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a b s t r a c t

In this work, we propose and analyze a Morley-type virtual element method to approxi-
mate the Stommel–Munk model in stream-function form. The discretization is based on
the fully nonconforming virtual element approach presented in Antonietti et al., (2018)
and Zhao et al., (2018). The analysis restricts to simply connected polygonal domains,
not necessarily convex. Under standard assumptions on the computational domain we
derive some inverse estimates, norm equivalence and approximation properties for an
enriching operator Eh defined from the nonconforming space into its H2-conforming
counterpart. With the help of these tools we prove optimal error estimates for the
stream-function in broken H2-, H1- and L2-norms under minimal regularity condition
on the weak solution. Employing postprocessing formulas and adequate polynomial
projections we compute from the discrete stream-function further fields of interest, such
as: the velocity and vorticity. Moreover, for these postprocessed variables we establish
error estimates. Finally, we report practical numerical experiments on different families
of polygonal meshes.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The Stommel–Munk model in stream-function form is a linear fourth-order partial differential equation given by:

ϵM∆
2ψ − ϵS∆ψ − ∂xψ = f in Ω, (1.1)

ith the boundary conditions:

ψ = ∂nψ = 0 on ∂Ω, (1.2)

here Ω ⊂ R2 is a simply connected domain with polygonal boundary ∂Ω , ∂n denotes the normal derivative, ψ is the
tream-function of the horizontal velocity field u and f is the wind forcing term. In the model, the parameters ϵM and ϵS
re the non-dimensional scale Munk and Stommel numbers, respectively, which are defined by:

ϵM =
A
βL3

and ϵS =
γ

βL
,
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where A is the eddy viscosity parametrization, L is the characteristic length scale, β is the coefficient multiplying the
-coordinate in the β-plane approximation and γ is the coefficient of the linear drag (or the Rayleigh friction), as might
e generated by a bottom Ekman layer (for further details, see for instance [1–4]).
The Stommel–Munk model can be seen as a simplification of the Quasi-Geostrophic equations of the ocean (QGE) [4–6],

oth models are characterized by the presence of the biharmonic operator ∆2ψ , the rotational term ∂xψ , the source term
and they have the same boundary conditions (1.2), but the difference between these models lies in the presence of the
onlinear Jacobian operator in the QGE, whereas the linear Stommel–Munk model instead contains the Laplacian operator
ψ . Despite the simplifications, the Stommel–Munk model turns out to be adequate to understand the large scale wind-
riven ocean circulation at mid-latitudes due to the model preserves principal features of these currents (the wind forcing
nd the effects of rotation). The above fact converts the Stommel–Munk model in a standard problem in the geophysical
luid dynamics literature (see for instance [1,7,8]), for which different finite element discretizations have been studied,
or instance, using the stream function-vorticity formulation (see [2,3,9]) and stream-function form. In particular, for the
ast formulation in [10] a B-spline based finite element discretization is introduced and error analysis for this scheme is
eveloped in [11]. In [5] a discrete variational formulation based in C0-discontinuous Galerkin method is provided and
rror estimate for the scheme is performed. In the present contribution, we develop and analyze a nonconforming Morley-
ype virtual element scheme to approximate the Stommel–Munk model formulated in terms of the stream-function. This
ormulation have outstanding characteristics, such as: there is only one scalar unknown in the system, the streamlines
s one of the most useful tools in flow visualization. Moreover, in this work we propose to obtain two variables of
reat interest in oceanic fluid dynamics: the velocity and vorticity fields, from the discrete stream-function by using
ostprocessing formulas.
The development of adequate numerical schemes for discretizing PDEs on general polytopal meshes have undergone

n intensive research in the past years. Different approaches have been proposed (see for instance [12] and the references
herein) and among them we can find the Virtual Element Method (VEM), which since its introduction in the pioneering
ork [13] it has enjoyed a broad success in numerical modeling of scientific and engineering applications due to its elegant
onstruction and promising results. A wide variety of problems have been addressed using the conforming VEM approach;
ee for instance [14–19], where second- and fourth-order problems have been analyzed. Moreover, in fluid mechanic the
odels studied, include: Stokes, Brinkman, Navier–Stokes flows and QGE; see for instance [20–27], where primal and
ixed formulations have been considered.
On the other hand, the nonconforming VEM approach, also has presented a growing interest recently. Different schemes

or several problems have been developed, for instance, second-order elliptic and fluid mechanic problems have been
tudied in [28–34]. Moreover, for fourth-order equations in [35] a H2-nonconforming VEM for plate bending problems is
nalyzed, which the numerical solution turns to be C0-continuous. Subsequently, in [36] a fully nonconforming VEM for
iharmonic problems is developed. In this space the approximated solution does not require the global C0-regularity.
esides, in [37] the authors, presented a VEM also for plate bending problems using the same degrees of freedom
onsidered in [36]. However, the construction of the local virtual space have a different approach. The above fully
onconforming VEMs, in the lowest-order case (k = 2) can be seen as the extension of the Morley finite element [38] to
olygonal meshes. For further nonconforming VEM involving fourth-order problems, see the Refs. [39–44].
In the present work, we propose and analyze a nonconforming Morley-type virtual element discretization for the

tommel–Munk model (cf. (1.1)–(1.2)) with applications in large scale wind-driven oceanic circulation. We consider an
nhanced nonconforming virtual space based on the approach presented in [42] (see also [15,36,37]) to approximate the
tream-function variable. This virtual element is characterized by not requiring any global C0-regularity for the discrete
olution and can be taken as a generalization of the classical Morley element to general polygonal meshes. Employing
uitable projections operators, which are computable using only the degrees of freedom we construct the respective
iscrete bilinear forms and discrete load term. Then, we write a discrete virtual formulation and we prove its well-
osedness by using the Lax–Milgram Theorem. We introduce an enriching operator from the enhanced nonconforming
irtual space into its H2-conforming counterpart (see [14]). For the enhanced H2-conforming virtual space we recall
ts construction and we derive inverse inequalities and an equivalence between L2- and ℓ2-norms, which are key tools
o establish some approximation properties involving the enriching operator, the bilinear form associated to the inner
roduct H2 and the consistency error. Then, with the help of these results we prove optimal error estimates for the
tream-function in broken H2-, H1- and L2-norms under the minimal regularity of the weak solution (cf. Theorem 2.2).
oreover, we propose to compute further variables of interest, such as: the velocity field and the fluid vorticity by a
imple postprocess of the discrete VEM stream-function and using suitable projections, which are computable from the
egrees of freedom. Finally, we point out that, the present contribution is a good stepping stones for the nonlinear one-
nd two-layers QGE (see [4,6,27,45]).
The remaining part of the manuscript is organized as follows: In Section 2 we introduce some notations that will

e used throughout the paper and we write a weak formulation for the system (1.1)–(1.2). In Section 3 we introduce
he fully nonconforming virtual element scheme of the weak formulation. In Section 4 we present some preliminary
esults including the construction of an enriching operator from the enhanced nonconforming virtual space into its
2-conforming counterpart. Besides, we derive useful tools to establish the optimal error estimate in broken H2-norm
p to the regularity of the weak solution. Moreover, we obtain optimal error estimates in broken H1- and L2-norms by
sing duality arguments and under the same regularity of the continuous solution. In Section 5 we compute the velocity
2
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field and fluid vorticity by a simple postprocess of the discrete VEM stream-function. Finally, in Section 6 we report some
numerical experiments exhibiting the behavior of our virtual scheme and confirming the our theoretical results.

The major contribution of the article can be summarized as follows:

• In this article, we extend the fully nonconforming virtual element approach [36,37] (see also [42]) to solve the
fourth order Stommel–Munk model on polygonal meshes and we establish error estimates in broken H2-, H1- and
L2-norms under the minimal regularity by introducing enriching operator as mentioned in Section 4.2. Furthermore,
the error estimations in broken L2- and H1-norms have been derived assuming the source term f belongs to L2(Ω).
Moreover, we have proposed novel strategies to compute the velocity and vorticity fields as a postprocess of the
discrete stream-function using suitable polynomial projections.

2. The continuous formulation

2.1. Notations

From now on, we will follow the usual notation for Sobolev spaces, seminorms and norms [46]. We will denote a
simply connected polygonal Lipschitz bounded domain of R2 by Ω and n = (ni)1≤i≤2 is the outward unit normal vector
to the boundary ∂Ω , while the vector t = (ti)i=1,2 is the unit tangent to ∂Ω oriented such that t1 = −n2, t2 = n1. In
ddition, for any vector field v = (vi)i=1,2 and any scalar function ϕ, we define the differential operators:

rotv := ∂1v2 − ∂2v1, ∇ϕ :=

(
∂1ϕ

∂2ϕ

)
and curl ϕ :=

(
∂2ϕ

−∂1ϕ

)
.

oreover, D2ϕ := (∂ijϕ)i,j=1,2 denotes the Hessian matrix of ϕ.
In addition, in this work, c and C , with or without superscripts and subscripts, tildes or hats, will represent a strictly

ositive constant independent of the mesh parameter h, whose value can change in different occurrences.

.2. Variational problem

Let V := {ϕ ∈ H2(Ω) : ϕ = ∂nϕ = 0 on ∂Ω}. Then, we have that a variational formulation of problem (1.1)–(1.2) is
iven as follows: seek ψ ∈ V , such that

A(ψ, φ) = F (φ) ∀φ ∈ V, (2.1)

here

A(ϕ, φ) := ϵMAD(ϕ, φ) + ϵSA∇ (ϕ, φ) − Askew(ϕ, φ) ∀ϕ, φ ∈ V, (2.2)

nd the forms AD(·, ·), A∇ (·, ·), Askew(·, ·) and F (·) are defined by:

AD : V × V −→ R, AD(ϕ, φ) :=

∫
Ω

D2ϕ : D2φ ∀ϕ, φ ∈ V, (2.3)

A∇ : V × V −→ R, A∇ (ϕ, φ) :=

∫
Ω

∇ϕ · ∇φ ∀ϕ, φ ∈ V, (2.4)

Askew : V × V −→ R, Askew(ϕ, φ) :=
1
2

∫
Ω

∂xϕφ −
1
2

∫
Ω

∂xφ ϕ ∀ϕ, φ ∈ V, (2.5)

F : V −→ R, F (φ) :=

∫
Ω

f φ ∀φ ∈ V. (2.6)

emark 2.1. We recall that the classical variational formulation of problem (1.1)–(1.2) is given by: seek ψ ∈ V , such that

ϵMAD(ψ, φ) + ϵSA∇ (ψ, φ) − A0(ψ, φ) = F (φ) ∀φ ∈ V,

where

A0(ψ, φ) :=

∫
Ω

∂xψ φ.

We observe that the bilinear form A0(·, ·) is equal to the skew-symmetric form Askew(·, ·) defined in (2.5). However, their
iscrete versions will lead to different bilinear forms, in general. Therefore, we point out that, our virtual method will be
ased on the weak formulation (2.1), keeping the skew-symmetric property for the bilinear form Askew(·, ·), which allows
aking the analysis of the scheme in a straightforward way.

We endow the space V with the norm ∥ϕ∥V := (AD(ϕ, ϕ))1/2 ∀ϕ ∈ V , then the forms defined in (2.3)–(2.6) are
ontinuous. More precisely, in the following lemma we summarize some properties for the forms defined in (2.2) and
2.6), which will be used to establish the well-posedness of problem (2.1).
3
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Lemma 2.1. For all ϕ, φ ∈ V , there exists a positive constants CA, such that the forms A(·, ·) and F (·), defined in (2.2) and
(2.6), respectively, satisfy the following properties:

• |A(ϕ, φ)| ≤ CA∥ϕ∥V∥φ∥V ; • A(φ, φ) ≥ ϵM ∥φ∥
2
V ; • |F (φ)| ≤ ∥F∥−2,Ω∥φ∥V .

Theorem 2.1. There exists a unique ψ ∈ V solution to problem (2.1), which satisfies the following continuous dependence on
the data

∥ψ∥V ≤ C∥F∥−2,Ω ,

where C is a positive constant.

Proof. It is an immediate consequence of Lemma 2.1 and the Lax–Milgram Theorem. □

Now, we will state an additional regularity result for the solution of problem (2.1).

Theorem 2.2. Let ψ ∈ V be the unique solution of problem (2.1). If F ∈ H−1(Ω), then there exist s ∈ (1/2, 1] and Creg > 0
such that ψ ∈ H2+s(Ω) and

∥ψ∥2+s,Ω ≤ Creg∥F∥−1,Ω .

Proof. The proof follows from the classical regularity result for the biharmonic problem with homogeneous Dirichlet
boundary conditions (see for instance [47]). □

3. Nonconforming virtual element discretization

In this section we will introduce a Morley-type VEM for the numerical approximation of problem (2.1) on general
polygonal meshes, which is based on the fully nonconforming virtual element approach [36,37,42]. First, we introduce
some notations to present the local and global nonconforming virtual space. Successively, we introduce some projectors on
polynomial spaces to construct the discrete bilinear forms and discrete functional. Finally, we write the discrete problem
and we establish its well-posedness by using the Lax–Milgram Theorem.

3.1. Notations and basic setting

Henceforth, we will denote by K a general polygon, by hK and ∂K its diameter and boundary, respectively. Moreover,
we will denote by NK the number of vertices of K . Let {Th}h>0 be a sequence of decompositions of Ω into general non-
overlapping simple polygons K , where h := maxK∈Th hK . We will denote the set of the edges in Th by Eh, we decompose
this set as Eh := E int

h ∪ E
bdry
h , where E int

h and E
bdry
h are the set of interior and boundary edges, respectively. Analogously,

we will denote by Vh := V int
h ∪ V

bdry
h the set of the all vertices in Th, where V int

h and V
bdry
h are the set of interior and

boundary vertices, respectively.
Additionally, for each K ∈ Th, we denote by nK its unit outward normal vector and by tK its tangential vector along

the boundary ∂K . Besides, we will use the notation ne and te for a unit normal and tangential vector of an edge e ∈ Eh,
respectively.

For any subset D ⊂ R2 and each integer ℓ ≥ 0 we denote by Pℓ(D) the space of polynomials of degree up to ℓ defined
on D. Moreover, we define the piecewise ℓ-order polynomial space by:

Pℓ(Th) := {q ∈ L2(Ω) : q|K ∈ Pℓ(K ) ∀K ∈ Th}.

Next, for any integer number t > 0, we introduce the following broken Sobolev space

H t (Th) := {φ ∈ L2(Ω) : φ|K ∈ H t (K ) ∀K ∈ Th}

endowed with the following broken seminorm

|φ|t,h :=
( ∑

K∈Th

|φ|
2
t,K

)1/2
. (3.1)

Now, we will define the jump operator denoted by [[·]], as follow: for each function φ ∈ H2(Th) and for an internal edge
e ∈ E int

h , we define [[φ]] := φ+
− φ−, where φ± denotes the trace of φ|K± , with e ⊆ ∂K+

∩ ∂K−. For a boundary edge
e ∈ E

bdry
h , the operator jump is define as: [[φ]] := φ|e.

We introduce a subspace of H2(Th) with certain continuity, given by:

H2,NC(Th) :=

{
φh ∈ H2(Th) : φh continuous at internal vertices,

φh(vi) = 0 ∀vi ∈ V
bdry
h ,

∫
[[∂neφh]] = 0 ∀e ∈ Eh

}
.

(3.2)
e

4
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For the theoretical analysis, we suppose that Th satisfies the following assumptions: there exists a real number ρ > 0
such that, every K ∈ Th, we have

A1 : K is star-shaped with respect to every point of a ball of radius ≥ ρhK ;
A2 : the ratio between the shortest edge and the diameter hK of K is larger than ρ.

We decompose the continuous forms defined in (2.2)–(2.5) as follows:

AD(ϕ, φ) =

∑
K∈Th

AK
D(ϕ, φ) :=

∑
K∈Th

∫
K
D2ϕ : D2φ ∀ϕ, φ ∈ V,

A∇ (ϕ, φ) =

∑
K∈Th

AK
∇
(ϕ, φ) :=

∑
K∈Th

∫
K

∇ϕ · ∇φ ∀ϕ, φ ∈ V,

Askew(ϕ, φ) =

∑
K∈Th

AK
skew(ϕ, φ) :=

∑
K∈Th

1
2

∫
K
∂xϕ φ −

1
2

∫
K
∂xφ ϕ ∀ϕ, φ ∈ V.

lso, we split

A(ϕ, φ) =

∑
K∈Th

AK (ϕ, φ) :=

∑
K∈Th

(ϵMAK
D(ϕ, φ) + ϵS AK

∇
(ϕ, φ) − AK

skew(ϕ, φ)) ∀ϕ, φ ∈ V.

.2. Local and global nonconforming virtual element spaces

For every polygon K ∈ Th, we introduce the following preliminary local virtual space (for further details see [42,
ection 3.4] and [15,36,37]):

Ṽh(K ) :=
{
φh ∈ H2(K ) : ∆2φh ∈ P2(K ), φh|e ∈ P2(e), ∆φh|e ∈ P0(e) ∀e ⊆ ∂K

}
.

Next, for a given φh ∈ Ṽh(K ), we introduce the following set of linear operators (which will be degrees of freedom
fter of the enhancement technique):

• D1: the values of φh(vi) for all vertex vi of the polygon K ;
• D2: the moments∫

e
∂neφh ∀ edge e ⊆ ∂K .

For each polygon K , we define the following projector

ΠD
K : Ṽh(K ) −→ P2(K ) ⊆ Ṽh(K ),

φh ↦−→ ΠD
K φh,

here ΠD
K φh is the solution of the local problems:

AK
D(Π

D
K φh, q) = AK

D(φh, q) ∀q ∈ P2(K ),

Π̂D
K φh = φ̂h

∫
∂K

∇ΠD
K φh =

∫
∂K

∇φh,

nd the operator (̂·) is defined as follows:

ϕ̂h :=
1
NK

NK∑
i=1

ϕh(vi), (3.3)

nd vi, 1 ≤ i ≤ NK are the vertices of K .
Moreover, as stated by the following lemma, the polynomial projection ΠD

K is computable using the sets D1 and D2
(for more details see [37,42]).

Lemma 3.1. The operator ΠD
K : Ṽh(K ) −→ P2(K ) is explicitly computable for every φh ∈ Ṽh(K ), using only the information

f the linear operators D1 and D2.

Now, for each K ∈ Th we introduce the enhanced fully nonconforming virtual space:

Vh(K ) :=

{
φh ∈ Ṽh(K ) :

∫
e
(φh −ΠD

K φh) = 0 ∀e ⊆ ∂K ,
∫
K
p(φh −ΠD

K φh) = 0 ∀p ∈ P2(K )
}
. (3.4)

The following result summarize the main properties of the local virtual space Vh(K ). The proof can be obtained
ollowing the arguments in [15,36,37,42].
5
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Proposition 3.1. For each polygon K , the space Vh(K ) defined in (3.4) satisfies the following properties:

• P2(K ) ⊆ Vh(K ).
• The sets of linear operators D1 and D2 constitutes a set of degrees of freedom for Vh(K ).
• The operator ΠD

K : Vh(K ) −→ P2(K ) is computable using the degrees of freedom D1 and D2.

Now, for every decomposition Th of Ω into polygons K , we introduce the fully nonconforming global virtual space to
he numerical approximation of problem (2.1) as follows:

Vh :=
{
φh ∈ H2,NC(Th) : φh|K ∈ Vh(K ) ∀K ∈ Th

}
, (3.5)

here the space H2,NC(Th) is defined in (3.2).
It is observed that Vh ⊆ H2,NC(Th) but Vh ⊈ V . Furthermore, we have that the nonconforming virtual element does not

equire the C0-continuity over Ω .

.3. Polynomial projection operators

In this subsection, we introduce further polynomial projections, which will be useful to build the respective discrete
orms.

First, for all m ∈ N∪ {0}, we consider the usual L2(K )-projection onto the polynomial space Pm(K ): for each φ ∈ L2(K ),
he function Πm

K φ ∈ Pm(K ) is defined as the unique function satisfying(
q, φ −Πm

K φ
)
0,K = 0 ∀q ∈ Pm(K ). (3.6)

emma 3.2. Let Π2
K be the operator defined in (3.6), with m = 2. Then, for each φh ∈ Vh(K ) we have that the polynomial

unctions Π2
Kφh and Π2

K (∂xφh) are computable using only the information of the degrees freedom D1 and D2.

roof. Let φh ∈ Vh(K ). Then the function Π2
Kφh is easily obtained from the definition of the space Vh(K ) (cf. (3.4)). On the

ther hand, using integration by parts and the definition of Π2
Kφh, for all q ∈ P2(K ), we have∫

K
∂xφhq = −

∫
K
φh∂xq +

∫
∂K
φhqnx

K = −

∫
K
(Π2

Kφh)∂xq +

∫
∂K
φhqnx

K ,

here nx
K is the first component of normal vector nK . We notice that the first term on the right hand side of the above

quality depends only on Π2
Kφh, hence computable using the degrees of freedom (see Proposition 3.1). The boundary

ntegral is computable using D1 and the moments of ΠD
K φh on the each edge e ⊆ ∂K (cf. (3.4)). □

Next, for each polygon K , we define the projectorΠ∇

K : Vh(K ) −→ P2(K ) ⊆ Vh(K ), as the solution of the local problems:

AK
∇
(Π∇

K φh, q) = AK
∇
(φh, q) ∀q ∈ P2(K ),

Π̂∇

K φh = φ̂h,

nd the operator (̂·) is defined in (3.3).
The following result establishes that the polynomial projection Π∇

K is computable from the sets D1 and D2. The result
ollows the same arguments used in the proof of Lemma 3.2.

emma 3.3. The operator Π∇

K : Vh(K ) −→ P2(K ) is explicitly computable for every φh ∈ Vh(K ), using only the information
f the linear operators D1 and D2.

.4. Construction of the discrete forms

In the present section, we will build the discrete version of the continuous local forms defined in (2.3)–(2.6) by using
he operators introduced in the above subsection.

First, let SK
D (·, ·) and SK

∇
(·, ·) be any symmetric positive definite bilinear forms to be chosen as to satisfy:

c0AK
D(φh, φh) ≤ SK

D (φh, φh) ≤ c1AK
D(φh, φh) ∀φh ∈ Vh(K ), with ΠD

K φh = 0,

c2AK
∇
(φh, φh) ≤ SK

∇
(φh, φh) ≤ c3AK

∇
(φh, φh) ∀φh ∈ Vh(K ), with Π∇

K φh = 0,
(3.7)

ith c0, c1, c2 and c3 positive constants independent of h and K . A classical choice for the bilinear forms SK
D (·, ·) and SK

∇
(·, ·)

atisfying (3.7) is given by the Euclidean scalar product associated to the degrees of freedom scaled appropriately (see
28,36,37]). More precisely, we choose the following representation:

SK
D (ϕh, φh) := h−2

K

NK
dof∑

dofi(ϕ)dofi(φ) and SK
∇
(ϕh, φh) :=

NK
dof∑

dofi(ϕ)dofi(φ),

i=1 i=1

6
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for all ϕh, φh ∈ Vh(K ), where NK
dof denote the number of degrees freedom of Vh

k (K ) and dofi is the operator that to each
smooth enough function φ associates the ith local degree of freedom dofi(φ), with 1 ≤ i ≤ NK

dof.
Thus, we define the following global form Ah

: Vh × Vh −→ R, given by:

Ah(ϕh, φh) =

∑
K∈Th

Ah,K (ϕh, φh) =

∑
K∈Th

(ϵMAh,K
D (ϕh, φh) + ϵMAh,K

∇
(ϕh, φh) − Ah,K

skew(ϕh, φh)), (3.8)

here the discrete local bilinear forms, Ah,K
D : Vh(K ) × Vh(K ) −→ R, Ah,K

∇
: Vh(K ) × Vh(K ) −→ R and Ah,K

skew :

Vh(K ) × Vh(K ) −→ R, approximating the continuous bilinear forms AK
D(·, ·), A

K
∇
(·, ·) and AK

skew(·, ·) are given by

Ah,K
D (ϕh, φh) := AK

D

(
ΠD

K ϕh,Π
D
K φh

)
+ SK

D

(
(I −ΠD

K )ϕh, (I −ΠD
K )φh

)
, (3.9)

Ah,K
∇

(ϕh, φh) := AK
∇

(
Π∇

K ϕh,Π
∇

K φh
)
+ SK

∇

(
(I −Π∇

K )ϕh, (I −Π∇

K )φh
)
, (3.10)

Ah,K
skew(ϕh, φh) :=

1
2

∫
K
Π2

K (∂xϕh)Π
2
Kφh −

1
2

∫
K
Π2

K (∂xφh)Π2
Kϕh. (3.11)

The following result establishes the usual consistency and stability properties for the discrete local forms.

roposition 3.2. The local bilinear forms AK
D(·, ·), A

K
∇
(·, ·), AK (·, ·), Ah,K

D (·, ·), Ah,K
∇

(·, ·) and Ah,K (·, ·) on each element K satisfy

• Consistency: for all h > 0 and for all K ∈ Th, we have that

Ah,K (q, φh) = AK (q, φh) ∀q ∈ P2(K ), ∀φh ∈ Vh(K ), (3.12)

• Stability and boundedness: There exist positive constants αi, i = 1, . . . , 4, independent of K , such that:

α1AK
D(φh, φh) ≤ Ah,K

D (φh, φh) ≤ α2AK
D(φh, φh) ∀φh ∈ Vh(K ), (3.13)

α3AK
∇
(φh, φh) ≤ Ah,K

∇
(φh, φh) ≤ α4AK

∇
(φh, φh) ∀φh ∈ Vh(K ). (3.14)

roof. The proof follows standard arguments in the VEM literature (see [13,36,37]). □

Finally, we consider the following approximation for the functional defined in (2.6):

F h(φh) :=

∑
K∈Th

F h,K (φh) ∀φh ∈ Vh, (3.15)

here the local functional F h,K (·) is defined by

F h,K (φh) :=

∫
K
Π2

K f φh ≡

∫
K
fΠ2

Kφh ∀φh ∈ Vh(K ).

For the continuous bilinear forms A⋆(·, ·), with ⋆ ∈ {D,∇, skew}, we adopt the following notation:

A⋆(ϕh, φh) :=

∑
K∈Th

AK
⋆ (ϕh, φh) ∀ϕh, φh ∈ V + Vh. (3.16)

We also adopt the same notation by the bilinear form A(·, ·) and the functional F (·).

.5. Discrete problem and its well-posedness

In this subsection, we present the discrete virtual element formulation and we establish its well-posedness by using
he Lax–Milgram Theorem.

The fully nonconforming virtual element problem reads as: seek ψh ∈ Vh, such that

Ah(ψh, φh) = F h(φh) ∀φh ∈ Vh, (3.17)

here Ah(·, ·) is the discrete bilinear forms defined in (3.8) and F h(·) is the discrete functional introduced in (3.15).
The following lemma establishes properties for the application | · |2,h defined in (3.1), with t = 2.

Lemma 3.4. For all φh ∈ Vh, the following inequality holds:

∥φh∥0,Ω + |φh|1,h ≤ C |φh|2,h,

here C is a positive constant, independent of h. Moreover, we have that | · |2,h is a norm on the space Vh.

roof. The proof is established in [37, Lemma 5.1]. □
7



D. Adak, D. Mora and A. Silgado Journal of Computational and Applied Mathematics 425 (2023) 115026

u
f

L
(

T
d

w

P

4

p
n
o
n
w
s

4

[

P
i

P

P
t

r

L

The following result establishes some properties for the discrete forms defined in the last subsection, which will be
sed to conclude the well-posedness of the discrete problem (3.17). The proof follows from the definition of the respective
orms.

emma 3.5. For all ϕh, φh ∈ Vh, there exist positive constants CAh , α̃, CFh , independent of h, such that the forms defined in
3.11), (3.8) and (3.15) satisfy the following properties:

|Ah(ϕh, φh)| ≤ CAh |ϕh|2,h|φh|2,h, Ah(φh, φh) ≥ α̃|φh|
2
2,h, (3.18)

Ah,K
skew(φh, φh) = 0, |F h(φh)| ≤ CFh∥f ∥0,Ω |φh|2,h. (3.19)

We have the following result of existence and uniqueness.

heorem 3.1. The discrete problem (3.17) admits a unique solution ψh ∈ Vh, which satisfies the following continuous
ependence on the data

|ψh|2,h ≤ C∥f ∥0,Ω ,

here the positive constant C is independent of h.

roof. It is an immediate consequence of Lemma 3.5 and the Lax–Milgram Theorem. □

. Convergence analysis

In this section we will establish error estimates for the nonconforming VEM presented in Section 3.5. First, we
resent some preliminary results useful for the analysis. Successively, we introduce an enriching operator Eh from the
onconforming space Vh into its conforming counterpart. Then, we derive some approximation properties involving this
perator and the bilinear form AD(·, ·) (cf. (2.3)). By using the above tools we establish an error estimate in broken H2-
orm under minimal regularity condition on the stream-function ψ (cf. Theorem 2.2). Finally, by using duality arguments
e derive error estimates in broken H1- and L2-norms under the same regularity of the weak solution and assuming the
ource term f belongs to L2(Ω).

.1. Preliminary results

We start recalling an important approximation result for polynomials on star-shaped domains (see, for instance
42,48]).

roposition 4.1. Assume that A1 is satisfied. Then, for every φ ∈ H2+t (K ), with t ∈ [0, 1], there exist φπ ∈ P2(K ) and C > 0,
ndependent of h, such that

∥φ − φπ∥ℓ,K ≤ Ch2+t−ℓ
K |φ|2+t,K , ℓ = 0, 1, 2.

We have the following approximation result in the virtual space Vh (see [36,37,42]).

roposition 4.2. Assume that A1 − A2 are satisfied. Then, for each φ ∈ H2+t (Ω), with t ∈ [0, 1], there exist φI ∈ Vh and
C > 0, independent of h, such that

∥φ − φI∥ℓ,K ≤ Ch2+t−ℓ
K |φ|2+t,K , ℓ = 0, 1, 2.

We have the following estimation involving the continuous and discrete functionals.

Proposition 4.3. Let f ∈ L2(Ω) and let F (·) and F h(·) be the functionals defined in (2.6) and (3.15), respectively. Then under
assumption A1, we have the following estimate:

∥F − F h
∥V ′

h
:= sup

φh∈Vh
φh ̸= 0

|F (φh) − F h(φh)|
|φh|2,h

≤ Ch2
∥f ∥0,Ω .

roof. The proof follows from the definition of the functionals F (·) and F h(·), together with approximation property of
he projector Π2

K . □

We finish this subsection presenting some technical lemmas, which will be useful in the next sections. Proof of this
esults can be obtained following arguments of [40,48,49].

emma 4.1. There exists C̃ > 0, independent of hK , such that

∥q∥ ≤ C̃h−i
∥q∥ ∀q ∈ P (K ), ℓ ≥ 0, i = 1, 2.
0,K K −i,K ℓ

8
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Lemma 4.2. If the assumption A1 is satisfied, for each ε > 0, there exist positive constants C, Cε , independent of hK , such that

∥ϕ∥0,∂K ≤ C1(εh
1/2
K |ϕ|1,K + Cεh

−1/2
K ∥ϕ∥0,K ) ∀ϕ ∈ H1(K ),

|ϕ|1,K ≤ C2(εhK |ϕ|2,K + Cεh−1
K ∥ϕ∥0,K ) ∀ϕ ∈ H2(K ).

emma 4.3. The projection Π̃0
e : L2(K ) −→ P0(e) defined by the following average Π̃0

e ϕ :=
1
he

∫
e ϕds, satisfies

∥ϕ − Π̃0
e ϕ∥0,e ≤ Ch1/2

K |ϕ|1,K ∀ϕ ∈ H1(K ).

.2. Enriching operator

In this subsection, we will focus on proposing and analyzing an enriching operator Eh from the enhanced noncon-
orming space Vh into its H2-conforming counterpart. Following the ideas of [40], we can construct an enriching operator
h : Vh −→ VC

h , where VC
h is the enhanced H2-conforming virtual element space considered in [14]. The construction is

ased on the degrees of freedom of VC
h .

For the sake of completeness, we will recall the construction of the virtual enhanced H2-conforming space of lowest
rder and the enriching operator Eh.

onforming virtual local space. For every polygon K ∈ Th, we introduce the following preliminary finite dimensional
pace [14]:

ṼC
h (K ) :=

{
φh ∈ H2(K ) : ∆2φh ∈ P2(K ), φh|∂K ∈ C0(∂K ), φh|e ∈ P3(e) ∀e ⊆ ∂K ,

∇φh|∂K ∈ [C0(∂K )]2, ∂neφh|e ∈ P1(e) ∀e ⊆ ∂K
}
,

Next, for a given φh ∈ ṼC
h (K ), we introduce two sets Dv

1 and D∇

2 of linear operators from the local virtual space ṼC
h (K )

nto R:

• Dv
1 : the values of φh(v) for all vertex v ∈ ∂K ,

• D∇

2 : the values of hv∇φh(v) for all vertex v ∈ ∂K ,

here hv is a characteristic length attached to each vertex v, for instance to the maximum diameter of the elements with
as a vertex. Now, we consider the operator ΠD,C

K : ṼC
h (K ) −→ P2(K ) ⊆ ṼC

h (K ) associated to the conforming approach,
hich is computable using the sets Dv

1 and D∇

2 (for more details see [14, Lemma 2.1]).
Next, for each K ∈ Th, we introduce the conforming local enhanced virtual space as follows:

VC
h (K ) :=

{
φh ∈ ṼC

h (K ) : (φh −Π
D,C
K φh, q)0,K = 0 ∀q ∈ P2(K )

}
. (4.1)

n this space the sets Dv
1 and D∇

2 constitutes a set of degrees of freedom.

onforming virtual global space. For every decomposition Th ofΩ into polygons K , we define the conforming virtual spaces
C
h :

VC
h :=

{
φh ∈ V : φh|K ∈ VC

h (K ) ∀K ∈ Th
}
. (4.2)

For a vertex v ∈ Vh, we denote by ω(v) the union of all elements in Th, sharing the vertex v and by N(v) the number
f elements of ω(v).
For any ϕh ∈ Vh, we introduce the piecewise L2-projection Π2, as follows:

Π2ϕh|K = Π2
K (ϕh|K ),

here Π2
K is the L2-projection from Vh(K ) onto P2(K ) (cf. Lemma 3.2) and Vh(K ) is the local nonconforming virtual space

efined in (3.4).
For each function ϕh ∈ Vh, the function Ehϕh ∈ VC

h in the conforming counterpart will be constructed as follows:

Eh(ϕh)(x) =

NC
dof∑

i=1

Di(Eh(ϕh))χi(x),

here the functions {χi}
NC
dof

i=1 are the set of shape basis functions associated to space VC
h and NC

dof := dim(VC
h ). More precisely,

he values of degrees of freedom for the enriching operator are determined as follows:

1. For the values at interior vertices v ∈ V int
h , we consider:

Dv
1 (Ehϕh) :=

1
N(v)

∑
Π2ϕh|K̃ (v).
K̃∈ω(v)

9
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2. For the gradient values at interior vertices v ∈ V int
h , we consider:

D∇

1 (Ehϕh) :=
1

N(v)

∑
K̃∈ω(v)

hv∇(Π2ϕh|K̃ )(v).

We will denote by χ(·) := {χv,χ∇} the degrees of freedom vector corresponding to the H2-conforming virtual element
pace VC

h (K ), with χv collecting the degrees of freedom in Dv
1 and χ∇ the degrees of freedom in D∇

2 .
In what follows, we will derive some approximation properties for the operator Eh. To do that, first we will establish

two technical tools: inverse inequalities for the enhanced H2-conforming virtual space VC
h (K ) defined in (4.2) and a norm

equivalence between the degrees of freedom vector χ and L2-norm.
In order to establish the results mentioned above, first we will consider three preliminary lemmas. We start with an

H2-orthogonal decomposition.

Lemma 4.4. Any function φ ∈ H2(K ) admits the decomposition φ = φ1 + φ2, where

1. φ1 ∈ H2(K ), φ1|∂K = φ|∂K , ∂nK φ1 = ∂nK φ and ∆2φ1 = 0 in K .
2. φ2 ∈ H2

0 (K ), ∆
2φ2 = ∆2φ in K .

Moreover, this decomposition is H2-orthogonal in the sense that

|φ|
2
2,K = |φ1|

2
2,K + |φ2|

2
2,K .

Proof. Let φ ∈ H2(K ), then we can choose φ2 as the H2-projection of φ to H2
0 (K ), i.e., we define φ2 ∈ H2

0 (K ) as the unique
olution of the following local problem:∫

K
D2φ2 : D2ϕ =

∫
K
D2φ : D2ϕ ∀ϕ ∈ H2

0 (K ).

Thus, we define φ1 := (φ − φ2) ∈ H2(K ). We notice that by construction the functions φ1 and φ2 satisfy the properties of
lemma. □

For the functions φ1 and φ2 of the above decomposition, we will derive useful inequalities to establish an inverse
estimate in the H2-conforming virtual space VC

h (K ). For the biharmonic part, we have the next inequality.

Lemma 4.5. For any ε > 0, there exist positive constants C, Cε , independent of hK , such that

|φ1|2,K ≤ C(ε|φ|2,K + Cεh−2
K ∥φ∥0,K ).

Proof. Let φ ∈ VC
h (K ) and φ1 ∈ H2(K ) such that Lemma 4.4 holds true. Then, we define the space

Sφ1 (K ) :=
{
ϕ ∈ H2(K ) : ϕ|∂K = φ1|∂K , ∂nK ϕ = ∂nK φ1

}
.

For each ϕ ∈ Sφ1 (K ) we have that ϕ − φ1 ∈ H2
0 (K ). Then, since ∆

2φ1 = 0 in K , applying integration by part we get∫
K
D2φ1 : D2(ϕ − φ1) = 0,

which implies

|ϕ|
2
2,K = |φ1|

2
2,K + |ϕ − φ1|

2
2,K .

Therefore,

|φ1|2,K ≤ |ϕ|2,K ∀ϕ ∈ Sφ1 (K ). (4.3)

Now, for every K ∈ Th, let TK be the sub-triangulation obtained by connecting each vertex of K with the center of the
ball with respect to which K is starred (cf. Assumption A1). Then, on each triangle of TK we consider the reduced Hsieh–
Clough–Tocher element (HCT) defined in [50]. Thus, for φ ∈ VC

h (K ) we choose the interpolant IKφ in the HCT element, for
which it is fulfilled that

IKφ|∂K = φ|∂K = φ1|∂K and ∂nK (IKφ) = ∂nK φ = ∂nK φ1.

Hence, IKφ ∈ Sφ1 (K ) and by the definition of IKφ, we also have the following estimate

∥IKφ∥0,K ≤ C(h1/2
K ∥IKφ∥0,∂K + h3/2

K ∥∂nK (IKφ)∥0,∂K )
1/2 3/2 (4.4)
= C(hK ∥φ∥0,∂K + hK ∥∂nK φ∥0,∂K ).
10
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Then, taking ϕ = IKφ ∈ Sφ1 (K ) in (4.3) and using the inverse inequality for polynomials (cf. Lemma 4.1) and estimate
(4.4), we obtain

|φ1|2,K ≤ |IKφ|2,K ≤ Ch−2
K ∥IKφ∥0,K ≤ C(h−3/2

K ∥φ∥0,∂K + h−1/2
K ∥∂nK φ∥0,∂K ). (4.5)

Next, we will estimate the two terms on the right hand side of (4.5). Indeed, from Lemma 4.2, for every ε > 0, there exist
C, Cε > 0, independent of h, such that

h−3/2
K ∥φ∥0,∂K ≤ Ch−3/2

K (εh1/2
K |φ|1,K + Cεh

−1/2
K ∥φ∥0,K ) ≤ C(ε|φ|2,K + Cεh−2

K ∥φ∥0,K ). (4.6)

Now, for the second term in (4.5) we notice that

∥∇φ∥
2
0,∂K =

∫
∂K

∇φ · ∇φ = ∥∂nK φ∥
2
0,∂K + ∥∂tK φ∥

2
0,∂K ≤ (∥∂nK φ∥0,∂K + ∥∂tK φ∥0,∂K )2. (4.7)

rom the above identity and Lemma 4.2, for every ε > 0, there exist C, Cε > 0, independent of h, such that

h−1/2
K ∥∂nK φ∥0,∂K ≤ C(ε|φ|2,K + Cεh−2

K ∥φ∥0,K ). (4.8)

hen, the desired result follows inserting the estimates (4.6) and (4.8) in (4.5). □

For the function φ2 of the decomposition in Lemma 4.4, we have the following result.

emma 4.6. For any ε > 0, there exists positive constants C, Cε , independent of hK , such that

|φ2|2,K ≤ C(ε|φ|2,K + Cεh−2
K ∥φ∥0,K ).

roof. Let φ ∈ VC
h (K ) and φ2 ∈ H2(K ) such that Lemma 4.4 holds true. Then, since φ2 ∈ H2

0 (K ) and ∆2φ2 = ∆2φ ∈

2(K ) in K , we use an integration by part, the Cauchy–Schwarz and inverse inequalities for polynomials (cf. Lemma 4.1)
o obtain

|φ2|
2
2,K =

∫
K
φ2∆

2φ2 ≤ ∥∆2φ2∥0,K∥φ2∥0,K ≤ Ch−2
K ∥∆2φ2∥−2,K∥φ2∥0,K ≤ Ch−2

K |φ2|2,K∥φ2∥0,K .

rom the above estimate, Lemma 4.4 and the triangle inequality, we get

|φ2|2,K ≤ Ch−2
K ∥φ2∥0,K = Ch−2

K ∥φ − φ1∥0,K ≤ Ch−2
K ∥φ∥0,K + Ch−2

K ∥φ1∥0,K . (4.9)

In what follows, we will establish estimates for the second term on the right hand side in (4.9). Applying the
oincaré–Friedrichs inequality for H2 functions, Cauchy–Schwarz inequality and using (4.7), we get

∥φ1∥0,K ≤ C
(
h2
K |φ1|2,K +

⏐⏐⏐⏐∫
∂K
φ1

⏐⏐⏐⏐ + hK

⏐⏐⏐⏐∫
∂K

∇φ1

⏐⏐⏐⏐)
≤ C(h2

K |φ1|2,K + h1/2
K ∥φ1∥0,∂K + h3/2

K (∥∂nK φ1∥0,∂K + ∥∂tK φ1∥0,∂K )).
(4.10)

ow, we observe that φ1|e = φ|e ∈ P3(e) ∀e ⊆ ∂K . Then, by using standard inverse estimate for polynomials in one
ariable, we have

∥∂tK φ1∥0,∂K ≤ Ch−1
K ∥φ1∥0,∂K .

hus, inserting the above estimation in (4.10) we get

∥φ1∥0,K ≤ C(h2
K |φ1|2,K + h1/2

K ∥φ∥0,∂K + h3/2
K ∥∂nK φ∥0,∂K ),

here we have used the fact that φ1|∂K = φ|∂K and ∂nK φ1 = ∂nK φ. Now, employing the above estimates and both
nequalities of Lemma 4.2 we get

∥φ1∥0,K ≤ (h2
K |φ1|2,K + h3/2

K ∥∂nK φ∥0,∂K + h1/2
K ∥φ∥0,∂K )

≤ C(h2
K |φ1|2,K + εh2

K |φ|2,K + Cε∥φ∥0,K ),

hich implies along with Lemma 4.5 that

h−2
K ∥φ1∥0,K ≤ C(|φ1|2,K + ε|φ|2,K + Cεh−2

K ∥φ∥0,K )

≤ C(ε|φ|2,K + Cεh−2
K ∥φ∥0,K ). (4.11)

From the estimates (4.9) and (4.11) for any ε > 0, there exists positive constants C, Cε , independent of hK , such that

|φ2|2,K ≤ C(h−2
K ∥φ∥0,K + Ch−2

K ∥φ1∥0,K ) ≤ C(ε|φ|2,K + Cεh−2
K ∥φ∥0,K ).

he proof is complete. □

2 C
We have the following inverse inequalities for the H -conforming space Vh defined in (4.1).

11
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Lemma 4.7. For any φh ∈ VC
h (K ), there exists a positive constant C, independent of hK , such that

|φh|2,K ≤ Ch−2
K ∥φh∥0,K and |φh|1,K ≤ Ch−1

K ∥φh∥0,K . (4.12)

roof. Let φh ∈ VC
h (K ) and φh,1, φh,2 such that Lemma 4.4 holds true. Then, employing the triangle inequality together

ith Lemmas 4.5 and 4.6, we have

|φh|2,K ≤ |φh,1|2,K + |φh,2|2,K ≤ C(ε|φh|2,K + Cεh−2
K ∥φh∥0,K ),

here C and Cε are independent of hK . Then, choosing ε small enough and absorbing the term Cε|φh|2,K on the left hand
ide of the above estimate we obtain the first inverse inequality in (4.12). The second inequality in (4.12) is an immediate
onsequence of the first estimate and Lemma 4.2. □

Now we will establish a norm equivalence between the degrees of freedom vector χ and the L2-norm.

emma 4.8. For any φh ∈ VC
h (K ), there exist positive constants C1 and C2, independent of hK , such that

C1hK∥χ(φh)∥ℓ2 ≤ ∥φh∥0,K ≤ C2hK∥χ(φh)∥ℓ2 .

roof. Let φh ∈ VC
h (K ). Then, for the lower bound, we have the φh|∂K and ∂nK φh are polynomial functions on each edge

f ∂K . Therefore, using standard scaling argument we have

hK∥χ(φh)∥ℓ2 ≤ C(h1/2
K ∥φh∥0,∂K + h3/2

K ∥∂nK φh∥0,∂K ).

ow, following similar arguments to those used in Lemmas 4.5 and 4.6, we have

hK∥χ(φh)∥ℓ2 ≤ C(h2
K |φh|2,K + ∥φh∥0,K ).

herefore, applying the first the inverse inequality in (4.12) we get

hK∥χ(φh)∥ℓ2 ≤ C∥φh∥0,K .

o obtain the upper bound we proceed as in [40, Lemma 3.6]. □

Employing the above lemmas, we can establish the following approximation properties for the enriching operator Eh,
hich will play a important role to obtain a priori error estimate of our scheme under minimal regularity condition on
he exact solution.

emma 4.9. For all ϕh ∈ Vh, there exists C > 0, independent of h, such that

∥ϕh − Ehϕh∥0,Ω + h|ϕh − Ehϕh|1,h + h2
|Ehϕh|2,Ω ≤ Ch2

|ϕh|2,h.

roof. First we will proof ∥ϕh − Ehϕh∥0,Ω ≤ Ch2
|ϕh|2,h. Indeed, for all ϕh ∈ Vh, the function (Π2ϕh − Ehϕh)|K ∈ VC

h (K ).
hen, by using the triangle inequality, the Bramble–Hilbert Lemma and Lemma 4.8, we get

∥ϕh − Ehϕh∥0,K ≤ ∥ϕh −Π2
Kϕh∥0,K + ∥Π2

Kϕh − Ehϕh∥0,K

≤ Ch2
K |ϕh|2,K + hK∥χ(Π2

Kϕh − Ehϕh)∥ℓ2 .
(4.13)

ow, by using the argument employed in [40, Lemma 4.2], we have that

∥χ(Π2
Kϕh − Ehϕh)∥ℓ2 ≤ hK |ϕh|2,ω(K ),

here ω(K ) denote the union of all elements in Th sharing a vertex or an edge with K .
Then, inserting the above estimate in (4.13), we obtain

∥ϕh − Ehϕh∥0,K ≤ Ch2
K |ϕh|2,ω(K ) ∀ϕh ∈ Vh. (4.14)

Next, let ϕπ ∈ P2(K ) be the polynomial such that Proposition 4.1 holds true with respect to ϕh. Then, using triangle
nd inverse inequalities for polynomial and for H2-conforming space (cf. Lemma 4.7) together with Lemma 4.8, we have

|ϕh − Ehϕh|2,K ≤ |ϕh − ϕπ |2,K + |Π2
K (ϕπ − ϕh)|2,K + |Π2

Kϕh − Ehϕh|2,K
≤ C(|ϕh|2,K + h−2

K ∥ϕπ − ϕh∥0,K + h−2
K ∥Π2

Kϕh − Ehϕh∥0,K )

≤ C(|ϕh|2,K + h−2
K h2

K |ϕh|2,K + h−2
K h2

K |ϕh|2,ω(K ))
≤ C |ϕh|2,ω(K ).

(4.15)

Thus, summing on each K ∈ Th in (4.14) and (4.15), and using triangle inequality we obtain

∥ϕ − E ϕ ∥ ≤ Ch2
|ϕ | and |E ϕ | ≤ C |ϕ | . (4.16)
h h h 0,Ω h 2,h h h 2,Ω h 2,h

12
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On the other hand, using the second inequality in Lemma 4.2 and (4.14), for (ϕh −Ehϕh)|K ∈ H2(K ), there exists a constant
> 0, independent to hK , such that

|ϕh − Ehϕh|1,K ≤ C(hK |ϕh − Ehϕh|2,K + h−1
K ∥ϕh − Ehϕh∥0,K )

≤ ChK |ϕh|2,ω(K ).

hen, from the above inequality, we obtain

|ϕh − Ehϕh|1,h ≤ Ch|ϕh|2,h. (4.17)

he proof of the theorem follows from (4.16) and (4.17). □

Now, using Lemma 4.9 we will establish two estimations involving the bilinear form AD(·, ·) defined in (2.3) keeping
he notation (3.16).

emma 4.10. Let ϕ ∈ H2+t (Ω), with t ∈ [0, 1]. Then, for all φh ∈ Vh we have

AD(ϕ, φh − Ehφh) ≤ Cht
∥ϕ∥2+t,Ω |φh|2,h.

roof. Following similar arguments in [51, Section 4.1], it is enough to prove the estimation for t = 0 and t = 1. Indeed,
et ϕ ∈ H2(Ω), then for any φh ∈ Vh, by using the Cauchy–Schwarz inequality and Lemma 4.9, we have

AD(ϕ, φh − Ehφh) =

∑
K∈Th

AK
D(ϕ, φh − Ehφh) ≤ C∥ϕ∥2,Ω |φh|2,h. (4.18)

ow, let ϕ ∈ H3(Ω). Then, for all φh ∈ Vh, by using integration by part (see [37]), we have that

AD(ϕ, φh − Ehφh) = −

∑
K∈Th

∫
K

∇(∆ϕ) · ∇(φh − Ehφh) +

∑
K∈Th

∫
∂K

(
∆ϕ −

∂2ϕ

∂t2K

)
∂(φh − Ehφh)

∂nK

+

∑
K∈Th

∫
∂K

∂2ϕ

∂nK∂tK
∂(φh − Ehφh)

∂tK
=: T1 + T2 + T3.

(4.19)

ext, we will bound the terms T1, T2 and T3. Indeed, for the term T1, we use the Cauchy–Schwarz inequality and
emma 4.9, we have

T1 ≤

⎛⎝ ∑
K∈Th

∥∇(∆ϕ)∥2
0,K

⎞⎠1/2 ⎛⎝ ∑
K∈Th

∥∇(φh − Ehφh)∥2
0,K

⎞⎠1/2

≤ ∥ϕ∥3,Ω |φh − Ehφh|1,h ≤ Ch∥ϕ∥3,Ω |φh|2,h. (4.20)

ow, we will bound the terms T2 and T3. For convenience, we set

ζ2 :=

(
∆ϕ −

∂2ϕ

∂t2e

)
and ζ3 :=

∂2ϕ

∂ne∂te
.

By using the fact that Ehφh ∈ VC
h ⊂ C1(Ω̄) ∩ V and the definition of the space Vh, we have:∫

e
p0[[∇(φh − Ehφh) · ne]] = 0 ∀p0 ∈ P0(e). (4.21)

Then, for the term T2 from (4.21), with p0 = Π̃0
e ζ2 ∈ P0(e) (cf. Lemma 4.3), we obtain

T2 =

∑
K∈Th

∫
∂K
ζ2 ∇(φh − Ehφh) · nK =

∑
e∈Eh

∫
e
(ζ2 − Π̃0

e ζ2)[[∇(φh − Ehφh) · ne]]

≤

⎛⎝ ∑
e∈Eh

|e|−1
∥ζ2 − Π̃0

e ζ2∥
2
0,e

⎞⎠1/2 ⎛⎝ ∑
e∈Eh

|e|∥[[∇(φh − Ehφh) · ne]]∥
2
0,e

⎞⎠1/2

≤ Ch∥ϕ∥3,Ω |φh|2,h,

(4.22)

here we have used the trace inequality (cf. Lemma 4.2) and Lemma 4.9.
Since φh −Ehφh is continuous at internal vertices and vanishes at boundary vertices. Then, for all p0 ∈ P0(e), we obtain∫

p0
[[∂(φh − Ehφh)]]

= −

∫
∂p0

[[φh − Ehφh]] + ([[φh − Ehφh]]p0)(v2) − ([[φh − Ehφh]]p0)(v1) = 0,

e ∂te e ∂te

13
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where we have used the fact that the jump [[φh−Ehφh]] is zero when evaluated at the endpoints v1 and v2 of edge e ∈ E int
h .

Thus, taking p0 = Π̃0
e ζ3 ∈ P0(e) in the above identity, we have that

T3 =

∑
e∈Eh

∫
e
ζ3

[[∂(φh − Ehφh)
∂te

]]
=

∑
e∈Eh

∫
e
(ζ3 − Π̃0

e ζ3)
[[∂(φh − Ehφh)

∂te

]]

≤

⎛⎝ ∑
e∈Eh

|e|−1
∥ζ3 − Π̃0

e ζ3∥
2
0,e

⎞⎠1/2 ⎛⎝ ∑
e∈Eh

|e| ∥[[∇(φh − Ehφh) · tK ]]∥
2
0,e

⎞⎠1/2

.

ow, employing the same arguments used to obtain the estimation (4.22), we get

T3 ≤ Ch∥ϕ∥3,Ω |φh|2,h. (4.23)

nserting (4.20), (4.22) and (4.23) in (4.19), we obtain

AD(ϕ, φh − Ehφh) ≤ Ch∥ϕ∥3,Ω |φh|2,h ∀ϕ ∈ H3(Ω). (4.24)

hen, from (4.18), (4.24) and the real method of interpolation (see [51, Equation (4.2)] and [46]), we have the desired
esult. □

Furthermore, for the bilinear form AD(·, ·) we have the following result.

emma 4.11. For ϕ ∈ H2+t (Ω) and χ ∈ H2+t (Ω) ∩ V , with t ∈ [0, 1], it holds:

AD(ϕ, χ − χI ) ≤ Ch2t
∥ϕ∥2+t,Ω∥χ∥2+t,Ω ,

where χI ∈ Vh is the interpolant of χ in the virtual space Vh (cf. Proposition 4.2).

Proof. Let ϕ ∈ H2(Ω) and χ ∈ V . Then, by using Proposition 4.2 we have that

AD(ϕ, χ − χI ) =

∑
K∈Th

AK
D(ϕ, χ − χI ) ≤ C∥ϕ∥2,Ω |χ − χI |2,h ≤ C∥ϕ∥2,Ω∥χ∥2,Ω .

ow, for ϕ ∈ H3(Ω) and χ ∈ H3(Ω) ∩ V , the proof follows from the same arguments used in Lemma 4.10, setting
∈ C1(Ω̄)∩V and χI ∈ Vh instead of Ehφh and φh, respectively, and employing Proposition 4.2. Indeed, using an integration

by part as in (4.19), we have that

AD(ϕ, χ − χI ) = −

∑
K∈Th

∫
K

∇(∆ϕ) · ∇(χ − χI ) +

∑
K∈Th

∫
∂K

(
∆ϕ −

∂2ϕ

∂t2K

)
∂(χ − χI )
∂nK

+

∑
K∈Th

∫
∂K

∂2ϕ

∂nK∂tK
∂(χ − χI )
∂tK

=: T A
1 + T A

2 + T A
3 .

For the term T A
1 , we use the Cauchy–Schwarz inequality and Proposition 4.2, to obtain

T A
1 ≤ Ch2

∥ϕ∥3,Ω∥χ∥3,Ω ,

while the terms T A
2 and T A

3 are bounded as in Lemma 4.10 and using Proposition 4.2, as follows:

T A
2 + T A

3 ≤ Ch2
∥ϕ∥3,Ω∥χ∥3,Ω .

The proof follows by combining the above estimates and the real method of interpolation (see [51, Equation (4.2)]
and [46]). □

4.3. A priori estimation

In this subsection we will establish an error estimate in broken H2-norm under minimal regularity condition on the
exact stream-function ψ , i.e., ψ ∈ H2+s(Ω), with s ∈ (1/2, 1] (cf. Theorem 2.2).

First, we start noticing that for all φh ∈ Vh the consistency error (also called nonconformity error) is given by:

Nh(ψ, φh) := A(ψ, φh) − F (φh), (4.25)

where ψ ∈ H2+s(Ω)∩ V is the solution of problem (2.1). Moreover, we have the following estimation for the consistency
error N (ψ, ·) defined above.
h

14
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Lemma 4.12. Let ψ be the solution of problem (2.1). Then, for all φh ∈ Vh, there exists a constant C > 0, independent to h,
uch that

Nh(ψ, φh) ≤ Chs(∥ψ∥2+s,Ω + ∥f ∥0,Ω )|φh|2,h,

where Nh(ψ, ·) is the consistency error defined by the relation (4.25) and s ∈ (1/2, 1] is such that ψ ∈ H2+s(Ω) ∩ V (cf.
Theorem 2.2).

Proof. For all φh ∈ Vh, we have that Ehφh ∈ VC
h ⊂ V . Then, taking Ehφh as test function in (2.1), we obtain

A(ψ, Ehφh) = F (Ehφh). (4.26)

Thus, from (4.25) and (4.26), we get

Nh(ψ, φh) := A(ψ, φh) − F (φh) = A(ψ, φh) − F (φh − Ehφh) − F (Ehφh)
= ϵMAD(ψ, φh − Ehφh) + ϵSA∇ (ψ, φh − Ehφh)

− Askew(ψ, φh − Ehφh) − F (φh − Ehφh).

From the above identity, the Cauchy–Schwarz inequality, continuity of the forms A∇ (·, ·), Askew(·, ·) and F (·), Lemmas 4.10
and 4.9, we get

Nh(ψ, φh) ≤ CϵMhs
∥ψ∥2+s,Ω |φh|2,h + ϵS |ψ |1,Ω |φh − Ehφh|1,h

+ C(|φh − Ehφh|1,h + ∥φh − Ehφh∥0,Ω )∥ψ∥2,Ω + C∥f ∥0,Ω∥φh − Ehφh∥0,Ω

≤ Chs(∥ψ∥2+s,Ω + ∥f ∥0,Ω )|φh|2,h.

The proof is complete. □

We have the following Strang-type result.

Lemma 4.13. Under the mesh assumptions A1 − A2. Let ψ and ψh be the unique solutions to problems (2.1) and (3.17),
respectively. Then, for each approximation ψI of ψ in Vh and for every approximation ψπ of ψ in P2(Th), there exists a positive
constant C, independent of h, such that

|ψ − ψh|2,h ≤ C
(
|ψ − ψI |2,h + |ψ − ψπ |2,h + ∥F − F h

∥V ′
h
+ sup

φh∈Vh
φh ̸= 0

Nh(ψ, φh)
|φh|2,h

)
,

where Nh(ψ, φh) is the consistency error defined in (4.25).

Proof. Let ψI ∈ Vh be the interpolant of ψ such that Proposition 4.2 holds true. We set δh := (ψh − ψI ) ∈ Vh. Then,

|ψ − ψh|2,h ≤ |ψ − ψI |2,h + |δh|2,h. (4.27)

y using the property (3.18) and the consistency of bilinear form Ah,K (·, ·) (cf. (3.12)), we have

α̃|δh|
2
2,h ≤ Ah(δh, δh) = Ah(ψh, δh) − Ah(ψI , δh)

= F h(δh) − F (δh) − Nh(ψ, δh) −

∑
K∈Th

Ah,K (ψI − ψπ , δh) +

∑
K∈Th

AK (ψ − ψπ , δh).

From the above it follows that

|δh|2,h ≤ C
(
|ψ − ψI |2,h + |ψ − ψπ |2,h + ∥F − F h

∥V ′
h
+ sup

φh∈Vh
φh ̸= 0

Nh(ψ, φh)
|φh|2,h

)
. (4.28)

Thus, from (4.27) and (4.28), we conclude the proof. □

The following theorem provides the rate of convergence of our virtual element scheme.

Theorem 4.1. Under the mesh assumption A1−A2. Let ψ and ψh be the unique solutions of problem (2.1) and problem (3.17),
respectively. Then, there exists a positive constant C, independent of h, such that

|ψ − ψh|2,h ≤ Chs(∥ψ∥2+s,Ω + ∥f ∥0,Ω ),

where s ∈ (1/2, 1] is such that ψ ∈ H2+s(Ω) ∩ V (cf. Theorem 2.2).

Proof. The proof follows combining Lemma 4.13, Propositions 4.1, 4.2, 4.3 and Lemma 4.12. □
15
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4.4. Error estimate in H1- and L2

In this section we establish error estimates in broken H1- and L2-norms for the stream-function using duality
rguments, under same regularity of the weak solution ψ and of the source term f stated in Theorem 4.1.

heorem 4.2. Under the mesh assumption A1 − A2. Let ψ and ψh be the unique solutions of problems (2.1) and (3.17),
respectively. Then, there exists a positive constant C, independent of h, such that

∥ψ − ψh∥0,Ω + |ψ − ψh|1,h ≤ Ch2s(∥ψ∥2+s,Ω + ∥f ∥0,Ω ), (4.29)

here s ∈ (1/2, 1] is such that ψ ∈ H2+s(Ω) ∩ V (cf. Theorem 2.2).

Proof. In order to prove the H1 estimate in (4.29), let ψI ∈ Vh be the interpolant of ψ such that Proposition 4.2 holds
true. We set δh := (ψh − ψI ) ∈ Vh. Then, we write

ψh − ψ = (ψh − ψI ) + (ψI − ψ) = (ψI − ψ) + (δh − Ehδh) + Ehδh.

hus, by using the triangle inequality together Proposition 4.2, Lemma 4.9 and Theorem 4.1, we have

|ψ − ψh|1,h ≤ |ψ − ψI |1,h + |δh − Ehδh|1,h + |Ehδh|1,h
≤ Ch2s

∥ψ∥2+s,Ω + ∥∇Ehδh∥0,Ω .
(4.30)

n what follows, we will estimate the term ∥∇Ehδh∥0,Ω . To do that, we consider the following auxiliary problem: seek
∈ V , such that

A(w, φ) =

∫
Ω

∇(Ehδh) · ∇w ∀w ∈ V, (4.31)

here the bilinear form A(·, ·) is defined in (2.2). From Theorem 2.2, we have that φ ∈ H2+s(Ω) ∩ V and

∥φ∥2+s,Ω ≤ C∥∇Ehδh∥0,Ω . (4.32)

here C > 0 is a constant independent of h.
Then, taking w = Ehδh ∈ VC

h ⊂ V as test function, adding and subtracting δh in problem (4.31), we obtain

∥∇Ehδh∥2
0,Ω = A(Ehδh, φ) = A(Ehδh − δh, φ) + A(δh, φ) =: T1 + T2. (4.33)

e will estimate the terms T1 and T2 in the above identity. Indeed, for the T1, we use the definition of bilinear form A(·, ·),
roposition 4.2, together with Lemma 4.10, Theorem 4.1 and the triangle inequality, to obtain

T1 := ϵMAD(Ehδh − δh, φ) + ϵSA∇ (Ehδh − δh, φ) − Askew(Ehδh − δh, φ)
≤ Chs

∥φ∥2+s,Ω |δh|2,h + |Ehδh − δh|1,h|φ|1,Ω

+ C(|Ehδh − δh|1,h∥φ∥0,Ω + |φ|1,Ω∥Ehδh − δh∥0,Ω )
≤ Chshs(∥ψ∥2+s,Ω + ∥f ∥0,Ω )∥φ∥2+s,Ω .

Then, from the above estimate and (4.32) we obtain

T1 ≤ Ch2s(∥ψ∥2+s,Ω + ∥f ∥0,Ω )∥∇Ehδh∥0,Ω . (4.34)

o bound the term T2, we consider φI ∈ Vh the interpolant of φ such that Proposition 4.2 holds true. Then, rewriting
h = (ψh − ψ) + (ψ − ψI ), adding and subtracting φI , and using the bilinearity of form A(·, ·), we obtain

T2 := A(δh, φ) = A(ψ − ψI , φ) + A(ψh − ψ, φ − φI ) + A(ψh − ψ, φI )

= T a
2 + T b

2 + T c
2 .

(4.35)

ow, we will estimate each term in (4.35). Indeed, we use again the definition of bilinear form A(·, ·), Proposition 4.2,
emma 4.11 and Theorem 4.1, to obtain

T a
2 := ϵMAD(ψ − ψI , φ) + ϵSA∇ (ψ − ψI , φ) − Askew(ψ − ψI , φ)

≤ Ch2s
∥φ∥2+s,Ω∥ψ∥2+s,Ω + |ψI − ψ |1,h|φ|1,Ω

+ C(|φ|1,Ω∥ψI − ψ∥0,Ω + ∥φ∥0,Ω |ψI − ψ |1,h)

≤ Ch2s
∥ψ∥2+s,Ω∥∇Ehδh∥0,Ω .

(4.36)

or T b
2 , we use the continuity of bilinear form A(·, ·), Proposition 4.2, Theorem 4.1 and (4.32), to get

T b
:= A(ψ − ψ, φ − φ ) ≤ Ch2s(∥ψ∥ + ∥f ∥ )∥∇E δ ∥ . (4.37)
2 h I 2+s,Ω 0,Ω h h 0,Ω

16
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Finally, we will bound the term T c
2 in (4.35), as follow: we use the bilinearity of form A(·, ·), add and subtract adequate

terms, and we use the fact that Ah(ψh, φI ) = F h(φI ) and A(ψ, φ) = F (φ), to get

T c
2 := A(ψh − ψ, φI ) = A(ψh, φI ) − A(ψ, φI )

= (A(ψh, φI ) − Ah(ψh, φI )) + (F h(φI ) − F (φI )) + F (φI − φ) + A(ψ, φ − φI ).
(4.38)

Next, from (4.36), continuity of functional F (·) and Proposition 4.2, we have

A(ψ, φ − φI ) + F (φI − φ) ≤ Ch2s(∥ψ∥2+s,Ω + ∥f ∥0,Ω )∥∇Ehδh∥0,Ω . (4.39)

y using the definition of the functionals F (·) and F h(·) (cf. (2.6) and (3.15)), approximation properties of the projector
Π2

K , the Hölder and triangle inequalities together with Proposition 4.2, we have

F h(φI ) − F (φI ) ≤

∑
K∈Th

∥f ∥0,K∥φI −Π2
KφI∥0,K ≤ Ch2s

∥f ∥0,Ω∥∇Ehδh∥0,Ω . (4.40)

The last term in (4.38) is bounded as follow: let ψπ , φπ be the approximations of ψ and φ in P2(Th), such that
roposition 4.1 hold true. Then, adding and subtracting these terms and by using the consistency of bilinear form A(·, ·)
cf. (3.12)), we have:

A(ψh, φI ) − Ah(ψh, φI ) =

∑
K∈Th

[AK (ψh − ψπ , φI − φπ ) − Ah,K (ψh − ψπ , φI − φπ )]

≤ Ch2s(∥ψ∥2+s,Ω + ∥f ∥0,Ω )∥∇Ehδh∥0,Ω ,

(4.41)

here we have used the continuity of bilinear forms Ah,K (·, ·), AK (·, ·) together with Propositions 4.1 and 4.2, Theorem 4.1
nd estimate (4.32). Thus, from (4.39)–(4.41), we obtain

T c
2 ≤ Ch2s(∥ψ∥2+s,Ω + ∥f ∥0,Ω )∥∇Ehδh∥0,Ω . (4.42)

hen, inserting the estimates (4.36), (4.37) and (4.42) in (4.35), we have that

T2 ≤ Ch2s(∥ψ∥2+s,Ω + ∥f ∥0,Ω )∥∇Ehδh∥0,Ω . (4.43)

herefore, from (4.33), (4.34) and (4.43), we get

∥∇Ehδh∥0,Ω ≤ Ch2s(∥ψ∥2+s,Ω + ∥f ∥0,Ω ). (4.44)

hus, the H1 estimate in (4.29) follows from (4.30) and (4.44).
On the other hand, the L2 estimate in (4.29) follows from the triangle inequality, Proposition 4.2, Lemma 4.9 and

heorem 4.1. In fact,

∥ψ − ψh∥0,Ω ≤ ∥ψ − ψI∥0,Ω + ∥δh − Ehδh∥0,Ω + ∥Ehδh∥0,Ω

≤ Ch2+s
∥ψ∥2+s,Ω + Ch2(|ψh − ψ |2,h + |ψ − ψI |2,h) + C |Ehδh|1,Ω

≤ Ch2s(∥ψ∥2+s,Ω + ∥f ∥0,Ω ),

here we have used norm equivalence in V and estimate (4.44). The proof is complete. □

. Computing further fields of interest

In this section we compute discrete velocity and vorticity fields using the discrete stream-function obtained with the
onconforming virtual scheme (3.17) and suitable projections, which are computable from the degrees of freedom D1
nd D2. Moreover, we establish error estimates for these postprocessed variables, which are fields of great importance in
ceanic fluid dynamics [1–3,7,9].

.1. Computing the velocity field

We begin with the horizontal fluid velocity. First, we notice that if ψ ∈ V is the unique solution of the weak formulation
2.1), then

u = curl ψ. (5.1)

At the discrete level, we compute the velocity as a post-processing of the discrete stream-function ψh as follow: if ψh
s the unique solution of (3.17). Then, the function

uh := Π 1curl ψh (5.2)

s a computable approximation of the velocity, where we have used the notation

(Π 1w)| = Π 1 (w| ) ∀w ∈ [L2(Ω)]2 and ∀K ∈ T .
K K K h
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We observe that the function (5.2) is computable using the degrees of freedom D1 and D2 introduced in Section 3.2.
Indeed, applying integration by parts, for all q ∈ [P1(K )]2 we have∫

K
curl ψh · q =

∫
K
ψhrotq −

∫
∂K
φh(q · tK ) = rotq

∫
K
(Π2

Kψh) −

∫
∂K
φh(q · tK ).

learly, both terms above are computable using the sets D1 and D2.
The following result establishes the order of convergence between the exact and the discrete velocity:

heorem 5.1. Assume that the hypotheses of Theorem 4.1 hold true, then there exists a positive constant C, independent of
, such that

∥u − uh∥0,Ω + hs
|u − uh|1,h ≤ Ch2s(∥ψ∥2+s,Ω + ∥f ∥0,Ω ),

where s ∈ (1/2, 1] is such that ψ ∈ H2+s(Ω) ∩ V (cf. Theorem 2.2).

Proof. From (5.1) and (5.2), the triangle inequality, stability and approximation properties of projector Π 1
K , we have:

|u − uh|
2
1,h =

∑
K∈Th

|curl ψ − Π 1
Kcurl ψh|

2
1,K

≤ C

⎛⎝ ∑
K∈Th

h2s
K ∥curl ψ∥

2
1+s,K +

∑
K∈Th

|Π 1
Kcurl (ψ − ψh)|21,K

⎞⎠
≤ Ch2s (

∥ψ∥
2
2+s,Ω + ∥f ∥2

0,Ω

)
,

here we have used Theorem 4.1.
The proof of the L2 estimate is obtained repeating the above arguments and using Theorem 4.2. □

.2. Computing the vorticity field

Now, we will present an strategy to compute the fluid vorticity ω as a postprocess from the discrete stream-function
h of the VEM (3.17) by using the projection Π0

K defined in (3.6), with m = 0.
We recall that the vorticity ω = rotu, then using the identity u = curl ψ , we get

ω = rotu = rot(curl ψ) = −∆ψ. (5.3)

e compute a discrete vorticity as follows: if ψh ∈ Vh is the unique solution of (3.17), then the function

ωh := −Π0(∆ψh) (5.4)

s an approximation of the fluid vorticity, where we have used the notation

(Π0v)|K = Π0
K (v|K ) ∀v ∈ L2(Ω) and ∀K ∈ Th.

e observe that the function defined (5.4) is fully computable using directly the degree of freedom D2. Indeed, by using
he definition of Π0

K and integration by parts, we obtain

ΠK
0 ∆ψh =

1
|K |

∫
∂K
∂nKψh,

where |K | denotes the area of polygon K .
We have the following convergence result for the discrete vorticity.

Theorem 5.2. Assume that the hypotheses of Theorem 4.1 hold true, then there exists a positive constant C, independent of
h, such that

∥ω − ωh∥0,Ω ≤ Chs(∥ψ∥2+s,Ω + ∥f ∥0,Ω ),

where s ∈ (1/2, 1] is such that ψ ∈ H2+s(Ω) ∩ V (cf. Theorem 2.2).

Proof. The proof follows from (5.3), (5.4) and the same arguments used in Theorem 5.1. □

emark 5.1. We note that following the same arguments as in this section we can recover the potential vorticity variable,
iven by (see [4, Equation (6)]):

q := −
U
∆ψ + y,
βL2
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Fig. 1. Domain discretized with different meshes: (a) Square, (b) non-convex mesh, (c) uniform polygon and (d) Voronoi mesh.

here L is the characteristic length scale, β is the coefficient multiplying the y-coordinate in the β-plane approximation
nd U is the Sverdrup velocity (for further details see for instance [4]). A result analogous to Theorem 5.2 can be proven
n this case.

. Numerical results

In this section, we would like to discuss three numerical experiments to justify our theoretical estimates derived in
ections 4 and 5. Numerical experiments are performed over different type of polygonal meshes such as square, non-
onvex mesh, uniform polygon, and Voronoi mesh (see Fig. 1). For all test cases, errors are computed in broken H2-, H1-
nd L2-norms and the Munk and Stommel parameters are chosen as ϵM = 6 × 10−5 and ϵS = 0.05, respectively, for the
irst and third test, while for the second example we have set ϵM = ϵS = 1. In the first numerical test, we have considered
solution with a boundary layer on the left hand side. In second example, we consider a non-convex L-shaped domain

o justify theoretical rate of convergence in different norms. In the third test we investigate the behavior of our scheme
onsidering a realistic problem with the wind forcing term. In addition, by using post-processing technique, we have
omputed discrete velocity and vorticity fields from discrete stream-function ψh as described in Section 5. We compute
he errors for stream-function ψ , velocity u, and vorticity ω fields in different computable norms as follows

• Ei(ψ) := |ψ −ΠDψh|i,h ∀i ∈ {0, 1, 2};
• Ei(u) := |u − uh|i,h = |curl ψ − Π 1curl ψh|i,h ∀i ∈ {0, 1};
• E0(ω) := ∥ω − ωh∥0,Ω = ∥∆ψ −Π0(∆ψh)∥0,Ω .

Further, we introduce, the notation Ri(η), i ∈ {0, 1, 2} to denote the rate of convergence in broken H2-, H1- and
2-norms, where η ∈ {ψ,u, ω}.

.1. Test 1. Western boundary layer

Inspired by [3,4], we have examined western boundary layer model problem on square domain Ω := (0, 1)2. The
nalytical solution is given by

ψ(x, y) =
1
π2

(
(1 − x)(1 − e−5x) sin(πy)

)2
.

Further, the right hand side force function f is computed using (1.1).
In Fig. 2, we have posted the discrete stream-function ψh and exact stream-function ψ and it is noticed that a thin

oundary layer appeared near x = 0, corresponding to a western boundary layer. In Fig. 3, the approximated and exact
orticity of the above mentioned problem are displayed. The rate of convergence of stream-function ψh is displayed
n Fig. 4. Using post-processing technique, we approximate corresponding velocity u, and vorticity field ω in Fig. 5. In
ontinuation, we would like to highlight that the presence of small coefficients Munk and Stommel parameters affect
he decay of errors in different norms for stream-function as well as velocity and vorticity field for coarse meshes
hich eventually reduce the rate of convergence as shown in Fig. 4 and in Fig. 5, respectively. However, for finer mesh,
xperimental order of convergence matches with the theoretical order of convergence.

.2. Test 2. L-shaped domain with exact solution

In this example we solve the Stommel–Munk model (1.1) on an L-shaped domain:Ω := (−1, 1)2\([0, 1)×(−1, 0]). For
he experiment, we have considered a triangular mesh with coefficients ϵ = 1 and ϵ = 1 and we take the right hand
M S
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ψ

f

Fig. 2. Test 1. Numerical approximation of stream function of western boundary layer problem. Computational domain is discretized with square
mesh with mesh size h = 1/64.

Fig. 3. Test 1. Numerical approximation of vorticity of western boundary layer problem. Computational domain is discretized with square mesh
with mesh size h = 1/64.

Fig. 4. Test 1: Convergence of the stream-function ψ in broken H2-, H1- and L2-norms with mesh refinement for different types of discretization.

side term and nonhomogeneous Dirichlet boundary conditions in such a way that the exact solution in polar coordinates
is given by

ψ(r, θ ) = r5/3 sin
(5θ

3

)
.

The analytical solution ψ is singular at the re-entrant corner of the computational domain Ω . Further, we have
∈ H

8
3 −ϵ(Ω) for ϵ > 0. From the analysis and according to the regularity it is predicted that the order of convergence

or stream-function ψ is O(h2/3) in broken H2-norm and which is clearly observed in Table 1. In the same table it can be
20
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Table 1
Test 2. Errors for the stream-function in broken H2-, H1- and L2-norms obtained with ϵM = 1 and ϵS = 1.
h E2(ψ) R2(ψ) E1(ψ) R1(ψ) E0(ψ) R0(ψ) E1(u) R1(u) E0(u) R0(u) E0(ω) R0(ω)

1/2 5.5569e−1 – 6.4046e−2 – 1.2167e−2 – 5.4887e−1 – 6.4153e−2 – 2.4074e−1 –
1/4 3.7465e−1 0.56 2.5424e−2 1.33 3.6058e−3 1.75 3.7410e−1 0.55 2.5419e−2 1.33 1.5905e−1 0.60
1/8 2.3728e−1 0.65 8.8470e−3 1.52 1.3224e−3 1.44 2.3727e−1 0.66 8.8415e−3 1.52 1.0174e−1 0.64
1/16 1.4764e−1 0.68 3.1226e−3 1.50 5.5058e−4 1.27 1.4731e−1 0.68 3.1225e−3 1.50 6.5059e−2 0.65
1/32 9.1830e−2 0.68 1.1808e−3 1.40 2.3605e−4 1.22 9.1760e−2 0.68 1.1808e−3 1.40 4.1388e−2 0.65

Fig. 5. Test 1: Convergence of the velocity u in broken H1- and L2-norms and vorticity ω in L2-norm with mesh refinement for different types of
discretization.

Fig. 6. Test 2. Non-convex domain.

bserved that the error of stream-function approximation in H1-norm decay slightly higher order than the expected rate
f convergence. Moreover, we notice that the rates of convergence predicted in Theorems 5.1 and 5.2 are attained by the
ostprocessed variables velocity and vorticity. Finally, the numerical and exact solutions are depicted in Fig. 6.

.3. Test 3. Real example with the wind forcing term

In this section, we would like to study one more realistic example where the external force function is considered
rom the derivatives of wind stress as mentioned in [3]. The computational domain is considered as Ω := (0, 3)× (0, 1) \
(0, 3/2] × [1/2, 1)} and the forcing term f = sin(πy). In Fig. 7, we have depicted the numerical approximations of the
tream-function and velocity fields, together with the streamlines obtained with a Voronoi mesh with 18 817 degree of
reedom, ϵM = 6 × 10−5 and ϵS = 0.05. The numerical solution have analogous behavior as mentioned in [3]. Further,
the numerical solution near the corner are well captured which validate the capability of our algorithm.
21
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Fig. 7. Test 3. Numerical approximation of velocity field uh and stream function ψh .
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