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Abstract This paper is devoted to the numerical analysis of a family of finite element
approximations for the axisymmetric, meridian Brinkman equations written in terms of
the stream-function and vorticity. A mixed formulation is introduced involving appropriate
weighted Sobolev spaces, where well-posedness is derived by means of the Babuška–Brezzi
theory. We introduce a suitable Galerkin discretization based on continuous piecewise poly-
nomials of degree k ≥ 1 for all the unknowns, where its solvability is established using the
same framework as the continuous problem. Optimal a priori error estimates are derived,
which are robust with respect to the fluid viscosity, and valid also in the pure Darcy limit. A
few numerical examples are presented to illustrate the convergence and performance of the
proposed schemes.
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1 Introduction

We consider the Brinkman equations, describing viscous flow within axisymmetric domains
composed by a porous matrix of low-concentration fixed particles. In particular, we are inter-
ested in retrieving the fluid vorticity and the stream-function as principal unknowns of the
system. Salient features in formulations of this kind include that: the stream-function is one
of the most useful tools in flow visualization; only two scalar unknowns are necessary to
resolve the flow patterns (in the three-dimensional case the stream-function is a vector field,
and these formulations are no longer substantially advantageous over classical velocity-
pressure ones); and discrete solutions lead to exactly divergence-free computed velocities.
In addition, a manipulation of the equations permits to eliminate the pressure from the for-
mulation. However, if pressure profiles are required, they can be recovered via a generalized
Poisson problem with a datum coming from the stream-function solution (in a similar spirit
to the decoupled methods recently proposed in [7,22] for Brinkman equations in Cartesian
coordinates). Let us point out that the symmetry of both the solution and the domain may not
be common assumptions in classical porous media models employed in reservoir simulation.
However, other types of applications (such as oil filters design, carbon dioxide sequestration,
seepage, large arteries simulation, or the study of heat transfer enhancement and plug noz-
zle flow fields [27,28,30–32,35]) do involve axisymmetric porous materials, where viscous
properties of the flow are also of interest.

From the viewpoint of the mathematical analysis of the problem at hand, the radial con-
figuration implies that suitable weighted Sobolev spaces are needed (see e.g. the monograph
[15]). Regarding discretization, the relevant literature contains numerous studies involv-
ing different numerical methods for axisymmetric (viscous or non-viscous) flows (see
e.g. [3,5,7,8,10,14,16,20,23,33] and the references therein). More precisely, in the recent
contribution [4] the authors propose a spectral method for a stream-function vorticity formu-
lation of the Stokes equations, where the cylindrical symmetry reduces a three-dimensional
problem to a bidimensional one. In contrast, here we follow some ideas from [6] (where a sta-
bilized mixed method to resolve axisymmetric velocity–vorticity–pressure Brinkman flows
is proposed), and adapt these techniques to a mixed formulation written in terms of stream-
function and vorticity. We note that, as a consequence of the zero-order term and the variable
permeability tensor, in this case the problem cannot be decoupled as in [4]. Moreover, the
analysis of existence and uniqueness of continuous and discrete solutions is established using
standard arguments for saddle-point problems (see [21]), and we propose a finite element
discretization based on piecewise polynomials of order k ≥ 1 for all scalar fields, defined on
triangular meshes. This method represents (in its lowest-order version, k = 1) only 6 degrees
of freedom per element, decoupled from a pressure solve (approximated in axisymmetric
H1−conforming spaces and having three degrees of freedom per element), thus being a very
competitive scheme, for instance, less expensive than the mixed method recently introduced
in [6]. Our optimal order error estimates are derived from the continuous dependence on the
data and an appropriate Céa estimate, and we stress that these bounds are established with
constants independent of the viscosity ν and, in particular, valid in the Darcy limit ν → 0.
Moreover, a duality argument allows us to improve the order of convergence of the vorticity
and the stream-function approximations in L2-norm.

The remainder of this paper is structured as follows. Section 2 collects the relevant for-
mulations of the Brinkman problem, for velocity and pressure in Cartesian coordinates, its

123



350 J Sci Comput (2017) 71:348–364

reduction to the axisymmetric case, and a stream-function–vorticity form. The weak for-
mulation, along with some preliminary results are also presented. In Sect. 3, we prove the
unique solvability and stability properties of the proposed formulation. In Sect. 4, we intro-
duce the finite element discretization of our variational formulation, for which we prove a
discrete inf-sup condition uniformly with respect to the fluid viscosity ν and the mesh para-
meter h; moreover, we establish optimal error estimates. Some illustrative numerical tests
are postponed to Sect. 5. We close with a few remarks and perspectives in Sect. 6.

2 Formulations of the Linear Brinkman Equations in Different
Coordinates

2.1 Cartesian Coordinates

The linear Brinkman equations govern the motion of an incompressible viscous fluid within
a porous medium. The system is

K̆−1ŭ − νΔŭ + ∇ p̆ = f̆ in Ω̆, (2.1a)

div ŭ = 0 in Ω̆, (2.1b)

ŭ · n̆ = 0 on ∂Ω̆, (2.1c)

curl ŭ × n̆ = 0 on ∂Ω̆, (2.1d)

where Ω̆ ⊂ R
3 is a given spatial domain. The sought quantities are the local volume-average

velocity ŭ and the pressure field p̆. The permeability K̆ is a symmetric and positive definite
tensor, and without loss of generality we can restrict ourselves to the isotropic case where the
inverse permeability distribution can be represented by a scalar function σ̆ , i.e. K̆−1 = σ̆ I.
The inverse permeability has L∞(Ω̆) regularity, with σ̆min ≤ σ̆ (x, y, z) ≤ σ̆max a.e. in Ω̆ .
For simplicity, we assume a positive fluid viscosity 0 < ν ≤ νmax. Here σ̆min, σ̆max, and νmax

are positive constants.

2.2 Axisymmetric Case

Under axial symmetry of the domain (that is, Ω̆ is invariant by rotation around an axis,
assumed aligned with r = 0), the forcing term, and the inverse permeability, we can replace
them by Ω, f , and σ , respectively, with 0 < σmin ≤ σ(r, z) ≤ σmax a.e. in Ω , and system
(2.1a)–(2.1d) can be recast as a problem involving only the meridional domainΩ (assumed a
polygon) and written in terms of radial and axial velocities ur , uz , and pressure p. In general,
we will denote with v̆ = (v̆r , v̆θ , v̆z) a vector associated to the three-dimensional domain
Ω̆ , whereas under meridian axisymmetry, we have v̆θ = 0 and its axisymmetric restriction
will be denoted by v = (vr , vz). We also suppose that the boundary of the meridian domain
is disjointedly partitioned into Γ , and Γsym, the latter being a segment of the boundary
intersecting with the rotation axis r = 0. In the general case (where v̆θ does not necessarily
vanish), the full problem can be decoupled in such a way that v̆θ is the solution of an
independent axisymmetric Laplace problem. Further details can be found in e.g. [15,18].

Moreover, if we introduce a vorticity field, scaled with respect to viscosity, ω = √
ν rot u,

we arrive at the following problem

σu + √
ν curla ω + ∇ p = f in Ω, (2.2a)
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ω − √
ν rot u = 0 in Ω, (2.2b)

diva u = 0 in Ω, (2.2c)

u · n = 0 on Γ, (2.2d)

ω = 0 on Γ, (2.2e)

where the vorticity boundary condition on Γ comes from combining (2.1c) and (2.1d) with
the definition of vorticity. The axisymmetric counterparts of the usual differential operators
acting on vectors and scalars employed herein read

diva v := ∂rvr + r−1vr + ∂zvz, rot v := ∂rvz − ∂zvr ,

curla ϕ :=
(

∂zϕ,−∂rϕ − 1

r
ϕ

)t

.

As mentioned above, the Brinkman model is valid for porous materials consisting of an
array of low concentration fixed particles (see e.g. [9]), which can be encountered in some
industrial applications. The axisymmetry of the domain and data in these problems would
justify formulations of the form (2.2a)–(2.2e).

2.3 Axisymmetric Stream-Function–Vorticity Formulation

Next, we realize that the incompressibility condition (2.2c) is equivalent to the existence of
a scalar stream-function ψ satisfying u = curla ψ , with ψ = 0 on Γ (cf. Lemma 1 and
[4,24]). Nowwe take the rot operator on both sides of (2.2a) and employ the relation between
the stream-function and the velocity to recast system (2.2) in the form

rot(σ curla ψ + √
ν curla ω) = rot f in Ω, (2.3a)

ω − √
ν rot(curla ψ) = 0 in Ω, (2.3b)

ψ = 0 on Γ, (2.3c)

ω = 0 on Γ. (2.3d)

2.4 Recurrent Notation and Auxiliary Results

Before stating a weak form to (2.3), we recall some standard definitions of weighted Sobolev
spaces and involved norms (see further details in e.g. [26]). Let Lp

α (Ω) denote the weighted
Lebesgue space of all measurable functions ϕ defined in Ω for which

‖ϕ‖p
Lp

α (Ω)
:=

∫
Ω

|ϕ|p rα drdz < ∞.

The subspace L2
1,0(Ω) of L2

1(Ω) contains functions q with zeroweighted integral (q, 1)r,Ω =
0, where

(s, t)r,Ω :=
∫

Ω

str drdz ,

for all sufficiently regular functions s, t . The weighted Sobolev space Hk
1(Ω) consists of all

functions in L2
1(Ω)whose derivatives up to order k are also in L2

1(Ω). This space is provided
with semi-norms and norms defined in the standard way; in particular,

|ϕ|2
H1
1(Ω)

:=
∫

Ω

(|∂rϕ|2 + |∂zϕ|2) r drdz ,
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is a norm onto the Hilbert space H1
1(Ω) ∩ L2

1,0(Ω). Furthermore, the space H̃1
1(Ω) :=

H1
1(Ω) ∩ L2−1(Ω) is endowed with the following norm and semi-norm, respectively (the

former being ν-dependent):

|||ϕ|||H̃1
1(Ω) :=

(
‖ϕ‖2

L2
1(Ω)

+ ν |ϕ|2
H1
1(Ω)

+ ν ‖ϕ‖2
L2−1(Ω)

)1/2

,

‖ϕ‖H̃1
1(Ω) :=

(
|ϕ|2

H1
1(Ω)

+ ‖ϕ‖2
L2−1(Ω)

)1/2

. (2.4)

We will also require the following weighted scalar and vectorial functional spaces:

H1
1,�(Ω) := {

ϕ ∈ H1
1(Ω);ϕ = 0 on Γ

}
,

H̃1
1,�(Ω) := {

ϕ ∈ H̃1
1(Ω);ϕ = 0 on Γ

}
,

H(diva,Ω) := {
v ∈ L2

1(Ω)2; diva v ∈ L2
1(Ω)

}
,

H(curla,Ω) := {
ϕ ∈ L2

1(Ω); curla ϕ ∈ L2
1(Ω)2

}
,

H(rot,Ω) := {
v ∈ L2

1(Ω)2; rot v ∈ L2
1(Ω)

}
.

We observe that as a consequence of [25, Proposition 2.1], the entity in (2.4) is a norm in
H̃1
1,�(Ω). In addition, the spaces H(diva,Ω) and H(curla,Ω) are endowed respectively by

the norms:

‖v‖H(diva,Ω) := (‖v‖2
L2
1(Ω)2

+ ‖ diva v‖2L2
1(Ω)

)1/2
,

|||ϕ|||H(curla,Ω) := (‖ϕ‖2
L2
1(Ω)

+ ν‖ curla ϕ‖2
L2
1(Ω)2

)1/2
,

‖ϕ‖H(curla,Ω) := ‖ curla ϕ‖L2
1(Ω)2 .

Moreover, it holds that

|||ϕ|||H̃1
1(Ω) ≤ |||ϕ|||H(curla,Ω) ≤ √

2|||ϕ|||H̃1
1(Ω) ∀ϕ ∈ H̃1

1(Ω), (2.5)

‖ϕ‖H̃1
1(Ω) ≤ ‖ϕ‖H(curla,Ω) ≤ √

2‖ϕ‖H̃1
1(Ω) ∀ϕ ∈ H̃1

1,�(Ω). (2.6)

The following result will be instrumental in the sequel (see [1,2,4]).

Lemma 1 Let Ω be simply connected. For any s > 1, if v ∈ [H̃1
1,�(Ω) ∩ Hs

1(Ω)]2 satisfies
diva v = 0, and v · n = 0 on Γ , then there exists a unique potential ϕ ∈ Hs+1

1 (Ω) such that
v = curla ϕ, and ϕ = 0 on Γ .

On the other hand, let H1/2
1 (Γ ) be the trace space associated to H1

1(Ω), and notice that the
normal trace operator on Γ is defined by v �→ v · n|Γ , and it is continuous from H(diva,Ω)

into the dual space of H1/2
1 (Γ ). We next recall the following Green identities (cf. [5,17]).

Lemma 2 For any v ∈ H(diva,Ω) and q ∈ H1
1(Ω), the following Green formula holds

(diva v, q)r,Ω + (v,∇q)r,Ω = 〈v · n, q〉r,Γ .

Lemma 3 For any v ∈ H(rot,Ω) and ϕ ∈ H̃1
1(Ω), we have the following Green formula

(v, curla ϕ)r,Ω − (ϕ, rot v)r,Ω = 〈v · t, ϕ〉r,Γ .
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2.5 The Variational Formulation

Now we test system (2.3a)–(2.3b) against ϕ ∈ H̃1
1,�(Ω), and θ ∈ H̃1

1,�(Ω), respectively, to
obtain

(rot[σ curla ψ + √
ν curla ω], ϕ)r,Ω = (rot f , ϕ)r,Ω,

(ω, θ)r,Ω − (
√

ν rot[curla ψ], θ)r,Ω = 0.

Then, combining Lemmas 2 and 3 with a direct application of the boundary conditions,
yields the following variational problem: Find (ψ, ω) ∈ H̃1

1,�(Ω) × H̃1
1,�(Ω) such that

a(ψ, ϕ) + b(ϕ, ω) = F(ϕ) ∀ϕ ∈ H̃1
1,�(Ω),

b(ψ, θ) − d(ω, θ) = 0 ∀θ ∈ H̃1
1,�(Ω), (2.7)

where the involved bilinear forms and linear functional are

a(ψ, ϕ) := (σ curla ψ, curla ϕ)r,Ω, b(ϕ, ω) := (
√

ν curla ω, curla ϕ)r,Ω,

d(ω, θ) := (ω, θ)r,Ω, F(ϕ) := ( f , curla ϕ)r,Ω .

Remark 1 The discussion about possible shortcomings of the boundary treatment (2.3c),
(2.3d) and the associated issues in representing no-slip velocity conditions or other wall laws
is not part of the goals of this paper. We refer the interested reader to [7,11,13,34]. However,
we do stress that imposition of tangential velocities poses no difficulty in our framework.
For instance, if we want to set u · t = ut with a known ut on Γt ⊂ Γ , then Lemma 3 suggests
that the adequate test space for the vorticity field would be

H̃1
1,t (Ω) := {

θ ∈ H̃1
1(Ω); θ = 0 on Γ \ Γt

}
.

Also from Lemma 3, it follows that a non-homogeneous term

H(θ) := 〈√νut , θ〉r,Γt ∀θ ∈ H̃1
1,t (Ω),

should appear as right hand side in the second equation of (2.7).

3 Well-Posedness of the Continuous Problem

In this section,we prove that the continuous variational formulation (2.7) is uniquely solvable.
With this aim, we recall the following abstract result (see e.g. [21, Theorem 1.3]):

Theorem 1 Let (X , 〈·, ·〉X ) be aHilbert space. LetA : X×X → R be a bounded symmetric
bilinear form, and let G : X → R be a bounded functional. Assume that there exists β̄ > 0
such that

sup
y∈X
y �=0

A(x, y)

‖y‖X ≥ β̄ ‖x‖X ∀ x ∈ X . (3.1)

Then, there exists a unique x ∈ X , such that

A(x, y) = G(y) ∀ y ∈ X . (3.2)

Moreover, there exists C > 0, independent of the solution, such that

‖x‖X ≤ C‖G‖X ′ .
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Theorem 2 The variational problem (2.7) admits a unique solution (ψ, ω) ∈ H̃1
1,�(Ω) ×

H̃1
1,�(Ω). Moreover, there exists C > 0 independent of ν such that

‖ψ‖H̃1
1(Ω) + |||ω|||H̃1

1(Ω) ≤ C‖ f ‖L2
1(Ω)2 . (3.3)

Proof First, we define X := H̃1
1,�(Ω) × H̃1

1,�(Ω) (endowed with the corresponding product
norm: ‖ · ‖H̃1

1(Ω) and ||| · |||H̃1
1(Ω), respectively) and the following bilinear form and linear

functional:

A((ψ, ω), (ϕ, θ)) := a(ψ, ϕ) + b(ϕ, ω) + b(ψ, θ) − d(ω, θ), G((ϕ, θ)) := F(ϕ).

To continue, it suffices to verify the hypotheses of Theorem 1. First, we note that the linear
functional G(·) is bounded and as a consequence of the boundedness of a(·, ·) b(·, ·), and
d(·, ·), one has that the bilinear form A(·, ·) is also bounded with constants independent of
ν.

The next step consists in proving that the bilinear formA(·, ·) satisfies the inf-sup condition
(3.1). With this aim, we have that for any (ψ, ω) ∈ X , we define

ϕ̃ := (
ψ + ĉ

√
νω

) ∈ H̃1
1,�(Ω), and θ̃ := −ω ∈ H̃1

1,�(Ω),

where ĉ is a positive constant which will be specified later. Therefore, from the definition of
bilinear form A(·, ·) we obtain

A((ψ, ω), (ϕ̃, θ̃ )) = (σ curla ψ, curla ϕ̃)r,Ω + (√
ν curla ω, curla ϕ̃

)
r,Ω

+ (
√

ν curla θ̃ , curla ψ)r,Ω − (ω, θ̃)r,Ω

≥ σmin‖ curla ψ‖2
L2
1(Ω)2

+ ĉ(
√

νσ curla ψ, curla ω)r,Ω

+ ĉν‖ curla ω‖2
L2
1(Ω)2

+ (√
ν curla ψ, curla ω

)
r,Ω

− (√
ν curla ψ, curla ω

)
r,Ω + ‖ω‖2

L2
1(Ω)

≥ σmin‖ curla ψ‖2
L2
1(Ω)2

− ĉ2σ 2
max

2σmin
ν‖ curla ω‖2

L2
1(Ω)2

− σmin

2
‖ curla ψ‖2

L2
1(Ω)2

+ ĉν‖ curla ω‖2
L2
1(Ω)2

+ ‖ω‖2
L2
1(Ω)

= σmin

2
‖ curla ψ‖2

L2
1(Ω)2

+ ĉ

(
1 − ĉσ 2

max

2σmin

)
ν‖ curla ω‖2

L2
1(Ω)2

+ ‖ω‖2
L2
1(Ω)

,

and choosing ĉ = σmin
σ 2
max

, we can assert that

A((ψ, ω), (ϕ̃, θ̃ )) ≥ C‖(ψ, ω)‖2X ,

with C independent of ν, where we have used (2.5) and (2.6) to derive the last inequality. On
the other hand, using the definition of ||| · |||H̃1

1(Ω) and the fact that ν ≤ νmax, we obtain that

|||θ̃ |||H̃1
1(Ω) = |||ω|||H̃1

1(Ω) and ‖ϕ̃‖H̃1
1(Ω) ≤ C

(
‖ψ‖H̃1

1(Ω) + |||ω|||H̃1
1(Ω)

)
, (3.4)

with C > 0 independent of ν and consequently

sup
(ϕ,θ)∈X
(ϕ,θ)�=0

A((ψ, ω), (ϕ, θ))

‖(ϕ, θ)‖X ≥ A((ψ, ω), (ϕ̃, θ̃ ))

‖(ϕ̃, θ̃ )‖X
≥ C‖(ψ, ω)‖X ∀(ψ, ω) ∈ X ,

123



J Sci Comput (2017) 71:348–364 355

which gives (3.3). ��
Remark 2 Vorticity and stream-function are available after solving (2.7). On the other hand,
as a consequence of the Lax-Milgram Theorem, the pressure can be computed as the unique
solution of the following problem: Find p ∈ H1

1(Ω) ∩ L2
1,0(Ω) such that

(∇ p,∇q)r,Ω = Gψ(q) := ( f − σ curla ψ,∇q)r,Ω ∀q ∈ H1
1(Ω) ∩ L2

1,0(Ω). (3.5)

This problem has been obtained by testing (2.2a) against ∇q for a generic q ∈ H1
1(Ω) ∩

L2
1,0(Ω), and using integration by parts in combination with the relation between the stream-

function and the velocity, and the boundary condition (2.3d). Moreover, the following
continuous dependence holds: there exists C > 0 independent of ν such that

‖p‖H1
1(Ω)∩L2

1,0(Ω) ≤ C‖ f ‖L2
1(Ω)2 .

Notice that, according to Remark 1, if tangential velocity is imposed on Γt , or if non-
homogeneous Dirichlet data are set for the vorticity, then Gψ(q) should be replaced by
Gψ,ω(q) = ( f − σ curla ψ − √

ν curla ω,∇q)r,Ω in (3.5). Analogously for the discrete
problem (4.4).

4 Mixed Finite Element Approximation

In this section, we construct discrete schemes associated to (2.7) and (3.5), define explicit
finite element subspaces yielding its unique solvability, derive a priori error estimates and
provide the rate of convergence of the methods.

4.1 Statement of the Galerkin Scheme

Let {Th}h>0 be a regular family of triangulations of Ω by triangles T with mesh size h. For
S ⊂ Ω̄ , we denote by Pk(S), k ∈ N, the set of polynomials of degree ≤ k. For any k ≥ 1,
we adopt the subspaces

Zh := {
ϕh ∈ H̃1

1,�(Ω) : ϕh |T ∈ Pk(T ) ∀T ∈ Th
}
, (4.1)

Qh := {
qh ∈ H1

1(Ω) : qh |T ∈ Pk(T ) ∀T ∈ Th
} ∩ L2

1,0(Ω). (4.2)

Notice that functions in the discrete trial and test stream-function space Zh vanish along the
axis of symmetry, due to the properties of H̃1

1,�(Ω).
Then, the finite element discretization for (2.7) reads: Find (ψh, ωh) ∈ Zh ×Zh such that

a(ψh, ϕh) + b(ϕh, ωh) = F(ϕh) ∀ϕh ∈ Zh,

b(ψh, θh) − d(ωh, θh) = 0 ∀θh ∈ Zh . (4.3)

In turn, the discrete counterpart of (3.5) is: Find ph ∈ Qh such that

(∇ ph,∇qh)r,Ω = Gψh (qh) := ( f − σ curla ψh,∇qh)r,Ω ∀qh ∈ Qh . (4.4)

4.2 Solvability and Stability Analysis

We now establish discrete counterparts of Theorem 2 and Remark 2, which will yield the
solvability and stability of problems (4.3) and (4.4). First we state a discrete version of
Theorem 1.

123



356 J Sci Comput (2017) 71:348–364

Theorem 3 Let (X , 〈·, ·〉X ) be a Hilbert space and let {Xh}h>0 be a sequence of finite-
dimensional subspaces of X . Let A : X × X → R be a bounded symmetric bilinear form,
and G : X → R a bounded functional. Assume that there exists β̄h > 0 such that

sup
yh∈Xh
y �=0

A(xh, yh)

‖yh‖X ≥ β̄h ‖xh‖X ∀ xh ∈ Xh . (4.5)

Then, there exists a unique xh ∈ Xh, such that

A(xh, yh) = G(yh) ∀ yh ∈ Xh . (4.6)

Moreover, there exist C1,C2 > 0, independent of the solution, such that

‖xh‖X ≤ C1‖G|Xh‖X ′
h
, and ‖x − xh‖X ≤ C2 inf

yh∈Xh
‖x − yh‖X ,

where x ∈ X is the unique solution of continuous problem (3.2).

Proof The proof follows from Theorem 1, and from the discrete inf-sup condition forA(·, ·).
��

The unique solvability and convergence of the discrete problem (4.3) are stated next.

Theorem 4 Let k ≥ 1 be an integer and let Zh be given by (4.1). Then, there exists a unique
(ψh, ωh) ∈ Zh × Zh solution of discrete problem (4.3). Moreover, there exist constants
Ĉ1, Ĉ2 > 0 independent of h and ν, such that

‖ψh‖H̃1
1(Ω) + |||ωh |||H̃1

1(Ω) ≤ Ĉ1‖ f ‖L2
1(Ω)2 , (4.7)

and

‖ψ − ψh‖H̃1
1(Ω) + |||ω − ωh |||H̃1

1(Ω)

≤ Ĉ2 inf
(ϕh ,θh)∈Zh×Zh

(
‖ψ − ϕh‖H̃1

1(Ω) + |||ω − θh |||H̃1
1(Ω)

)
,

(4.8)

where (ψ, ω) ∈ H̃1
1(Ω) × H̃1

1(Ω) is the unique solution to variational problem (2.7).

Proof WedefineXh := Zh×Zh andwe considerA(·, ·) andG(·) as in the proof of Theorem2.
The next step consists in proving that the bilinear form A(·, ·) satisfies the discrete inf-sup
condition (4.5). In fact, given (ψh, ωh) ∈ Xh , we define

θ̃h := −ωh ∈ Zh, and ϕ̃h :=
(

ψh + σmin

σ 2
max

√
νωh

)
∈ Zh .

Thus, we have that |||θ̃h |||H̃1
1(Ω) = |||ωh |||H̃1

1(Ω) and

‖ϕ̃h‖H̃1
1(Ω) ≤ ‖ψh‖H̃1

1(Ω) + c
√

ν‖ωh‖H̃1
1(Ω) ≤ C

(
‖ψh‖H̃1

1(Ω) + |||ωh |||H̃1
1(Ω)

)
,

where we have used the definition of ||| · |||H̃1
1(Ω) and the fact that ν ≤ νmax; thus, the constant

C is independent of h and ν. Moreover, we have that

A((ψh, ωh), (ϕ̃h, θ̃h)) ≥ Ĉ‖(ψh, ωh)‖2X ,

with Ĉ independent of ν and h. Then, we get
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sup
(ϕh ,θh)∈Xh
(ϕh ,θh)�=0

A((ψh, ωh), (ϕh, θh))

‖(ϕh, θh)‖X ≥ A((ψh, ωh), (ϕ̃h, θ̃h))

‖(ϕ̃h, θ̃h)‖X

≥ C̃‖(ψh, ωh)‖X ∀(ψh, ωh) ∈ Xh,

with C̃ independent of ν and h. The proof is complete. ��
We now establish the stability and approximation property for the discrete pressure.

Theorem 5 Let k ≥ 1 be an integer and letQh be given by (4.2). Then, there exists a unique
solution ph ∈ Qh to discrete problem (4.4) and there exists a constant C > 0 such that:

‖ph‖H1
1(Ω)∩L2

1,0(Ω) ≤ C‖ f ‖L2
1(Ω)2 .

Moreover, there exists a constant Ĉ > 0 such that

‖p − ph‖H1
1(Ω)∩L2

1,0(Ω) ≤ Ĉ

(
inf

qh∈Qh

‖p − qh‖H1
1(Ω)∩L2

1,0(Ω)

+ inf
ϕh ,θh∈Zh

(
‖ψ − ϕh‖H̃1

1(Ω) + |||ω − θh |||H̃1
1(Ω)

))
,

(4.9)

where C and Ĉ are independent of ν and h, and p ∈ H1
1(Ω)∩L2

1,0(Ω) is the unique solution
of problem (3.5).

Proof On the one hand, the well posedness of problem (4.4) follows from the Lax-Milgram
Theorem. On the other hand, from the well-known first Strang Lemma, we have that

‖p − ph‖H1
1(Ω)∩L2

1,0(Ω) ≤ C

{
inf

qh∈Qh
‖p − qh‖H1

1(Ω)∩L2
1,0(Ω)

+ sup
qh∈Qh

Gψh (qh) − Gψ(qh)

‖qh‖H1
1(Ω)∩L2

1,0(Ω)

}
.

To estimate the second term on the right-hand side above, we use the definition of Gψ (cf.
(3.5)) and Gψh (cf. (4.4)) to obtain

sup
qh∈Qh

Gψh (qh) − Gψ(qh)

‖qh‖H1
1(Ω)∩L2

1,0(Ω)

≤ C‖ curla(ψ − ψh)‖L2
1(Ω)2 ≤ C‖ψ − ψh‖H̃1

1(Ω),

where in the last inequality we have used (2.6). Therefore, the proof follows from (4.8). ��
4.3 Convergence Analysis

According to Theorems 4 and 5, it only remains to prove thatψ,ω and p can be conveniently
approximated by functions in Zh and Qh , respectively. With this purpose, we introduce the
Lagrange interpolation operator Πh : H̃1

1(Ω) ∩ H2
1(Ω) → Zh . Moreover, [29, Lemma 6.3]

implies that the following estimate holds (see also [14, Proposition 3]).

Lemma 4 There exists C > 0, independent of h, such that for all ϕ ∈ Hk+1
1 (Ω) :

‖ϕ − Πhϕ‖H̃1
1(Ω) ≤ Chk ‖ϕ‖Hk+1

1 (Ω)
.

We now turn to the statement of convergence properties of the discrete problem (4.3).
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Theorem 6 Let k ≥ 1 be an integer and let Zh and Qh be given by (4.1) and (4.2), respec-
tively. Let (ψ, ω) ∈ H̃1

1,�(Ω) × H̃1
1,�(Ω) and p ∈ H1

1(Ω) ∩ L2
1,0(Ω) be the unique solutions

to the continuous problems (2.7) and (3.5), and (ψh, ωh) ∈ Zh × Zh and ph ∈ Qh be
the unique solutions to the discrete problems (4.3) and (4.4), respectively. Assume that
ψ ∈ Hk+1

1 (Ω), ω ∈ Hk+1
1 (Ω), and p ∈ Hk+1

1 (Ω). Then, the following error estimates
hold

‖ψ − ψh‖H̃1
1(Ω) + |||ω − ωh |||H̃1

1(Ω) ≤ C1h
k
(

‖ψ‖Hk+1
1 (Ω)

+ ‖ω‖Hk+1
1 (Ω)

)
,

‖p − ph‖H1
1(Ω)∩L2

1,0(Ω) ≤ C2h
k
(

‖p‖Hk+1
1 (Ω)

+ ‖ψ‖Hk+1
1 (Ω)

+ ‖ω‖Hk+1
1 (Ω)

)
,

where C1 and C2 are positive constants independent of ν and h.

Proof The proof follows from estimates (4.8), (4.9) and error estimates from Lemma 4. ��

A natural consequence of this result is that the vorticity and stream-function approximations
also converge in the L2

1(Ω)−norm with an order O(hk):

‖ω − ωh‖L2
1(Ω) = O(hk), and ‖ψ − ψh‖L2

1(Ω) = O(hk).

Such an estimate can be improved by one order of convergence, as show by the following
theorem.

Theorem 7 Under the assumptions of Theorem 6, there exists C > 0 independent of h and
ν such that

‖ω − ωh‖L2
1(Ω) ≤ Chk+1

(
‖ψ‖Hk+1

1 (Ω)
+ ‖ω‖Hk+1

1 (Ω)

)
, (4.10)

‖ψ − ψh‖L2
1(Ω) ≤ Chk+1

(
‖ψ‖Hk+1

1 (Ω)
+ ‖ω‖Hk+1

1 (Ω)

)
. (4.11)

Proof The core of the proof is based on a duality argument. We first establish (4.10). Let
us consider the following well-posed problem: Given g ∈ L2

1(Ω), find (ρ, ξ) ∈ H̃1
1,�(Ω) ×

H̃1
1,�(Ω) such that

a(ϕ, ρ) + b(ϕ, ξ) = 0 ∀ϕ ∈ H̃1
1,�(Ω),

b(ρ, θ) − d(θ, ξ) = G(θ) ∀θ ∈ H̃1
1,�(Ω), (4.12)

where G(θ) := (g, θ)r,Ω . In order to improve the present estimates, we will require the
following regularity: ρ ∈ H2

1(Ω), ξ ∈ H2
1(Ω). Moreover, we also assume that there exists a

constant C > 0, independent of ν and g such that

‖ρ‖H2
1(Ω) + ‖ξ‖H2

1(Ω) ≤ C‖g‖L2
1(Ω). (4.13)

Next, choosing (ϕ, θ) = (ψ − ψh, ω − ωh) in (4.12), we obtain

G(ω − ωh) = b(ρ, ω − ωh) − d(ω − ωh, ξ), (4.14)

a(ψ − ψh, ρ) + b(ψ − ψh, ξ) = 0. (4.15)

Moreover, from (2.7) and (4.3) we have that:
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b(ψ − ψh, ξh) − d(ω − ωh, ξh) = 0,

a(ψ − ψh, ρh) + b(ρh, ω − ωh) = 0.

Thus, subtracting the above equations and (4.15) from (4.14), we obtain

G(ω − ωh) = b(ρ, ω − ωh) − d(ω − ωh, ξ) − b(ψ − ψh, ξh) + d(ω − ωh, ξh)

− a(ψ − ψh, ρh) − b(ρh, ω − ωh) + a(ψ − ψh, ρ) + b(ψ − ψh, ξ)

= b(ρ − ρh, ω − ωh) − d(ω − ωh, ξ − ξh) + b(ψ − ψh, ξ − ξh)

+ a(ψ − ψh, ρ − ρh),

for all (ρh, ξh) ∈ Zh × Zh . Hence,

|G(ω − ωh)| ≤ C
(‖ρ − ρh‖H̃1

1(Ω)|||ω − ωh |||H̃1
1(Ω) + ‖ω − ωh‖L2

1(Ω)‖ξ − ξh‖L2
1(Ω)

+ ‖ψ − ψh‖H̃1
1(Ω)|||ξ − ξh |||H̃1

1(Ω) + ‖ψ − ψh‖H̃1
1(Ω)‖ρ − ρh‖H̃1

1(Ω)

)
≤ Chk

(‖ψ‖Hk+1
1 (Ω)

+ ‖ω‖Hk+1
1 (Ω)

)(‖ρ − ρh‖H̃1
1(Ω) + |||ξ − ξh |||H̃1

1(Ω)

)
,

for all (ρh, ξh) ∈ Zh × Zh , where in the last inequality we have utilized Theorem 6. Taking
in particular (ρh, ξh) as the Lagrange interpolants of (ρ, ξ) (see Lemma 4), and then using
the additional regularity result (4.13) in the above estimate, we obtain:

|G(ω − ωh)| ≤Chk+1
(

‖ψ‖Hk+1
1 (Ω)

+ ‖ω‖Hk+1
1 (Ω)

)
‖g‖L2

1(Ω).

Thus, from the estimate above and the definition by duality of ‖ · ‖L2
1(Ω), we arrive at

‖ω − ωh‖L2
1(Ω) = sup

g∈L2
1(Ω)

(g, ω − ωh)r,Ω

‖g|L2
1(Ω)

≤ Chk+1
(

‖ψ‖Hk+1
1 (Ω)

+ ‖ω‖Hk+1
1 (Ω)

)
,

where the constant C is independent of h and ν.
Finally, (4.11) follows from the same arguments given before for (4.10), but instead of

dual problem (4.12), we consider the following one:

a(ϕ, ρ) + b(ϕ, ξ) = G(ϕ) ∀ϕ ∈ H̃1
1,�(Ω),

b(ρ, θ) − d(θ, ξ) = 0 ∀θ ∈ H̃1
1,�(Ω),

where in this case G(ϕ) := (g, ϕ)r,Ω . ��
Remark 3 We observe that since u = curla ψ , the velocity can be readily recovered from
the main unknowns of the underlying problem. More precisely, if (ψh, ωh) ∈ Zh ×Zh is the
unique solution of (4.3), then uh := curla ψh approximates the velocity with the same order
of the proposed method. This result is summarized as follows.

Corollary 1 Assume that the hypotheses of Theorem 6 hold. Then, for uh := curla ψh, there
exists C > 0 (independent of both h and ν) such that

‖u − uh‖H(diva,Ω) ≤ Chk
(

‖ψ‖Hk+1
1 (Ω)

+ ‖ω‖Hk+1
1 (Ω)

)
.

Proof We have that

‖u − uh‖H(diva,Ω) = ‖u − uh‖L2
1(Ω)2= ‖ curla ψ − curla ψh‖L2

1(Ω)2 ≤ ‖ψ − ψh‖H̃1
1(Ω),

where in the last inequality we have used (2.6). Thus, the result follows from Theorem 6. ��

123



360 J Sci Comput (2017) 71:348–364

Table 1 Example 1: errors and convergence rates (r) associated to the piecewise polynomial approximation
of stream-function, vorticity and pressure, and postprocessed velocity

h ‖ψ − ψh‖1 r ‖ψ − ψh‖0 r |||ω − ωh|||1 r ‖ω − ωh‖0 r ‖p − ph‖1 r ‖u − uh‖div r
Approximation with k = 1

0.413 2.149 – 0.185 – 0.438 – 0.054 – 6.461 – 0.734 –
0.350 1.175 0.932 0.084 1.277 0.370 0.845 0.037 1.554 5.605 0.848 0.695 1.227
0.229 0.602 1.572 0.021 2.246 0.172 1.802 0.009 2.265 3.413 1.168 0.376 1.134
0.122 0.352 0.853 0.007 1.730 0.102 0.821 0.003 1.724 1.900 0.929 0.222 0.976
0.078 0.213 1.141 0.002 2.318 0.061 1.149 0.001 2.353 1.173 1.094 0.135 1.047
0.053 0.141 1.044 0.001 2.092 0.041 1.044 5.2e-4 2.012 0.785 1.030 0.090 1.092
0.038 0.100 1.050 6.1e-4 2.084 0.029 1.033 3.1e-4 2.131 0.549 1.098 0.065 0.997
0.028 0.075 1.011 3.3e-4 2.013 0.022 1.029 1.5e-4 2.089 0.411 1.010 0.048 1.074
0.022 0.058 0.983 1.9e-4 1.970 0.016 0.986 8.3e-5 1.983 0.317 0.974 0.036 0.945

Approximation with k = 2
0.413 0.167 – 0.009 – 0.099 – 0.014 – 0.689 – 0.043 –
0.350 0.059 1.743 0.003 2.014 0.041 1.243 0.002 2.516 0.341 1.797 0.030 1.840
0.229 0.019 2.608 5.2e-4 3.066 0.011 2.023 3.2e-4 3.117 0.116 2.134 0.012 1.883
0.122 0.006 1.831 1.9e-4 2.951 0.003 1.976 6.6e-5 2.867 0.035 1.982 0.004 1.890
0.078 0.002 2.259 2.2e-5 3.157 0.001 2.251 1.5e-5 3.186 0.013 2.123 0.002 1.887
0.053 0.001 2.069 7.1e-6 2.993 5.8e-4 2.038 4.5e-6 2.981 0.005 2.084 0.001 1.890
0.038 5.0e-4 2.163 2.4e-6 3.130 3.0e-4 2.107 1.6e-6 3.193 0.003 2.146 4.3e-4 1.908
0.028 3.0e-4 1.996 1.0e-6 2.970 1.8e-4 2.065 6.8e-7 3.098 0.002 2.018 1.2e-4 1.935
0.022 2.0e-4 1.981 4.8e-7 2.972 1.0e-4 1.992 3.0e-7 2.963 0.001 1.991 7.6e-5 1.678

Approximation with k = 3
0.413 0.025 – 0.001 – 0.005 – 3.4e-4 – 0.004 – 0.006 –
0.350 0.010 3.288 5.3e-4 4.158 0.001 3.385 1.3e-4 3.623 0.001 2.843 0.004 2.436
0.229 0.001 3.543 4.3e-5 4.893 4.3e-4 3.247 1.3e-5 4.033 3.8e-4 2.987 8.9e-4 2.989
0.122 1.1e-4 3.526 2.3e-6 4.550 1.4e-4 2.955 1.2e-6 3.975 3.6e-5 3.143 2.4e-4 2.836
0.078 2.5e-5 3.670 3.1e-7 4.528 1.2e-5 3.104 1.7e-7 4.050 6.9e-6 3.166 3.0e-5 2.955
0.053 4.9e-6 3.532 3.6e-8 4.431 3.8e-6 2.984 3.4e-8 4.077 2.2e-6 3.240 7.9e-6 3.056
0.038 1.3e-6 3.430 6.3e-9 4.409 1.3e-6 3.204 8.7e-9 4.195 3.8e-7 3.440 2.8e-6 3.061
0.028 4.0e-7 3.679 1.6e-9 4.530 5.4e-7 3.136 2.6e-9 4.191 1.0e-7 3.154 1.0e-6 2.976
0.022 1.3e-7 3.387 4.4e-10 4.406 2.5e-7 2.914 1.0e-9 3.960 4.1e-8 3.161 4.3e-7 2.985

5 Numerical Results

In our first example we test the convergence of the proposed scheme when applied to the
axisymmetric version of the classical colliding flow problem (see e.g. [19, Sect. 5.1] for the
Cartesian case). The analytic solution is given as follows

ψ(r, z) = 5r z4 − r5, ω(r, z) = 12
√

ν(2r3 − 5r z2), p(r, z) = 60r2z − 24z3,

and it is defined on the meridional domain Ω having four sides defined by the symmetry
axis (left wall r = 0), bottom and top lids (z = 0 and z = 1, respectively), and the curve
characterized by the parametrization s ∈ [0, 1], r = 1 − s/2 + 0.15 cos(πs) sin(πs), and
z = s − 0.15 cos(πs) sin(πs). We set the model parameters to σ = 10 and ν = 0.1.
The boundary conditions are non-homogeneous and set according to the interpolant of
the exact stream-function and vorticity (and the pressure solve is modified according to
Remark 2), whereas the forcing term f has been manufactured using the momentum equa-
tion (2.3a). Errors for vorticity and stream-function were measured in the H̃1

1(Ω) and
L2
1(Ω)−norms (denoted hereafter with subscripts 1 and 0, respectively), while those for

the pressure correspond to the H1
1(Ω) ∩ L2

1,0(Ω)−norm (denoted with subscript 1). The
convergence history (obtained on a family of successively refined unstructured partitions of
Ω) is collected in Table 1, confirming the expected behavior predicted by Theorems 6 and
7. For illustrative purposes we also list the error history for the postprocessed velocity,
exhibiting a O(hk) convergence, as anticipated by Corollary 1. The approximate solu-
tions obtained using the lowest-order method (k = 1) on a coarse mesh are displayed in
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Fig. 1 Example 1: approximated stream-function, vorticity, and pressure distribution for the accuracy assess-
ment test on the axisymmetric domain Ω

Table 2 Example 1: errors and stability with respect to the data, for different values of the fluid viscosity

ν
‖ψ−ψh‖1‖ψ‖1

|||ω−ωh |||1|||ω|||1
‖p−ph‖1‖p‖1

‖u−uh‖0‖u‖0 f e
f

1.0e−1 1.6e−3 1.4e−3 0.013 0.176 19.794 6.3e−4

1.0e−2 1.2e−3 7.6e−4 0.013 0.161 22.322 5.0e−4

1.0e−3 6.1e−4 2.6e−4 0.013 0.160 22.576 5.4e−4

1.0e−4 5.9e−4 2.3e−4 0.013 0.160 22.601 5.3e−4

1.0e−5 5.7e−4 2.3e−4 0.013 0.160 22.604 5.2e−4

1.0e−6 5.7e−4 2.2e−4 0.013 0.160 22.604 5.2e−4

1.0e−7 5.5e−4 2.1e−4 0.013 0.160 22.604 5.2e−4

1.0e−8 5.5e−4 2.1e−4 0.013 0.160 22.604 5.2e−4

1.0e−9 5.5e−4 2.1e−4 0.013 0.160 22.604 5.2e−4

1.0e−10 5.5e−4 2.1e−4 0.013 0.160 22.604 5.2e−4

Fig. 1. We recall that, by construction, the divergence of the computed velocity is exactly
zero.

Following [6, Sect. 4.3] we now illustrate the robustness of the method with respect to
the fluid viscosity. We fix a mesh of size h = 0.008, choose the method with k = 1, and
recompute individual and total errors (e) for different values of ν. Table 2 lists the obtained
results, showing also a measure of the data f = ‖ f ‖0. The last column of the table presents
the ratio between the total error and the norm of the data, indicating that the method is
unaffected by the decrease of the viscosity.

Our next example addresses the well-known lid driven cavity flow. The domain under
consideration is the unit square Ω = (0, 1)2, discretized with an unstructured mesh
of 80K triangular elements. Following Remark 1, a tangential velocity ut = −1 is
imposed on the top lid of the domain (Γt ⊂ Γ ), the symmetry axis Γsym is the left
wall, and on the remainder of the boundary we set homogeneous Dirichlet data for the
stream-function. No boundary conditions are explicitly set for the vorticity. The forcing
term is f = 0, the viscosity is constant ν = 1e − 2, and the inverse permeability
is, in a first round, constant σ = 0.1. We also test the case where σ is discontinu-
ous across the line r = 0.4, going from σ0 = 0.01 to σ1 = 100. Stream-function,
vorticity and pressure profiles for both cases are displayed in Fig. 2, where the bottom
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Fig. 2 Example 2: approximated stream-function, vorticity, and pressure distribution for the lid-driven cavity
problem for constant (top row) and discontinuous permeability (bottom panels)

row shows a clear change of regime between the regions of high and low permeabil-
ity.

Finally, we perform a simulation of axisymmetric laminar flow past a sphere. The merid-
ional domain configuration is given in the top panel of Fig. 3. The boundary of the meridional
Ω is decomposed into an inlet boundary (located at z = 0), an outlet (at z = 10), a “far-field”
border (on r = 2), the surface of the obstacle (centered at r = 0, z = 5 and with radius 1),
and the symmetry axis is located at r = 0. The domain is discretized into 80K triangular
elements and the model parameters are ν = 5e − 3, σ = 0.1. The boundary conditions are
set as follows: on Γin we set ψ = r , on Γfar we set ψ = 1

2r
2 and ω = 0, and on Γobs we

put ψ = 0. The numerical results are depicted on the reflected domain in Fig. 3, where we
observe flow patterns qualitatively agreeing with the expected results (see e.g. [12]).

6 Concluding Remarks

In the present paper, we have analyzed a mixed finite element method to approximate a
stream-function–vorticity variational formulation for the Brinkman problem in axisymmet-
ric domains, which has been shown to be well-posed using standard arguments for mixed
problems. The formulation was discretized by means of continuous piecewise polynomials
of degree k ≥ 1 for all the unknowns. We proved an O(hk) convergence with respect to
the mesh size in the natural H1-norm, as well as an O(hk+1) order in L2-norm by a dual-
ity argument, and all estimates are uniform with respect to the fluid viscosity ν. Finally,
we reported numerical results that confirm the numerical analysis of the proposed method.
A distinctive feature of this method is that it allows discrete velocities which are auto-
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Fig. 3 Example 3: meridional domain (where the symmetry axis is r = 0) with obstacle and sketch of
boundary decomposition (top panel); and approximate solutions for stream-function, vorticity, and pressure

matically divergence-free. Extensions of this work include the nonlinear Navier-Stokes
equations and coupling with transport problems arising from multiphase flow descrip-
tions.
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