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We introduce a new finite element method for the approximation of the three-dimensional Brinkman
problem formulated in terms of the velocity, vorticity and pressure fields. The proposed strategy exhibits the
advantage that, at the continuous level, a complete decoupling of vorticity and pressure can be established
under the assumption of sufficient regularity. The velocity is then obtained as a simple postprocess from
vorticity and pressure, using the momentum equation. Well-posedness follows straightforwardly by the
Lax–Milgram theorem. The Galerkin scheme is based on Nédélec and piecewise continuous finite elements
of degree k ≥ 1 for vorticity and pressure, respectively. The discrete setting uses the very same ideas as
in the continuous case, and the error analysis for the vorticity scheme is carried out first. As a byproduct
of these error bounds and the problem decoupling, the convergence rates for the pressure and velocity are
readily obtained in the natural norms with constants independent of the viscosity. We also present details
about how the analysis of the method is modified for axisymmetric, meridian Brinkman flows; and modify
the decoupling strategy to incorporate the case of Dirichlet boundary conditions for the velocity. A set
of numerical examples in two and three spatial dimensions illustrate the robustness and accuracy of the
finite element method, as well as its competitive computational cost compared with recent fully mixed and
augmented formulations of incompressible flows.

Keywords: Brinkman equations; vorticity formulation; decoupling of unknowns; finite elements; axisym-
metric domains; error analysis; optimal convergence; generalized Stokes problem.

1. Introduction

The numerical solution of incompressible flow problems (Stokes, Navier–Stokes, Stokes–Darcy) formu-
lated in terms of the vorticity, velocity and pressure fields, has been carried out using diverse discretization
techniques going from spectral to discontinuous Galerkin, fully mixed, augmented finite elements (FEs)
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and axisymmetric formulations (see, e.g., Ern et al., 1999; Amara et al., 2007; Amoura et al., 2007;
Bernardi & Chorfi, 2007; Cockburn & Cui, 2012; Salaün & Salmon, 2015; Alvarez et al., 2016; Anaya
et al., 2016a, and the references therein).

Of particular interest for us is the linear Brinkman problem, which stands as a suitable framework
for the study of Stokes and Darcy flows (cf. Guzmán & Neilan, 2012), as well as semidiscretizations
of transient Stokes equations. For the velocity–vorticity–pressure formulation of this problem, in Anaya
et al. (2015a) the authors proposed augmented mixed formulations based on Raviart–Thomas FEs for
the velocity and piecewise continuous FEs for the vorticity and pressure, also deriving solvability and
error estimates using the Lax–Milgram theory. On the other hand, a dual mixed formulation (in three-
dimensional) has been introduced and analyzed in Vassilevski & Villa (2014), where the well-posedness
of the continuous and discrete formulations is established by virtue of the Babuška–Brezzi theory. The
Galerkin scheme in this case is based on Nédélec, Raviart–Thomas and piecewise discontinuous FEs for
vorticity, velocity and pressure, respectively. Optimal error estimates and efficient preconditioners were
introduced as well. Finally, we mention the stabilized mixed method analyzed for the axisymmetric case
in Anaya et al. (2015b), where a priori error estimates are derived uniformly in the viscosity. In contrast
with these contributions, in this paper we propose a novel formulation based on two elliptic problems (one
for vorticity and the other for pressure) plus a velocity postprocessing. This strategy entails a reduction in
computational cost compared with fully mixed or augmented vorticity–velocity–pressure formulations
applied to the same problem. A further feature is that the overall scheme reduces to the solution of
two positive definite algebraic systems (see Section 6). A similar decoupling exploiting the momentum
equation has been employed for stationary fluid–structure interaction problems (Gatica et al., 2007) and,
more recently, also in the context of Brinkman flows (Gatica et al., 2014) and the Stokes eigenvalue
problem (Meddahi et al., 2015).

Irrespective of the specific form of the flow model, the recovering of accurate flow patterns at an
affordable computational burden has proven elusive in the past few decades. Several approaches can be
followed, among which one can roughly highlight three main categories (that can be also combined with
each other): (a) reformulation of the model problem via splitting, (b) using of high performance computing
techniques to achieve satisfactory accuracy for large scale problems, and (c) introduction of multilevel or
multiscale representations of the solutions. Here, we essentially deal with option (a), which in principle
does not need sophisticated numerical nor refined computational techniques. The idea is related to Uzawa
or prediction–correction type methods (Gornak et al., 2013), and is based on decomposing a large saddle
point problem into smaller, elliptic ones, but the advantage here is that no splitting error is introduced.
Similar strategies (decoupling vorticity from the other fields) also include the immersed boundary method
splitting velocity and vorticity proposed in Poncet (2009), and the decoupled vorticity–stream function
formulation analyzed in Liu & E (2001).

Here we will exploit typical regularity assumptions and the boundary conditions to reformulate the
coupled problem as two elliptic problems (one for vorticity and the other for pressure) plus a velocity
postprocessing. Provided that one does not require to recover velocity patterns directly (common practice
in subsurface flow computations, cf. Riaz & Meiburg, 2003), only the vorticity problem needs to be solved.
Alternatively, if only pressure profiles are sought, there is no need to solve the vorticity equations and only
a generalized Laplace problem will yield the pressure distribution. The decoupling of unknowns implies
in particular that the involved variational formulation can be analyzed using standard tools for elliptic
problems, namely the Lax–Milgram theorem and suitable Céa estimates. We will consider piecewise
continuous polynomials of degree k ≥ 1 to approximate vorticity and pressure. Unique solvability of
the discrete problems follow by adapting the same tools utilized for the continuous case. Under enough
regularity the FE scheme converges with optimal rate; such estimates are fully independent of the viscosity
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(as desired in Brinkman-related problems). In addition, we also analyze the continuous and discrete
problems written in axisymmetric coordinates. Adequate modifications to the functional framework
allow us to consider practically the same arguments as in the Cartesian case. We also investigate the
case of Dirichlet boundary conditions for the velocity—a particularly attractive feature, since boundary
conditions for the vorticity are no longer required. However, at both continuous and discrete levels, the
original system cannot be decoupled into two elliptic problems plus one postprocessing, as before. In this
case we write a new formulation as a vorticity–pressure problem, providing the corresponding stability,
and error estimates.

The contents of the paper have been structured as follows. Functional spaces and recurrent notation
will be collected in the remainder of this Section. The governing equations stated in terms of velocity,
vorticity and pressure are presented in Section 2. There, we derive the splitting of the problem into three
main parts and establish their solvability. The approximation via FEs, the well-posedness of the associated
discrete problems and the corresponding error analysis will be given in Section 3. Remarks on how the
analysis is modified in case of axisymmetric formulations are provided in Section 4. Next, the extension
to Dirichlet velocities is discussed in Section 5. Several numerical tests illustrating the convergence of the
proposed method under different scenarios are reported in Section 6. Finally, we draw some conclusion
in Section 7.

1.1 Preliminaries

Let Ω be a bounded domain of R
3 with Lipschitz boundary Γ = ∂Ω . For any s ≥ 0, the notation

‖·‖s,Ω stands for the norm of the Hilbertian Sobolev spaces Hs(Ω) or Hs(Ω)3, with the usual convention
H0(Ω) := L2(Ω). For s ≥ 0, we recall the definition of the Hilbert space

Hs(curl; Ω) := {
θ ∈ Hs(Ω)3 : curl θ ∈ Hs(Ω)3

}
,

endowed with the norm ‖θ‖2
Hs(curl;Ω) := ‖θ‖2

s,Ω + ‖curl θ‖2
s,Ω , and we will denote H(curl; Ω) :=

H0(curl; Ω).
Moreover, c and C, with or without subscripts, tildes or hats, will represent a generic constant inde-

pendent of the mesh parameter h, assuming different values in different occurrences. In addition, for any
vector fields θ = (θi)i=1,2,3, v = (vi)i=1,2,3 and any scalar field q, we recall the notation:

div v = ∂1v1 + ∂2v2 + ∂3v3, θ × v =
⎛
⎝θ2v3 − θ3v2

θ3v1 − θ1v3

θ1v2 − θ2v1

⎞
⎠, curl v =

⎛
⎝∂2v3 − ∂3v2

∂3v1 − ∂1v3

∂1v2 − ∂2v1

⎞
⎠, ∇q =

⎛
⎝∂1q

∂2q
∂3q

⎞
⎠.

Let us introduce the following functional spaces:

Z := {θ ∈ H(curl; Ω) : θ × n = 0 on Γ } and Q := H1(Ω) ∩ L2
0(Ω).

We endow the space Q with its natural norm:

‖q‖Q := (‖q‖2
0,Ω + ‖∇q‖2

0,Ω

)1/2
.
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However, for the space Z we will consider the following μ-dependent norm:

‖θ‖Z := (‖θ‖2
0,Ω + μ‖ curl θ‖2

0,Ω

)1/2
.

2. The model problem and well-posedness analysis

Let us consider the well-known Brinkman problem modeling the steady-state flow of an incompressible
viscous fluid within a porous medium. The governing equations can be stated in terms of the velocity
u, the scaled vorticity ω and the pressure p of an incompressible viscous fluid (cf. Vassilevski & Villa,
2014; Anaya et al., 2015a, 2016a): given a sufficiently smooth force density f , we seek a triplet (u, ω, p)

such that

κ−1u + √
μ curl ω + ∇p = f in Ω , (2.1)

ω − √
μ curl u = 0 in Ω , (2.2)

div u = 0 in Ω , (2.3)

u · n = un on Γ , (2.4)

ω × n = ω0 on Γ , (2.5)

where u · n stands for the normal component of the velocity, μ > 0 is the kinematic viscosity of the
fluid, and κ > 0 is the rescaled permeability of the porous skeleton (assumed constant). The boundary
conditions considered here are relevant in the context of, e.g., geophysical fluids and shallow water models
(Karlsen & Karper, 2012).

For the sake of conciseness of the presentation, we will work with homogeneous boundary conditions
for the normal velocity and, subsequently, for the vorticity, i.e., un = 0, and ω0 = 0 on Γ . Nevertheless,
these restrictions do not affect the generality of the forthcoming analysis, which can be further extended
to consider other types of boundary conditions, such as, e.g. (cf. Vassilevski & Villa, 2014)

u × n = b and p = p0 on Γ . (2.6)

Moreover, if Γ admits a disjoint partition Γ = Γ1 ∪ Γ2, the analysis can be also extended to impose,
for instance, (2.4) and (2.5) on Γ1 and (2.6) on Γ2. Other alternatives include Groşan et al. (2015), or to
consider Robin boundary data as analyzed for velocity–pressure boundary value formulations in Kohr et
al. (2014).

The following result is part of Remark 2.5 in Girault & Raviart (1986).

Lemma 2.1 For every v ∈ Z, it holds that div(curl v) = 0 in Ω and (curl v) · n = 0 on Γ .

We proceed to test (2.2) against a generic θ ∈ Z. Then, integrating by parts and using the boundary
conditions, we arrive at ∫

Ω

ω · θ − √
μ

∫
Ω

u · curl θ = 0 ∀θ ∈ Z. (2.7)

Next, from (2.1) we readily have

κ−1u = f − √
μ curl ω − ∇p in Ω , (2.8)
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and after replacing (2.8) in (2.7), we obtain

κ−1

∫
Ω

ω · θ + μ

∫
Ω

curl ω · curl θ + √
μ

∫
Ω

∇p · curl θ = √
μ

∫
Ω

f · curl θ ∀θ ∈ Z. (2.9)

Finally, using again an integration by parts, the fact that θ ∈ Z and using Lemma 2.1, we can eliminate
the pressure term and rewrite (2.9) as a variational formulation of the Brinkman problem stated only in
terms of the vorticity: find ω ∈ Z such that

A(ω, θ) = F(θ) ∀θ ∈ Z, (2.10)

where the bilinear form A : Z × Z → R and the linear functional F : Z → R are defined by

A(ω, θ) := κ−1

∫
Ω

ω · θ + μ

∫
Ω

curl ω · curl θ , F(θ) := √
μ

∫
Ω

f · curl θ .

Now we establish the unique solvability of (2.10).

Theorem 2.2 (Vorticity solution) Assume that f ∈ L2(Ω)3. Then, there exists a unique solution ω ∈ Z
to (2.10). Moreover, there exists C > 0 such that

‖ω‖Z ≤ C‖ f‖0,Ω .

Proof. First, we observe that the bilinear form A and the linear functional F are bounded with a constant
independent of μ. More precisely there exist C1, C2 > 0 such that

|A(ω, θ)| ≤ C1‖ω‖Z‖θ‖Z and |F(θ)| ≤ C2‖θ‖Z.

In addition, it is straightforward to see that A(·, ·) is elliptic over the whole space Z. Therefore, the result
follows as a direct consequence of the Lax–Milgram theorem. �

Remark 2.3 (Pressure solve) Let us notice that, as a consequence of the generalized Poincaré inequality
and the Lax–Milgram theorem, the pressure field can be computed as the unique solution of the following
problem: find p ∈ Q such that ∫

Ω

∇p · ∇q =
∫

Ω

f · ∇q ∀q ∈ Q. (2.11)

This variational formulation has been obtained by testing (2.1) with ∇q for q ∈ Q and using integration
by parts, combined with (2.3) and the boundary conditions (2.4) and (2.5). Moreover, the following
continuous dependence holds: there exists C > 0 such that

‖p‖Q ≤ C‖ f‖0,Ω .

Remark 2.4 (Boundary data) As mentioned in the introduction, if instead of (2.4) and (2.5), we consider
Dirichlet conditions for the velocity, then the problem—written in the specific form (2.1–2.3)—cannot be
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completely split into (2.10) and (2.11) using classical tools. Moreover, it is not clear how to analyze that
problem without compromising the regularity of solutions and the convergence of the discrete schemes, as
discussed in Arnold et al. (2012) for the approximation of the vector Laplacian, and in Anaya et al. (2016a)
and Vassilevski & Villa (2014) for Brinkman equations. However, as we will see in Section 5, Dirichlet
velocities can be directly incorporated after reformulating the problem as a coupled vorticity–pressure
system.

3. FE approximation

In this section we introduce the Galerkin scheme of problem (2.10) and analyze its well-posedness by
establishing suitable assumptions on the FE subspaces involved. Error estimates are also derived.

3.1 Formulation and solvability

Let {Th(Ω)}h>0 be a shape-regular family of partitions of the polyhedral region Ω̄ , by tetrahedrons T of
diameter hT , with mesh size h := max{hT : T ∈ Th(Ω)}. In what follows, given an integer k ≥ 1 and a
subset S of R

3, Pk(S) denotes the space of polynomial functions defined in S of total degree ≤ k.
Moreover, for any T ∈ Th(Ω), we introduce the following local space (local Nédélec space):

Nk(T) := Pk−1(T)3 ⊕ Rk(T),

where Rk(T) := {rh ∈ Pk(T)3 : each component of rh is a homogeneous polinomial of degree k and rh ·
x = 0, and let us define the following FE subspaces:

Zh := {θ h ∈ Z : θ h|T ∈ Nk(T) ∀T ∈ Th(Ω)}, (3.1)

Qh := {qh ∈ Q : qh|T ∈ Pk(T) ∀T ∈ Th(Ω)}. (3.2)

Then, the Galerkin scheme associated with the continuous variational formulation (2.10) reads as
follows: find ωh ∈ Zh such that

κ−1

∫
Ω

ωh · θ h + μ

∫
Ω

curl ωh · curl θ h = √
μ

∫
Ω

f · curl θ h ∀θ h ∈ Zh. (3.3)

We are now in a position to state the main result of this section, which yields the solvability of the
discrete vorticity Brinkman problem (3.3) and the corresponding Céa estimate.

Theorem 3.1 (Discrete vorticity solvability) Let k ≥ 1 be an integer and let Zh be given by (3.1). Then,
there exists a unique solution ωh ∈ Zh to problem (3.3), and there exists a positive constant C > 0 such
that the following continuous dependence result holds:

‖ωh‖Z ≤ C‖ f‖0,Ω .

Moreover, there exists a constant Ĉ > 0 such that

‖ω − ωh‖Z ≤ Ĉ inf
θh∈Zh

‖ω − θ h‖Z, (3.4)

where C and Ĉ are independent of μ and h, and ω ∈ Z is the unique solution to problem (2.10).
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Now, we introduce the FE discretization of (2.11): find ph ∈ Qh such that∫
Ω

∇ph · ∇qh =
∫

Ω

f · ∇qh ∀qh ∈ Qh. (3.5)

The following result establishes the unique solvability of the discrete pressure problem (3.5) and the
corresponding Céa estimate.

Theorem 3.2 (Discrete pressure solvability) Let k ≥ 1 be an integer and let Qh be given by (3.2). Then,
there exists a unique solution ph ∈ Qh to problem (3.5), and there exists a positive constant C > 0 such
that the following continuous dependence result holds:

‖ph‖Q ≤ C‖ f‖0,Ω .

Moreover, there exists a constant Ĉ > 0 such that

‖p − ph‖Q ≤ Ĉ inf
qh∈Qh

‖p − qh‖Q, (3.6)

where C and Ĉ are independent of μ and h, and p ∈ Q is the unique solution to problem (2.11).

3.2 Convergence analysis

According to (3.4) and (3.6), it only remains to prove that ω and p can be conveniently approximated
by functions in Zh and Qh, respectively. With this purpose we introduce for s > 1/2 the Nédeléc global
interpolation operator Rh : Hs(curl; Ω) ∩ Z → Zh (see, e.g., Alonso & Valli, 1999). This map satisfies
the following property.

Lemma 3.3 For all θ ∈ Hs(curl; Ω), s ∈ (1/2, k] there exists C > 0, independent of h, such that

‖θ − Rhθ‖Z ≤ Chs‖θ‖Hs(curl;Ω).

Now, for all s > 1/2, let Π : H1+s(Ω) ∩ Q → Qh be the usual Lagrange interpolant, for which the
following error estimate is available:

Lemma 3.4 For all q ∈ H1+s(Ω), s ∈ (1/2, k] there exists C > 0, independent of h, such that

‖q − Πhq‖Q ≤ Chs‖q‖H1+s(Ω).

We now turn to the statement of convergence properties of the discrete problems (3.3) and (3.5).

Theorem 3.5 (Convergence of vorticity and pressure) Let k ≥ 1 and let Zh and Qh be given by (3.1) and
(3.2), respectively. Let ω ∈ Z and ωh ∈ Zh be the unique solutions to the continuous and discrete problems
(2.10) and (3.3), respectively, and let p ∈ Q and ph ∈ Qh be the unique solutions to the continuous and
discrete problems (2.11) and (3.5), respectively. Assume that ω ∈ Hs(curl; Ω) and p ∈ H1+s(Ω), for
some s ∈ (1/2, k]. Then, there exists C > 0 independent of h and μ such that

‖ω − ωh‖Z ≤ Chs‖ω‖Hs(curl;Ω), ‖p − ph‖Q ≤ Chs‖p‖H1+s(Ω).
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Proof. The proof follows from (3.4), (3.6), and error estimates from Lemmas 3.3 and 3.4. �

3.3 Recovering the velocity field

Solution of (2.10) delivers the vorticity field, whereas the pressure can be obtained from (2.11). In
addition, it is possible to readily obtain the remaining quantity of interest in (2.1)–(2.5) (the velocity u):
if ω ∈ Z and p ∈ Q are the unique solutions of (2.10) and (2.11), respectively, then according to (2.8)
we have that

u = κ
(
f − √

μ curl ω − ∇p
)
. (3.7)

At the discrete level, this strategy corresponds to computing the velocity as a postprocessing of vorticity
and pressure: if ωh ∈ Zh and ph ∈ Qh are the unique solutions of (3.3) and (3.5), respectively, then the
function

uh := κ
(
Phf − √

μ curl ωh − ∇ph

)
(3.8)

is an approximation of the velocity, where

Ph : L2(Ω)3 → Uh := {vh ∈ L2(Ω)3 : vh|T ∈ Pk−1(T)3 ∀T ∈ Th(Ω)}
is the L2-orthogonal projector. Then, for any s ∈ (0, k],

‖v − Phv‖0,Ω ≤ Chs‖v‖s,Ω . (3.9)

We note uh is elementwise discontinuous. If other properties at the discrete level are sought (such as
locally divergence-free) further projection steps are required.

The accuracy of such approximation is established in the following result.

Theorem 3.6 (Convergence of velocity) Let ω ∈ Z and p ∈ Q be the unique solutions of (2.10) and
(2.11), respectively, and ωh ∈ Zh and ph ∈ Qh be the unique solutions of (3.3) and (3.5), respectively.
Assume that ω ∈ Hs(curl; Ω), p ∈ H1+s(Ω) and f ∈ Hs(Ω)3, for some s ∈ (1/2, k]. Then, there exists
C > 0 independent of h and μ such that

‖u − uh‖0,Ω ≤ Chs
(‖ f‖Hs(Ω) + ‖ω‖Hs(curl;Ω) + ‖p‖H1+s(Ω)

)
.

Proof. From (3.7) and (3.8), and the triangle inequality, it follows that

‖u − uh‖0,Ω ≤ κ
(‖ f − Phf‖0,Ω + ‖√μ curl(ωh − ω)‖0,Ω + ‖∇(p − ph)‖0,Ω

)
.

Then, the result follows from Theorem 3.5 and (3.9). �

4. The axisymmetric case

Let us now assume that the forcing term in (2.1), the domain Ω and the nonswirling flow patterns are all
symmetric with respect to a given axis Γs, lying on r = 0. Therefore, system (2.1–2.5) can be recast as the
following axisymmetric problem, with unknowns ur , uz, ω and p (radial and vertical velocity components,
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Fig. 1. Sketch of a full three-dimensional domain Ω with boundary Γ and the axisymmetric meridional domain Ωa with boundary
Γa (left and right, respectively). Here Γs stands for the symmetry axis.

scalar vorticity and pressure), defined in the meridional domain Ωa (see Fig. 1):

κ−1u + √
μ curla ω + ∇p = f in Ωa, (4.1)

ω − √
μ rot u = 0 in Ωa, (4.2)

diva u = 0 in Ωa, (4.3)

u · n = 0 on Γa, (4.4)

ω = 0 on Γa, (4.5)

where the additional differential operators acting on vectors v = (vr , vz) and scalars ϕ read

diva v := ∂zvz + r−1∂r(rvr), rot v := ∂rvz − ∂zvr , curla ϕ := (∂zϕ, −r−1∂r(rϕ))T .

An augmented mixed FE scheme for the problem above has been recently analyzed in Anaya et al.
(2015b), where a priori error estimates are derived uniformly in the viscosity (see also a variant applied
to the stream function–vorticity formulation in Anaya et al., 2016b). As we will see, following the
decoupling strategy implemented in Sections 2 and 3 will yield a computationally attractive alternative
to that formulation. First, we recall some notation and relations of weighted spaces, specialized to our
needs.

By Lp
α(Ωa) we denote the weighted Lebesgue space of measurable functions ϕ for which

‖ϕ‖p

L
p
α(Ωa)

:=
∫

Ωa

|ϕ|p rα dr dz < ∞,

and by L2
1,0(Ωa) we denote the restriction of L2

1(Ωa) to functions with zero-weighted integral. Moreover,
the space Hk

r (Ωa) consists of all functions in L2
1(Ωa) whose derivatives up to order k are also in L2

1(Ωa),
and related norms and seminorms are defined in the standard way. In particular,

|ϕ|2
H1

1(Ωa)
:=

∫
Ωa

(|∂rϕ|2 + |∂zϕ|2) r dr dz,
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and the space H̃1
1(Ωa) := H1

1(Ωa) ∩ L2
−1(Ωa), endowed with the μ-dependent norm

‖ϕ‖H̃1
1(Ωa) :=

(
‖ϕ‖2

L2
1(Ωa)

+ μ |ϕ|2
H1

1(Ωa)
+ μ ‖ϕ‖2

L2−1(Ωa)

)1/2
,

is a Hilbert space. We will also require the following weighted scalar and vectorial functional spaces:

Za := {
ϕ ∈ H̃1

1(Ωa); ϕ = 0 on Γa

}
, Qa := H1

1(Ωa) ∩ L2
1,0(Ωa),

H(diva, Ωa) := {
v ∈ L2

1(Ωa)
2; diva v ∈ L2

1(Ωa)
}
, H(rot, Ωa) := {

v ∈ L2
1(Ωa)

2; rot v ∈ L2
1(Ωa)

}
.

The spaces H(diva, Ωa) and H(curla, Ωa) are endowed, respectively, with the norms

‖v‖2
H(diva ,Ωa) := ‖v‖2

L2
1(Ωa)2 + ‖ diva v‖2

L2
1(Ωa)

, ‖ϕ‖2
H(curla ,Ωa) := ‖ϕ‖2

L2
1(Ωa)

+ μ‖ curla ϕ‖2
L2

1(Ωa)2 .

Furthermore, ‖ · ‖H(curla ,Ωa) and ‖·‖H̃1
1(Ωa) are equivalent norms, and for any ϕ ∈ H̃1

1(Ωa) they verify

√
μ‖ curla ϕ‖L2

1(Ωa)2 ≤ √
2 ‖ϕ‖H̃1

1(Ωa), ‖ϕ‖H̃1
1(Ωa) ≤ ‖ϕ‖H(curla ,Ωa) ≤ √

2 ‖ϕ‖H̃1
1(Ωa). (4.6)

A variational formulation for system (4.1–4.5) is derived as in Section 2. In particular, we repeat
the arguments in (2.7)–(2.9) together with Lemmas 1.2 and 1.3 from Anaya et al. (2015b), to obtain the
following variational formulation: find ω ∈ Za such that

Aa(ω, θ) = Fa(θ) ∀θ ∈ Za, (4.7)

where the bilinear form Aa : Za × Za → R and the linear functional Fa : Za → R are now defined as

Aa(ω, θ) := κ−1

∫
Ωa

ω · θ dr dz + μ

∫
Ωa

curla ω · curla θ dr dz , Fa(θ) := √
μ

∫
Ωa

f · curla θ dr dz .

In a similar manner, the pressure p ∈ Qa can be computed from∫
Ωa

∇p · ∇q dr dz =
∫

Ωa

f · ∇q dr dz ∀q ∈ Qa. (4.8)

The well-posedness analysis of (4.7) and (4.8) can be treated in the same way as done in Section 2: as
a consequence of (4.6) and the Lax–Milgram theorem problem (4.7) admits a unique solution. Moreover,
there exists C > 0 independent of μ such that

‖ω‖Za ≤ C‖ f‖0,Ωa .

Analogously, the unique solvability of problem (4.8) derives from the generalized Poincaré inequality
and the Lax–Milgram theorem. Also the following continuous dependence holds: there exists C > 0
independent of μ such that

‖p‖Qa ≤ C‖ f‖0,Ωa .
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Introducing the FE subspaces (for any k ≥ 1)

Za
h := {θh ∈ Za : θh|T ∈ Pk(T) ∀T ∈ Th(Ωa)}, (4.9)

Qa
h := {qh ∈ Qa : qh|T ∈ Pk(T) ∀T ∈ Th(Ωa)}, (4.10)

we can write a Galerkin scheme associated with (4.7): find ω ∈ Za
h such that

Aa(ωh, θh) = Fa(θh) ∀θh ∈ Za
h, (4.11)

whereas the discrete counterpart of (4.8) reads: find ph ∈ Qa
h such that

∫
Ωa

∇ph · ∇qh dr dz =
∫

Ωa

f · ∇qh dr dz ∀qh ∈ Qa
h. (4.12)

Additionally, as in Section 3.3, we can compute continuous and discrete velocities using

u = κ
(

f − √
μ curla ω − ∇p

)
, (4.13)

uh := κ
(
Ph f − √

μ curla ωh − ∇ph

)
. (4.14)

Well-posedness and error estimates for (4.11) and (4.12) can be established following the lines of Section
3. Moreover, Mercier & Raugel (1982, Lemma 6.3) implies that the following estimate holds (see also
Belhachmi et al., 2006).

Lemma 4.1 There exists C > 0, independent of h and μ, such that for all θ ∈ Hk+1
1 (Ωa)

‖θ − Πhθ‖H̃1
1(Ωa) ≤ Chk ‖θ‖Hk+1

1 (Ωa)
,

where Πh : H̃1
1(Ωa) ∩ H2

1(Ωa) → Za
h is the Lagrange interpolator of a sufficiently smooth θ .

Theorem 4.2 (Convergence of vorticity, pressure and velocity) Let k ≥ 1 and let Za
h and Qa

h be given
by (4.9) and (4.10), respectively. Let ω ∈ Za and ωh ∈ Za

h be the unique solutions to the continuous
and discrete problems (4.7) and (4.11), respectively, and let p ∈ Qa and ph ∈ Qa

h be the unique solutions
to the continuous and discrete problems (4.8) and (4.12), respectively. Assume that ω ∈ Hk+1

1 (Ωa) and
p ∈ Hk+1

1 (Ωa). Then, there exists C > 0 independent of h and μ such that

‖ω − ωh‖Za + ‖p − ph‖Qa + ‖u − uh‖0,Ωa ≤ Chk
(
‖ω‖Hk+1

1 (Ωa)
+ ‖p‖Hk+1

1 (Ωa)

)
.

Proof. The proof follows from a Céa estimate, Lemma 4.1, and (4.13) and (4.14). �
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5. The case of no-slip velocity boundary conditions

As mentioned in Remark 2.4, the case of Dirichlet data for the velocity cannot be readily analyzed under
the same framework of Sections 2 and 3. Here we rewrite the Brinkman equations as a vorticity–pressure
system, followed by the postprocess (3.7) (or (3.8) in the discrete case) to recover the velocity.

5.1 A new vorticity–pressure formulation

Let us then consider (2.1–2.3) equipped with

u = 0 on Γ , (5.1)

as the only boundary condition. An advantage of fixing also the tangent component of the velocity on the
boundary (giving therefore no-slip velocities) is that no boundary conditions need to be imposed on the
vorticity.

Testing (2.2) against θ ∈ Ẑ := H(curl; Ω), integrating by parts, using (5.1) and combining the result
with (2.1) give

κ−1

∫
Ω

ω · θ + μ

∫
Ω

curl ω · curl θ + √
μ

∫
Ω

∇p · curl θ = √
μ

∫
Ω

f · curl θ ∀θ ∈ Ẑ. (5.2)

Note that (5.2) almost coincides with (2.9), except for the test space, which was Z = {θ ∈ H(curl; Ω) :
θ × n = 0 on Γ }.

We next proceed to test (2.1) against ∇q ∈ L2(Ω)3, we integrate by parts, and apply (2.3) and (5.1)
to end up with

√
μ

∫
Ω

curl ω · ∇q +
∫

Ω

∇p · ∇q =
∫

Ω

f · ∇q ∀q ∈ Q.

In this way, problem (2.1–2.3), (5.1) is equivalent to the following variational formulation: find (ω, p) ∈
Ẑ × Q such that

A((ω, p), (θ , q)) = F(θ , q) ∀(θ , q) ∈ Ẑ × Q, (5.3)

where the bilinear form A : (Ẑ × Q) × (Ẑ × Q) → R and linear functional F : Ẑ × Q → R are now
specified as

A((ω, p), (θ , q)) := κ−1

∫
Ω

ω · θ +
∫

Ω

(
√

μ curl ω + ∇p) · (
√

μ curl θ + ∇q),

F(θ , q) :=
∫

Ω

f · (
√

μ curl θ + ∇q).

5.2 The Galerkin method

Let us now introduce a conforming FE subspace for vorticity

Ẑh := {θ h ∈ Ẑ : θ h|T ∈ Nk(T) ∀T ∈ Th(Ω)},
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while Qh, as defined in (3.2), will be used for the pressure approximation. The FE counterpart of (5.3)
then reads: find (ωh, ph) ∈ Ẑh × Qh such that

A((ωh, ph), (θ h, qh)) = F(θ h, qh) ∀(θ h, qh) ∈ Ẑh × Qh. (5.4)

We readily have that this problem is well-posed.

Theorem 5.1 The method (5.4) is well defined.

Proof. Since (5.4) is a square linear system it is enough to prove uniqueness. To this end we assume that
f = 0, and we test the problem with (θ h, qh) = (ωh, ph) to obtain

κ−1‖ωh‖2
0,Ω + ‖√μ curl ωh + ∇ph‖2

0,Ω = 0,

showing that ωh = 0 and ph = 0. �

5.3 Error analysis

In this section we prove error estimates for vorticity and pressure. We start by writing the following error
equation:

A((ω − ωh, p − ph), (θ h, qh)) = 0 ∀(θ h, qh) ∈ Ẑh × Qh. (5.5)

Moreover, for all (θ , q) ∈ Ẑ × Q, we have that there exist C1, C2 > 0 such that

C1(‖θ‖2
0,Ω + ‖√μ curl θ + ∇q‖2

0,Ω + ‖q‖2
0,Ω)

≤ A((θ , q), (θ , q)) ≤ C2(‖θ‖2
0,Ω + ‖√μ curl θ + ∇q‖2

0,Ω + ‖q‖2
0,Ω). (5.6)

We have the following theorem.

Theorem 5.2 Assume that ω ∈ Hs(curl; Ω) and p ∈ H1+s(Ω), for some s ∈ (1/2, k]. Then, there exists
C > 0, independent of h and μ, such that

‖ω − ωh‖0,Ω + ‖√μ curl(ω − ωh) + ∇(p − ph)‖0,Ω + ‖p − ph‖0,Ω ≤ Chs
(‖ω‖Hs(curl;Ω) + ‖p‖H1+s(Ω)

)
.

Proof. The result is a consequence of (5.5) and (5.6), together with Lemmas 3.3 and 3.4. �

Finally, if we define again u and uh as in (3.7) and (3.8), respectively, then Theorem 5.2 provides an
identical result as the one given in Theorem 3.6 regarding the accuracy of the discrete velocity.

Remark 5.3 Note that the new method (5.4) (solving the Brinkman problem under Dirichlet boundary
conditions for velocity) is designed for the three-dimensional case, but its modification to the two-
dimensional case follows straightforwardly. It suffices to notice that the vorticity is now a scalar function,
whose natural approximation space corresponds to the conforming space

Ẑh := {θ h ∈ H1(Ω) : θ h|T ∈ Pk(T) ∀T ∈ Th(Ω)}.
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In this case the computational cost of (5.4) (in its lowest order configuration) is almost 2Nv, where
Nv denotes the number of nodes in the triangulation, thus providing a very competitive alternative in
comparison to other classical techniques based on velocity–pressure formulations (see Mardal et al.,
2002).

6. Numerical results

In what follows, we present a set of numerical examples illustrating our findings from the performance of
the FE method described in Sections 3–5. These tests confirm the theoretical error bounds (here obtained
for FE families with k = 1 and k = 2).

6.1 Example 1: convergence history in two dimension

The first test consists of approximating a manufactured solution on a two-dimensional domain. We
consider Ω = (−1, 1)2, κ−1 = 50, μ = 0.001, and construct the forcing term f so that the exact solution
to (2.1–2.3) is given by the following smooth functions

u =
(

sin(πx) cos(πy)
− cos(πx) sin(πy)

)
(satisfying (2.4)),

ω = 2
√

μπ sin(πx) sin(πy) (satisfying (2.5)), p = x4 − y4 ∈ Q.

The overall algorithm employed in all tests of this section consists in first solving (3.3), next (3.5) and
finally applying the postprocess (3.8). In the Darcy limit (μ → 0), one realizes that the specific problem
definition implies that only the last two steps of the algorithm are needed. For k = 1 the velocity is
projected on piecewise constant functions, whereas for k = 2 we utilize discontinuous, piecewise linear
elements. We proceed to construct a series of uniformly successively refined triangular meshes for Ω ,
and compute grid-dependent experimental errors and convergence rates defined by

e(ω) = ‖ω − ωh‖Z, e(p) = ‖p − ph‖Q, e(u) = ‖u − uh‖0,Ω , r(·) = log(e(·)/ê(·))[log(h/ĥ)]−1,

where e, ê denote errors computed on two consecutive meshes of sizes h, ĥ, respectively. The error history
and approximate solutions computed at the finest mesh are collected in Table 1 and Fig. 2. These indicate
optimal accuracy for k = 1 and k = 2, according to Theorems 3.5 and 3.6.

6.2 Example 2: Dirichlet velocity conditions

Next we investigate the accuracy of formulation (5.4), valid for no-slip velocities on Γ . The domain
is again the square Ω = (−1, 1)2 and we fix the permeability κ = 1, with the aim of also testing the
robustness of the error estimates with respect to viscosity. A manufactured solution satisfying (5.1) is
given by

u =
(

2π sin2(πx) sin(πy) cos(πy)
−2π sin(πx) cos(πx) sin2(πy)

)
, ω = 2

√
μπ 2

(
sin2(πx)[4 sin2(πy)−1]−sin2(πy)

)
, p = x4 −y4.

We perform a series of convergence histories (focusing on the lowest order method, k = 1), on a sequence
of nested structured meshes and using μ ∈{1e-2,1e-4,1e-6,1e-8,1e-10}. The results are collected in Fig. 3,
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Table 1 Example 1: convergence tests against analytical solutions on a sequence of uniformly refined
triangulations of the domain Ω = (−1, 1)2

h e(ω) r(ω) e(p) r(p) e(u) r(u)

Approximation with k = 1

1.4142 8.08e-1 — 3.2341 — 1.3693 —
7.07e-1 7.41e-1 0.1252 2.0411 0.6654 1.0403 0.3832
3.54e-1 3.69e-1 1.0053 1.0805 0.9205 5.47e-1 0.9298
1.77e-1 1.77e-1 1.0604 5.45e-1 0.9801 2.77e-1 0.9822
8.84e-2 8.72e-2 1.0199 2.74e-1 0.9950 1.39e-1 0.9956
4.42e-2 4.34e-2 1.0063 1.37e-1 0.9987 6.95e-2 0.9989
2.21e-2 2.17e-2 1.0022 6.85e-2 0.9996 3.47e-2 0.9997
1.10e-2 1.08e-2 1.0007 3.42e-2 0.9999 1.74e-2 0.9999
5.52e-3 5.42e-2 1.0002 1.71e-2 0.9999 8.69e-3 0.9999

Approximation with k = 2
1.4142 6.30e-2 — 1.5366 — 8.75e-1 —
7.07e-1 1.93e-2 1.7053 3.46e-1 2.1479 3.13e-1 1.4819
3.54e-1 5.31e-3 1.8630 8.91e-2 1.9558 8.40e-2 1.8983
1.77e-1 1.35e-3 1.9779 2.26e-2 1.9810 2.14e-2 1.9744
8.84e-2 3.35e-4 2.0052 5.68e-3 1.9919 5.37e-3 1.9935
4.42e-2 8.30e-5 2.0013 1.42e-3 1.9962 1.34e-3 1.9983
2.21e-2 2.11e-5 1.9996 3.56e-4 1.9981 3.36e-4 1.9995
1.10e-2 6.01e-6 1.9998 8.92e-5 1.9987 8.42e-5 1.9998
5.52e-3 2.13e-6 1.9907 2.30e-5 1.9986 2.14e-5 1.9998

where the plot on the right panel indicates that for smaller viscosities the curves practically coincide. On
the other hand, independently of the viscosity, we observe that for finer meshes both vorticity and velocity
attain the expected O(h) convergence rate predicted by Theorem 5.2. It is also noticed that the pressure
error decays much faster, suggesting that the result in Section 5 can be improved. This phenomenon
deserves further investigation, but we stress that the overall rate of convergence remains the one given
by the theorem. Examples of computed solutions using μ =1e-4 are depicted in Fig. 4.

6.3 Example 3: convergence history in three dimension

The convergence of the method is also tested in a three-dimensional setting. We consider the same
values for κ and μ as in the previous test, and employ as computational domain the parallelepiped
Ω = (0, 1) × (0, 1) × (−1, 1). The following exact solutions are constructed

u =
⎛
⎝ sin(πx) cos(πy) cos(πz)

−2 cos(πx) sin(πy) cos(πz)
cos(πx) cos(πy) sin(πz)

⎞
⎠, ω = √

μ

⎛
⎝ 3π cos(πx) sin(πy) sin(πz)

0
−3π sin(πx) sin(πy) cos(πz)

⎞
⎠, p = x3 − y3 − z3,

which also fulfill the boundary data (2.4) and (2.5) and the regularity requirements. The external force
f is computed using these functions and (2.1). The same decoupling algorithm is used to generate the
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Fig. 2. Example 1: approximated vorticity, pressure distribution and postprocessed velocity components.

error history displayed in Table 2, which puts into evidence optimal convergence rates for all fields. Here
we employed the lowest order FE family k = 1. Iso-surfaces representing the approximate solutions are
portrayed in Fig. 5.

6.4 Example 4: simulation of axisymmetric flows

We also carry out a simulation of viscous flow in porous media using an axisymmetric formulation and
the method outlined in Section 4. The meridional domain has four sides defined by the symmetry axis
(left wall r = 0), bottom and top lids (z = 0 and z = 2, respectively), and the right side is defined by
the parametrization s ∈ [0, 2], r = 2 − s/4 + γ cos(πs) sin(πs) and z = s − γ cos(πs) sin(πs), with
γ = 0.1 (as sketched in Fig. 1). The forcing term and model parameters are

f = (−r sin(πr) cos(πz) + 4r3, π−1 sin(πr) sin(πz) + r cos(πr) sin(πz) − 4z3)T, κ−1 = 200, μ = 0.1,

and the boundary data are taken as in (4.4) and (4.5). A sequence of nine successively refined unstructured
triangulations of Ωa is generated and, in absence of a known analytical solution, errors are computed
with respect to a reference solution (ωref , pref , uref) (obtained by solving the decoupled formulation on
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Fig. 3. Example 2: accuracy test in case of Dirichlet boundary conditions for the velocity. Error histories for vorticity (left), pressure
(middle) and velocity (right) measured in the L2−norm.

Fig. 4. Example 2: accuracy test in case of Dirichlet boundary conditions for the velocity. Computed vorticity (left), pressure
(middle) and velocity (right).

Table 2 Example 3: convergence tests against analytical solutions on a sequence of uniformly refined
tetrahedrizations of the domain Ω = (0, 1) × (0, 1) × (−1, 1)

h e(ω) r(ω) e(p) r(p) e(u) r(u)

7.07e-1 1.0785 — 1.5434 — 1.0763 —
3.54e-1 5.61e-1 0.8872 8.32e-1 0.8901 6.06e-1 0.8151
1.77e-1 3.71e-1 0.9136 4.27e-1 0.9613 3.16e-1 0.9388
1.01e-1 1.91e-1 0.9693 2.46e-1 0.9845 1.82e-1 0.9825
6.43e-2 1.01e-1 0.9396 1.57e-1 0.9907 1.16e-1 0.9937
4.42e-2 5.57e-2 0.9673 1.09e-1 0.9902 8.02e-2 0.9972
3.21e-2 2.74e-2 0.9703 7.61e-2 0.9910 5.48e-2 0.9976
1.95e-2 1.31e-2 0.9741 5.32e-2 0.9928 4.05e-2 0.9980
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Fig. 5. Example 3: approximated solutions for the accuracy test in Ω = (0, 1) × (0, 1) × (−1, 1). Vorticity magnitude, pressure
distribution, velocity magnitude (top row), vorticity components (middle row) and postprocessed velocity components (bottom
row).

a highly fine mesh and with k = 2). Experimental errors and convergence rates are shown in Table 3,
and indicate optimal accuracy according to Theorem 4.2. Approximate solutions (including rotational
extrusion of the axisymmetric velocity and pressure) are illustrated in Fig. 6.

6.5 Example 5: viscous flow within a porous-tilted cylinder

We end with the simulation of incompressible flow in a tilted cylindrical column composed of a porous
material of low-concentration particles. Even if the noninclined column has an axisymmetric geometry,
the forcing term is more important in the gravity direction and, once inclined (forming an angle of
π/4 between the z and y axes), the geometry loses symmetry with respect to the z-axis. Therefore, the
expected patterns will not be axisymmetric, and the Brinkman problem needs to be solved using the
full three-dimensional formulation (2.1–2.5). We construct an unstructured tetrahedral mesh of 71742
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Table 3 Example 4: errors and convergence rates computed on a sequence of unstructured meshes of the
axisymmetric domain Ωa, against a fine reference solution. Errors and convergence rates are re-defined
using the axisymmetric spaces

h e(ωref) r(ωref) e(pref) r(pref) e(uref) r(uref)

Approximation with k = 1

5.42e-1 1.72e-2 — 1.8621 — 1.0422 —
4.25e-1 1.41e-2 0.8221 1.1130 1.1169 6.19e-3 1.1372
2.48e-1 1.17e-2 0.3367 5.61e-1 1.0695 3.44e-3 1.0918
1.23e-1 8.70e-3 0.5231 3.08e-1 0.9536 1.87e-3 0.9637
8.32e-2 6.35e-3 0.8118 1.90e-1 1.0418 1.19e-3 1.0678
5.47e-2 4.37e-3 0.8891 1.31e-1 0.9931 8.19e-4 0.9845
3.99e-2 3.22e-3 0.9706 9.03e-2 1.0766 5.67e-4 1.0755
2.95e-2 2.43e-3 0.9825 6.80e-2 0.9929 4.26e-4 0.9989
2.42e-2 1.90e-3 1.0706 5.19e-2 1.0840 3.25e-4 1.0844

Approximation with k = 2
5.42e-1 1.17e-2 — 3.64e-1 — 3.05e-3 —
4.25e-1 7.78e-3 1.7002 1.57e-1 2.4774 1.41e-3 2.1625
2.48e-1 4.89e-3 0.9627 3.78e-2 2.3685 3.92e-4 2.0808
1.23e-1 2.56e-3 1.5197 1.68e-2 2.1512 1.20e-4 1.9816
8.32e-2 1.28e-3 1.7796 5.64e-3 2.1100 4.60e-5 2.0921
5.47e-2 6.11e-4 1.8622 2.65e-3 1.8935 2.13e-5 1.9468
3.99e-2 3.29e-4 1.9768 1.36e-3 2.1204 1.09e-5 2.0331
2.95e-2 1.87e-4 1.9527 7.73e-4 1.9609 6.12e-6 1.9649
2.42e-2 1.15e-4 2.0559 4.87e-4 2.0711 3.07e-6 2.0994

vertices and 401115 elements and consider κ = 1, μ = 0.01,

f = κ(exp(−yz) + x exp(−x2), cos(πx) cos(πz) − y exp(−y2), −10xy − 10z exp(−z2))T.

The numerical solution obtained with a k = 1 family is presented in Fig. 7.
As mentioned in Section 1, one of the most appealing features of the present method is the low

computational cost compared with similarly accurate schemes, such as the mixed methods suggested
in Alvarez et al. (2016) and Vassilevski & Villa (2014), and the augmented formulation from Anaya et
al. (2015a) (see also Section 5 in Alvarez et al., 2016). Without counting the cost of matrix assembly,
the most expensive part of the algorithm is the solution of the vorticity problem, which represents only
a fraction (roughly a 32% in three dimension and 20% in two dimension for k = 1; and 28% in three
dimension and 16% in two dimension for k = 2) of the matrix size associated with an augmented u−ω−p
formulation exhibiting the same convergence behavior.

7. Concluding remarks

In this work we have presented a new FE method for the discretization of the vorticity–velocity–pressure
formulation of the Brinkman equations. The key features of the proposed method are the direct and
accurate access to vorticity without invoking postprocessing and its competitive computational cost
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Fig. 6. Example 4: approximated vorticity, pressure distribution and postprocessed velocity components on the axisymmetric
domain Ωa.

compared with recent fully mixed and augmented formulations of incompressible viscous flows. We
derived optimal convergence rates (and robust with respect to viscosity) in the natural norms. Some
numerical tests have been presented to confirm the theoretically results established, and to illustrate the
robustness and efficiency of the proposed method. Possible extensions of this work include the study of
vorticity-based formulations of three-dimensional Navier–Stokes equations, transient Stokes equations,
axisymmetric time-dependent Navier–Stokes equations, and the coupling with Darcy flow and with
transport phenomena.
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Fig. 7. Example 5: approximated vorticity streamlines and vectors, pressure distribution iso-surfaces, and postprocessed velocity
vectors and streamlines.
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