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Abstract

In this work, we study the C0-nonconforming VEM for the fourth-order eigenvalue problems modeling the vibration
and buckling problems of thin plates with clamped boundary conditions on general shaped polygonal domain, possibly even
nonconvex domain. By employing the enriching operator, we have derived the convergence analysis in discrete H2 seminorm,
and H1, L2 norms for both problems. We use the Babuška–Osborn spectral theory (Babuška and Osborn, 1991), to show
that the introduced schemes provide well approximation of the spectrum and prove optimal order of rate of convergence for
eigenfunctions and double order of rate of convergence for eigenvalues. Finally, numerical results are presented to show the
good performance of the method on different polygonal meshes.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

The numerical approximations of eigenvalue problems such as vibrations and buckling problems are important
esearch topic in numerical analysis since the model problems are frequently encountered in engineering applications
uch as bridge, ship, and aircraft design. In view of application, we are dedicated to developed efficient numerical
chemes and convergence analysis of the following model problems. The vibration eigenvalue problem (VEP) can

be reads as follows. Find (λ, u) ∈ R × H 2
0 (Ω ) with u ̸= 0 such that

∆2u = λu in Ω , (1.1a)

u = ∂nu = 0 on Γ , (1.1b)

here λ = ω2, with ω > 0 being the vibration frequency, and ∂n denotes the normal derivative. To simplify the
otation we have taken the Young modulus and the density of the plate, both equal to 1. On the other hand, we
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ave the buckling eigenvalue problem (BEP), which can be stated as follows. Find (λ, u) ∈ R× H 2
0 (Ω ) with u ̸= 0

such that

∆2u = −λ∆u in Ω , (1.2a)

u = ∂nu = 0 on Γ . (1.2b)

There are various numerical schemes study and understand the approximated solutions of the buckling and vibra-
ion problems, e.g., FEMs [1–4], C1-VEM [5–8] and the references therein. We emphasize that the computational

cost for C1-FEM is high, and it decreases significantly in case of VEM approximation. In addition to this advantage,
we focus on developing a nonconforming VEM scheme for the above model problems on general type of domains
(even nonconvex).

The Virtual element method (VEM) is a numerical technique to compute solutions of partial differential equations
arising in mathematical models from science and engineering on finite dimensional space. This new technology
possesses many noticeable features such as a solid mathematical background, a combined formulation for elements
irrespective of geometric shapes, including nonconvex and oddly shaped elements, an easy extension to higher
dimensions, arbitrary orders of accuracy and regularity, and a simpler mesh discretizations for moving boundary
domains and interface problems. These features attract researchers from both engineering and mathematical
communities and have been studied to approximate different model problems, e.g., elliptic equations [9–12],
convection-dominated diffusion–reaction equations [13,14], nonlocal plate problems [15], just to mention a few
applications. The nonconforming VEM, originally proposed in [16] for elliptic problems, was later extended to
Stokes equations [17,18], eigenvalue problems [19], plate bending problems [20,21], biharmonic equations [22–24]
and, then, generalized to polyharmonic problems in any number of spatial dimensions [25]. Conforming VEM are
studied extensively for different second and fourth order eigenvalue problems [5–8,26–30]. Also, nonconforming
VEM for second order eigenvalue problem has been presented in [19]. However, to the best of our knowledge
nonconforming VEM for fourth order eigenvalue problems has not been studied.

In this article, we have developed, for the first time, an unified analysis of C0-nonconforming VEM for VEP
and BEP on general type of domains. We have investigated the continuous formulations associated with (1.1) and
(1.2) through certain continuous, compact and self-adjoint operators. Based on the transverse displacement of the
midplane of a thin plate, we define and analyze discrete solution operators on finite dimensional discrete space
to examine the characteristic of spectrum of discrete formulation associated with both eigenproblems. Further, the
authors in [21] introduced C0-nonconforming VEM to approximate plate bending problems in a convex domain,

here the exact solutions have more regularity. Such analysis cannot be adopted to derive convergence analysis
f VEP and BEP when the associated eigenfunctions have less regularity, particularly on the nonconvex domain.
emembering this difficulty, we bypass the problem by adopting Enriching operator defining from nonconforming
EM to its C1 continuous counter space. Finally, we have derived the convergence analysis in L2, and H 1 norms

nd broken H 2 semi-norm, and asserted the convergence of the eigenfunctions, and eigenvalues by exploiting
abuška–Osborn theory [31]. An immediate practical application of this work is to study the spectrum of the
iharmonic operators modeling bridges, e.g. [32, Equation 7]. Based on the previous observations, we summarize
ur contributions to the development of nonconforming VEM for the approximation of the eigenproblems as follows:

• C0-nonconforming VEM schemes are proposed to compute eigenvalues of VEP, BEP with the assumption of
less regular analytically solutions and a priori error estimates are derived in a unified way.

• The framework of convergence analysis is robust, which means we have shown the convergence of the
associated source problems in the norms of their respective continuous spaces.

• We have offered various types of numerical experiments to cover practical examples including plates with
various boundary conditions, usually encountered in engineering applications.

The article is organized as follow. In Section 2, we present the variational formulations associated with model
roblems (1.1), and (1.2) in a unified way. Further, we have defined the source problems, and solution operator allied
ith weak continuous formulations Problem 1. In Section 3, we have introduced lowest order C0-nonconforming
EM space and designed discrete schemes to approximate model problems. By introducing enriching operator, a
riori error estimates are derived in H 2 seminorm, and H 1, L2 norms for source problems in Section 4 which
s followed by convergence analysis of spectrum of solution operators and consequently spectrum of the model
roblems. Finally, we investigate behavior of our proposed schemes through numerical experiments and confirm the
heoretical expectation in Section 6. In Section 7, we postulate our global remark and possible future developments

f our work.
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. Preliminaries and weak formulations of the problems

.1. Notations

Throughout this paper, we follow the convention of Sobolev spaces of Ref. [33]. Accordingly, we denote the
pace of square integrable functions defined on any open, bounded, connected domain ω ⊂ R2 with boundary ∂ω
y L2(ω), and the Hilbert space of functions in L2(ω) with all partial derivatives up to a positive integer m also in

L2(ω) by H m(ω), cf. [33]. We endow H m(ω) with a norm and a seminorm that we denote as ∥ · ∥m,ω and | · |m,ω,
respectively. We denote the space of polynomials of degree up to a given integer l ≥ 0 and defined on ω by Pl(ω),
and, for l = −1, we conventionally assume that P−1 =

{
0
}
. We denote the unit vector that is orthogonal to ∂ω and

ointing out of ω by nω = (n1, n2)T , and the unit vector that is tangent to ∂ω by tω = (t1, t2)T and oriented such
hat t1 = −n2 and t2 = n1. To avoid ambiguity, we express ∂nφ = n · ∇φ and ∂tφ = t · ∇φ to denote the normal
nd tangential derivatives along an edge with unit normal and tangential vectors n and t , respectively. The Hessian
atrix of φ, defined as Hφ := (∂i jφ)1≤i, j≤2; The gradient of u, defined as the vector ∇u = (∂ j u) j,=1,2; We denote

he inner-product of any pair of tensors τ = (τi j )i, j=1,2 and σ = (σi j )i, j=1,2 by τ : σ =
∑2

i, j=1 τi jσi j . With the
revious notation, we signify the L2-inner products of scalar and tensor functions as

B0(φ,ψ) =

∫
ω

φ ψ, B∇(φ,ψ) =

∫
ω

∇φ · ∇ψ, AD(φ,ψ) =

∫
ω

Hφ : Hψ. (2.1)

urther, we omit the subscript ω on the left of (2.1) if ω = Ω . Finally, we bring forth that the letter C , possibly
ith a subindex, a superindex, or a modifier on top such as “C̃” or “Ĉ”, or “CΩ” denote a positive constant whose
alue can be different at any instance and that is independent of h but may depend on the other parameters of the
roblem and the discretization that we will introduce in the next sections.

emark 2.1. The spectral problems (1.1) and (1.2) can be analyzed with mixed boundary conditions. For instance,
f the plate is considered to be clamped on part ΓC , simply supported (S.S.) on part ΓS and free on ΓF :

Γ := ΓC ∪ ΓS ∪ ΓF .

e assume that ΓC ,ΓS and ΓF are finite sums of connected components and that ΓC ,ΓS are given such that
igid-body motions are avoided. Thus, in this case, the deflection of the plate, belongs to the Sobolev space:

V := {v ∈ H 2(Ω ) : v = 0 on ΓC ∪ ΓS, ∂nv = 0 on ΓC}.

In this case, the theoretical and numerical analysis presented in the next sections can be developed with the same
rguments as those applied for a clamped plate. We mention that numerical verification of test cases involving other
ypes of boundary conditions will be addressed in Section 6, where we observe optimal convergence.

.2. The continuous spectral variational formulations

Now, we present the variational formulations associated to the spectral problems (VEP) and (BEP) (cf. (1.1)
nd (1.2), respectively). We denote V := {v ∈ H 2(Ω ) : v = ∂nv = 0 on ∂Ω}. With this end, we multiply Eq. (1.1a)
y v ∈ V (respectively, (1.1b)), integrate by parts twice, and apply the boundary conditions (1.1b) (respectively,
1.2b)) to obtain the following spectral variational formulations:

roblem 1. Find (λ†, u†) ∈ R × V , with u ̸= 0 such that

AD(u, v) = λB†(u, v) ∀v ∈ V,
here we have defined the bilinear forms in (2.1). In Problem 1, we use the superscript † ∈ {0,∇} († = 0 or † = ∇)

o refer a generic definition, property or result that is valid for both the eigenvalue problems analyzed in this work
nd will follow the same symbol of variables in the forthcoming part of the article. By exploiting standard theory
n Sobolev spaces, we summarize the following results.

emma 2.1. There exist positive constants CΩ and Ĉ such that

|AD(u, v)| ≤ CΩ |u|2,Ω |v|2,Ω ∀u, v ∈ H 2(Ω ), |B0(u, v)| ≤ CΩ∥u∥0,Ω∥v∥0,Ω ∀u, v ∈ L2(Ω ),
∇ 1 D ˆ 2
|B (u, v)| ≤ CΩ |u|1,Ω |v|1,Ω ∀u, v ∈ H (Ω ), A (v, v) ≥ C |v|2,Ω ∀v ∈ V.
3



D. Adak, D. Mora and I. Velásquez Computer Methods in Applied Mechanics and Engineering 403 (2023) 115763

N
(

w

W
i

F
f

T
a

s

T

The ellipticity condition of AD(·, ·) follows from the fact that ∥Hv∥0,Ω is a norm on V which it is equivalent
to the usual one.

2.3. The analysis of the source problems

To avoid annoying repetition, we consider the following auxiliary notations, H 0
≡ L2(Ω ) and H∇

≡ H 1(Ω ).
ow, we introduce the following solution operators associated to the vibration and buckling problems of thin plates

cf. Problem 1).

S†
: H †

→ H †

f †
↦−→ S† f †

=: ũ†,
(2.2)

here ũ† is the unique solution of the following source problem

AD (̃u†, v) = B†( f †, v) ∀v ∈ V. (2.3)

e have that the linear operators S† are well defined and bounded. Notice that (λ, u†) ∈ R×V solves problem (2.3)
f and only if S†u†

= µu† with µ ̸= 0 and u†
̸= 0, in which case µ :=

1
λ

. In addition, we also have that S† is
self-adjoint with respect to the inner-product B†(·, ·). Indeed, given f, g ∈ H †,

B†( f †,S†g) = AD(S† f †,S†g†) = AD(S†g†,S† f †) = B†(g†,S† f †).

urther, we state the following results regarding the additional regularity of the solution of (2.3), and consequently,
or the eigenfunctions of S†.

heorem 2.1. Let Ω be a polygonal domain with Lipschitz’s boundary. Then for f †
∈ H †, there exists s ∈ (1/2, 1]

nd C > 0 such that ũ†
∈ H 2+s(Ω ) and the following inequality holds

∥ũ†
∥2+s,Ω ≤ C ∥ f †

∥H† . (2.4)

Therefore, because of the compact inclusion H 2+s(Ω ) ↪→ H †, S† is a compact operator. Thus, we conclude this
ection with the following spectral characterization result.

heorem 2.2. The spectrum of S† satisfies sp(S†) = {0} ∪ {µk}k∈N, where {µk}k∈N is a sequence of positive
eigenvalues which converges to 0, and the multiplicity of each eigenvalue is finite.

3. Nonconforming virtual element discretization

In this section, we will recollect C0-nonconforming virtual element method for the numerical approximation of
the eigenvalue problems presented in (1.1a)–(1.1b) and (1.2a)–(1.2b) on general polygonal meshes. Nonconforming
VEMs for biharmonic equation were first developed in the literature in Refs. [20,21]. Herein, we mainly follow the
formulation of C0-nonconforming VEM of Refs. [21]. The C0-nonconforming VEM formulation of the variational
formulation Problem 1 reads as

Problem 2. Find (λ†
h, u†

h) ∈ R × Vh , with u†
h ̸= 0 such that

AD
h (u†

h, vh) = λ
†
hB

†
h (u†

h, vh) ∀vh ∈ Vh .

In Problem 2, (λ†
h, u†

h) is discrete approximation of (λ†, u†), and AD
h (·, ·), B†

h (·, ·) are virtual element approx-
imations of AD(·, ·), B†(·, ·), respectively. In the rest of the section, we introduce some notations to present the
local and global nonconforming VEM spaces, and introduce some projectors on polynomial spaces to construct the
discrete bilinear forms.

3.1. Mesh notations and regularity

Henceforth, we will denote by K a general polygon (even nonconvex, star shaped), by hK and ∂K its diameter
and boundary, respectively. Moreover, we denote by h the length of edge e. Let {T } be a sequence of
e h h>0

4
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ecompositions of Ω into general non-overlapping simple polygons K , where h := maxK∈Th hK . We will denote
the set of the edges in Th by Eh , we decompose this set as Eh := E int

h ∪ Ebdry
h , where E int

h and Ebdry
h are the set

of interior and boundary edges, respectively. Analogously, we will denote by Eh := Eint
h ∪ E

bdry
h the set of the all

vertices in Th , where Eint
h and E

bdry
h are the set of interior and boundary vertices, respectively. Besides, we will use

the notation ne and te for a unit normal and tangential vector of an edge e ∈ Eh , respectively.
Moreover, we define the piecewise l-order polynomial space by:

Pℓ(Th) := {q ∈ L2(Ω ) : q|K ∈ Pℓ(K ) ∀K ∈ Th}.

Further, for all m ∈ N∪ {0}, we recall the usual L2(K )-projection onto the polynomial space Pm(K ) by Π m
K . Next,

for any integer number t > 0, we introduce the following broken Sobolev space

H t (Th) := {φ ∈ L2(Ω ) : φ|K ∈ H t (K ) ∀K ∈ Th}

equipped with the following broken seminorm

|φ|t,h :=

( ∑
K∈Th

|φ|
2
t,K

)1/2

. (3.1)

Upon recollecting [34], we define [[φ]] := φ+
− φ−, on each internal edge e ∈ E int

h for each function φ ∈ H 2(Th),
where φ± denotes the trace of φ|K ± , with e ⊆ ∂K +

∩ ∂K −. For a boundary edge e ∈ Ebdry
h , the operator jump is

efine as: [[φ]] := φ|e. We introduce a subspace of H 2(Th) with weak continuity, given by:

H 2,NC(Th) :=

{
φh ∈ H 2(Th) ∩ H 1

0 (Ω ) : φh continuous at internal vertices,

φh(vi ) = 0 ∀vi ∈ E
bdry
h ,

∫
e
[[∂neφh]] = 0 ∀e ∈ Eh

}
.

(3.2)

For the theoretical analysis, we suppose that Th satisfies the following assumptions:

Assumption 1 (Mesh Regularity). There exists a positive real number ρ independent of h such that for every
K ∈ Th , it holds that

A1) star-shapedness: K is star-shaped with respect to an internal ball with radius bigger than ρhK ;
A2) uniform scaling: the edge length he for all e ∈ Eh is bounded from below by ρhK , i.e., he ≥ ρhK .

Finally, we stress that we can decompose the continuous form defined in (2.1), as sum of elemental bilinear
orms, AD

K (·, ·) : H 2(K ) × H 2(K ) → R, B†
K (·, ·) : H †(K ) × H †(K ) → R, such that

AD(u, v) =

∑
K∈Th

AD
K (u, v) ∀u, v ∈ H 2(Ω ); B†(u, v) =

∑
K∈Th

B†
K (u, v) ∀u, v ∈ H †(Ω ).

.2. The local and global C0-nonconforming virtual spaces

By employing the projection operator Π m
K , we define the C0-nonconforming virtual space. For every polygon

K ∈ Th , we introduce the following local virtual space:

Ṽh(K ) :=
{
φh ∈ H 2(K ) : ∆2φh ∈ P2(K ), φh |e ∈ P2(e), ∆φh |e ∈ P0(e) ∀e ⊆ ∂K

}
,

here ∆2, and ∆ are Biharmonic and Laplace operators. Then, we introduce three set of bounded linear functional.
or a given φh ∈ Ṽh(K ), we introduce the following set of linear operators.

• (Fv)v∈EK
h

: the values of φh(vi ) for all vertex vi of the polygon K ;
• (F1

e)e∈EK
h

: the moments

1
∫
φh ∀ edge e ∈ EK

h ,⊆ ∂K .

he e

5
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• (F2
e)e∈EK

h
: the moments∫

e
∂neφh ∀ edge e ∈ EK

h ,⊆ ∂K .

or each polygon K , we introduce the following elliptic projection operator ΠD
K : Ṽh(K ) −→ P2(K ) ⊆ Ṽh(K ), as

the solution of the following local problem:

AD
K (ΠD

K wh, q2) = AD
K (wh, q2) ∀q2 ∈ P2(K ), (3.3)

(ΠD
K wh, q1)0,∂K = (wh, q1)0,∂K ∀q1 ∈ P1(K ), (3.4)

where (·, ·)0,∂K denotes scalar product on L2(∂K ). Moreover, the projection ΠD
K φh is computable from the DoFs

associated with Ṽh(K ) (the proof can be seen in [35]).

Lemma 3.1. The projection operator ΠD
K : Ṽh(K ) −→ P2(K ) is fully computable for every wh ∈ Ṽh(K ), using

only the information of the linear operators (Fv)v∈EK
h

− (F2
e)e∈EK

h
of wh ∈ Ṽh(K ).

By employing the projection operator ΠD
K , we introduce the enhanced nonconforming virtual space on each

K ∈ Th :

Vh(K ) :=

{
vh ∈ Ṽh(K ) : (vh − ΠD

K vh, q2)0,K = 0 ∀q2 ∈ P2(K )
}
. (3.5)

Based on the previous discussion, we summarize results in the following lemma.

Lemma 3.2.

• The sets of linear operators (Fv)v∈EK
h

− (F2
e)e∈EK

h
constitutes a set of DoFs for Vh(K );

• The operator ΠD
K : Vh(K ) −→ P2(K ) is computable using the dofs (Fv)v∈EK

h
− (F2

e)e∈EK
h

;
• P2(K ) ⊆ Vh(K ).

Now, for every decomposition Th of Ω into polygons K , we introduce the nonconforming global virtual space
s follows:

Vh :=
{
vh ∈ H 2,NC(Th) : vh |K ∈ Vh(K ) ∀K ∈ Th

}
, (3.6)

here the space H 2,NC(Th) is defined in (3.2). It is observed that Vh ⊆ H 2,NC(Th) ⊆ H 1
0 (Ω ) but Vh ⊈ H 2

0 (Ω ). The
ormulation of discrete bilinear form associated with B∇

K requires vector valued L2 projection operator Π 1
K [36].

or future reference, we conventionally state the computability of the L2-projection operators. Their proof can be
ound in [36], [37, Lemma 3.2].

emma 3.3.

• For each vh ∈ Vh(K ), we have that the polynomial function Π 2
Kvh is computable using only the information

of the dofs (Fv)v∈EK
h

− (F2
e)e∈EK

h
;

• For each scalar function φh ∈ Vh(K ), the linear vector polynomial Π 1
K ∇φh is computable from the dofs

(Fv)v∈EK
h

− (F2
e)e∈EK

h
associated with φh .

emark 3.1. In this article, we have considered a general shape computational domain, including a nonconvex
omain, and consequently, the eigenfunction solutions have fewer regularity [38]. The lowest order C0- noncon-
orming space is employed to approximate the eigenvalues and eigenfunctions for VEP and BEP. Further, we derive
he a priori estimates by using enriching operator which will be introduced in the forthcoming part of this article.
owever, if the exact eigenfunctions possess higher regularity, then we can generalize the convergence analysis by

ollowing similar arguments exploited in this article for any order of accuracy.

.3. Construction of the bilinear forms

In this section, we will construct the discrete version of the continuous local bilinear forms defined in (2.1).
ith this end, we exploit the projection operators introduced in the previous section. Let w , v ∈ V (K ). For each
h h h

6



D. Adak, D. Mora and I. Velásquez Computer Methods in Applied Mechanics and Engineering 403 (2023) 115763

p

w

w
f

f
s

R
(
f
t

a

P

T

P

P
P
r

R
w
t
a

olygon K , we define the local discrete bilinear forms AD
h,K ,B0

h,K ,B∇

h,K : Vh(K ) × Vh(K ) −→ R.

AD
h,K (wh, vh) := AD

K

(
ΠD

K wh,Π
D
K vh

)
+ SD

K

(
(I − ΠD

K )wh, (I − ΠD
K )vh

)
, (3.7)

B0
h,K (wh, vh) := B0

K

(
Π 2

Kwh,Π
2
Kvh

)
, (3.8)

B∇

h,K (wh, vh) :=

∫
K
Π 1

K ∇uh · Π 1
K ∇vh, (3.9)

here SD
K (·, ·), be any symmetric positive definite bilinear form to be chosen as to satisfies:

c∗AD
K (vh, vh) ≤ SD

K (vh, vh) ≤ c∗AD
K (vh, vh) ∀vh ∈ Vh(K ), with ΠD

K vh = 0, (3.10)

ith c∗ and c∗ positive constants independent of h and K . In what follows, we will consider the following definition
or the bilinear form SD

K (·, ·):

SD
K (wh, vh) := h−2

K

N K
dof∑

i=1

dofi (wh)dofi (vh) (3.11)

or all wh, vh ∈ Vh(K ), where N K
dof denotes the number of DoFs of Vh(K ) and dofi is the operator that to each

mooth enough function v associates the i th local degree of freedom dofi (v), with 1 ≤ i ≤ N K
dof.

emark 3.2. We observe that, we have taken the Young modulus and the density of the plate, both equal to 1 (cf.
1.1)–(1.2)). For more realistic cases, we have to consider a multiplicative factor σK in front the stabilizer bilinear
orm SD

K (wh, vh) to take into account the magnitude of the material parameters. For instance, σK can be taken as
he mean value of the eigenvalues of the local matrix AD

K

(
ΠD

K wh,Π
D
K vh

)
.

The following result establishes that SD
K (·, ·) satisfies the stability property (3.10). The proof follows the

rguments presented in [39,40]. We omit further details since the proof is beyond the scopes of the present paper.

roposition 3.1. The bilinear form defined in (3.11) satisfies the stability property (3.10).

The global forms AD
h ,B

†
h : Vh × Vh −→ R are defined as sum of elemental forms such as

AD
h (wh, vh) =

∑
K∈Th

AD
h,K (wh, vh); B†

h(wh, vh) =

∑
K∈Th

B†
h,K (wh, vh). (3.12)

he following result establishes the usual consistency and stability properties for the discrete local forms.

roposition 3.2. The local bilinear forms AD
h,K , B†

h,K (·, ·), on each element K satisfy

• Consistency: for all h > 0 and for all K ∈ Th , we have that

AD
h,K (vh, q2) = AD

K (vh, q2), B†
h,K (vh, q2) = B†

K (vh, q2) ∀(vh, q2) ∈ Vh(K ) × P2(K ).

• Stability and boundedness: There exist positive constants αi , i = 1, . . . , 4 independent of K , such that:

α1AD
K (vh, vh) ≤ AD

h,K (vh, vh) ≤ α2AD
K (vh, vh) ∀vh ∈ Vh(K ), (3.13)

B0
h,K (vh, vh) ≤ α3∥vh∥

2
0,K ∀vh ∈ Vh(K ), (3.14)

B∇

h,K (vh, vh) ≤ α4∥vh∥
2
1,K ∀vh ∈ Vh(K ). (3.15)

roof. The consistency property follows from the definition the bilinear forms. Then, (3.13) follows from
roposition 3.1, and (3.14) and (3.15) are consequence of the stability of the L2-projection operators Π 2

K and Π 1
K ,

espectively. □

emark 3.3. To prove Proposition 3.2, we have assumed certain regularity of the polygonal mesh in Assumption 1,
here the edge length he is comparable with the diameter of polygon K . We stress that the particular choice of

he stabilizer given in (3.11) satisfies the condition as mentioned in (3.10). However, the closed forms of stabilizers

ssociated with the biharmonic operator are not straightforward in the presence of arbitrary small edges in the

7
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iscretization, i.e., when (A2) is violated (cf. Assumption 1). Some remarkable analysis have been proposed in
his direction for C0 conforming VEM space [41,42]. The explicit forms of the stabilizers for C1 VEM and
onconforming VEM for biharmonic operators without the mesh regularity assumption, i.e., (A2) are still open
roblems in the VEM literature.

emark 3.4. In this article, we have offered C0-nonconforming virtual element schemes for both VEP and BEP
on convex and more general nonconvex domain. Further, to approximate the right hand side bilinear forms such
as (u, v)0,Ω , or (∇u,∇v)0,Ω , we have employed polynomial projection operators and considered only computable

olynomial part of the discretization. The above mentioned discretization helps to estimate the convergence of
iscrete solution operator to continuous operator in the norm of continuous space, and consequently the convergence
f eigenvalues and eigenfuctions are concluded by directly using Babuška–Osborn theory [31]. However, one can

discretize the bilinear forms such as (u, v)0,Ω , or (∇u,∇v)0,Ω , by considering polynomial and non-polynomial parts,
and their convergence analysis can be derived by exploiting Descloux–Nassif–Rappaz theory [43,44].

In order to study the discrete eigenvalue problems (cf. Problem 2), we state the following result which establishes
that | · |2,h (cf. (3.1)) is a norm in Vh . An application of Poincaré inequality and boundary condition of the space
yield the following assertion. The proof is established in [20, Lemma 5.1].

Lemma 3.4. For all vh ∈ Vh , there exists a positive constant C independent of h such that the following inequality
olds true:

∥vh∥0,Ω + |vh |1,Ω ≤ C |vh |2,h .

The following result establishes some properties for the discrete forms AD
h (·, ·), B0

h(·, ·) and B∇

h (·, ·) which will
be used to conclude the well-posedness of the discrete source problem associated with Problem 2. The proof follows
from the definition of the respective forms.

Lemma 3.5. For all wh, vh ∈ Vh , there exist positive constants C1, α̃, independent of h, such that

|AD
h (wh, vh)| ≤ C1 |wh |2,h |vh |2,h; |B0

h(wh, vh)| ≤ C1 |wh |2,h |vh |2,h; (3.16)

|B∇

h (wh, vh)| ≤ C1 |wh |2,h |vh |2,h; AD
h (vh, vh) ≥ α̃|vh |

2
2,h . (3.17)

Further, we define the discrete versions of the solution operators S† (cf. (2.3)) and associated with the discrete
pectral Problem 2 as follows:

S†
h : H †

→ Vh ⊂ H †

f †
↦−→ S†

h f †
=: ũ†

h,

here ũ†
h is the unique solution of the following source problem

AD
h (̃u†

h, vh) = B†
h( f †, vh) ∀vh ∈ Vh . (3.18)

rom Lemma 3.5 and Lax–Milgram we have that the discrete solution operator S†
h are well defined and bounded.

n fact, we assert that

|̃u†
h |2,h ≤ C∥ f †

∥H† ∀ f †
∈ H †,

here the positive constant C is independent of h. It is easy to check that (λ†
h, u†

h) ∈ R × Vh is a solution of
roblem 2 if and only if (µ†

h, u†
h) ∈ R × Vh with µ†

h :=
1
λ
†
h

is an eigenpair of S†
h . Moreover from the definition of

AD
h (·, ·) and B†

h(·, ·), we can validate that S†
h is self-adjoint.

We finish this section with the spectral characterization for operators S†
h .

Theorem 3.1. Let mh and zh be the dimensions of the discrete spaces Vh and Zh := {uh ∈ Vh : B∇

h (uh, vh) =

0 ∀vh ∈ Vh}. Then, the following results hold:

(i) The spectrum of S0
h consists of mh real and positive eigenvalues repeated according to their multiplicities.
∇
(ii) The spectrum of Sh consists of mh −zh real and positive eigenvalues repeated according to their multiplicities.

8
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. A priori error estimates for the source problems

In this subsection, we first introduce some specific theoretical tools and characterization that will be used for
heoretical estimates. Since, we are interested to derive convergence analysis of source problem (2.3) on nonconvex
omain, we will introduce Enriching operator, say, Eh from C0-nonconforming space to its C1 conforming counter
pace. Herein, we briefly define Eh and related approximation properties of Eh .

onforming virtual local space. For every polygon K ∈ Th , we introduce the following preliminary finite
imensional space [6,39]:

ṼC
h (K ) :=

{
φh ∈ H 2(K ) : ∆2φh ∈ P2(K ), φh |∂K ∈ C0(∂K ), φh |e ∈ P3(e) ∀e ⊆ ∂K ,

∇φh |∂K ∈ [C0(∂K )]2, ∂neφh |e ∈ P1(e) ∀e ⊆ ∂K
}
,

ext, for a given φh ∈ ṼC
h (K ), we introduce two sets (Fc

v)v∈EK
h

and (Fc
v,∇)v∈EK

h
of linear operators from the local

irtual space ṼC
h (K ) into R:

• (Fc
v)v∈EK

h
: the values of φh(v) for all vertex v ∈ ∂K ,

• (Fc
v,∇)v∈EK

h
: the values of hv∂ jφh(v) for all vertex v ∈ ∂K , and j = 1, 2,

here hv is a characteristic length attached to each vertex v, for instance to the maximum diameter of the elements
ith v as a vertex. Now, we consider the operator ΠD,C

K : ṼC
h (K ) −→ P2(K ) ⊆ ṼC

h (K ) associated to the conforming
pproach, which is computable using the sets Fc

v and Fc
v,∇ (for more details see [45, Lemma 2.1]). Next, for each

K ∈ Th , we introduce the conforming local enhanced virtual space as follows:

VC
h (K ) :=

{
φh ∈ ṼC

h (K ) : (φh − ΠD,C
K φh, q)0,K = 0 ∀q ∈ P2(K )

}
. (4.1)

n this space the sets Fc
v and Fc

v,∇ constitute a set of degrees of freedom.

onforming virtual global space. For every decomposition Th of Ω into polygons K , we define the conforming
irtual spaces VC

h :

VC
h :=

{
φh ∈ V : φh |K ∈ VC

h (K ) ∀K ∈ Th
}
. (4.2)

or a vertex v ∈ Eh , we denote by A(v) the union of all elements in Th , sharing the vertex v and by N (v) the
umber of elements of A(v). For any ϕh ∈ Vh , we introduce the piecewise L2-projection Π 2, as follows:

Π 2ϕh |K = Π 2
K (ϕh |K ),

here Π 2
K is the L2-projection from Vh(K ) onto P2(K ) (cf. Lemma 3.3) and Vh(K ) is the local nonconforming

irtual space defined in (3.5). For each function ϕh ∈ Vh , the function Ehϕh ∈ VC
h in the conforming counterpart

ill be constructed as follows:

Eh(ϕh)(x) =

N C
dof∑

i=1

Fc
i (Eh(ϕh))χi (x),

here the functions {χi }
NC

dof
i=1 are the set of shape basis functions associated to space VC

h and N C
dof := dim(VC

h ). More
recisely, the values of degrees of freedom for the enriching operator are determined as follows:

1. For the values at interior vertices v ∈ Eint
h , we consider:

Fc
v (Ehϕh) :=

1
N (v)

∑
K̃∈A(v)

Π 2ϕh |K̃ (v).

2. For the gradient values at interior vertices v ∈ Eint
h , we consider:

Fc
v,∇(Ehϕh) :=

1
N (v)

∑
K̃∈A(v)

hv∂ j (Π 2ϕh |K̃ )(v) ∀ j ∈ {1, 2}.

The approximation property of the operator Eh are provided in [37, Section 4.2]. Consequently, we merely recollect
he results in the following Lemma.
9
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emma 4.1.

• For all vh ∈ Vh , there exists C > 0 independent of h, such that

∥vh − Ehvh∥0,Ω + h|vh − Ehvh |1,Ω + h2
|Ehvh |2,Ω ≤ Ch2

|vh |2,h;

• Let w ∈ H 2+t (Ω ), with t ∈ [0, 1]. Then, for all vh ∈ Vh we have

AD(w, vh − Ehvh) ≤ Cht
∥w∥2+t,Ω |vh |2,h .

By employing enriching operator, we will establish an error estimate in broken H 2-norm for the solution of the
ontinuous and discrete sources problems. First, we start noticing that for all vh ∈ Vh the consistency error in the
ource problem (also called nonconformity error) is defined as follow. For any f †

∈ H †, let Nh (̃u†, ·) : Vh → R be
he functional given by

Nh (̃u†, vh) :=

∑
K∈Th

AD
K (̃u†, vh) − B†( f †, vh) ∀vh ∈ Vh, (4.3)

here ũ†
∈ H 2+s(Ω ) ∩ V is the unique solution of problem (2.3). Moreover, we have the following estimation

or the consistency error Nh (̃u†, ·) defined above. Their proof can be obtained by employing arguments as [37,
emma 4.12].

emma 4.2. Given f †
∈ H †, let ũ† be the solution of the source problem (2.3). Then, for all vh ∈ Vh , there exists

constant C > 0 independent to h, such that

Nh (̃u†, vh) ≤ Chs(∥ũ†
∥2+s,Ω + ∥ f †

∥H† )|vh |2,h,

here Nh (̃u†, ·) is the consistency error defined by the relation (4.3) and ũ†
∈ H 2+s(Ω ) ∩ V (cf. Theorem 2.1).

We have the following approximation result in the virtual space Vh (see [20,23,46]).

roposition 4.1. Assume that A1 − A2 are satisfied. Then, for each w ∈ H 2+t (Ω ), with t ∈ [0, 1], there exist
I ∈ Vh and C > 0, independent of h, such that

∥w − wI ∥ℓ,K ≤ Ch2+t−ℓ
K |w|2+t,K , ℓ = 0, 1, 2.

In what follows we will prove some preliminary results in order to establish that the operator S†
h converges to

†, when h goes to zero. First, we have the following Strang-type result.

emma 4.3. Assume the mesh assumptions A1 − A2. Given f †
∈ H † let ũ† and ũ†

h be the unique solutions
f the source problems (2.3) and (3.18), respectively. Then, for each approximation ũ†

I of ũ† in Vh and for every
pproximation ũ†

π of ũ† in P2(Th), there exists C > 0, independent of h, such that

|̃u†
− ũ†

h |2,h ≤ C
(

|̃u†
− ũ†

I |2,h + |̃u†
− ũ†

π |2,h + sup
vh∈Vh
vh ̸= 0

|B†
h( f †, vh) − B†( f †, vh)|

|vh |2,h
+ sup

vh∈Vh
vh ̸= 0

Nh (̃u†, vh)
|vh |2,h

)
.

roof. Let ũ†
I ∈ Vh be the interpolant of ũ† such that Proposition 4.1 holds true. We set δh := ũ†

h − ũ†
I ∈ Vh . Then,

|̃u†
− ũ†

h |2,h ≤ |̃u†
− ũ†

I |2,h + |δh |2,h . (4.4)

y using the coercivity property of AD
h (·, ·) (cf. Lemma 3.5) and the consistency of bilinear form AD

h,K (·, ·) (cf.
roposition 3.2), we have

α̃|δh |
2
2,h ≤ AD

h (δh, δh) = AD
h (̃u†

h, δh) − AD
h (̃u†

I , δh)

= B†
h( f †, δh) − B†( f †, δh) − Nh (̃u†, δh) −

∑
AD

h,K (̃u†
I − ũ†

π , δh) +

∑
AD

K (̃u†
− ũ†

π , δh).

K∈Th K∈Th

10



D. Adak, D. Mora and I. Velásquez Computer Methods in Applied Mechanics and Engineering 403 (2023) 115763

T

T

t

P
w

P
o

o

hen we get

|δh |2,h ≤ C
(
|̃u†

− ũ†
I |2,h + |̃u†

− ũ†
π |2,h + sup

vh∈Vh
vh ̸= 0

|B†
h( f †, vh) − B†( f †, vh)|

|vh |2,h
+ sup

vh∈Vh
vh ̸= 0

Nh(u, vh)
|vh |2,h

)
. (4.5)

hus, from (4.4) and (4.5), we conclude the proof. □

Next, we will present an important approximation result for polynomials on star-shaped domains to be used in
he Strang-type estimate (see, for instance [23,47]).

roposition 4.2. Assume that A1 − A1 are satisfied. Then, for every w ∈ H 2+t (K ), with t ∈ [0, 1], there exist
h ∈ P2(K ) and C > 0, independent of h, such that

∥w − wπ∥ℓ,K ≤ Ch2+t−ℓ
K |w|2+t,K , ℓ = 0, 1, 2.

We have the following estimation involving the continuous and discrete functionals.

roposition 4.3. Assume the assumption A1 −A2. For all f †
∈ H † there exists a positive constant C independent

f the parameter h such that the following estimates hold true:

sup
vh∈Vh
vh ̸= 0

|B0
h( f 0, vh) − B0( f 0, vh)|

|vh |2,h
≤ Ch2

∥ f 0
∥0,Ω , (4.6)

sup
vh∈Vh
vh ̸= 0

|B∇

h ( f ∇, vh) − B∇( f ∇, vh)|
|vh |2,h

≤ Ch∥ f ∇
∥1,Ω . (4.7)

Proof. The proof can be obtained from the definitions of the bilinear form B†
h(·, ·) together with consistency property

formally stated in Propositions 3.2, and 4.2. □

As a consequence, we obtain the following theorem, which provides the rate of convergence of our virtual element
scheme.

Theorem 4.1. Assume the mesh assumptions A1 − A2. Given f †
∈ H † let ũ† and ũ†

h be the unique solutions
f the source problems (2.3) and (3.18), respectively. Then, for each approximation ũ†

I of ũ† in Vh and for every
approximation ũ†

π of ũ† in P2(Th), there exists C > 0, independent of h, such that

|̃u†
− ũ†

h |2,h ≤ Chs(∥ũ†
∥2+s,Ω + ∥ f †

∥H† ) ≤ Chs
∥ f †

∥H† , (4.8)

where s ∈ (1/2, 1] is such that ũ†
∈ H 2+s(Ω ) ∩ H 2

0 (Ω ) (cf. Theorem 2.1).

Proof. The estimate (4.8) follows by combining Lemma 4.3, Propositions 4.1, 4.2, 4.3 and Lemma 4.2. □

4.1. Error estimates in L2 and H 1 norms for the source problems

In this section, we would like to derive the error estimates of source problem (2.3), in H 1 and L2 norms. The
results are based on the so-called duality argument. Moreover, we recollect one major result which will be used to
derive the error estimates for the approximation of eigenvalues and eigenfunctions. Their proof can be found in [37,
Lemma 4.11].

Lemma 4.4. For φ ∈ H 2+t (Ω ) and v ∈ H 2+t (Ω ) ∩ H 2
0 (Ω ), with t ∈ [0, 1], it holds:

AD(φ, v − vI ) ≤ C h2t
∥φ∥2+t,Ω∥v∥2+t,Ω , (4.9)

where vI is the interpolant of v in the virtual space Vh .

Now, we focus to derive primary result of this section.
11
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heorem 4.2. Assume the mesh assumptions A1 − A2. Given f †
∈ H † let ũ† and ũ†

h be the unique solutions
f the source problems (2.3) and (3.18), respectively. Then, for each approximation ũ†

I of ũ† in Vh and for every
approximation ũ†

π of ũ† in P2(Th), there exists C > 0, independent of h, such that

∥ũ†
− ũ†

h∥0,Ω + ∥ũ†
− ũ†

h∥1,Ω ≤ Ch2s(∥ũ†
∥2+s,Ω + ∥ f †

∥H† ) ≤ Ch2s
∥ f †

∥H† , (4.10)

where s ∈ (1/2, 1] is such that ũ†
∈ H 2+s(Ω ) ∩ H 2

0 (Ω ) (cf. Theorem 2.1).

Proof. In order to prove the H 1 estimate in (4.10), let ũ†
I ∈ Vh be the interpolant of ũ† such that Proposition 4.1

holds true. We set δh := (̃u†
h − ũ†

I ) ∈ Vh . Then, we write

ũ†
h − ũ†

= (̃u†
h − ũ†

I ) + (̃u†
I − ũ†) = (̃u†

I − ũ†) + (δh − Ehδh) + Ehδh .

Thus, by using the triangle inequality together Proposition 4.1, Lemma 4.1 and Theorem 4.1, we have

|̃u†
− ũ†

h |1,Ω ≤ |̃u†
− ũ†

I |1,Ω + |δh − Ehδh |1,Ω + |Ehδh |1,Ω

≤ C
(
h1+s

∥ũ†
∥2+s + h|δh |2,h + |Ehδh |1,Ω

)
≤ Ch1+s

∥ũ†
∥2+s,Ω + ∥∇Ehδh∥0,Ω

≤ Ch2s
∥ũ†

∥2+s,Ω + ∥∇Ehδh∥0,Ω .

(4.11)

In what follows, we will estimate the term ∥∇Ehδh∥0,Ω . To do that, we consider the following auxiliary problem:
find φ ∈ V , such that

AD(w, φ) =

∫
Ω

∇(Ehδh) · ∇w ∀w ∈ V, (4.12)

where the bilinear form AD(·, ·) is defined in (2.1). From Theorem 2.1, we have that φ ∈ H 2+s(Ω ) ∩ V and

∥φ∥2+s,Ω ≤ C∥∇Ehδh∥0,Ω . (4.13)

where C > 0 is a constant independent of h.
Then, taking w = Ehδh ∈ VC

h ⊂ V as test function (VC
h is lowest order C1 conforming VEM space defined

in [39]), adding and subtracting δh in problem (4.12), we obtain

∥∇Ehδh∥
2
0,Ω = AD(Ehδh, φ) = AD(Ehδh − δh, φ) + AD(δh, φ) =: T1 + T2. (4.14)

e will estimate the terms T1 and T2 in the above identity. Indeed, for the T1, we use the definition of bilinear
orm AD(·, ·), Proposition 4.1, together with second asset of Lemma 4.1, Theorem 4.1 and the triangle inequality,
o obtain

T1 = AD(Ehδh − δh, φ) ≤ Chs
|δh |2,h∥φ∥2+s,Ω ≤ Ch2s

∥ũ†
∥2+s,Ω∥φ∥2+s,Ω .

hen, from the above estimate and (4.13), we obtain

T1 ≤ Ch2s(∥ũ†
∥2+s,Ω + ∥ f †

∥H† )∥∇Ehδh∥0,Ω . (4.15)

To bound the term T2, we consider φI ∈ Vh the interpolant of φ such that Proposition 4.1 holds true. Then, rewriting
δh = (̃u†

h − ũ†) + (̃u†
− ũ†

I ), adding and subtracting φI , and using the bilinearity of form AD(·, ·), we obtain

T2 := AD(δh, φ) = AD (̃u†
− ũ†

I , φ) + AD (̃u†
h − ũ†, φ − φI ) + AD (̃u†

h − ũ†, φI )

= T a
2 + T b

2 + T c
2 .

(4.16)

ow, we will estimate each term in (4.16). Indeed, we use again the definition of bilinear form AD(·, ·) and
emma 4.4 to obtain

T a
2 ≤ Ch2s

∥φ∥2+s,Ω∥ũ†
∥2+s,Ω ≤ Ch2s

∥ũ†
∥2+s,Ω∥∇Ehδh∥0,Ω . (4.17)

or T b
2 , we use the continuity of bilinear form AD(·, ·), Proposition 4.1, Theorem 4.1 and (4.13), to get

b D † † 2s † †
T2 := A (̃uh − ũ , φ − φI ) ≤ Ch (∥ũ ∥2+s,Ω + ∥ f ∥H† )∥∇Ehδh∥0,Ω . (4.18)

12
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inally, we will bound the term T c
2 in (4.16), as follow: we use the bilinearity of form AD(·, ·), add and subtract

dequate terms, and we use the fact that AD
h (̃u†

h, φI ) = B†
h( f †, φI ) and AD (̃u†, φ) = B†( f †, φ), to get

T c
2 := AD (̃u†

h − ũ†, φI ) = AD (̃u†
h, φI ) − AD (̃u†, φI )

= (AD (̃u†
h, φI ) − AD

h (̃u†
h, φI )) + (B†

h( f †, φI ) − B†( f †, φI )) + B†( f †, φI − φ) + AD (̃u†, φ − φI ).
(4.19)

ext, from (4.17), continuity of functional B†(·, ·) and Proposition 4.1, we have

AD (̃u†, φ − φI ) + B†( f †, φI − φ) ≤ Ch2s(∥ũ†
∥2+s,Ω + ∥ f †

∥H† )∥∇Ehδh∥0,Ω . (4.20)

y using the definition of the bilinear forms B†(·, ·) and B†
h(·, ·), approximation properties of the projector Π 2

K , the
ölder and triangle inequalities together with Proposition 4.1, we have

B†
h( f †, φI ) − B†( f †, φI ) ≤ Ch2s

∥ f †
∥H†∥∇Ehδh∥0,Ω . (4.21)

he last term in (4.19) is bounded as follow: let ũ†
π , φπ be the approximations of ũ† and φ in P2(Th), such that

roposition 4.2 hold true. Then, adding and subtracting these terms and by using the consistency of bilinear form
D
h (·, ·) (cf. Proposition 3.2), we have:

AD (̃u†
h, φI ) − AD

h (̃u†
h, φI ) =

∑
K∈Th

[AD
K (̃u†

h − ũ†
π , φI − φπ ) − AD

h,K (̃u†
h − ũ†

π , φI − φπ )]

≤ Ch2s(∥ũ†
∥2+s,Ω + ∥ f †

∥H† )∥∇Ehδh∥0,Ω ,

(4.22)

here we have used the continuity of bilinear forms AD
h,K (·, ·), AD

K (·, ·) together with Propositions 4.2 and 4.1,
heorem 4.1 and estimate (4.13). Thus, from (4.20)–(4.22), we obtain

T c
2 ≤ Ch2s(∥ũ†

∥2+s,Ω + ∥ f †
∥H† )∥∇Ehδh∥0,Ω . (4.23)

hen, inserting the estimates (4.17), (4.18) and (4.23) in (4.16), we have that

T2 ≤ Ch2s(∥ũ†
∥2+s,Ω + ∥ f †

∥H† )∥∇Ehδh∥0,Ω . (4.24)

herefore, from (4.14), (4.15) and (4.24), we get

∥∇Ehδh∥0,Ω ≤ Ch2s(∥ũ†
∥2+s,Ω + ∥ f †

∥H† ). (4.25)

hus, the H 1 estimate in (4.10) follows from (4.11) and (4.25).
On the other hand, the L2 estimate in (4.10) follows from the triangle inequality, Proposition 4.1, first asset of

emma 4.1 and Theorem 4.1. In fact,

∥ũ†
− ũ†

h∥0,Ω ≤ ∥ũ†
− ũ†

I ∥0,Ω + ∥δh − Ehδh∥0,Ω + ∥Ehδh∥0,Ω

≤ Ch2+s
∥ũ†

∥2+s,Ω + Ch2(|̃u†
h − ũ†

|2,h + |̃u†
− ũ†

I |2,h) + C |Ehδh |1,Ω

≤ Ch2s(∥ũ†
∥2+s,Ω + ∥ f †

∥H† ),

here we have used norm equivalence in V and estimate (4.25). The proof is complete. □

. Spectral approximation and error estimates

In this section, we will establish convergence and error estimates of the proposed nonconforming VEM
iscretization for the plate vibration and buckling problems. With this aim, we will prove that S†

h provides a correct
pectral approximation of S† using the classical theory for compact operators (see [31]).

Next, an immediate consequence of Theorems 4.1 and 4.2 is that isolated parts of sp(S†) are approximated by
solated parts of sp(S†

h ). It means that if µ is a nonzero eigenvalue of S† with algebraic multiplicity m, hence there
xist m eigenvalues µ(1)

h , . . . , µ
(m)
h of S†

h (repeated according to their respective multiplicities) that will converge to
as h goes to zero.
In what follows, we denote by E the eigenspace of S† associated to the eigenvalue µ and by Eh the invariant

ubspace of S†
h spanned by the eigenspaces of S†

h associated to µ(1)
h , . . . , µ

(m)
h

We also recall the definition of the gap δ̂ between two closed subspaces X and Y of H †:

ˆ { }
δ(X ,Y) := max δ(X ,Y), δ(Y,X ) ,

13
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w
here

δ(X ,Y) := sup
x∈X : ∥x∥H†=1

δ(x,Y), with δ(x,Y) := inf
y∈Y

∥x − y∥H† .

We also define

γh := sup
v∈E :∥v∥H†=1

∥(S†
− S†

h )v∥H† .

The following error estimates for the approximation of eigenvalues and eigenfunctions hold true. The result can
be obtained from Theorems 7.1 and 7.3 from [31].

Theorem 5.1. There exists a strictly positive constant C such that

δ̂(E, Eh) ≤ Cγh,⏐⏐⏐µ− µ
( j)
h

⏐⏐⏐ ≤ Cγh ∀ j = 1, . . . ,m.

Moreover, employing the additional regularity of the eigenfunctions, we immediately obtain the following bound.

Theorem 5.2. There exist s > 1/2 and C > 0 independent of h such that

∥(S†
− S†

h )v∥H† ≤ Ch2s
∥v∥H† ∀v ∈ E, (5.1)

and as a consequence,

γh ≤ Ch2s . (5.2)

Proof. The inequality (5.1) is obtained repeating the proof of Theorem 4.2. Estimate (5.2) follows from the
definition of γh and (5.1). □

Remark 5.1. In the above convergence analysis, we have considered C0-nonconforming VEM methods to propose
discrete schemes and unified analysis of source problems associated with both VEP and BEP. Moreover, one can
employ fully nonconforming Morley type VEM [20] for approximating both eigenvalue problems. On the one hand,
to analyze the VEP, we can define a continuous source operator from L2(Ω ) and the corresponding discrete source
operator on L2(Ω ), and the convergence of the operator directly follows from Babuška–Osborn spectral theory [31]
of a compact operator. On the other hand, the convergence analysis of BEP is not straightforward, since we need
an additional regularity of the source function to define a suitable source operator. Thus, further research is needed
for the convergence analysis in this case.

6. Numerical results

In this section, we would like to discuss some numerical experiments to confirm the theoretical expectation for
rate of convergences of the eigenvalues. The work-ability of the proposed schemes are justified with nonconvex
and even more general type of polygonal domain with circular holes inside the domain. The domain is discretized
with different type of polygonal elements such as nonconvex, voronoi, square, and uniform polygonal elements as
shown in Fig. 1. Further, by using standard basis of virtual space, Problem 2 leads to a generalized matrix eigenvalue
problem (for BEP or VEP) of the form

Au = λhBu,

where u is the vector of components of the corresponding eigenfunction in the chosen basis. Matrix A is symmetric
and positive definite and B is symmetric and semipositive definite. Therefore, we have solved (by using MATLAB
command eigs) the following equivalent problem

Bu =
1
λh

Au.

Eventually, to compare the approximated eigenvalues of BEP, we introduce the following buckling coefficient [7],

λ̃
( j)

:=
λ

( j)
h L2

,
h π2

14
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d

Fig. 1. Domain discretized with different meshes: (a) Square, (b) nonconvex mesh, (c) regular polygon and (d) Voronoi mesh.

where L is the side-length of the plate. The eigenvalues of VEP are directly compared with the published results
in Refs. [6,7]. Moreover, to investigate the buckling coefficients and corresponding buckling modes of BEP for
different choice of stress tensors η numerically, such as

η1 :=

(
1 0
0 1

)
, η2 :=

(
1 0
0 0

)
, η3 :=

(
0 1
1 0

)
, (6.1)

we will recast the bilinear form as B∇(u, v) := (η∇u,∇v)0,Ω for all u, v ∈ V , in order to cover more general
scenarios than uniformly compressed plates (covered by our the theory). We will also consider circular domains
and mixed boundary conditions (cf. Remark 2.1) in the numerical examples. For better representation of the article,
we denote the meshes with square, nonconvex, regular polygon, and voronoi by T1

h , T2
h , T3

h , and T4
h respectively.

The refinement parameter N denotes the number of elements on each edge of the plate.

6.1. Experiment 1: Convex domain with clamped and mixed boundary conditions

In this experiment, we have considered the computational domain Ω = (0, 1) × (0, 1), and carried out vibration
and buckling problems with clamped and mixed boundary conditions. In first case, we consider η1 as stress tensor
for the buckling problem with clamped boundary condition. In second case, we have considered

η :=

(
1 −

αy
L 0

0 0

)
(6.2)

as stress tensor, and different boundary conditions on different edges, e.g., simply supported (S.S.) boundary
condition is imposed on two edges which are parallel to vertical axis, and free boundary condition is imposed on
two edges which are parallel to horizontal axis. For future references, we call this type configuration of boundary
conditions as mixed boundary conditions where different boundary conditions are applied on different parts of the
boundary. We have carried out the numerical test for vibration problem with analogous boundary conditions. In
Tables 1, and 3, we display the numerical results for VEP with clamped and mixed boundary conditions, whereas
n Tables 2, and 4, we post the results for BEP with clamped and mixed boundary conditions. The posted values
re compared with the papers [6,7], and the numerical results matches with the theoretical prediction. We have
isplayed the eigenfunctions corresponding to the first and second eigenvalues of VEP and BEP with clamped

boundary condition in Figs. 2, and 3 respectively. We have chosen α = 0, 2/3, 1, 2 for the plane stress tensor
to compute buckling modes of BEP. In Figs. 4, and 5, we have posted the eigenfunctions for VEP, and BEP
respectively.

In addition to the above test, we would like to discuss a comparison of our scheme with the C1-conforming
method as proposed in [6]. We have assessed VEP on square domain Ω = [0, 1] × [0, 1] with simply supported
boundary condition on ∂Ω . The computed eigenvalues in both methods are posted in Table 5, and associated
errors are measured with the exact solutions. Further, we denote the exact eigenvalues by λi , and approximated
eigenvalues in C1-conforming scheme and C0-nonconforming scheme are denoted by λi,c

h , and λi,nc
h , respectively,

where i ∈ {1, 2, 3, 4}. We have carried out the test with stabilized biharmonic matrix and with only polynomial part
of the mass matrix. From the proposed results, we deduce that C0-nonconforming scheme shows slightly better
results than the C1-conforming scheme for the same values of mesh-size h. However, we have employed more

0 1
information or DoFs (degrees of freedom) in C -nonconforming space than C -conforming case.

15



D. Adak, D. Mora and I. Velásquez Computer Methods in Applied Mechanics and Engineering 403 (2023) 115763
Fig. 2. Experiment 1: Eigenfunctions of VEP with clamped boundary condition on convex plate associated with lowest eigenvalues.

Fig. 3. Experiment 1: Buckling modes of BEP with clamped boundary condition associated with lowest buckling coefficients.

Table 1
Experiment 1: Lowest eigenvalues of VEP on convex plate with clamped boundary condition.

Mesh N = 32 N = 64 N = 128 Order Extrapolated [2]

λ1
h 1211.4441 1272.7503 1289.2972 1.89 1295.4071 1294.9369
λ2

h T1
h 4780.4382 5218.9363 5343.5380 1.82 5392.4860 5386.6675

λ3
h 4780.4382 5218.9363 5343.5380 1.82 5392.4860 5386.6675
λ4

h 10 213.8381 11 284.8991 11 600.3079 1.76 11 733.0268 11 710.9076

λ1
h 1208.8418 1271.9642 1288.2973 1.95 1294.0034 1294.9369
λ2

h T2
h 4753.9031 5210.6824 5339.5380 1.83 5389.6992 5386.6675

λ3
h 4783.1465 5219.5120 5339.5380 1.86 5385.2997 5386.6675
λ4

h 10 142.2229 11 261.8057 11 580.3079 1.81 11 707.9368 11 710.9076

λ1
h 1178.5009 1262.1061 1284.5102 1.90 1292.7086 1294.9369

λ2
h T3

h 4588.1160 5151.6678 5315.3801 1.78 5382.9047 5386.6675

λ3
h 4610.4710 5159.0443 5320.3791 1.77 5386.9625 5386.6675
λ4

h 9519.2784 11 030.3153 11 500.1013 1.69 11 710.0237 11 710.9076

λ1
h 1192.1119 1266.5486 1287.5261 1.83 1295.7067 1294.9369
λ2

h T4
h 4665.0228 5181.7519 5333.3904 1.77 5396.2056 5386.6675

λ3
h 4697.4876 5181.7324 5333.8086 1.75 5395.3747 5386.6675
λ4

h 9725.1085 11 108.3919 11 550.9003 1.64 11 760.9372 11 710.9076
16
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Table 2
Experiment 1: Lowest non dimensional buckling coefficients of BEP with clamped boundary condition.

Mesh N = 32 N = 64 N = 128 Order Extrapolated [7]

λ̂1
h 5.1985 5.2752 5.2962 1.86 5.3043 5.3038
λ̂2

h T4
h 8.9752 9.2444 9.3111 2.01 9.3332 9.3350

λ̂3
h 8.9924 9.2456 9.3113 1.95 9.3342 9.3347
λ̂4

h 12.3110 12.8097 12.9433 1.90 12.9922 12.9907

λ̂1
h 5.2543 5.2914 5.3006 2.01 5.3036 5.3038
λ̂2

h T1
h 9.0948 9.2769 9.3199 2.08 9.3333 9.3350

λ̂3
h 9.0948 9.2769 9.3199 2.08 9.3333 9.3347
λ̂4

h 12.6589 12.9115 12.9708 2.09 12.9891 12.9907

λ̂1
h 5.2483 5.2898 5.3012 1.87 5.3054 5.3038
λ̂2

h T2
h 9.0853 9.2746 9.3189 2.10 9.3323 9.3350

λ̂3
h 9.0872 9.2750 9.3189 2.10 9.3323 9.3347
λ̂4

h 12.6158 12.9005 12.9608 2.24 12.9769 12.9907

λ̂1
h 5.1762 5.2691 5.2932 1.95 5.3016 5.3038

λ̂2
h T3

h 8.8966 9.2215 9.2931 2.18 9.3134 9.3350

λ̂3
h 8.9291 9.2289 9.2932 2.22 9.3108 9.3347
λ̂4

h 12.1755 12.7730 12.9191 2.03 12.9666 12.9907

Table 3
Experiment 1: Lowest eigenvalues of VEP on convex plate with mixed boundary condition.

Mesh N = 32 N = 64 N = 128 Order Extrapolated

λ1
h 93.2060 94.0167 94.2270 1.95 94.3001
λ2

h T1
h 270.0535 271.4648 271.8102 2.03 271.9223

λ3
h 1362.1197 1376.9642 1380.6514 2.01 1381.8681
λ4

h 1462.1930 1513.1605 1525.8210 2.01 1529.9980

λ1
h 93.28864 94.0379 94.2273 1.98 94.2919
λ2

h T2
h 269.9777 271.4466 271.8191 1.98 271.9455

λ3
h 1359.4812 1376.2944 1380.6247 1.96 1382.1167
λ4

h 1466.2685 1514.2933 1526.8184 1.94 1531.2271

λ1
h 93.1347 93.9897 94.2100 1.96 94.2859

λ2
h T3

h 267.6528 270.8241 271.7123 2.01 271.8715

λ3
h 1336.5547 1370.1006 1380.1098 2.01 1380.6005
λ4

h 1456.8160 1511.1680 1521.7532 1.96 1529.9811

λ1
h 91.7032 93.3979 93.9815 1.54 94.2864
λ2

h T4
h 257.7756 267.2632 270.2094 1.69 271.5214

λ3
h 1300.4466 1356.7263 1373.3834 1.76 1380.3328
λ4

h 1436.4495 1502.6499 1521.8618 1.79 1529.6541

6.2. Experiment 2: Circular domain with clamped boundary condition

In this example, we have studied VEP and BEP on a circular disk with clamped boundary condition. The
computational domain is considered as Ω := {(x, y) ∈ R2

: (x)2
+ (y)2 < 0.5}. We approximate the eigenvalues

or BEP with the stress tensor η1, and the approximated eigenvalues are posted in Table 7. In Table 6, we have
osted the results for VEP. In Figs. 6, and 7, we have posted the eigenfunctions for VEB and BEP respectively. To
ompute buckling coefficients, we have set L = 1. In this numerical test, a variational crime arises by approximating
he curved domain with a polygonal one. However, we observe from the results reported in Tables 7 and 6 that the

rder of convergence for the two methods is quadratic.
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Table 4
Experiment 1: Lowest non dimensional buckling coefficients of BEP with mixed boundary condition with α = 2/3.

Mesh N = 32 N = 64 N = 128 Order Extrapolated [7]

λ̂1
h 1.3872 1.3899 1.3906 1.97 1.3908 1.4496
λ̂2

h T1
h 4.6914 4.7051 4.7084 2.08 4.7094

λ̂3
h 5.1285 5.1620 5.1706 1.97 5.1735
λ̂4

h 10.1016 10.1570 10.1715 1.92 10.1767

λ̂1
h 1.3873 1.3899 1.3905 1.99 1.3908 1.4496
λ̂2

h T2
h 4.6863 4.7038 4.7082 1.97 4.7098

λ̂3
h 5.1292 5.1621 5.1708 1.97 5.1735
λ̂4

h 10.0920 10.1543 10.1704 1.96 10.1760

λ̂4
h 1.3849 1.3892 1.3904 1.90 1.3908 1.4496

λ̂4
h T3

h 4.6427 4.6920 4.7044 1.99 4.7085
λ̂4

h 5.0919 5.1513 5.1661 2.01 5.1710
λ̂4

h 9.9395 10.1129 10.1592 1.90 10.1762

λ̂4
h 1.3690 1.3844 1.3885 1.90 1.3900 1.4496
λ̂4

h T4
h 4.4925 4.6330 4.6809 1.55 4.7058

λ̂4
h 5.0371 5.1495 5.1663 2.75 5.1691
λ̂4

h 9.7098 10.0076 10.1123 1.51 10.1688

Fig. 4. Experiment 1: First and second eigenfunctions of VEP on convex plate with mixed boundary condition; right most panel shows the
first buckling mode of BEP with mixed boundary condition for α = 2.

Fig. 5. Experiment 1: First buckling modes of BEP with mixed boundary condition for different values of α, such as, α = 0, 2/3, 1
espectively.
18
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Table 5
Experiment 1: Comparison between approximations of lowest eigenvalues of VEP on unit square plate with
simply supported boundary conditions computed with C0-nonconforming method, and C1-conforming method.

Mesh λ1 λ
1,c
h |λ1

− λ
1,c
h | λ

1,nc
h |λ1 − λ

1,nc
h |

N = 16 389.636364 391.240119 1.603755 388.451634 1.184730
N = 32 T1

h 389.636364 390.018435 0.382071 389.335995 0.300368
N = 64 389.636364 389.730660 0.094296 389.561007 0.075364
N = 128 389.636364 389.659857 0.023493 389.617497 0.018867

λ2 λ
2,c
h |λ2 − λ

2,c
h | λ

2,nc
h |λ2 − λ

2,nc
h |

N = 16 2435.227275 2419.499820 15.727455 2433.991981 1.235294
N = 32 T1

h 2435.227275 2430.218421 5.008854 2434.803281 0.423994
N = 64 2435.227275 2433.902424 1.324851 2435.114019 0.113256
N = 128 2435.227275 2434.891424 0.335851 2435.198496 0.028779

λ3 λ
3,c
h |λ3 − λ

3,c
h | λ

3,nc
h |λ3 − λ

3,nc
h |

N = 16 2435.227275 2419.499827 15.727448 2433.991981 1.235294
N = 32 T1

h 2435.227275 2430.218421 5.008854 2434.803281 0.423994
N = 64 2435.227275 2433.902424 1.324851 2435.114019 0.113256
N = 128 2435.227275 2434.891424 0.335850 2435.198496 0.028779

λ4 λ
4,c
h |λ4 − λ

4,c
h | λ

4,nc
h |λ4 − λ

4,nc
h |

N = 16 6234.181826 6354.018452 119.836626 6162.519753 71.662073
N = 32 T1

h 6234.181826 6259.845048 25.663222 6215.226149 18.955676
N = 64 6234.181826 6240.295102 6.113276 6229.375927 4.805898
N = 128 6234.181826 6235.690579 1.508753 6232.976122 1.205703

Table 6
Experiment 2: Eigenvalues of VEP on circular plate with clamped boundary condition.

Mesh N = 64 N = 128 N = 256 Order Extrapolated

λ1
h 1643.5555 1663.1962 1668.3615 1.96 1669.9927
λ2

h T4
h 7004.5797 7174.6345 7219.8921 1.94 7234.5249

λ3
h 7019.5149 7177.2025 7219.4048 1.93 7233.2205
λ4

h 18 549.5953 19 225.9687 194 096.1017 1.91 19 470.8582

Table 7
Experiment 2: Eigenvalues of BEP on circular disk with clamped boundary condition.

Mesh N = 64 N = 128 N = 256 Order Extrapolated [7]

λ̂1
h 5.9355 5.9468 5.9498 1.95 5.9507 5.9506
λ̂2

h T4
h 10.6156 10.6711 10.6853 2.00 10.6896 10.6895

λ̂3
h 10.6266 10.6729 10.6852 1.95 10.6891 10.6891
λ̂4

h 16.3145 16.4518 16.4874 1.98 16.4984 16.4983

6.3. Experiment 3: Non simply connected domain with clamped-free, and S.S.-free boundary conditions

In this experiment, we have considered a complex non simply connected domain Ω := (0, 1)×(0, 1)\[1/4, 3/4]×
[1/4, 3/4] which is discretized with voronoi mesh. We have investigated the characteristic of the plate for VEP,
and BEP with different boundary conditions. Further, we have experienced with two non-identical stress tensors
which are applied on the plate for BEP, e.g., (1) forces are applied from all outside boundary of the plate (η1) and
2) forces are applied on the outside boundary along the tangential direction (η3) (for further detail, please see [7,
igure 3]). We have used the notations such as “clamped-free”, or “S.S.-free” to signify that in the corresponding
xperiments, we have employed clamped or S.S. boundary condition on outside boundary of the plate and free
oundary condition on inside boundary of the plate. In Table 8, we have posted computed eigenvalues for VEP with
lamped-free and S.S.-free boundary conditions. In Table 9, we have displayed the computed buckling coefficients
19
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Fig. 6. Experiment 2: First and second eigenfunctions of VEP on circular plate with clamped boundary condition.

Fig. 7. Experiment 2: First and second buckling modes of BEP on circular disk with clamped boundary condition.

Table 8
Experiment 3: First eigenvalue of VEP with clamped-free and S.S.-free boundary conditions.

B.C. NP = 256 NP = 1024 NP = 4096

Clamped-free 3149.4529 3951.5761 4230.1721
S.S.-free 525.3662 559.5392 572.5411

Table 9
Experiment 3: First buckling coefficient of BEP with clamped-free and S.S.-free boundary conditions for different
stress tensors η1, and η3.

B.C. Stress tensor NP = 256 NP = 1024 NP = 4096

Clamped-free η1 4.7356 4.9539 5.0559
S.S.-free η1 1.0080 1.0575 1.0771

Clamped-free η3 13.7099 19.0897 22.5696
S.S.-free η3 6.5091 8.3972 9.3331

for BEP with clamped-free and S.S.-free boundary conditions. In Fig. 8, we have displayed the first eigenfunctions
of VEP corresponding to clamped-free and S.S.-free boundary conditions. In Fig. 9, we have posted first buckling

odes of BEP corresponding to clamped-free boundary condition and for different stress tensors η1, and η3. In
Fig. 10, we have shown first buckling modes with S.S.-free boundary conditions for different stress tensors such as
η1, and η3. The refinement parameter NP denotes the number of elements contained in the plate.

.4. Experiment 4: Circular domain with multiple holes

In this experiment, we have carried out a numerical test on a circular plate with multiples holes where clamped
nd S.S. boundary conditions are applied on outside boundary and free boundary condition is imposed on internal
20
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Fig. 8. Experiment 3: Left panel displays first eigenfunction of VEP with clamped-free boundary condition and right panel displays first
eigenfunction of VEP with S.S.-free boundary conditions.

Fig. 9. Experiment 3: Left panel displays the first buckling mode of BEP with stress tensor η1, and with clamped-free boundary condition;
ight panel shows the first buckling mode of BEP with stress tensor η3 and with clamped-free boundary condition.

Fig. 10. Experiment 3: Left panel shows the first buckling mode of BEP with S.S.-free boundary condition for stress tensor η1; right panel
displays the first buckling mode of BEP with S.S.-free boundary condition and with stress tensor η3.

boundary. More precisely, we have considered Ω := ΩC\
(
Ω1 ∪ · · · ∪Ω4

)
, where ΩC := {(x, y) ∈ R2

: x2
+ y2 < 1}

and

Ω1 := {(x, y) ∈ R2
: (x − 0.4)2

+ (y − 0.4)2
≤ 0.04};

Ω2 := {(x, y) ∈ R2
: (x + 0.4)2

+ (y − 0.4)2
≤ 0.04};

Ω3 := {(x, y) ∈ R2
: (x + 0.4)2

+ (y + 0.4)2
≤ 0.04};

Ω4 := {(x, y) ∈ R2
: (x − 0.4)2

+ (y + 0.4)2
≤ 0.04}.
21
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Table 10
Experiment 4: First eigenvalue of VEP with clamped-free boundary condition; First buckling coefficient of BEP
with clamped-free boundary condition for stress tensor η1.

B.C. Model problem NP = 1024 NP = 2048 NP = 4096

Clamped-free VEP 68.5525 70.8851 72.2133
Clamped-free BEP 2.6980 2.7353 2.7559

Fig. 11. Experiment 4: Eigenfunctions of VEP on circular plate consists of multiples holes with clamped-free boundary condition.

Fig. 12. Experiment 4: Buckling modes of BEP on circular disk consists of multiple holes with clamped-free boundary condition.

We have considered stress tensor as η1 for BEP. Numerical solution of eigenfunctions corresponding to VEP and
BEP are posted in Figs. 11, and 12, respectively. Eigenvalues corresponding to VEP and BEP are posted in Table 10.
To compute buckling coefficients, we have set L = 2.

. Conclusion

We considered C0-nonconforming VEM approximation of vibration and buckling eigenvalue problems. To
haracterize and analyze the spectrum of discrete problems, we introduced source problems connected with the
onsidered model problems. Further, we introduced enriching operator to analysis and derive convergence theory
ver more general nonconvex domain. By exploiting enriching operator, we proved the convergence of the solution
perator and concluded the convergence estimates of spectrum by directly applying Babuška–Osborn theory. Even

though the theory is developed by considering clamped boundary condition of the model problem, the adjoined
remark covered more general model problems including mixed boundary conditions. An extensive numerical
experiments are performed to verify the theory. A numerical approximation of transmission eigenvalue problems
by using nonconforming VEM would be a further field of interest.
22
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