤ Ch|v|3,Ω.

Moreover, from the above bound and (recalling that ∂n(vI−vc) = 0 and (vI−vc) = 0
on ∂E) a Poincaré-type inequality, we have

|v − vI |1,E ≤ |v − vc|1,E + |vc − vI |1,E ≤ |v − vc|1,E + ChE |vc − vI |2,E
≤ |v − vc|1,E + ChE |v − vc|2,E + ChE |v − vI |2,E ,

so that, summing on all the elements and using the bounds above,

|v − vI |1,Ω ≤ Ch2 |v|3,Ω .

By an analogous argument one obtains

‖v − vI‖0,Ω ≤ C
(
‖v − vc‖0,Ω + h |vc − vI |1,Ω

)
≤ Ch3 |v|3,Ω ,

which allows us to complete the proof. �

Finally, we present the following result for the approximation properties of the
space Vh.

Proposition 4.3. There exists C > 0 such that for every τ ∈ [Hs(Ω)]2 with
s ∈ [1, 2] there exists τ I ∈ Vh that satisfies

‖τ − τ I‖0,Ω + h|τ − τ I |1,Ω ≤ Chs|τ |s,Ω.

Proof. We refer the reader to Section 3.2 for the definition of the degrees of freedom
ofVh and define τ I as follows. All degrees of freedom associated to internal vertices
are calculated as an integral average of τ on the elements sharing the vertex (as in
standard Clément interpolation). All the vertex boundary values are taken as (see
(21))

τ I(v) =

∫
ev

τ ·ϕv.

Finally, the edge degrees of freedom are computed directly by

1

|e|

∫
e

τ I · t =
1

|e|

∫
e

τ · t ∀ edges e ∈ Th.

The rest of the proof is omitted since it essentially repeats the same argument used
to establish [14, Proposition 4.1]. �

According to the above results, we are able to establish the convergence of the
virtual element scheme presented in Problem 3.1.
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Theorem 4.1. Let (w,γ) ∈ X and (wh,γh) ∈ Xh be the unique solutions of the
continuous and discrete problems, respectively. Assume (w,γ) ∈ (H3(Ω), [H2(Ω)]2).
Then, there exists C > 0 independent of h, g, and t such that

|||w − wh,γ − γh||| ≤ Ch
(
t−1|γ|1,Ω + |θ|2,Ω + |w|3,Ω + ‖g‖0,Ω

)
,

where θ := ∇w + γ.

Proof. The proof follows from Lemma 4.1 and Propositions 4.1, 4.2, and 4.3. In
fact,

|||w − wh,γ − γh||| ≤C
(
t−1(‖γ − γI‖0,Ω + ‖γ0 − γ‖0,h,Ω) + ‖γ − γI‖1,Ω

+ h‖g‖0,Ω + ‖θ − θΠ‖1,h,Ω + ‖∇w −∇wI‖1,Ω
)

≤Ch
(
t−1|γ|1,Ω + |θ|2,Ω + |w|3,Ω + ‖g‖0,Ω

)
,

where we have used that γ = θ − ∇w so that |γ|2,Ω ≤ |w|3,Ω + |θ|2,Ω. Thus, we
conclude the proof. �
Remark 4.1. It is easy to check that the couple (wI ,γI) used in Theorem 4.1
(according to the interpolants definition given in Propositions 4.2 and 4.3) does
actually satisfy the boundary conditions and is thus in Xh. Indeed, the condition
wI = 0 on Γc∪Γs follows immediately from the analogous one for w. The condition
∇wI + γI = 0 on Γc can be easily derived from the analogous one for (w,γ)
combined with our choice for the boundary node interpolation and the definition
of the discrete spaces.

Remark 4.2. We note that Theorem 4.1 also provides an error estimate for the
rotations in H1(Ω)-norm.

In what follows, we restrict our analysis to considering clamped boundary condi-
tions on the whole boundary, essentially to exploit the associated regularity prop-
erties of the continuous solution of the Reissner–Mindlin equations. Nevertheless,
the analysis in what follows can be straightforwardly extended to other boundary
conditions.

Now, we present the following result which establishes an improved error estimate
for rotations in L2(Ω)-norm and the deflection in H1(Ω)-norm.

Proposition 4.4. Assume that the hypotheses of Theorem 4.1 hold. Moreover,
assume that the domain Ω is either regular, or piecewise regular and convex, that
g ∈ H1(E) for all E ∈ Th, and that Γc = Γ. Then, for any (wΠ,γΠ,γ0) ∈ [L2(Ω)]5

such that wΠ|E ∈ P2(E), γΠ|E ∈ [P1(E)]2, and γ0|E ∈ [P0(E)]2 for all E ∈ Th,
there exists C > 0 independent of h, g, and t such that

‖θ − θh‖0,Ω ≤ C(h+ t) (|||w − wh,γ − γh|||+ h‖g‖1,h,Ω + ‖∇w −∇wΠ‖1,h,Ω
(23)

+‖γ − γΠ‖1,h,Ω + t−1‖γ − γ0‖0,Ω
)
,

‖w − wh‖1,Ω ≤ C(‖θ − θh‖0,Ω + ‖γ − γh‖0,Ω).
(24)

Proof. The core of the proof is based on a duality argument. We first establish
(23). We begin by introducing the following well-posed auxiliary problem: Find
(w̃, γ̃) ∈ X such that

(25) a(∇w̃ + γ̃,∇v + τ ) + b(γ̃, τ ) = (θ − θh,∇v + τ )0,Ω ∀(v, τ ) ∈ X.
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The following regularity result for the solution of the problem above holds (see
[38, Theorem 2.1]):

(26) ‖w̃1‖3,Ω + t−1‖w̃2‖2,Ω + t−1‖γ̃‖1,Ω ≤ C‖θ − θh‖0,Ω,
where w̃1 is the solution of the Kirchhoff limit problem and w̃2 := w̃ − w̃1. Let
(w̃1

I , γ̃I) ∈ Xh be the interpolant of (w̃1, γ̃) given by Propositions 4.2 and 4.3,
respectively. Therefore, the above regularity result immediately yields:

‖w̃1 − w̃1
I‖1,Ω + h‖w̃1 − w̃1

I‖2,Ω + t−1h‖γ̃ − γ̃I‖0,Ω ≤ h2‖θ − θh‖0,Ω,(27)

‖w̃2‖2,Ω + ‖γ̃ − γ̃I‖1,Ω ≤ t‖θ − θh‖0,Ω.(28)

Next, choosing v := (w − wh) and τ = (γ − γh) in (25), so that ∇v + τ = θ − θh,
and then adding and subtracting the term ∇w̃1

I + γ̃I , we obtain

‖θ − θh‖20,Ω = a(θ − θh,∇w̃ + γ̃ −∇w̃1
I − γ̃I) + a(θ − θh,∇w̃1

I + γ̃I)

+ b(γ − γh, γ̃ − γ̃I) + b(γ − γh, γ̃I)

≤ |||w − wh,γ − γh||| |||w̃ − w̃1
I , γ̃ − γ̃I |||(29)

+
∣∣a(θ − θh,∇w̃1

I + γ̃I) + b(γ − γh, γ̃I)
∣∣ ,

where we have used that the bilinear forms are bounded uniformly in t with respect
to the ||| · ||| norm. Now, we bound each term on the right-hand side above. For
the first term we have, using (27) and (28),

|||w̃ − w̃1
I , γ̃ − γ̃I |||2 ≤ C

(
‖w̃ − w̃1

I‖22,Ω + t−2‖γ̃ − γ̃I‖20,Ω + ‖γ̃ − γ̃I‖21,Ω
)

≤ C
(
‖w̃1 − w̃1

I‖22,Ω + ‖w̃2‖22,Ω + t−2‖γ̃ − γ̃I‖20,Ω + ‖γ̃ − γ̃I‖21,Ω
)

≤ C(h2 + t2)‖θ − θh‖20,Ω.
Therefore

(30) |||w̃ − w̃1
I , γ̃ − γ̃I ||| ≤ C(h+ t)‖θ − θh‖0,Ω.

For the second term on the right-hand side of (29), since (w̃1
I , γ̃I) ∈ X, we have

that (see Problems 2.2 and 3.1)
(31)∣∣a(θ−θh,∇w̃1

I+γ̃I)+b(γ−γh, γ̃I)
∣∣= ∣∣(g, w̃1

I )0,Ω−a(θh,∇w̃1
I+γ̃I)−b(γh, γ̃I)

∣∣
=
∣∣(g, w̃1

I)0,Ω −
〈
gh, w̃

1
I

〉
h
+ ah(θh,∇w̃1

I + γ̃I)

+bh(γh, γ̃I)− a(θh,∇w̃1
I + γ̃I)− b(γh, γ̃I)

∣∣
≤ B1 +B2,

where

B1 :=
∣∣∣(g, w̃1

I

)
0,Ω

−
〈
gh, w̃

1
I

〉
h

∣∣∣
and

B2 :=
∣∣ah(θh,∇w̃1

I + γ̃I)− a(θh,∇w̃1
I + γ̃I) + bh(γh, γ̃I)− b(γhγ̃I)

∣∣ .
We now bound B1 and B2 uniformly in t.

We begin with the term B1. First adding and subtracting w̃1 we have

B1 ≤
∣∣(g, w̃1

I − w̃1)0,Ω
∣∣+ ∣∣(g, w̃1)0,Ω −

〈
gh, w̃

1
〉
h

∣∣+ ∣∣〈gh, w̃1
I − w̃1

〉
h

∣∣
≤ h2‖g‖0,Ω|w̃1|2,Ω +

∣∣(g, w̃1)0,Ω −
〈
gh, w̃

1
〉
h

∣∣ ,(32)
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where we have used the Cauchy-Schwarz inequality and Proposition 4.2 to bound
the first term; note moreover that the last term on the right-hand side above van-
ishes as a consequence of (17) and the definition of w̃1

I :∣∣〈gh, w̃1
I − w̃1

〉
h

∣∣ = ∣∣∣∣∣ ∑
E∈Th

(
ḡE

NE∑
i=1

(w̃1
I − w̃1)(vi)ω

i
E

)∣∣∣∣∣ = 0.

Now, we bound the second term on the right-hand side of (32) and we follow similar
steps as in Lemma 4.1 to derive (20). In fact, using the definition (17), and adding
and subtracting gh, we rewrite the term as follows:∣∣(g, w̃1)0,Ω −

〈
gh, w̃

1
〉
h

∣∣ = ∣∣∣∣∣ ∑
E∈Th

∫
E

gw̃1 −
∑
E∈Th

(
ḡE

NE∑
i=1

w̃1(vi)ω
i
E

)∣∣∣∣∣
≤
∣∣∣∣∣ ∑
E∈Th

∫
E

ḡEw̃
1 −
∑
E∈Th

(
ḡE

NE∑
i=1

w̃1(vi)ω
i
E

)∣∣∣∣∣
+
∑
E∈Th

‖g − ḡE‖0,E‖w̃1 − p‖0,E ,

for any p ∈ P0(E). Now, taking p as in Proposition 4.1 and using that g|E ∈ H1(E)
and [19, Lemma 4.3.8], we have that∣∣(g, w̃1)0,Ω −

〈
gh, w̃

1
〉
h

∣∣ ≤ Ch2‖g‖1,h,Ω‖w̃1‖1,Ω

+

∣∣∣∣∣ ∑
E∈Th

∫
E

ḡEw̃
1 −
∑
E∈Th

(
ḡE

NE∑
i=1

w̃1(vi)ω
i
E

)∣∣∣∣∣
= B1,1 +B1,2.

(33)

In what follows we will manipulate the terms B1,2: adding and subtracting p1 ∈
P1(E), and the fact that (17) is exact for linear functions, we have
(34)

B1,2 ≤
∣∣∣∣∣ ∑
E∈Th

∫
E

ḡE(w̃
1 − p1)

∣∣∣∣∣+
∣∣∣∣∣ ∑
E∈Th

(
ḡE

(
NE∑
i=1

(w̃1 − p1)(vi)ω
i
E

))∣∣∣∣∣
≤ ‖g‖0,Ω

(∑
E∈Th

‖w̃1 − p1‖20,E

)1/2

+ ‖g‖0,Ω

(∑
E∈Th

h2
E‖w̃1 − p1‖2∞,E

)1/2

.

By polynomial approximation results on star-shaped polygons we now have

(35) ‖w̃1 − p1‖∞,E ≤ ChE|w̃1|2,E .
In fact, the bound can be derived, for instance, using the following brief guidelines.
Let B be the ball with the same center appearing in A2, but radius hE . It clearly
holds that E ⊂ B. One can then extend the function w̃1 to a function (still denoted
by w̃1) in H2(B) with a uniform bound ‖w̃1‖2,B ≤ C‖w̃1‖2,E (see for instance [44],
where we also use that due toA2 all the elements E of the mesh family are uniformly
Lipshitz continuous). Then, the result follows from the analogous known result on
balls and some very simple calculations.

Hence, using the fact that ‖w̃1 − p1‖0,E ≤ hE‖w̃1 − p1‖∞,E , from (34) and (35),
we obtain

(36) B1,2 ≤ Ch2‖g‖0,Ω|w̃1|2,Ω.
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Finally, from (32), (33), and (36) we have the following bound for the term B1:

B1 ≤ Ch2‖g‖1,h,Ω‖w̃1‖2,Ω ≤ Ch2‖g‖1,h,Ω‖θ − θh‖0,Ω
≤ C(h+ t)h‖g‖1,h,Ω‖θ − θh‖0,Ω.

Now, we bound the term B2 in (31). First, we consider (wΠ,γΠ,γ0) ∈ [L2(Ω)]5

such that wΠ|E ∈ P2(E), γΠ|E ∈ [P1(E)]2, and γ0|E ∈ [P0(E)]2 and define θΠ :=
∇wΠ+γΠ. Moreover, we consider (w̃1

Π, γ̃Π, γ̃0) ∈ [L2(Ω)]5 such that w̃1
Π|E ∈ P2(E),

γ̃Π|E ∈ [P1(E)]2, and γ̃0|E ∈ [P0(E)]2. Thus, using the consistency property we
rewrite the term as

B2 =
∣∣∣ ∑
E∈Th

(
aEh (θh,∇w̃1

I + γ̃I − (∇w̃1
Π + γ̃Π)) + aEh (θh,∇w̃1

Π + γ̃Π)
)

−
∑
E∈Th

(
aE(θh,∇w̃1

I + γ̃I − (∇w̃1
Π + γ̃Π)) + aE(θh,∇w̃1

Π + γ̃Π)
)

+
∑
E∈Th

(
bEh (γh, γ̃I − γ̃0) + bEh (γh, γ̃0)− bE(γh, γ̃I − γ̃0)− bE(γh, γ̃0)

) ∣∣∣
=
∣∣∣ ∑
E∈Th

(
aEh (θh − θΠ,∇w̃1

I + γ̃I − (∇w̃1
Π + γ̃Π))

− aE(θh − θΠ,∇w̃1
I + γ̃I − (∇w̃1

Π + γ̃Π))
)

+
∑
E∈Th

(
bEh (γh − γ0, γ̃I − γ̃0)− bE(γh − γ0, γ̃I − γ̃0)

) ∣∣∣.
Therefore, we have

B2 ≤ C
(
‖θh − θΠ‖1,h,Ω + t−1‖γh − γ0‖0,Ω

)
×
(∑

E∈Th

‖∇w̃1
I −∇w̃1

Π‖21,E + ‖γ̃I − γ̃Π‖21,E + t−2‖γ̃I − γ̃0‖20,E

)1/2

≤ C
(
‖θh − θΠ‖1,h,Ω + t−1‖γh − γ0‖0,Ω

) (
h|w̃1|3,Ω + ht−1|γ̃|1,Ω + |γ̃|1,Ω

)
,

where we have added and subtracted ∇w̃1 and γ̃ and then we have used Proposi-
tions 4.2, 4.1, and 4.3, respectively. Finally, using (26) and the triangle inequality
we have

B2 ≤ C(h+t)‖θ−θh‖0,Ω
(
|||w − wh,γ − γh|||+ ‖θ − θΠ‖1,h,Ω + t−1‖γ − γ0‖0,Ω

)
.

Hence, (23) follows from (29), combining the estimate (30) with the above bounds
for B1 and B2 and the definition of θ. In fact, we obtain that

‖θ − θh‖0,Ω ≤ C(h+ t) (|||w − wh,γ − γh|||+ h‖g‖1,h,Ω + ‖∇w −∇wΠ‖1,h,Ω
+‖γ − γΠ‖1,h,Ω + t−1‖γ − γ0‖0,Ω

)
.
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Finally, bound (24) follows from the Poincaré inequality and the triangle in-
equality so we have that

‖w − wh‖1,Ω ≤ C‖∇w −∇wh‖0,Ω = C‖θ − γ − (θh − γh)‖0,Ω
≤ C(‖θ − θh‖0,Ω + ‖γ − γh‖0,Ω).

The proof is complete. �

Finally, we obtain the following result.

Corollary 4.1. Assume that the hypotheses of Theorem 4.1 hold. Moreover, as-
sume that the domain Ω is either regular, or piecewise regular and convex, that
g ∈ H1(E) for all E ∈ Th, and that Γc = Γ. Then, there exists C > 0 independent
of h, g, and t such that

‖θ − θh‖0,Ω + ‖w − wh‖1,Ω ≤ C(h+ t)h
(
t−1|γ|1,Ω + |θ|2,Ω + |w|3,Ω + ‖g‖1,h,Ω

)
.

Proof. The proof follows directly from Proposition 4.4, combining Theorem 4.1,
Proposition 4.1, and the fact that ‖γ − γh‖0,Ω ≤ t|||w − wh,γ − γh|||. �

Remark 4.3. We note that the shear strain variable in the present paper is given
by γ = ∇w − θ and it is related to the usual scaled shear strain used in other
Reissner–Mindlin contributions in the literature as follows: Q = t−2γ. Since t−1γ =
tQ is a quantity that is known to be uniformly bounded for clamped boundary
conditions in the correct Sobolev norms (see, e.g., [6,22]), the factors t−1 appearing
in Theorem 4.1 and Corollary 4.1 are not a source of locking.

Remark 4.4. We note that in our convergence results, in order to obtain the full con-
vergence rate in h (independently of the thickness t) we need |w|3,Ω to be bounded
uniformly in t. We observe that such a condition can be achieved on a smooth
domain Ω and regular data (see [5, Remark 1]). On the other hand, on less regular
domains Ω, even in the presence of regular data, the regularity for w is not assured
due to the presence of layers at the boundaries of the plate and singularities at cor-
ners. Such a limitation of the above theoretical analysis is related to the adopted
formulation and is, somehow, a drawback related to the advantage of having a
method with C1 deflections, that is therefore able to give (at the limit for vanishing
thickness) a Kirchhoff conforming solution. We finally note that, in practice, this
kind of difficulty can be effectively dealt with by an ad-hoc refinement of the mesh
near the boundaries or corners of the plate; an example is shown later in Section
5.3.

5. Numerical results

We report in this section some numerical examples which have allowed us to
assess the theoretical results proved above. We have implemented in a MATLAB
code our method on arbitrary polygonal meshes, by following the ideas proposed in
[9]. To complete the choice of the VEM, we have to fix the bilinear forms SE(·, ·)
and SE

0 (·, ·) satisfying (11) and (12), respectively. Proceeding as in [9], a natural
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choice for SE(·, ·) is given by

SE(γh, τh) := σE

(
2NE∑
i=1

γh(vi)τh(vi) +

NE∑
j=1

(
1

|ej |

∫
ej

γh · t
)(

1

|ej |

∫
ej

τh · t
)⎞⎠ ,

γh, τh ∈ VE
h ,

where σE > 0 is a multiplicative factor to take into account the magnitude of the
material parameter, for instance, in the numerical tests a possible choice could be to
set σE>0 as the mean value of the eigenvalues of the local matrix aE(ΠE

ε γh,Π
E
ε τh).

This ensures that the stabilizing term scales as aE(τh, τh). Now, a choice for
SE
0 (·, ·) is given by

SE
0 (γh, τh) :=

λh2
E

t2

(
2NE∑
i=1

γh(vi)τh(vi) +

NE∑
j=1

(
1

|ej |

∫
ej

γh · t
)(

1

|ej |

∫
ej

τh · t
)⎞⎠ ,

γh, τh ∈ VE
h .

In this case, we have multiplied the stabilizing term by the material/geometric
parameter λt−2 to ensure (12). A proof of (11)–(12) for the above (standard)
choices could be derived following the arguments in [13].

The choices above are standard in the virtual element literature, and correspond
to a scaled identity matrix in the space of the degrees of freedom values.

To test the convergence properties of the method, we introduce the following
discrete L2-like norm: for any sufficiently regular function v,

‖v‖20,Ω :=
∑
E∈Th

(
|E|

NE∑
i=1

(v(vi))
2

)
,

with |E| the area of element E. We also define the relative errors in discrete L2-like
norms (based on the vertex values):

(ew)
2
:=

∑
E∈Th

(
|E|
∑NE

i=1 (w(vi)− wh(vi))
2
)

∑
E∈Th

(
|E|
∑NE

i=1 (w(vi))
2
) ,

and the obvious analogs for e∇w and eθ. Finally, we introduce the relative error in
the energy norm

(E)2 :=
Ah((w − wh,γ − γh), (w − wh,γ − γh))

Ah((w,γ), (w,γ))
,

where Ah(·, ·) corresponds to the discrete bilinear form on the left-hand side of
Problem 3.1.

5.1. Test 1. As a test problem we have taken an isotropic and homogeneous plate
Ω := (0, 1)2, clamped on the whole boundary, for which the analytical solution is
explicitly known (see [27]).
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Figure 1. Sample meshes: T 1
h (left), T 2

h (middle), and T 3
h (right)

with h = 0.1189, h = 0.1719, and h = 0.11078, respectively.

Choosing the transversal load g as

g(x, y) =
E

12(1− ν2)

{
12y(y − 1)(5x2 − 5x+ 1)[2y2(y − 1)2 + x(x− 1)(5y2 − 5y + 1)]

+12x(x− 1)(5y2 − 5y + 1)[2x2(x− 1)2 + y(y − 1)(5x2 − 5x+ 1)]
}
,

the exact solution of the problem is given by

w(x, y) =
1

3
x3(x− 1)3y3(y − 1)3

− 2t2

5(1− ν)

[
y3(y − 1)3x(x− 1)(5x2 − 5x+ 1)

+x3(x− 1)3y(y − 1)(5y2 − 5y + 1)
]
,

θ(x, y) =

[
y3(y − 1)3x2(x− 1)2(2x− 1)
x3(x− 1)3y2(y − 1)2(2y − 1)

]
.

The shear modulus λ is given by λ := 5E
12(1+ν) (choosing 5/6 as the shear correction

factor), while the material constants have been chosen as E = 1 and ν = 0.
We have tested the method by using different values of the plate thickness:

t = 1.0e − 01, t = 1.0e − 02, and t = 1.0e − 03. Moreover, we have used different
families of meshes (see Figure 1):

• T 1
h : triangular meshes.

• T 2
h : trapezoidal meshes which consist of partitions of the domain intoN×N

congruent trapezoids, all similar to the trapezoid with vertices (0, 0), ( 12 , 0),

( 12 ,
2
3 ) and (0, 1

3 ).

• T 3
h : triangular meshes, considering the middle point of each edge as a new

degree of freedom but moved randomly; note that these meshes contain
non-convex elements.

The refinement parameter h used to label each mesh is h = maxE∈Th
hE .

We report in Tables 1, 2, and 3 the relative errors in the discrete L2-norm
of w, ∇w, and θ, together with the relative errors in the energy norm, for each
family of meshes and different refinement levels. We consider different thicknesses:
t = 1.0e − 01, t = 1.0e − 02, and t = 1.0e − 03, respectively. We also include in
these tables the experimental rate of convergence.
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Table 1. T 1
h : Computed error in the discrete L2-norm with t =

1.0e− 01, t = 1.0e− 02, and t = 1.0e− 03, respectively.

error h = 0.119 h = 0.0588 h = 0.0314 h = 0.0158 h = 0.00827 Order
ew 1.108e-01 2.941e-02 7.423e-03 1.841e-03 4.679e-04 2.06
e∇w 1.300e-01 4.168e-02 1.321e-02 4.230e-03 1.502e-03 1.69
eθ 8.873e-02 2.229e-02 5.434e-03 1.331e-03 3.367e-04 2.10
E 2.994e-01 1.278e-01 5.395e-02 2.276e-02 1.070e-02 1.26

ew 1.030e-01 2.633e-02 6.493e-03 1.596e-03 4.041e-04 2.09
e∇w 8.953e-02 2.255e-02 5.477e-03 1.343e-03 3.397e-04 2.10
eθ 8.925e-02 2.244e-02 5.445e-03 1.335e-03 3.375e-04 2.10
E 1.756e-01 8.550e-02 4.199e-02 2.020e-02 1.029e-02 1.07

ew 1.030e-01 2.631e-02 6.488e-03 1.596e-03 4.043e-04 2.09
e∇w 8.926e-02 2.245e-02 5.452e-03 1.339e-03 3.387e-04 2.10
eθ 8.926e-02 2.245e-02 5.452e-03 1.338e-03 3.387e-04 2.10
E 1.733e-01 8.475e-02 4.168e-02 1.998e-02 1.014e-02 1.07

Table 2. T 2
h : Computed error in the discrete L2-norm with t =

1.0e− 01, t = 1.0e− 02, and t = 1.0e− 03, respectively.

error h = 0.172 h = 0.0859 h = 0.0430 h = 0.0215 h = 0.0122 Order
ew 3.890e-01 1.110e-01 2.958e-02 7.612e-03 1.868e-03 1.91
e∇w 4.147e-01 1.370e-01 4.381e-02 1.405e-02 4.653e-03 1.61
eθ 3.647e-01 9.742e-02 2.480e-02 6.247e-03 1.535e-03 1.96
E 6.267e-01 3.104e-01 1.345e-01 5.812e-02 2.527e-02 1.16

ew 3.796e-01 1.037e-01 2.651e-02 6.656e-03 1.608e-03 1.96
e∇w 3.663e-01 9.831e-02 2.501e-02 6.278e-03 1.534e-03 1.96
eθ 3.659e-01 9.802e-02 2.490e-02 6.245e-03 1.525e-03 1.96
E 4.199e-01 1.675e-01 7.480e-02 3.619e-02 1.825e-02 1.12

ew 3.795e-01 1.036e-01 2.650e-02 6.662e-03 1.612e-03 1.95
e∇w 3.659e-01 9.803e-02 2.491e-02 6.254e-03 1.528e-03 1.96
eθ 3.659e-01 9.803e-02 2.491e-02 6.253e-03 1.528e-03 1.96
E 4.154e-01 1.6465e-01 7.360e-02 3.548e-02 1.772e-02 1.12
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Table 3. T 3
h : Computed error in the discrete L2-norm with t =

1.0e− 01, t = 1.0e− 02, and t = 1.0e− 03, respectively.

error h = 0.111 h = 0.0594 h = 0.0294 h = 0.0157 h = 0.00791 Order
ew 2.848e-01 8.769e-02 2.421e-02 6.267e-03 1.569e-03 2.06
e∇w 3.162e-01 1.202e-01 4.091e-02 1.338e-02 4.447e-03 1.70
eθ 2.566e-01 7.465e-02 1.914e-02 4.740e-03 1.161e-03 2.14
E 6.371e-01 3.653e-01 1.690e-01 7.647e-02 3.470e-02 1.17

ew 2.660e-01 7.407e-02 1.9065e-02 4.761e-03 1.161e-03 2.15
e∇w 2.568e-01 7.495e-02 1.912e-02 4.778e-03 1.167e-03 2.14
eθ 2.562e-01 7.460e-02 1.898e-02 4.736e-03 1.155e-03 2.15
E 3.793e-01 1.975e-01 9.555e-02 4.832e-02 2.365e-02 1.10

ew 2.664e-01 7.458e-02 1.902e-02 4.742e-03 1.161e-03 2.18
e∇w 2.561e-01 7.468e-02 1.907e-02 4.726e-03 1.161e-03 2.17
eθ 2.560e-01 7.468e-02 1.907e-02 4.726e-03 1.161e-03 2.17
E 3.744e-01 1.904e-01 9.447e-02 4.757e-02 2.343e-02 1.11

It can be seen from Tables 1, 2, and 3 that the theoretical predictions of Section 4
are confirmed. In particular, we can appreciate a rate of convergence O(h) for the
energy norm E , that is equivalent to the |||·||| norm. This holds for all the considered
meshes and thicknesses, thus also underlying the locking free nature of the scheme.
Moreover, for sufficiently small t we also observe a clear rate of convergence O(h2)
for ew, e∇w, and eθ, in accordance with Corollary 4.1.

5.2. Test 2. As a second test, we investigate more in depth the locking-free char-
acter of the method, and also take this occasion for a comparison with the limit
Kirchhoff model. It is well known (see [21]) that when t goes to zero the solution
of the Reissner-Mindlin model converges to an identical Kirchhoff-Love solution:
Find w0 ∈ H2(Ω) such that

(37)
E

12(1− ν2)
Δ2w0 = g,

with the corresponding boundary conditions.
We have considered a rectangular plate Ω := (0, a)× (0, b), simply supported on

the whole boundary, and we have chosen the transversal load g as

g(x, y) = sin
(π
a
x
)
sin
(π
b
y
)
.

Then, the analytical solution w0 of problem (37) is given by

w0(x, y) =
12(1− ν2)

E

(
π4

(
1

a2
+

1

b2

)2
)−1

sin
(π
a
x
)
sin
(π
b
y
)
.
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Figure 2. Sample meshes: T 1
h (left), T 4

h (middle), and T 5
h (right).

The material constants have been chosen as E = 1 and ν = 0.3. Moreover, we
have taken a = 1 and b = 2, and we have used three different families of meshes
(see Figure 2):

• T 1
h : triangular meshes.

• T 4
h : hexagonal meshes.

• T 5
h : Voronoi polygonal meshes.

Tables 4, 5, and 6 show an analysis for various thicknesses in order to assess the
locking-free nature of the proposed method. These tables also show the relative
errors in the discrete L2-norm which are obtained by comparing the numerical
solution with the Kirchhoff-Love plate solution w0 for each family of meshes and
different refinement levels and considering different thickness: t = 1.0e − 01, t =
1.0e− 02, t = 1.0e− 03, t = 1.0e− 04, and t = 1.0e− 05, respectively.

It can be clearly seen from these tables that the proposed method is locking-free.
The lack of error reduction for finer values of h, which can be observed for the case
t = 1.0e − 01, is clearly due to the fact that the model error is dominating the
discretization error in those cases.

Table 4. Computed error in ew by T 1
h .

t\h 2.449e-01 1.271e-01 6.469e-02 3.241e-02 1.617e-02
1.0e-01 8.609e-03 4.090e-02 6.039e-02 7.108e-02 7.562e-02
1.0e-02 4.687e-02 1.034e-02 1.798e-03 7.665e-04 2.012e-03
1.0e-03 4.730e-02 1.096e-02 2.719e-03 6.668e-04 1.385e-04
1.0e-04 4.730e-02 1.097e-02 2.728e-03 6.823e-04 1.664e-04
1.0e-05 4.730e-02 1.097e-02 2.728e-03 6.825e-04 1.666e-04
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Table 5. Computed error in ew by T 4
h .

t\h 2.781e-01 1.309e-01 6.730e-02 4.443e-02 3.316e-02
1.0e-01 8.394e-02 5.936e-02 6.256e-02 6.715e-02 6.910e-02
1.0e-02 4.979e-02 1.018e-02 4.022e-03 2.476e-03 2.095e-03
1.0e-03 4.943e-02 9.575e-03 3.145e-03 1.333e-03 7.381e-04
1.0e-04 4.942e-02 9.569e-03 3.136e-03 1.321e-03 7.228e-04
1.0e-05 4.942e-02 9.569e-03 3.136e-03 1.321e-03 7.227e-04

Table 6. Computed error in ew by T 5
h .

t\h 4.592e-01 2.348e-01 1.294e-01 8.174e-02 5.507e-02
1.0e-01 2.762e-02 4.055e-02 4.618e-02 6.510e-02 6.982e-02
1.0e-02 1.270e-02 3.454e-03 7.218e-04 1.141e-03 1.393e-03
1.0e-03 1.277e-02 3.004e-03 3.816e-04 6.483e-05 4.532e-05
1.0e-04 1.277e-02 2.999e-03 3.876e-04 6.248e-05 3.257e-05
1.0e-05 1.277e-02 2.999e-03 3.874e-04 6.215e-05 3.193e-05

5.3. Test 3. In this numerical example we test the properties of the proposed
method on an L-shaped plate: Ω := (0, 1)× (0, 1) \ [0.5, 1)× [0.5, 1).

The plate is clamped on the edges {0}× [0, 1], {1}× [0, 1/2], [0, 1]×{0}, [0, 1/2]×
{1}, and free on the remaining boundary and subjected to the constant transversal
load g = 1 (constant on the whole domain) and we take the material constants as
E = 1 and ν = 0, with shear correction factor k = 5/6. The thickness is set as
t = 1.0e− 01.

We consider two families of meshes (see Figure 3):

• T 6
h : a sequence of uniform square meshes; the first one is constructed by

subdividing each of the three squares composing Ω into 8× 8 squares (see
upper left picture in Figure 3), up to the last one that is associated to an
analogous 40× 40 subdivision.

• T 7
h : polygonal meshes obtained following a very simple procedure that re-

fines the mesh only around the re-entrant corner, starting from an initial
uniform square mesh (that corresponds to the coarser mesh in T 6

h ). It
consists of splitting each element which has the free corner (1/2, 1/2) as a
vertex into four quadrilaterals by connecting the barycenter of the element
with the midpoint of each edge. Notice that although this process is initi-
ated with a mesh of squares, the successively created meshes will contain
other kinds of convex polygons as can be seen in Figure 3.
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The main purpose of this test is to validate the use of refined meshes as a tool to
handle solutions with corner singularities (therefore, in particular, not in H3(Ω))
and therefore to overcome the theoretical limitation underlined in Remark 4.4.
Moreover, the possibility of using polygonal meshes makes such refinement con-
struction simpler, as shown by the example above; boundary layer treatment would
obviously follow an analogous approach.

In Table 7 we report the value of the transversal displacement of the plate at
the free corner (1/2, 1/2) and the number of degrees of freedom associated to each
mesh. Since we have no exact solution for this problem, the last line in the table
shows the reference values obtained with a very fine triangular mesh with the finite
element method introduced and analyzed in [32]. We note that the family of meshes
T 7
h , being refined only around the corner, cannot obtain convergence as the error

generated far from the corner would eventually dominate. Nevertheless, family
T 7
h fits completely into the scope of the present test: comparing the displacement

values obtained by T 7
h with those of the uniform meshes one can clearly appreciate

the efficiency of the proposed corner refinement in handling the singularity.

Table 7. Test with an L-shaped plate. Number of degrees of
freedom, transversal displacement of the free corner (1/2, 1/2) for
the considered meshes, errors, and a reference value for thickness
t = 1.0e− 01.

1541 0.01953427 2.0629e-04
2345 0.01953098 2.0958e-04
5765 0.01957589 1.6468e-04
8885 0.01960441 1.3615e-04

T 6
h 19625 0.01965190 8.8663e-05

22277 0.01965845 8.2120e-05
34565 0.01967856 6.2009e-05

ref. 181603 0.01974057

1541 0.01953427 2.0629e-04
1628 0.01965125 8.9314e-05

T 7
h 1715 0.01970046 4.0110e-05

1802 0.01972179 1.8778e-05
1889 0.01973084 9.7313e-06

ref. 181603 0.01974057



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

176 L. BEIRÃO DA VEIGA, D. MORA, AND G. RIVERA

Initial mesh (both for T 6
h and T 7

h ). Mesh 2 of T 7
h .

Mesh 3 of T 7
h . Mesh 6 of T 7

h .

Figure 3. Sample meshes on an L-shaped domain.

Acknowledgment

The authors are deeply grateful to Prof. Rodolfo Rodŕıguez (Universidad de
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element method for discrete fracture network simulations, J. Comput. Phys. 306 (2016),
148–166. MR3432346

[17] M. F. Benedetto, S. Berrone, S. Pieraccini, and S. Scialò, The virtual element method for
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[24] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathe-
matischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR0482275
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