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Abstract A low-order mimetic finite difference method for Reissner–Mindlin plate
problems is considered. Together with the source problem, the free vibration and
the buckling problems are investigated. Details about the scheme implementation are
provided, and the numerical results on several different types of meshes are reported.
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1 Introduction

The Reissner–Mindlin theory is widely used to describe the bending behavior of an
elastic plate loaded by a transverse force. However, its discretization by means of
Galerkin methods is typically not straightforward. For instance, standard low-order
finite element schemes exhibit a severe lack of convergence whenever the thickness is
too small with respect to the other characteristic dimensions of the plate. This undesir-
able phenomenon, known as shear locking, is nowadays well understood: as the plate
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210 L. Beirão da Veiga et al.

thickness tends to zero, the Reissner–Mindlin model enforces the Kirchhoff constraint,
which is typically too severe for the discrete scheme at hand, especially if low-order
polynomials are employed (see, for instance, the monograph by Brezzi and Fortin [16]).
The root of the shear locking phenomenon is that the space of discrete functions which
satisfy the Kirchhoff constraint is very small, and does not properly approximate a
generic plate solution. The most popular way to overcome the shear locking phenom-
enon in Galerkin methods is to reduce the influence of the shear energy by considering
a (selective) reduced integration of the shear part, by resorting to a mixed formulation
or by introducing a suitable shear reduction operator. Indeed, several families of meth-
ods have been rigorously shown to be free from locking and optimally convergent; let
us mention, for instance, [1–4,14,17,28,29], and [37,38,40,43,44].

In the last years, many mimetic discretizations have been developed for the
discretization of problems in partial differential equations. The mimetic finite dif-
ference (or MFD) method has been successfully employed for solving problems of
electromagnetism [35], gas dynamics [21], linear diffusion (see, e.g., [8,9,12,13,15,
18,19,31,32,36] and the references therein), convection-diffusion [23], Stokes flow
[6] and elasticity [5]. We also mention the development of a posteriori estimators for
linear diffusion in [10] and post-processing technique in [22]. Finally, the mimetic dis-
cretization method has been shown to share strong similarities with the finite volume
method in [26].

Recently, a MFD procedure has been proposed and theoretically analysed for
Reissner–Mindlin plates in [11]. The method, which can be considered as a MFD
version of the MITC and Durán-Liberman elements, combines the excellent conver-
gence behaviour of the latter schemes with the great flexibility in handling the mesh
of the former approach. The aim of this paper is to numerically assess the actual per-
formance of the MFD method, by considering the source problem, as well as the free
vibration and the plate buckling problems.

A brief outline of the paper is as follows. In Sect. 2 we recall the Reissner–Mindlin
plate problems, together with the necessary notations. Section 3 concerns with a pre-
sentation of the numerical scheme proposed and analysed in [11]. In Sect. 4 we report
the numerical results obtained using several types of meshes. In Sect. 5 we summa-
rize some conclusions. Finally, in an appendix, we show details about the method
implementation, that were missing in [11].

2 The Reissner–Mindlin plate equations

Here and thereafter we use the following operator notation for any tensor field τ =
(τi j ) i, j = 1, 2, any vector field η = (ηi ) i = 1, 2 and any scalar field v:

div η := ∂1η1 + ∂2η2, rot η := ∂1η2 − ∂2η1, tr(τ ) := τ11 + τ22,

∇v :=
(

∂1v

∂2v

)
, curl v :=

(
∂2v

−∂1v

)
, div τ :=

(
∂1τ11 + ∂2τ12
∂1τ21 + ∂2τ22

)
.

Consider an elastic plate of thickness t such that 0 < t ≤ diam(�), with reference
configuration �×(− t

2 , t
2

)
, where � is a convex polygonal domain of R

2 occupied by
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Numerical results for mimetic discretization of Reissner–Mindlin plate problems 211

the midsection of the plate. The deformation of the plate is described by means of the
Reissner–Mindlin model in terms of the rotations β = (β1, β2) of the fibers initially
normal to the plate’s midsurface, the scaled shear stresses γ = (γ1, γ2), and the
transverse displacement w. Assuming that the plate is clamped on its whole boundary
∂�, the following strong equations describe the plate’s response to conveniently scaled
transversal load g ∈ L2(�): find (β, w, γ ) such that

⎧⎪⎪⎨
⎪⎪⎩

−div Cε(β) − γ = 0 in �,

−divγ = g in �,

γ = κt−2(∇w − β) in �,

β = 0, w = 0 on ∂�,

(1)

where the tensor of bending moduli is given by:

Cτ := E

12(1 − ν2)
((1 − ν)τ + νtr(τ )I),

with E > 0 representing the Young modulus, 0 < ν < 1/2 being the Poisson ratio for
the material and I indicating the second order identity tensor.

Let the H1
0 (�)

2
-elliptic bilinear form be given by

a(β, η) :=
∫
�

Cε(β) : ε(η) = E

12(1 − ν2)

∫
�

[(1 − ν)ε(β) : ε(η) + νdivβdivη] ,

(2)

with ε = (εi j )1≤i, j≤2 the standard strain tensor defined by εi j (β) := 1
2 (∂iβ j +

∂ jβi ), 1 ≤ i, j ≤ 2.
Then, the variational formulation of problem (1) reads:

Problem 1 Find (β, w) ∈ H1
0 (�)

2 × H1
0 (�) such that

a(β, η) + κt−2(∇w − β,∇v − η)0,� = (g, v)0,� ∀(η, v) ∈ H1
0 (�)

2 × H1
0 (�).

In this expression, κ := Ek/2(1 + ν) is the shear modulus with k a correction factor
usually taken as 5/6 for clamped plates.

We will also consider the free vibration and buckling problem for plates.
The free vibration problem of a plate is (see [25,27,28,30]):

Problem 2 Find λ ∈ R and 0 �= (β, w) ∈ H1
0 (�)

2 × H1
0 (�) such that

a(β, η) + κt−2(∇w − β,∇v − η)0,� = λ

[
(w, v)0,� + t2

12
(β, η)0,�

]

for all (η, v) ∈ H1
0 (�)

2 × H1
0 (�), where λ = ρω2/t2, with ρ being the density and

ω the angular vibration frequency of the plate and the corresponding eigenfunctions
are the vibration modes.
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212 L. Beirão da Veiga et al.

The buckling problem of a plate is (see [33,39]):

Problem 3 Find λbp ∈ R and 0 �= (β, w) ∈ H1
0 (�)

2 × H1
0 (�) such that

a(β, η) + κt−2(∇w − β,∇v − η)0,�

= λbp(σ∇w,∇v)0,� ∀(η, v) ∈ H1
0 (�)

2 × H1
0 (�),

where σ (x, y) ∈ R
2×2 is a symmetric tensor which corresponds to a pre-existing

stress state in the plate, λbp = λbc/t2, with λbc being the buckling coefficients of the
plate and the corresponding eigenfunctions are the buckling modes.

Accordingly with (1), for the problems above the scaled shear stresses can be
computed by γ = κt−2(∇w − β).

3 A mimetic finite difference (MFD) discretization

In this section we briefly review the mimetic discretization method for the Reissner–
Mindlin plate bending problem presented in [11], and extend it to the free vibration
and buckling problems.

3.1 Notation and assumptions

Let {Th}h be a sequence of decompositions of the computational domain � into N (Th)

polygons E . We assume that this partition is conformal, i.e. intersection of two different
elements E1 and E2 is either a few mesh vertices, or a few mesh edges (two adjacent
elements may share more than one edge) or empty. We allow Th to contain non-convex
and degenerate elements. For each polygon E , |E | denotes its area, hE denotes its
diameter and h := maxE∈Th hE .

We denote the set of mesh vertices and edges by Vh and Eh , the set of internal
vertices and edges by V0

h and E0
h , the set of vertices and edges of a particular element

E by V E
h and E E

h , and the set of boundary vertices and edges by V∂
h and E∂

h , respectively.
Moreover, we denote a generic mesh vertex by v, a generic edge by e and its length
both by he and |e|.

A fixed orientation is also set for the mesh Th , which is reflected by a unit normal
vector ne, e ∈ Eh , fixed once for all. Moreover, te denotes the tangent vector defined
as the counterclockwise rotation of ne by π/2.

For every polygon E and edge e ∈ E E
h , we define a unit normal vector ne

E that
points outside of E , and by te

E the tangent vector as the counterclockwise rotation of
ne

E by π/2.
It is assumed that the mesh and the data satisfy the properties detailed in [11].

3.2 Degrees of freedom and interpolation operators

The discretization of Problems 1–3 requires to discretize the scalar field of displace-
ment and the vector fields of rotations and shears.
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Numerical results for mimetic discretization of Reissner–Mindlin plate problems 213

The discrete space for transverse displacements Wh is defined as follows: a vector
vh ∈ Wh consists of a collection of degrees of freedom

vh := {vv}v∈V0
h
,

one per internal mesh vertex, e.g. to every vertex v ∈ V0
h , we associate a real

number vv.
The discrete space for rotations Hh is defined as follows: a vector ηh ∈ Hh is a

collection of degrees of freedom

ηh = {ηv}v∈V0
h
,

i.e. we assign a vector ηv ∈ R
2 per each vertex v ∈ V0

h .
Finally, the space for the discrete shear force �h is defined as follows: to every

element E in Th and every edge e ∈ E E
h ∩ E0

h , we associate a number δe
E , i.e.

δh = {δe
E }E∈Th ,e∈E E

h ∩E0
h
.

We make the continuity assumption that for each edge e shared by two element E1
and E2, we have δe

E1
= −δe

E2
.

We now define the following interpolation operators from the spaces of smooth
enough functions to the discrete spaces Wh , Hh and �h , respectively. For every function
v ∈ C

0(�) ∩ H1
0 (�), we define vI ∈ Wh by

vv
I := v(v) ∀v ∈ V0

h . (3)

For every function η ∈ [C0(�) ∩ H1
0 (�)]2, we define ηI ∈ Hh by

ηv
I := η(v) ∀v ∈ V0

h . (4)

For every function δ ∈ H0(rot;�) ∩ Ls(�)2, s > 2, we define δII ∈ �h by

(δII)
e
E := 1

|e|
∫
e

δ · te
E ∀E ∈ Th ∀e ∈ E E

h ∩ E0
h . (5)

For all E ∈ Th in the sequel we will also make use of local interpolation operators
vI,E , ηI,E , δII,E , with values in Wh |E , Hh |E , �h |E respectively; such operators are
simply the obvious restriction of the global ones to the element E for functions which
are sufficiently regular on E .

Remark 1 We note that in the present paper we are considering the scheme of [11]
without the edge bubbles, see Remark 4 of [11]. Such version of the method is more
efficient in terms of accuracy versus number of degrees of freedom, while the loss of
stability is seen only on very particular mesh patterns. Indeed, in the numerical test of
Sect. 4, only the first family of (triangular) meshes suffers from such drawback.
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214 L. Beirão da Veiga et al.

3.3 Discrete norms and operators

We endow the spaces Wh, Hh and �h with the following norms

||vh ||2Wh
:=

∑
E∈Th

||vh ||2Wh ,E =
∑

E∈Th

|E |
∑

e∈E E
h

[
1

|e| (v
v2 − vv1)

]2

, (6)

|||ηh |||2Hh
:=

∑
E∈Th

|||ηh |||2Hh ,E =
∑

E∈Th

|E |
∑

e∈E E
h

[
1

|e| ||η
v1 − ηv2 ||

]2

, (7)

||δh ||2�h
:=

∑
E∈Th

||δh ||2�h ,E =
∑

E∈Th

|E |
∑

e∈E E
h

|δe
E |2, (8)

where v1 and v2 are the vertices of e and || · || denotes the euclidean norm on vectors.
Although irrelevant in (6), in the following we will always consider that v1 and v2, the
vertices of a generic edge e, are oriented in such a way that te

E points from v1 to v2.
The norms on Wh and Hh are H1(�) type discrete semi-norms, which become

norms due to the boundary conditions on the spaces, while the norm for �h is an
L2(�) type discrete norm.

In the sequel we will also use the following norm on Hh , which is a ||ε(·)||0,� type
discrete norm:

||ηh ||2Hh
:=

∑
E∈Th

||ηh ||2Hh ,E =
∑

E∈Th

min
c∈R

|||ηh − c([−ȳ, x̄])I,E |||2Hh ,E , (9)

where (x̄, ȳ) are local cartesian coordinates on E which are null on the barycenter of
E , so that the function [−ȳ, x̄] represents a (linearized) rotation around the barycenter.

We now introduce the discrete gradient operator ∇h , defined from the set of nodal
unknowns Wh to the set of edge unknowns �h as follows:

∇h : Wh → �h

(∇hvh)e
E := 1

|e| (v
v2 − vv1) ∀E ∈ Th, ∀e ∈ E E

h ∩ E0
h , ∀vh ∈ Wh,

where v1 and v2 are the vertices of e.
We consider also a reduction operator, defined from the discrete space of rotations

Hh to the set of edge unknowns �h as follows:

�h : Hh → �h

(�hηh)e
E := 1

2
[ηv1 + ηv2 ] · te

E ∀E ∈ Th, ∀e ∈ E E
h , ∀ηh ∈ Hh,

where v1 and v2 are the vertices of e.
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3.4 Scalar products and bilinear forms

We equip the space �h with a suitable scalar product, defined as follows:

[γ h, δh]�h :=
∑

E∈Th

[γ h, δh]�h ,E , (10)

where [·, ·]�h ,E is a discrete scalar product on the element E .
We denote with ah(·, ·) : Hh × Hh → R the discretization of the bilinear form

a(·, ·), defined as follows (see (2)):

ah(βh, ηh) =
∑

E∈Th

aE
h (βh, ηh) ∀βh, ηh ∈ Hh . (11)

The scalar product (10) and the bilinear form (11) must satisfy stability and con-
sistency conditions as described in [11]. Note that, since we are not considering the
edge bubbles, the consistency condition for (11) becomes:

(S2a) For every element E , every linear vector function p1 on E , and everyηh ∈ Hh ,
it holds

aE
h ((p1)I, ηh) =

∑
e∈E E

h

[(
Cε(p1)ne

E

) ·
( |e|

2
[ηv1 + ηv2 ]

)]
. (12)

Remark 2 The scalar product and the bilinear form shown in this section can be built
element by element in a simple algebraic way. The details are shown in the Appendix.

3.5 The discrete method

Finally, we are able to define the mimetic discrete method for Reissner–Mindlin plates
proposed in [11]. Let the loading term

(g, vh)h :=
∑

E∈Th

ḡ|E

m E∑
i=1

vvi ωi
E , (13)

where we again refer to [11] for the details.
Then, the discretization of Problem 1 reads:

Method 1 Given g ∈ L2(�), find (βh, wh) ∈ Hh × Wh such that

ah(βh, ηh) + κt−2[∇hwh − �hβh,∇hvh − �hηh]�h

= (g, vh)h ∀(ηh, vh) ∈ Hh × Wh .
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216 L. Beirão da Veiga et al.

In order to extend the method to the free vibration problem, we introduce the
following mass bilinear form in Hh × Wh

mh(βh, wh; ηh, vh) =
∑

E∈Th

m E
h (βh, wh; ηh, vh) (14)

for all βh, ηh ∈ Hh and wh, vh ∈ Wh , where the local forms

m E
h (βh, wh; ηh, vh) =

m E∑
i=1

wvi vvi ωi
E + t2

12

m E∑
i=1

(βvi · ηvi )ωi
E .

Then, the discretization of Problem 2 reads:

Method 2 Find λh ∈ R and (βh, wh) ∈ Hh × Wh such that

ah(βh, ηh) + κt−2[∇hwh − �hβh,∇hvh − �hηh]�h = λh mh(βh, wh; ηh, vh)

for all (ηh, vh) ∈ Hh × Wh .
Finally, in order to discretize the buckling problem we introduce a discrete bilinear

form

bh(wh, vh) =
∑

E∈Th

bE
h (wh, vh) ∀wh, vh ∈ Wh, (15)

where bE
h (·, ·) is a symmetric bilinear form on each element E , mimicking

bE
h (wh, vh) ∼

∫
E

(σ∇w̃h) · ∇ṽh .

We assume for simplicity that the stress datum σ is piecewise constant on the mesh, a
condition that can also be considered as an approximation of a given data. We require
that the local bilinear forms bE

h (·, ·) satisfy the following stability and consistency
conditions.

(S1b) There exists a positive constant ĉ independent of h such that, for every
vh ∈ Wh and each E ∈ Th , we have

bE
h (vh, vh) ≤ ĉ||vh ||2Wh ,E . (16)

(S2b) For every element E , every scalar linear function p1 on E , and every vh ∈ Wh ,
it holds

bE
h ((p1)I, vh) =

∑
e∈E E

h

(
σ∇ p1 · ne

E

) |e|
2

[vv1 + vv2 ], (17)

where we recall that σ |E ∈ R
2×2 is constant and symmetric.
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Such a condition asserts that the discrete bilinear form is exact when tested on linear
functions. We also remark that for the form bE

h (·, ·) we do not require any lower bound,
such as the one in equation (18) in [11]. Indeed, assuming a lower bound condition for
bE

h (·, ·) would be unnatural, since the stress datum σ can be a singular second-order
tensor.

The discretization of Problem 3 then reads:

Method 3 Find λ
bp
h ∈ R and (βh, wh) ∈ Hh × Wh such that

ah(βh, ηh) + κt−2[∇hwh − �hβh,∇hvh − �hηh]�h = λ
bp
h bh(wh, vh)

for all (ηh, vh) ∈ Hh × Wh .

4 Numerical results

The numerical method analyzed has been implemented in a MATLAB code.
For all the computations we took � := (0, 1)2, for the Young modulus we choose:

E = 1.
We have tested the method by using different meshes. We report the results obtained

using the families of meshes shown in Figs. 1, 2, 3, 4, 5, 6 and 7. For reasons of brevity,
we do not report the results obtained with all meshes for all test problems. Apart for the
first family of meshes (see also Remark 3) all non reported results are in accordance
with the ones shown.

– T 1
h : Triangular mesh.

– T 2
h : Structured hexagonal meshes.

– T 3
h : Non-structured hexagonal meshes made of convex hexagons.

– T 4
h : Regular subdivisions of the domain in N × N subsquares.

– T 5
h : Trapezoidal meshes which consist of partitions of the domain into N × N con-

gruent trapezoids, all similar to the trapezoid with vertices (0, 0), ( 1
2 , 0), ( 1

2 , 2
3 ),

and (0, 1
3 ).

– T 6
h : Regular polygonal meshes built from T 1

h considering the middle point of each
edge as a new node on the mesh; note that each element has 6 edges.

– T 7
h : Irregular polygonal meshes built from T 6

h moving randomly the middle point
of each edge; note that these meshes contain non-convex elements.

We have used successive refinements of an initial mesh (see Figs. 1, 2, 3, 4, 5, 6
and 7). The refinement parameter N used to label each mesh is the number of elements
on each edge of the plate.

4.1 Source problem

As a test problem we have taken an isotropic and homogeneous plate, clamped on the
whole boundary, for which the analytical solution is explicitly known (see [24]).
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218 L. Beirão da Veiga et al.

Fig. 1 Square plate: meshes T 1
h .

Fig. 2 Square plate: meshes T 2
h .

Fig. 3 Square plate: meshes T 3
h .

Choosing the transversal load g as:

g(x, y) = E

12(1 − ν2)

[
12y(y − 1)(5x2 − 5x + 1)(2y2(y − 1)2

+x(x − 1)(5y2 − 5y + 1)) + 12x(x − 1)(5y2 − 5y + 1)

× (2x2(x − 1)2 + y(y − 1)(5x2 − 5x + 1))
]
,

123
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Fig. 4 Square plate: meshes T 4
h .

Fig. 5 Square plate: meshes T 5
h .

Fig. 6 Square plate: meshes T 6
h .

the exact solution of the problem is given by:

w(x, y) = 1

3
x3(x − 1)3 y3(y − 1)3

− 2t2

5(1 − ν)

[
y3(y − 1)3x(x − 1)(5x2 − 5x + 1)

+x3(x − 1)3 y(y − 1)(5y2 − 5y + 1)
]
,
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220 L. Beirão da Veiga et al.

Fig. 7 Square plate: meshes T 7
h .

β1(x, y) = y3(y − 1)3x2(x − 1)2(2x − 1),

β2(x, y) = x3(x − 1)3 y2(y − 1)2(2y − 1).

We have used a Poisson ratio ν = 0.3 and a correction factor k = 5/6.
The convergence rates for the transverse displacement w and rotations β are shown

in the following norms:

e(β)0 := max |βI − βh |
max |βI|

, e(w)0 := max |wI − wh |
max |wI| , (18)

e(β)1 := ah(βI − βh,βI − βh)1/2

ah(βI,βI)
1/2 , e(w)1 := [∇h(wI − wh),∇h(wI − wh)]1/2

�h

[∇hwI,∇hwI]1/2
�h

.

(19)

In (19) the bilinear forms ah(·, ·) and [·, ·]�h are exactly the ones defined in (11)
and (10), respectively. We notice that it holds:

e(β)1 ∼ ‖βI − βh‖Hh

‖βI‖Hh

, e(w)1 ∼ ‖wI − wh‖Wh

‖wI‖Wh

.

Therefore, (18) and (19) represent discrete L∞ and H1 relative errors, respectively.
Also, we define the experimental rates of convergence (rc) for the errors e(β) and

e(w) by

rc(·) := log(e(·)/e′(·))
log(h/h′)

,

where h and h′ denote two consecutive meshsizes and e and e′, respectively, denote
the corresponding errors.
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Numerical results for mimetic discretization of Reissner–Mindlin plate problems 221

Table 1 Convergence analysis for t = 0.01

Mesh 1/h e(β)0 rc(β)0 e(w)0 rc(w)0 e(β)1 rc(β)1 e(w)1 rc(w)1

T 2
h 8 5.018e−2 – 2.641e−2 – 9.700e−2 – 6.480e−2 –

16 1.103e−2 2.19 9.522e−3 1.47 2.967e−2 1.71 1.988e−2 1.70

32 2.788e−3 1.98 2.761e−3 1.79 8.992e−3 1.72 5.404e−3 1.88

64 7.166e−4 1.96 7.351e−4 1.91 2.886e−3 1.64 1.403e−3 1.95

128 1.814e−4 1.98 1.891e−4 1.96 1.010e−3 1.51 3.572e−4 1.97

T 3
h 8 7.137e−2 – 5.208e−2 – 1.325e−1 – 8.680e−2 –

16 3.505e−2 1.03 2.095e−2 1.31 5.465e−2 1.28 3.303e−2 1.39

32 1.131e−2 1.63 6.219e−3 1.75 1.793e−2 1.61 9.714e−3 1.77

64 3.108e−3 1.86 1.634e−3 1.93 5.619e−3 1.67 2.571e−3 1.92

128 7.991e−4 1.96 4.156e−4 1.98 1.846e−3 1.61 6.571e−4 1.97

T 4
h 8 3.224e−2 – 6.519e−2 – 4.370e−2 – 9.599e−2 –

16 8.156e−3 1.98 1.605e−2 2.02 1.132e−2 1.95 2.518e−2 1.93

32 2.051e−3 1.99 3.997e−3 2.00 2.866e−3 1.98 6.365e−3 1.98

64 5.138e−4 1.99 9.983e−4 2.00 7.188e−4 2.00 1.595e−3 2.00

128 1.285e−4 1.99 2.496e−4 2.00 1.798e−4 2.00 3.991e−4 2.00

T 5
h 8 7.190e−2 – 1.057e−1 – 1.949e−1 – 1.318e−1 –

16 1.677e−2 2.10 2.331e−2 2.18 1.127e−1 0.79 4.339e−2 1.60

32 3.509e−3 2.26 5.201e−3 2.16 4.213e−2 1.42 1.080e−2 2.01

64 5.942e−4 2.56 1.221e−3 2.09 1.127e−2 1.90 2.380e−3 2.18

128 1.504e−4 1.98 2.896e−4 2.08 3.802e−3 1.57 5.516e−4 2.11

Errors and experimental rates of convergence for variables β and w

Table 1 shows the convergence history of the Method 1 applied to our test problem
with four different family of meshes. Table 2 shows instead an analysis for various
thicknesses in order to assess the locking free nature of the proposed method.

We observe from Table 1 that a clear rate of convergence O(h2) is attained for β and
w for all family of meshes in the discrete L∞ norm. Moreover, a rate of convergence
O(h3/2) for β and O(h2) for w for all family of meshes in the discrete H1 norm
have been obtained. Actually, the computation of β using meshes T 4

h seems to be
superconvergent.

We observe from Table 2 that our Method 1 lead to wrong result only for triangular
meshes T 1

h , when the thickness of the plate is small. For any other family of meshes
the method is locking-free. We also note that adding the middle point of each edge as
a new node on any triangular mesh, the method is locking free, see row corresponding
to T 1

h and T 6
h .

Remark 3 We note that the different behavior among the triangular mesh T 1
h and the

remaining grids is not surprising. Indeed, T 1
h resembles a plain P1 element, that is

known to suffer from locking in the plate finite element literature, unless edge bubbles
are added to the rotations (see also Remark 1). Moreover, the analysis of [11] does
not apply to the T 1

h meshes since the P1/P0 element is not stable for the Stokes
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Table 2 Locking-free analysis for variable w (e(w)1)

Mesh 1/h t = 1.0e−2 t = 1.0e−3 t = 1.0e−4 t = 1.0e−5

T 1
h 8 2.040179e−1 9.381597e−1 9.993307e−1 9.999933e−1

16 2.975046e−2 3.790016e−1 9.773959e−1 9.997674e−1

32 4.320781e−3 4.271249e−2 5.521358e−1 9.902023e−1

64 8.636150e−4 5.651503e−3 8.549716e−2 7.775880e−1

T 3
h 8 8.680034e−2 8.648290e−2 8.647974e−2 8.647905e−2

16 3.303805e−2 3.289787e−2 3.289649e−2 3.289827e−2

32 9.714549e−3 9.670538e−3 9.670075e−3 9.671654e−3

64 2.571361e−3 2.558931e−3 2.558797e−3 2.555879e−3

T 4
h 8 9.598706e−2 9.605054e−2 9.605176e−2 9.605118e−2

16 2.518265e−2 2.518620e−2 2.518623e−2 2.518663e−2

32 6.364552e−3 6.364126e−3 6.364108e−3 6.364647e−3

64 1.595350e−3 1.595135e−3 1.595115e−3 1.595949e−3

T 6
h 8 7.471495e−2 7.399270e−2 7.398561e−2 7.398560e−2

16 2.223311e−2 2.217105e−2 2.217068e−2 2.217124e−2

32 6.155689e−3 6.173926e−3 6.174458e−3 6.176650e−3

64 1.268306e−3 1.308765e−3 1.309856e−3 1.311575e−3

T 7
h 8 8.776844e−2 8.835775e−2 8.547591e−2 8.870029e−2

16 3.128646e−2 3.002581e−2 3.088068e−2 2.990004e−2

32 8.776518e−3 8.804238e−3 9.034351e−3 8.770496e−3

64 1.925048e−3 2.025191e−3 2.042556e−3 1.966998e−3

problem. Instead, meshes T 2
h , T 3

h fall into the hypotheses of the convergence theorem
of [7], see Remark 4 of [11]. Meshes T 4

h , T 5
h have a strong connection with the MITC4

finite element for plates that is known to be stable. Finally, meshes T 6
h , T 7

h again fall
into the convergent cases considered in [7] and thus stable also for Reissner–Mindlin
(see [11]).

4.2 Free vibration of plates

The effectiveness of the MDF method for free vibration analysis are demonstrated by
examples with different thickness and different boundary conditions.

We have computed approximations of the free vibration angular frequencies ωh =
t
√

λh
ρ

. In order to compare our results with those in [25,27,28,30], a non-dimensional
frequency parameter is defined as:

ωmn := ωh
mn L

√
2(1 + ν)ρ

E
,

here ωh
mn are the computed frequencies, where m and n are the numbers of half-waves

in the modal shapes in the x and y directions, respectively. L is the plate side length.
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Table 3 Lowest non-dimensional vibration frequencies for a CCCC square plate and t = 0.1

Mesh Mode N = 32 N = 64 N = 128 Order Extrap. [30] [27]

T 2
h ω11 1.5938 1.5918 1.5912 1.84 1.5910 1.591 1.5910

ω21 3.0458 3.0408 3.0394 1.85 3.0389 3.039 3.0388

ω12 3.0500 3.0419 3.0397 1.90 3.0389 3.039 3.0388

ω22 4.2807 4.2675 4.2638 1.85 4.2624 4.263 4.2624

T 3
h ω11 1.5958 1.5923 1.5914 1.84 1.5910 1.591 1.5910

ω21 3.0524 3.0426 3.0399 1.83 3.0388 3.039 3.0388

ω12 3.0570 3.0438 3.0402 1.88 3.0388 3.039 3.0388

ω22 4.2903 4.2701 4.2645 1.84 4.2623 4.263 4.2624

T 4
h ω11 1.5961 1.5923 1.5914 1.97 1.5910 1.591 1.5910

ω21 3.0526 3.0424 3.0398 1.98 3.0389 3.039 3.0388

ω12 3.0526 3.0424 3.0398 1.98 3.0389 3.039 3.0388

ω22 4.2914 4.2699 4.2644 1.97 4.2625 4.263 4.2624

T 5
h ω11 1.5967 1.5925 1.5914 1.98 1.5910 1.591 1.5910

ω21 3.0527 3.0424 3.0398 1.98 3.0389 3.039 3.0388

ω12 3.0573 3.0435 3.0401 2.00 3.0389 3.039 3.0388

ω22 4.2943 4.2705 4.2645 1.98 4.2625 4.263 4.2624

We have considered a square plate of side length L = 1 and ρ = 1 and three
different thickness t = 0.1, t = 0.01 and t = 1.0e−5. We have also considered three
different types of boundary conditions: a clamped plate (denote by CCCC), a simply
supported plate (denote by SSSS), and a plate with a free edge (with three clamped
edges and the fourth free, we denote by CCCF).

In the following numerical tests, we show the results for the four lowest vibration
frequencies. We tested also higher frequencies with similar results.

Tables 3 and 4 show the four lowest vibration frequencies computed by Method 2
with successively refined meshes of each type for a clamped plate with thickness
t = 0.1 and t = 0.01, respectively. The table includes orders of convergence, as
well as accurate values extrapolated by means of a least-squares fitting. Furthermore,
the last two columns show the results reported in [25,27,30]. In every case, we have
used a Poisson ratio ν = 0.3 and a correction factor k = 0.8601. The reported non-
dimensional frequencies are independent of the remaining geometrical and physical
parameters, except for the thickness-to-span ratio.

It can be seen from Tables 3 and 4 that our method converges with a quadratic order.
Table 5 shows the four lowest vibration frequencies computed by Method 2 with

successively refined meshes of each type for a clamped plate with t = 1.0e−5. The
table includes orders of convergence, as well as accurate values extrapolated by means
of a least-squares fitting. In every case, we have used a Poisson ratio ν = 0.3 and a cor-
rection factor k = 0.8601. The reported non-dimensional frequencies are independent
of the remaining geometrical and physical parameters, except for the thickness-to-span
ratio.
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Table 4 Lowest non-dimensional vibration frequencies for a CCCC square plate and t = 0.01

Mesh Mode N = 32 N = 64 N = 128 Order Extrap. [30] [25]

T 2
h ω11 0.1757 0.1755 0.1754 1.89 0.1754 0.1754 0.1754

ω21 0.3582 0.3576 0.3574 1.87 0.3574 0.3574 0.3576

ω12 0.3587 0.3577 0.3575 1.91 0.3574 0.3574 0.3576

ω22 0.5289 0.5272 0.5267 1.86 0.5265 0.5264 0.5274

T 3
h ω11 0.1759 0.1755 0.1754 1.87 0.1754 0.1754 0.1754

ω21 0.3590 0.3578 0.3575 1.84 0.3574 0.3574 0.3576

ω12 0.3596 0.3580 0.3575 1.87 0.3574 0.3574 0.3576

ω22 0.5304 0.5276 0.5268 1.83 0.5265 0.5264 0.5274

T 4
h ω11 0.1759 0.1755 0.1754 1.99 0.1754 0.1754 0.1754

ω21 0.3593 0.3579 0.3575 2.00 0.3574 0.3574 0.3576

ω12 0.3593 0.3579 0.3575 2.00 0.3574 0.3574 0.3576

ω22 0.5306 0.5275 0.5268 1.99 0.5265 0.5264 0.5274

T 5
h ω11 0.1762 0.1756 0.1754 2.21 0.1754 0.1754 0.1754

ω21 0.3597 0.3579 0.3575 2.10 0.3574 0.3574 0.3576

ω12 0.3613 0.3582 0.3576 2.33 0.3574 0.3574 0.3576

ω22 0.5323 0.5278 0.5268 2.16 0.5265 0.5264 0.5274

Table 5 Lowest non-dimensional vibration frequencies for a CCCC square plate and t = 1.0e−5

Mesh Mode N = 8 N = 16 N = 32 Order Extrap.

T 1
h ω11 0.7653e−1 0.1289e−1 0.1987e−2 2.54 −0.2995e−3

ω21 0.1972e−0 0.3228e−1 0.4942e−2 2.59 −0.5396e−3

ω12 0.2230e−0 0.4060e−1 0.5085e−2 2.36 −0.3519e−2

ω22 0.3915e−0 0.6093e−1 0.9893e−2 2.70 0.7086e−3

T 4
h ω11 0.1848e−3 0.1778e−3 0.1761e−3 2.04 0.1756e−3

ω21 0.3927e−3 0.3661e−3 0.3601e−3 2.15 0.3583e−3

ω12 0.3927e−3 0.3661e−3 0.3601e−3 2.15 0.3583e−3

ω22 0.5983e−3 0.5446e−3 0.5321e−3 2.11 0.5284e−3

T 6
h ω11 0.1772e−3 0.1760e−3 0.1757e−3 2.10 0.1756e−3

ω21 0.3634e−3 0.3592e−3 0.3584e−3 2.33 0.3582e−3

ω12 0.3650e−3 0.3594e−3 0.3584e−3 2.53 0.3582e−3

ω22 0.5440e−3 0.5312e−3 0.5286e−3 2.30 0.5279e−3

T 7
h ω11 0.1779e−3 0.1761e−3 0.1757e−3 1.94 0.1755e−3

ω21 0.3654e−3 0.3599e−3 0.3585e−3 1.95 0.3580e−3

ω12 0.3679e−3 0.3600e−3 0.3585e−3 2.40 0.3582e−3

ω22 0.5489e−3 0.5325e−3 0.5289e−3 2.18 0.5278e−3
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Table 6 Lowest non-dimensional vibration frequencies for a SSSS square plate and t = 0.01

Mesh Mode N = 16 N = 32 N = 64 Order Extrap. [30] [25]

T 2
h ω11 0.0966 0.0963 0.0963 2.04 0.0963 0.0963 0.0963

ω21 0.2416 0.2408 0.2406 2.07 0.2406 0.2406 0.2406

ω12 0.2425 0.2411 0.2407 2.02 0.2406 0.2406 0.2406

ω22 0.3889 0.3858 0.3850 2.00 0.3847 0.3847 0.3848

T 3
h ω11 0.0967 0.0964 0.0963 1.96 0.0963 0.0963 0.0963

ω21 0.2424 0.2410 0.2407 1.91 0.2406 0.2406 0.2406

ω12 0.2434 0.2413 0.2408 1.93 0.2406 0.2406 0.2406

ω22 0.3914 0.3865 0.3852 1.92 0.3847 0.3847 0.3848

T 4
h ω11 0.0966 0.0964 0.0963 2.00 0.0963 0.0963 0.0963

ω21 0.2426 0.2411 0.2407 2.02 0.2406 0.2406 0.2406

ω12 0.2426 0.2411 0.2407 2.02 0.2406 0.2406 0.2406

ω22 0.3898 0.3860 0.3850 2.01 0.3847 0.3847 0.3848

T 5
h ω11 0.0967 0.0964 0.0963 2.01 0.0963 0.0963 0.0963

ω21 0.2429 0.2411 0.2407 2.07 0.2406 0.2406 0.2406

ω12 0.2441 0.2414 0.2408 2.09 0.2406 0.2406 0.2406

ω22 0.3910 0.3863 0.3851 2.01 0.3847 0.3847 0.3848

T 6
h ω11 0.0964 0.0963 0.0963 2.82 0.0963 0.0963 0.0963

ω21 0.2411 0.2406 0.2406 3.79 0.2406 0.2406 0.2406

ω12 0.2417 0.2407 0.2406 3.82 0.2406 0.2406 0.2406

ω22 0.3869 0.3850 0.3848 3.40 0.3848 0.3847 0.3848

T 7
h ω11 0.0965 0.0963 0.0963 2.53 0.0963 0.0963 0.0963

ω21 0.2416 0.2408 0.2406 2.35 0.2406 0.2406 0.2406

ω12 0.2427 0.2408 0.2407 3.48 0.2406 0.2406 0.2406

ω22 0.3889 0.3854 0.3848 2.61 0.3847 0.3847 0.3848

It can be seen from Table 5 that as for the source problem, our Method 2 lead to
wrong result for triangular meshes T 1

h when the thickness of the plate is small, see
Remark 3. For any other family of meshes the method is locking free and converges
with a quadratic order.

Table 6 shows the four lowest vibration frequencies computed by Method 2 with
successively refined meshes of each type for a simply supported plate with thickness
t = 0.01. The table includes orders of convergence, as well as accurate values extrap-
olated by means of a least-squares fitting. Furthermore, the last two columns show
the results reported in [25,30]. In every case, we have used a Poisson ratio ν = 0.3
and a correction factor k = 0.8333. The reported non-dimensional frequencies are
independent of the remaining geometrical and physical parameters, except for the
thickness-to-span ratio.

Table 7 shows the four lowest vibration frequencies computed by Method 2 with
successively refined meshes of each type for a plate with a free edge (with three
clamped edges and the fourth free) with thickness t = 0.01. The table includes orders
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Table 7 Lowest non-dimensional vibration frequencies for a CCCF square plate and t = 0.01

Mesh Mode N = 32 N = 64 N = 128 Order Extrap. [30] [25]

T 4
h ω11 0.1215 0.1179 0.1169 1.98 0.1166 0.1166 0.1171

ω21 0.2030 0.1970 0.1954 1.97 0.1949 0.1949 0.1951

ω12 0.3358 0.3144 0.3096 2.14 0.3081 0.3083 0.3093

ω22 0.3884 0.3773 0.3745 1.97 0.3735 0.3736 0.3740

T 5
h ω11 0.1199 0.1173 0.1167 2.18 0.1166 0.1166 0.1171

ω21 0.1986 0.1958 0.1951 2.00 0.1948 0.1949 0.1951

ω12 0.3264 0.3117 0.3086 2.25 0.3078 0.3083 0.3093

ω22 0.3791 0.3749 0.3738 1.92 0.3734 0.3736 0.3740

T 6
h ω11 0.1177 0.1169 0.1167 2.00 0.1166 0.1166 0.1171

ω21 0.1967 0.1953 0.1949 2.13 0.1948 0.1949 0.1951

ω12 0.3134 0.3090 0.3081 2.22 0.3079 0.3083 0.3093

ω22 0.3753 0.3738 0.3735 2.30 0.3734 0.3736 0.3740

T 7
h ω11 0.1180 0.1169 0.1167 1.90 0.1166 0.1166 0.1171

ω21 0.1974 0.1954 0.1950 2.15 0.1948 0.1949 0.1951

ω12 0.3151 0.3095 0.3082 2.08 0.3078 0.3083 0.3093

ω22 0.3772 0.3743 0.3736 2.22 0.3734 0.3736 0.3740

of convergence, as well as accurate values extrapolated by means of a least-squares
fitting. Furthermore, the last two columns show the results reported in [25,30]. In every
case, we have used a Poisson ratio ν = 0.3 and a correction factor k = 0.8601. The
reported non-dimensional frequencies are independent of the remaining geometrical
and physical parameters, except for the thickness-to-span ratio.

It can be seen from Tables 6 and 7 that our method converges with a quadratic order.

4.3 Buckling of plates

The effectiveness of the MDF method for buckling analysis are demonstrated by exam-
ples with different thickness, boundary conditions and different in-plane compressive
stress σ .

We have computed approximations of the buckling coefficients λbc = λbpt2 being
the smallest (the critical load) by which the chosen in-plane compressive stress σ must
be multiplied by in order to cause buckling. In order to compare our results with those
in [33,34,42], a non-dimensional buckling intensity is defined as:

K := λbc
h L

π2 D
,

here λbc
h = λ

bp
h t2 are the computed buckling coefficients, L is the plate side length

and D is the flexural rigidity defined as D = Et3/[12(1 − ν2)].
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Table 8 Lowest non-dimensional buckling intensities K1, . . . , K4 for a SSSS square plate and t = 0.01

Mesh K N = 16 N = 32 N = 64 Order Extrap. Exact

T 3
h K1 2.0315 2.0075 2.0011 0.90 1.9987 1.9989

K2 0.1607 5.0381 5.0046 1.87 4.9920 4.9930

K3 5.2262 5.0541 5.0086 1.92 4.9922 4.9930

K4 8.5170 8.1249 8.0186 1.88 7.9788 7.9820

T 4
h K1 2.0381 2.0086 2.0013 2.01 1.9989 1.9989

K2 5.2116 5.0465 5.0063 2.04 4.9934 4.9930

K3 5.2116 5.0465 5.0063 2.04 4.9934 4.9930

K4 8.6292 8.1388 8.0209 2.06 7.9839 7.9820

T 5
h K1 2.0412 2.0093 2.0015 2.02 1.9989 1.9989

K2 5.2242 5.0485 5.0063 2.06 4.9931 4.9930

K3 5.2929 5.0641 5.0099 2.08 4.9932 4.9930

K4 8.6788 8.1504 8.0234 2.06 7.9836 7.9820

T 7
h K1 2.0347 2.0068 2.0010 2.27 1.9995 1.9989

K2 5.1962 5.0424 5.0053 2.05 4.9935 4.9930

K3 5.2429 5.0451 5.0063 2.35 4.9968 4.9930

K4 8.5851 8.1192 8.0158 2.17 7.9862 7.9820

4.3.1 Uniformly compressed plate

In this couple of tests, we use σ = I, corresponding to a uniformly compressed plate
(in the x , y directions).

First, we consider a simply supported plate, since analytical solutions are avail-
able (see [45]) for that case. In Table 8, we report the four lowest non-dimensional
buckling intensities K1, . . . , K4, for the thickness t = 0.01, and L = 1 computed by
Method 3 with four different family of meshes. The table includes computed orders of
convergence, as well as more accurate values extrapolated by means of a least-squares
procedure. Furthermore, the last column reports the exact buckling intensities. In this
case, we have used a Poisson ratio ν = 0.3 and a correction factor k = 5/6.

It can be seen from Table 8 that our method converges to the exact values with a
quadratic order.

As a second test, we present the results for the lowest non-dimensional buckling
intensity K1 for a clamped plate with varying thickness t , in order to assess the stability
of the Method 3 when t goes to zero. It is well known that K1 converges to the non-
dimensional buckling intensity of an identical Kirchhoff-Love uniformly compressed
clamped plate.

In Table 9, we report the lowest non-dimensional buckling intensity K1 of a uni-
formly compressed clamped plate with varying thickness t and L = 1. We have used
five different family of meshes. The table includes computed orders of convergence,
as well as more accurate values extrapolated by means of a least-squares procedure.
In the last row of each family of meshes we report the limit values as t goes to zero
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Table 9 Lowest non-dimensional buckling intensity K1 of a clamped plate with varying thickness

Mesh t N = 16 N = 32 N = 64 Order Extrap.

T 1
h 0.1 4.9031 4.6658 4.6099 2.09 4.5929

0.01 7.1314 5.5307 5.3275 2.98 5.2982

0.001 9.9817e+1 9.2546 5.6315 4.00 4.3035

0.0001 9.2723e+3 2.6878e+2 1.2923e+1 4.00 −0.1678

0 (extrap.) – – – – −
T 2

h 0.1 4.6316 4.6015 4.5937 1.93 4.5909

0.01 5.3423 5.3072 5.2981 1.96 5.2950

0.001 5.3509 5.3157 5.3066 1.96 5.3035

0.0001 5.3510 5.3158 5.3067 1.96 5.3035

0 (extrap.) 5.3510 5.3158 5.3067 1.96 5.3036

T 3
h 0.1 4.6476 4.6058 4.5948 1.92 4.5908

0.01 5.3611 5.3121 5.2994 1.94 5.2949

0.001 5.3697 5.3207 5.3079 1.94 5.3034

0.0001 5.3698 5.3208 5.3080 1.94 5.3035

0 (extrap.) 5.3698 5.3208 5.3080 1.94 5.3035

T 4
h 0.1 4.6441 4.6043 4.5943 2.00 4.5910

0.01 5.3564 5.3103 5.2989 2.01 5.2951

0.001 5.3649 5.3188 5.3074 2.01 5.3036

0.0001 5.3649 5.3189 5.3074 2.01 5.3037

0 (extrap.) 5.3650 5.3189 5.3074 2.01 5.3037

T 5
h 0.1 4.6487 4.6054 4.5946 2.00 4.5909

0.01 5.3702 5.3128 5.2993 2.09 5.2952

0.001 5.3863 5.3240 5.3085 2.01 5.3034

0.0001 5.3866 5.3242 5.3088 2.01 5.3036

0 (extrap.) 5.3867 5.3242 5.3087 2.01 5.3036

Table 10 Lowest non-dimensional buckling intensity of a uniformly compressed clamped thin plate
(Kirchhoff-Love model) computed with the method from [41]

Method N = 24 N = 36 N = 48 N = 60 Order Extrapolated

[41] 5.3051 5.3042 5.3039 5.3038 2.61 5.3037

obtained by extrapolation. In this case, we have used a Poisson ratio ν = 0.25 and a
correction factor k = 5/6.

Additionally, we have also computed the lowest buckling intensity of a Kirchhoff-
Love plate by using the finite element method analyzed in [41].

In Table 10, we report the lowest non-dimensional buckling intensity of a uniformly
compressed clamped plate with L = 1. In this case we considered a Poisson ratio
ν = 0.25.
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It is clear from the results of Tables 9 and 10, that our Method 3 lead to wrong result
for triangular meshes T 1

h when the thickness of the plate is small, see Remark 3. For
all the other family of meshes the method is locking free and do not deteriorate as the
plate thickness become smaller.

4.3.2 Plate uniformly compressed in one direction

In this couple of tests, we use

σ =
[

1 0
0 0

]
,

corresponding to a plate subjected to uniaxial compression (in the x direction). We
consider different boundary conditions.

In Tables 11 and 12, we report the lowest non-dimensional buckling intensity K1, for
a clamped and simply supported plate, respectively, with thickness t = 0.1, and L = 1
computed by Method 3 with different family of meshes. The table includes computed
orders of convergence, as well as more accurate values extrapolated by means of a
least-squares procedure. Furthermore, the last two columns show the results reported
in [33,34]. In these cases, we have used a Poisson ratio ν = 0.3 and a correction factor
k = 5/6.

It can be seen from Tables 11 and 12 that our method converges with a quadratic
order.

Table 11 Lowest non-dimensional buckling intensity K1 for a CCCC square plate and t = 0.1

Mesh K N = 32 N = 64 N = 128 Order Extrap. [33] [34]

T 2
h K1 8.3849 8.3157 8.2978 1.95 8.2915 8.2917 8.2931

T 3
h K1 8.4222 8.3260 8.3004 1.91 8.2912 8.2917 8.2931

T 4
h K1 8.3987 8.3185 8.2984 2.00 8.2917 8.2917 8.2931

T 5
h K1 8.4273 8.3255 8.3001 2.00 8.2916 8.2917 8.2931

T 6
h K1 8.3663 8.3110 8.2963 1.91 8.2910 8.2917 8.2931

T 7
h K1 8.3715 8.3121 8.2965 1.93 8.2909 8.2917 8.2931

Table 12 Lowest non-dimensional buckling intensity K1 for a SSSS square plate and t = 0.1

Mesh K N = 32 N = 64 N = 128 Order Extrap. [33] [34]

T 2
h K1 3.7993 3.7897 3.7873 1.97 3.7864 3.7865 3.7873

T 3
h K1 3.8029 3.7907 3.7875 1.96 3.7864 3.7865 3.7873

T 4
h K1 3.8049 3.7911 3.7876 2.00 3.7864 3.7865 3.7873

T 5
h K1 3.8062 3.7913 3.7877 2.01 3.7865 3.7865 3.7873

T 6
h K1 3.7975 3.7892 3.7871 1.98 3.7864 3.7865 3.7873

T 7
h K1 3.8011 3.7903 3.7874 1.90 3.7863 3.7865 3.7873
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Table 13 Lowest non-dimensional buckling intensity K1 for a SSSS square plate and t = 0.01

Mesh K N = 32 N = 64 N = 128 Order Extrap. [42]

T 2
h K1 9.4832 9.3514 9.3180 1.98 9.3067 9.2830

T 3
h K1 9.3848 9.3270 9.3119 1.94 9.3066 9.2830

T 4
h K1 9.4602 9.3450 9.3164 2.01 9.3069 9.2830

T 5
h K1 9.4759 9.3483 9.3170 2.03 9.3069 9.2830

T 6
h K1 9.4196 9.3346 9.3134 2.01 9.3064 9.2830

T 7
h K1 9.4640 9.3460 9.3163 1.99 9.3063 9.2830

4.3.3 Shear loaded plate

In this test, we use

σ =
[

0 1
1 0

]
,

corresponding to a plate subjected to shear load. We consider different boundary
conditions.

In Table 13, we report the lowest non-dimensional buckling intensity K1, for a
simply supported plate with thickness t = 0.01, and L = 1 computed by Method 3
with different family of meshes. The table includes computed orders of convergence,
as well as more accurate values extrapolated by means of a least-squares procedure.
Furthermore, the last two columns show the results reported in [42]. In these cases,
we have used a Poisson ratio ν = 0.3 and a correction factor k = 5/6.

It can be seen from Table 13 that our method converges with a quadratic order.

5 Conclusions

We assessed numerically the actual performance of the method proposed in [11],
extending it also to free vibration and buckling problems of plates. We tested different
families of mimetic meshes, different values of the relative thickness and various
boundary conditions. In all the three types of problems considered (source problem,
free vibration, buckling) the method was shown to be locking free and to converge with
an optimal rate both in discrete L∞ and H1 norms for meshes made with elements with
4 or more edges. In some occasions, a super convergence rate was noticed. Moreover,
differently from standard quadrilateral finite elements, the method shows a robust
behavior also for uniformly distorted families of meshes such as those in Fig. 5. We
thus conclude that the proposed method is very reliable for Reissner–Mindlin plate
computations.
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en Ingeniería Matemática (CI²MA), Universidad de Concepción, Chile.

123



Numerical results for mimetic discretization of Reissner–Mindlin plate problems 231

6 Appendix

In this section we describe how to build the local bilinear forms appearing in Sect. 3.
In what follows m = m(E) ∈ N will indicate the number of vertices of the polygon

E . We number the vertices in counterclockwise sense as v1, . . . , vm and analogously
for the edges e1, . . . , em , so that v j and v j+1 are the endpoints of edge e j , j =
1, 2, . . . , m. Note that here and in the sequel all such indexes are considered modulus
m, so that the index m + 1 is identified with the index 1. There are a total of 3m local
degrees of freedom associated to each element of the mesh, three for each vertex. We
order such local degrees of freedom first with all rotations and then all deflections,
ordered as the vertices

{
η

v1
E , η

v2
E , . . . , η

vm
E , v

v1
E , v

v2
E , . . . , v

vm
E

}
,

where (ηE , vE ) ∈ Hh |E × Wh |E .
The final local bilinear forms M = M(E) ∈ R

3m×3m associated to each element
E will be the sum of two parts

M = M1 + κt−2
M2, (20)

the first one being associated to the ah(·, ·) term and the second one to the shear
energy term. Once the elemental matrices M are built, the global stiffness matrix is
implemented with a standard assembly procedure as in classical finite elements.

6.1 Matrix for the bilinear form ah(·, ·)

We start from the bilinear form ah(·, ·), which is the sum of local bilinear forms that
we express as matrices M = M(E) ∈ R

2m×2m

aE
h (βE , ηE ) = βT

E MηE ∀E ∈ Th, ∀βE , ηE ∈ Hh |E .

The first and main step is to build the matrix M. With this purpose we introduce the
matrices N = N(E) and R = R(E) in R

2m×6. Note again that for ease of notation we
do not make explicit the dependence on the involved matrices from E . Let q1, . . . , q6
be the following basis for the first order vector polynomials (with 2 components)
defined on E :

q1 =
(

1
0

)
, q2 =

(
0
1

)
, q3 =

(
ȳ

−x̄

)
, q4 =

(
ȳ
x̄

)
, q5 =

(
x̄
ȳ

)
, q6 =

(
x̄

−ȳ

)
.

where we recall that x̄, ȳ represent cartesian coordinates with the origin in the barycen-
ter of the element. Then, the six columns N1, . . . , N6 of N are vectors in R

2m defined
by the interpolation of the polynomials q1, . . . , q6 into the space Hh |E (see (4))

N j = (q j )I,E j = 1, . . . , 6.
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The columns of the matrix N thus represent the linear polynomials q j written in
terms of the degrees of freedom of Hh |E .

The columns R j of the matrix R are instead defined as the vectors in R
2m associated

to the right hand side of the consistency condition (S2a), computed with respect to
the polynomials q j , j = 1, . . . , 6. In other words R j is the unique vector in R

2m such
that for all ηE ∈ Hh |E ≡ R

2m

(R j )
T ηE =

m∑
i=1

(
Cε(q j )n

ei
E

) ·
( |ei |

2

[
η

vi
E + η

vi+1
E

])

see equation (S2a). Note that, since ε(q j ) = 0 for j = 1, 2, 3, the first three columns
R1, R2, R3 of R have all zero entries.

From the definition of the vectors N j and R j , it is clear that the consistency condition
(S2a) translates into the algebraic condition

MN j = R j j = 1, . . . , 6 ⇔ MN = R. (21)

We therefore introduce the matrix K ∈ R
6×6 defined by

K = NT R = RT N.

It is easy to check that such matrix is symmetric and semi-positive definite. Moreover,
it is of the form

K =
(

03×3 03×3
03×3 K�

)

with K� positive definite. Therefore is it immediate to compute the pseudo inverse
of K

K† =
(

03×3 03×3

03×3 K−1
�

)
.

We are now ready to define the local matrix M. Let P be a projection on the space
orthogonal to the columns of N

P = I2m×2m − N(NT N)−1NT

with I2m×2m the identity matrix. We then set

M = RK†RT + αP

with α ∈ R any positive number, typically scaled as the trace of the first part of the
matrix. Then, it is immediate to check that M satisfies the consistency condition (21).

Finally, note that the matrix M ∈ R
2m×2m is defined only with respect to the rotation

degrees of freedom, since the bilinear form ah(·, ·) is independent of the deflection
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variable. When it comes to build the local matrix M1 ∈ R
3m×3m appearing in (20)

one simply needs to introduce the restriction matrix S ∈ R
3m×2m

S =
(

I2m×2m

0m×2m

)

and set

M1 = SMST .

6.2 Matrix for the shear term

The local matrices for the shear part are obtained as a product of matrices representing
the operators and bilinear forms that appear in the second term of the left hand side of
Method 1. We therefore start building a matrix M = M(E) ∈ R

m×m that represents
the local scalar product

[γ E , δE ]�h ,E = γ T
E MδE ∀γ E , δE ∈ �h |E .

We order the m degrees of freedom of �h |E as the edges of E . The construction follows
the same philosophy as in the previous section and therefore is presented more briefly.
Now, the two columns of the matrix N ∈ R

m×2 are defined by

N j = (curl q j )II,E j = 1, 2,

where the sub-index I I represents the interpolation operator shown in (5) and q1, q2
denote the following basis of the (zero average) linear polynomials on E

q1 = x̄, q2 = ȳ.

Analogously, the matrix R ∈ R
m×2 is defined through its columns as the right hand

side of the consistency condition (16) in [11]

(R j )
T δE = −

m∑
i=1

δ
ei
E

∫
ei

q j ∀ j = 1, 2, ∀δE ∈ �h |E ≡ R
m,

where we neglected the rot�h part since q1 and q2 have zero average on E . Again, we

need to introduce K ∈ R
2×2 given by K = N

T
R = R

T
N that is easily shown to be

positive definite and symmetric. We can therefore finally set

M = R (K)−1R
T + αP

with α ∈ R
+ and the projection matrix P = Im×m − N(N

T
N)−1N

T
. The consistency

condition MN = R follows by construction while the stability can be derived with the
results in [20].
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The local matrix M2 appearing in (20) can be built combining M with a matrix
C = C(E) ∈ R

m×3m representing the ∇h and �h operators that appear in Method 1.
We therefore set C = (−C1 C2

)
with the matrix C1 = C1(E) ∈ R

m×2m representing
the �h operator

C1 = 1

2

⎛
⎜⎜⎜⎜⎜⎝

(te1
E )T (te1

E )T 01×2 01×2 . . . 01×2

01×2 (te2
E )T (te2

E )T 01×2 . . . 01×2

01×2 01×2 (te3
E )T (te3

E )T . . . 01×2
...

...
...

...
...

...

(tem
E )T 01×2 . . . 01×2 01×2 (tem

E )T

⎞
⎟⎟⎟⎟⎟⎠

,

and the matrix C2 = C2(E) ∈ R
m×m representing the ∇h operator

C2 =

⎛
⎜⎜⎜⎜⎜⎝

−|e1|−1 |e1|−1 0 0 . . . 0
0 −|e2|−1 |e2|−1 0 . . . 0
0 0 −|e3|−1 |e3|−1 . . . 0
...

...
...

...
...

...

−|em |−1 0 . . . 0 0 |em |−1

⎞
⎟⎟⎟⎟⎟⎠

.

Finally, the local matrices for the shear part are given by

M2 = CT MC.

6.3 Right hand sides

The loading term for the source problem in Method 1 follows immediately from (13).
One gets the local right hand vectors b = b(E) ∈ R

3m defined by

b j =
{

0 if j = 1, 2, . . . , 2m

ḡ|E ω
( j−2m)
E if j = 2m + 1, 2m + 2, . . . , 3m,

that are then assembled as usual into the global load vector.
The mass matrix for the free vibration problem in Method 2, associated to the

bilinear form (14) is built again by a standard assembly procedure. The local mass
matrices D = D(E) ∈ R

3m×3m associated to the elemental mass bilinear forms

m E
h (βE , wE ; ηE , vE ) = (βE , wE )T D (ηE , vE )

∀E ∈ Th,∀βE , ηE ∈ Hh |E ,∀wE , vE ∈ Wh |E are diagonal and defined by

Di i =
{

t2ω
�i/2�
E /12 if i = 1, 2, . . . , 2m

ω
(i−2m)
E if i = 2m + 1, 2m + 2, . . . , 3m

where the symbol � � stands for a round up to the nearest integer.
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The stress matrix for the buckling problem in Method 3, associated to the bilinear
form (15) is also built as the sum of local matrices B̂ = B̂(E) ∈ R

m×m

bE
h (wE , vE ) = wT

E B̂ vE ∀wE , vE ∈ Wh |E .

Note that the symmetric tensor σ ∈ R
2×2 that appears in (S2b) can have either rank

2 or rank 1. In order to build the matrix B̂, we start introducing {q̂1, q̂2, q̂3} a basis
for the linear polynomials on E , such that q̂1 = 1 and q̂2, q̂3 have zero integral on
E . Moreover, if rank(σ ) = 1, we also require that ∇q̂2 ∈ Ker(σ ). We then define as
usual the auxiliary matrices N̂ = N̂(E) ∈ R

m×3 and R̂ = R̂(E) ∈ R
m×3 through its

columns. We set

N̂ j = (q̂ j )I,E , j = 1, 2, 3,

where the sub-index I denotes the interpolation operator in (3), and define R̂ j as the
unique vector in R

m such that

R̂T
j vE =

m∑
i=1

(
σ∇q̂ j · nei

E

) |ei |
2

[vvi
E + v

vi+1
E ] ∀ j = 1, 2, 3, ∀vE ∈ Wh |E ≡ R

m

in accordance with (S2b). Note that clearly R̂1 is null, and that, if rank(σ ) = 1 also
R̂2 is null. One then defines as usual the semi-positive definite and symmetric matrix
K̂ = K̂(E) ∈ R

3×3 given by K̂ = R̂T N̂ = N̂T R̂. Since K̂ is block diagonal, with the
first block of zeros and the second invertible, it is immediate to compute the pseudo
inverse matrix K̂†, in a way similar to the one used for K in Sect. 6.1. Then, we
introduce B̂ = B̂(E) ∈ R

m×m

B̂ = R̂ (K̂)†R̂T + αP̂

with α ∈ R non negative and the projection matrix P̂ = Im×m − N̂(N̂T N̂)−1N̂T . Note
that, since no global coercivity conditions are required, differently from the previous
matrices also the choice α = 0 can be taken.

Finally, note that the matrix B̂ ∈ R
m×m is defined only with respect to the deflection

degrees of freedom, since the bilinear form bh(·, ·) is independent of the rotation vari-
able. The remaining entries in the assembled (right hand side) stress matrix associated
to Method 3 can be simply filled with zeros.
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