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Abstract: A variational formulation is analysed for the Oseen equations written in terms of vorticity and
Bernoulli pressure. The velocity is fully decoupled using the momentum balance equation, and it is later
recovered by a post-process. A finite element method is also proposed, consisting in equal-order Nédélec fi-
nite elements andpiecewise continuouspolynomials for the vorticity and theBernoulli pressure, respectively.
The a priori error analysis is carried out in the L2-norm for vorticity, pressure, and velocity; under a smallness
assumption either on the convecting velocity, or on the mesh parameter. Furthermore, an a posteriori error
estimator is designed and its robustness and efficiency are studied using weighted norms. Finally, a set of nu-
merical examples in 2D and 3D is given, where the error indicator serves to guide adaptive mesh refinement.
These tests illustrate the behaviour of the new formulation in typical flow conditions, and also confirm the
theoretical findings.

Keywords: Oseen equations, vorticity-based formulation, finite element methods. a priori error bounds, a
posteriori error estimation, numerical examples

MSC: 65N30, 65N12, 76D07, 65N15

1 Introduction

In this paper, we propose a reformulation of the Oseen equations using only vorticity and Bernoulli pres-
sure. A similar splitting of the unknowns has been recently proposed in [9] for the Brinkman equations. We
extend those results for the Oseen problem and propose a residual-based a posteriori error estimator whose
properties are studied using a weighted energy norm, as well as the L2-norm.

There is an abundant body of literature dealing with numerical methods for incompressible flow prob-
lems using the vorticity as a dedicated unknown. These include spectral elements [6, 10], stabilised and
least-squares schemes [5, 15], and mixed finite elements [3, 8, 22–24, 26, 32], to name a few. Works specifi-
cally devoted to the analysis of numerical schemes for the Oseen equations in terms of vorticity include the
non-conforming exponentially accurate least-squares spectral method for Oseen equations proposed in [28],
the least-squares method proposed in [33] for Oseen and Navier–Stokes equations, the family of vorticity-
based first-order Oseen-type systems studied in [18], the enhanced accuracy formulation in terms of velocity–
vorticity–helicity investigated in [12], and the recent mixed and DG discretisations for Oseen’s problem in
velocity–vorticity–pressure form, proposed in [7].

The method advocated in this article focuses on Nédélec elements of order k ⩾ 1 for the vorticity and
piecewise continuous polynomials of degree k, for the Bernoulli pressure. Here we provide details on the a
priori error estimates rigorously derived for the finite element discretisations in the L2-norm under enough
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regularity and under smallness assumption on the mesh parameter. Furthermore, we prove error estimates
for two post-processes for the velocity field in the L2-norm. The first one is similar to the one used in [9] for
Brinkman equations, which exploits the momentum equation and direct differentiation of the discrete vor-
ticity and Bernoulli pressure. For the second post-process we solve an additional elliptic problem emanating
from the constitutive equation defining vorticity, and it uses the continuity equation and the discrete vortic-
ity appears on the right-hand side. This problem is discretised with, e.g., piecewise linear and continuous
polynomials.

On the other hand, we address the construction of residual based a posteriori error estimators which
are reliable and efficient. Adaptive mesh refinement strategies based on a posteriori error indicators have a
significant role in computing numerical solutions to partial differential equations, and this is of high impor-
tance in the particular context of incompressible flow problems. Robust and efficient error estimators permit
to restore the optimal convergence of finite elementmethods, specifically when complex geometries or singu-
lar coefficients are present (which could otherwise lead to non-convergence or to the generation of spurious
solutions) [34], and they can provide substantial enhancement to the accuracy of the approximations [1].
A posteriori error analyses for (vector or tensor) vorticity-based equations are already available from the liter-
ature (see, e.g., [4, 5, 8, 16]), but considering formulations substantially different to the one we put forward
here. Our analysis complements these works by establishing upper and lower bounds in different norms,
and using an estimator that is scaled according to the expected regularity of the solutions (which in turn
also depends on the regularity of the domain). Reliability of the a posteriori error estimator is proved in the
L2-norm, and local efficiency of the error indicator is shown by using a standard technique based on bubble
functions. Another appealing feature of the formulation is that even for high Reynolds numbers, it seems
to maintain optimal accuracy for the main unknowns, which is difficult to achieve with classical velocity/
Bernoulli pressure formulations [12, 30]. We further remark that the present method has the advantage of
direct computation of vorticity, and it is relatively competitive in terms of computational cost (for instance
when compared with the classical MINI-element). The type of vorticity-based formulations we use here can
be of additional physical relevance in scenarios where boundary effects are critical, for example as in those
discussed in [21, 30]. Moreover, the corresponding analysis is fairly simple, only requiring classical tools for
elliptic problems, which in turn could facilitate the design of efficient solvers.

We have structured the contents of the paper in the following manner. We present the model problem as
well as the two-field weak formulation and its solvability analysis in Section 2. The finite element discreti-
sation is constructed in Section 3, where we also derive the stability, convergence bounds and we present
two post-processes for the velocity field. Section 4 is devoted to the analysis of reliability and efficiency of a
weighted residual-based a posteriori error indicator, and we close in Section 5 with a set of numerical tests
that illustrate the properties of the proposed numerical scheme in a variety of scenarios, including validation
of the adaptive refinement procedure guided by the error estimator.

2 Continuous formulation of the Oseen problem

This section deals with some preliminaries, variational formulation for the Oseen problem given in terms of
vorticity and Bernoulli pressure and its well-posedness.

2.1 Preliminaries

Let Ω ⊂ ℝ3 be a bounded and connected Lipschitz domain with boundary Γ = ∂Ω and let n denote the
outward unit vector normal to Γ. The starting point of our investigation is the following form of the equations,
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that use velocity, vorticity, and Bernoulli pressure (see, e.g., [7, 31]):

σu − ν∆u + curl u × β + ∇p = f in Ω
div u = 0 in Ω (2.1)

where ν > 0 is the kinematic viscosity, and a linearisation and backward Euler time stepping explain the
terms σ > 0 as the inverse of the time step, and β as an adequate approximation of velocity (representing for
example the velocity at a previous time step). The Bernoulli pressure relates to the fluid kinematic pressure
P as follows p := P + 1

2u ⋅ u − λ, where λ is the mean value of 1
2u ⋅ u.

The structure of (2.1) suggests to introduce the rescaled vorticity vectorω := √ν curl u as anewunknown.
Thus, the Oseen problem can be formulated as: Find u,ω, p such that

σu + √ν curlω + ν−1/2ω × β + ∇p = f in Ω (2.2)
ω − √ν curl u =0 in Ω (2.3)

div u =0 in Ω (2.4)
u = g on Γ. (2.5)

The vector of external forces f absorbs the contributions related to previous time steps and to the fixed states
in the linearisation procedure that leads from Navier–Stokes to Oseen equations. Along with the Dirichlet
boundary condition for the velocity on Γ, the additional condition (p, 1)Ω,0 = 0 is required to have unique-
ness of the Bernoulli pressure. We will also assume that the data are regular enough: f ∈ L2(Ω)3 and β ∈
W1,∞(Ω)3. However, we do not restrict the behaviour of div β. For different assumptions on β we refer to,
e.g., [11, 19, 20, 29, 33].

For the sake of conciseness of the presentation, the analysis in the sequel is carried out for homogeneous
boundary conditions on velocity, i.e., g = 0 on Γ. Non-homogeneous boundary data, as well asmixed bound-
ary conditions, will be considered in the numerical examples in Section 5, below.

2.2 Variational formulation

For any s ⩾ 0, the symbol ‖⋅‖s,Ω denotes the norm of the Hilbert Sobolev spaces Hs(Ω) or Hs(Ω)3, with the
usual convention H0(Ω) := L2(Ω). For s ⩾ 0, we recall the definition of the space

Hs(curl;Ω) := {ϑ ∈ Hs(Ω)3 : curl ϑ ∈ Hs(Ω)3} (2.6)

endowed with the norm 󵄩󵄩󵄩󵄩ϑ󵄩󵄩󵄩󵄩Hs(curl;Ω) = (󵄩󵄩󵄩󵄩ϑ󵄩󵄩󵄩󵄩2s,Ω + 󵄩󵄩󵄩󵄩curl ϑ󵄩󵄩󵄩󵄩2s,Ω )1/2, and will denote H(curl;Ω) = H0(curl;Ω).
Finally, c and C, with subscripts, tildes, or hats, will represent a generic constant independent of the mesh
parameter h.

We denote the function spaces

Z := H(curl;Ω), Q := H1(Ω) ∩ L20(Ω)
which are endowed, respectively, with the following norms

‖ϑ‖Z := (‖ϑ‖20,Ω + ν‖ curl ϑ‖20,Ω)1/2 , ‖q‖Q := (‖q‖20,Ω + ‖∇q‖20,Ω)1/2.
Here, L20(Ω) represents the set of L2(Ω) functions with mean value zero.

In addition, for sake of the subsequent analysis, it is convenient to introduce the following space

𝕍 := {(ϑ, q) ∈ L2(Ω)3 × L20(Ω) : √ν curl ϑ + ∇q ∈ L2(Ω)3}.
Lemma 2.1. The space𝕍 endowed with the norm defined by

‖(ϑ, q)‖𝕍 := (σ‖ϑ‖20,Ω + ‖√ν curl ϑ + ∇q‖20,Ω + ‖q‖20,Ω)1/2 (2.7)

is a Hilbert space.
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Proof. Note that (2.7) is in fact a norm as ‖(ϑ, q)‖𝕍 = 0 implies (ϑ, q) = (0, 0) a.e. Now, it is easy to check
that the norm satisfies the parallelogram identity and hence, it induces an inner product by the polarisation
identity. Therefore, 𝕍 equipped with this inner product is an inner product space. To complete the proof, it
remains to show that this space is complete. To this end, let {(ϑn , qn)}n∈ℕ be an arbitrary Cauchy sequence
in 𝕍. From the completeness of L2(Ω)3 and L20(Ω), it follows that (ϑn , qn) → (ϑ̂, q̂) ∈ L2(Ω)3 × L20(Ω) and√ν curl ϑn + ∇qn → φ ∈ L2(Ω)3. We now observe that√ν curl ϑ̂ + ∇q̂ ∈ D(Ω)󸀠, and for ξ ∈ D(Ω)

⟨√ν curl ϑ̂ + ∇q̂, ξ⟩ = √ν⟨curl ϑ̂, ξ⟩ + ⟨∇q̂, ξ⟩ = √ν⟨ϑ̂, curl ξ⟩ − ⟨q̂, div ξ⟩
= lim
n→∞[√ν⟨ϑ̂n , curl ξ⟩ − ⟨q̂n , div ξ⟩]
= lim
n→∞[√ν⟨curl ϑ̂n , ξ⟩ + ⟨∇q̂n , ξ⟩]
= ⟨φ, ξ⟩.

Here we have employed integration by parts twice and the continuity of the involved operators in passing to
the limit. Therefore,√ν curl ϑ̂ + ∇q̂ = φ ∈ L2(Ω)3 and this completes the rest of the proof.

In order to derive a variational formulation of the problem,we test (2.3) against a sufficiently smooth function
σϑ. Then, integrating by parts (using the classical curl-based Gauss theorems from, e.g., [25]) and using the
velocity boundary condition, we arrive at

σ∫
Ω
ω ⋅ ϑ − σ√ν∫

Ω
u ⋅ curl ϑ = 0. (2.8)

Next, from the momentum equation (2.2), we readily obtain the relation

σu = f − √ν curlω − ν−1/2ω × β − ∇p in Ω (2.9)

and after replacing (2.9) in (2.8), we find that

σ∫
Ω
ω ⋅ ϑ + ν∫

Ω
curlω ⋅ curl ϑ + √ν∫

Ω
∇p ⋅ curl ϑ + ∫

Ω
(ω × β) ⋅ curl ϑ = √ν∫

Ω
f ⋅ curl ϑ.

Next for a given sufficiently smooth function q, we can test (2.2) against ∇q. Then, we integrate by parts and
use again the velocity boundary condition, as well as (2.4) to arrive at

σ∫
Ω
u ⋅ ∇q = 0

which leads to the variational form

√ν∫
Ω
curlω ⋅ ∇q + ν−1/2 ∫

Ω
(ω × β) ⋅ ∇q + ∫

Ω
∇p ⋅ ∇q = ∫

Ω
f ⋅ ∇q.

Summarising, problem (2.2)–(2.5) is written in its weak form as: Find (ω, p) ∈ 𝕍 such that
A((ω, p), (ϑ, q)) = F(ϑ, q) ∀(ϑ, q) ∈ 𝕍 (2.10)

where the multilinear formA : 𝕍 × 𝕍 → ℝ and linear functional F : 𝕍 → ℝ are specified as
A((ω, p), (ϑ, q)) := σ∫

Ω
ω ⋅ ϑ + ∫

Ω
(√ν curlω + ∇p) ⋅ (√ν curl ϑ + ∇q)

+ ν−1/2 ∫
Ω
(ω × β) ⋅ (√ν curl ϑ + ∇q) (2.11)

F(ϑ, q) := ∫
Ω
f ⋅ (√ν curl ϑ + ∇q). (2.12)

While our whole development will focus on this vorticity–pressure formulation, we stress that from (2.9)
we can immediately have an expression for velocity

u = σ−1 ( f − ν−1/2ω × β − (√ν curlω + ∇p)) in Ω. (2.13)
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Remark 2.1. The reason for scaling the vorticity with√ν is now apparent from the structure of the variational
form in (2.11). On the other hand, if wewrite instead ω̄ := curl u, then (2.10) could bewritten as: Find (ω̄, p) ∈
𝕍 such that

σ
ν ∫Ω ω̄ ⋅ ϑ + ∫Ω(curl ω̄ + ∇p) ⋅ (curl ϑ + ∇q) + ν

−1 ∫
Ω
(ω̄ × β) ⋅ (curl ϑ + ∇q)

= ∫
Ω
f ⋅ (curl ϑ + ∇q) ∀(ϑ, q) ∈ 𝕍

and the analysis of this problem follows the same structure as that of (2.10).

Let us first provide an auxiliary result to be used in the derivation of a priori error estimates.

Lemma 2.2. The quadrilinear formA satisfies the following bounds for all (ϑ, q) ∈ 𝕍,

A((ϑ, q), (ϑ, q)) ⩾ σ(1 − 2‖β‖
2∞,Ω

νσ )‖ϑ‖20,Ω +
1
2 ‖√ν curl ϑ + ∇q‖20,Ω (2.14)

A((ω, p), (ϑ, q)) ⩽ ‖(ω, p)‖𝕍‖(ϑ, q)‖𝕍. (2.15)

Proof. From the definition ofA(⋅, ⋅), we readily obtain the relation
σ‖ϑ‖20,Ω + ‖√ν curl ϑ + ∇q‖20,Ω + ν−1/2 ∫Ω(ϑ × β) ⋅ (√ν curl ϑ + ∇q) = A((ϑ, q), (ϑ, q)).

Subsequently, an appeal to the Cauchy–Schwarz inequality leads to

σ(1 − 2‖β‖
2∞,Ω

νσ )‖ϑ‖20,Ω +
1
2 ‖√ν curl ϑ + ∇q‖20,Ω ⩽ A((ϑ, q), (ϑ, q)). (2.16)

Thus, (2.14) follows from (2.16), and relation (2.15) follows directly form the Cauchy–Schwarz inequality. This
completes the proof.

As a consequence of Lemma 2.2, we can readily derive the following result, stating the stability of prob-
lem (2.10).

Lemma 2.3. Assume that
2‖β‖2∞,Ω < νσ (2.17)

holds true. Then, there exists C > 0 such that
‖(ω, p)‖𝕍 ⩽ C‖f ‖0,Ω .

Proof. Choose (ϑ, q) = (ω, p) in (2.10). From (2.14) with (2.17), and the bound

|F(ω, p)| ⩽ ‖f ‖0,Ω ‖√ν curlω + ∇p‖0,Ω ⩽ ‖f ‖0,Ω ‖(ω, p)‖𝕍
we obtain

(‖ω‖20,Ω + ‖√ν curlω + ∇p‖20,Ω) ⩽ C ‖f ‖0,Ω ‖(ω, p)‖𝕍.
Then, we note that (cf. [25, Ch. I, Cor. 2.1])

‖p‖0,Ω ⩽ Cs ‖∇p‖−1,Ω
and invoking the definition of the H−1-norm, it is observed that

‖∇p‖−1,Ω := sup
{v∈H1

0(Ω)3: ‖v‖1,Ω=1}
(∇p, v)

= sup
{v∈H1

0(Ω)3: ‖v‖1,Ω=1}
((√ν curlω + ∇p, v)0,Ω − (√ν curlω, v)0,Ω)

= sup
{v∈H1

0(Ω)3: ‖v‖1,Ω=1}
((√ν curlω + ∇p, v)0,Ω − (√νω, curl v)0,Ω).
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We end up with

‖p‖0,Ω ⩽ Cs‖∇p‖−1,Ω ⩽ Cs (‖√ν curlω + ∇p‖0,Ω+‖ω‖0,Ω)
⩽ Cs ‖(ω, p)‖𝕍. (2.18)

Altogether, it completes the rest of the proof.

Theorem 2.1. Under the assumption (2.17), there exists a uniqueweak solution (ω, p) ∈ 𝕍 to the problem (2.10),
which depends continuously on f .

Proof. The continuous dependence of the solution (ω, p) ∈ 𝕍 on the given data f is a consequence of the
stability Lemma 2.3. Likewise, a straightforward application of that result implies the uniqueness of solution.

On the other hand, for the existencewenote that themultilinear formA(⋅, ⋅) is both coercive and bounded
in 𝕍 with respect to ‖(⋅, ⋅)‖𝕍 because of Lemmas 2.2 and 2.3 (more precisely, coercivity follows from (2.14)
and (2.18)). Therefore, an appeal to the Lax–Milgram lemma completes the rest of the proof.

Remark 2.2. Even if β violates (2.17) we can still address the well-posedness of problem (2.10). Since prob-
lem (2.1) with the boundary conditions u = 0 on Γ is equivalent to (2.10) under the assumption of sufficient
regularity, then the unique solvability of (2.1) implies that of (2.10). Now, denoting by P the Leray projection
operator that maps L2 onto a divergence-free space, we can see that the following problem

L(u) := P(−ν∆u + curl u × β + σu + ∇p) = Pf
defines a Fredholm alternative (see for instance, [17]). Note also that, as long as zero is not in the spectrum
of L, the operator L is invertible. With the null space of L being a trivial space, the operator L is indeed an
isomorphism onto the dual space Z󸀠 of Z. Finally, p is recovered in a standard way.
In any case, for the rest of the paper we will simply assume that:
(A) Problem (2.10) has a unique weak solution (ω, p) ∈ 𝕍.

3 Finite element discretisation and convergence analysis

In this section we define the finite element approximation and derive a priori error estimates.

3.1 Galerkin scheme and solvability

Let {Th(Ω)}h>0 be a shape-regular family of partitions of the polyhedral region Ω̄, by tetrahedrons T of diam-
eter hT , with mesh size h := max{hT : T ∈ Th(Ω)}. In what follows, given an integer k ⩾ 1 and a subset S
ofℝ3, Pk(S)will denote the space of polynomial functions defined locally in S and being of total degree ⩽ k.

Now, for any T ∈ Th(Ω) we recall the definition of the local Nédélec space
ℕk(T) := Pk−1(T)3 ⊕ Rk(T)

where Rk(T) := {p ∈ P̄k(T)3 : p(x) ⋅ x = 0}, and where P̄k is the subset of homogeneous polynomials of
degree k. With this we define the discrete spaces for vorticity and Bernoulli pressure:

Zh := {ϑh ∈ Z : ϑh|T ∈ ℕk(T) ∀T ∈ Th(Ω)}
Qh := {qh ∈ Q : qh|T ∈ Pk(T) ∀T ∈ Th(Ω)} (3.1)
𝕍h := Zh × Qh

and remark that functions in Zh have continuous tangential components across the faces of Th(Ω).
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Let us recall that for s > 1/2, the Nédélec global interpolation operator Nh : Hs(curl;Ω) → Zh (cf. [2]),
satisfies the following approximation property: For all ϑ ∈ Hs(curl;Ω)with s ∈ (1/2, k], there exists Capx > 0
independent of h, such that

‖ϑ −Nhϑ‖Z ⩽ Capx hs‖ϑ‖Hs(curl;Ω). (3.2)
On the other hand, for all s > 1/2, the usual Lagrange interpolant Πh : H1+s(Ω) ∩ Q → Qh features a similar
property. Namely: For all q ∈ H1+s(Ω), s ∈ (1/2, k] there exists Capx > 0, independent of h, such that

‖q − Πhq‖Q ⩽ Capx hs‖q‖H1+s(Ω). (3.3)

The Galerkin approximation of (2.10) reads: Find (ωh , ph) ∈ 𝕍h such that
A((ωh , ph), (ϑh , qh)) = F(ϑh , qh) ∀(ϑh , qh) ∈ 𝕍h (3.4)

where the multilinear form A : 𝕍h × 𝕍h → ℝ and the linear functional F : 𝕍h → ℝ are specified as in (2.11)
and (2.12), respectively.

Next, let us prove that the discrete formulation (3.4) is well-posed.
Before that, we address the stability of the discrete problem.

Lemma 3.1. Under the assumption (A), and h > 0 small enough, there exists C > 0, independent of h, such that
‖(ωh , ph)‖𝕍 ⩽ C ‖f ‖0,Ω .

Proof. Choosing (ϑh , qh) = (ωh , ph) in (3.4), a use of the Cauchy–Schwarz inequality with the estimate

ν−1/2 ∫
Ω
(ωh × β) ⋅ (√ν curlωh + ∇ph) ⩽ 2 ν−1/2 ‖β‖∞,Ω‖ωh‖0,Ω‖√ν curlωh + ∇ph‖0,Ω

yields

σ‖ωh‖20,Ω + ‖√ν curlωh + ∇ph‖20,Ω ⩽ (‖f ‖0,Ω + 2 ν−1/2‖β‖∞,Ω‖ωh‖0,Ω) ‖√ν curlωh + ∇ph‖0,Ω . (3.5)

By (2.18), it follows that

‖ph‖0,Ω ⩽ Cs (‖√ν curlωh + ∇ph‖0,Ω + ‖ωh‖0,Ω) .
And eventually we arrive at

‖(ωh , ph)‖𝕍 ⩽ C (‖f ‖0,Ω + σ−1/2 ν−1/2σ1/2‖β‖∞,Ω‖ωh‖0,Ω). (3.6)

In order to complete the proof, we require an estimate for σ1/2‖ωh‖0,Ω. For this we apply the Aubin–
Nitsche duality argument to the following adjoint problem: Find (ω̃, p̃) ∈ Z × Q such that

A((ϑ, q), (ω̃, p̃)) = σ(ωh , ϑ)0,Ω + (ph , q)0,Ω ∀(ϑ, q) ∈ Z × Q. (3.7)

Assuming the required additional regularity ω̃ ∈ Hδ(curl;Ω) (where the space is defined in (2.6)) and p̃ ∈
H1+δ(Ω), for some δ ∈ (1/2, 1], we can show that the solution to (3.7) satisfies

‖ω̃‖Hδ(curl,Ω) + ‖p̃‖H1+δ(Ω) ⩽ Creg(σ1/2‖ωh‖0,Ω + ‖ph‖0,Ω)
for Creg > 0 a uniform regularity constant. Then, we set (ϑ, q) = (ωh , ph) and find out that for all (ϑh , qh) ∈
Zh × Qh, the following relation holds:

σ ‖ωh‖20,Ω + ‖ph‖20,Ω = A((ωh , ph), (ω̃, p̃))
= A((ωh , ph), (ω̃ − ϑh , p̃ − qh)) − F(ω̃ − ϑh , p̃ − qh) + F(ω̃, p̃)
⩽ σ‖ωh‖0,Ω‖ω̃ − ϑh‖0,Ω
+ (‖√ν curl ω̃ + ∇p̃‖0,Ω + ‖√ν curl(ω̃ − ϑh) + ∇(p̃ − qh)‖0,Ω) ‖f ‖0,Ω
+ (‖√ν curlωh + ∇ph‖0,Ω + ν−1/2‖β‖∞,Ω‖ωh‖0,Ω)
× ‖√ν curl(ω̃ − ϑh) + ∇(p̃ − qh)‖0,Ω
⩽ Creg Capx (σ‖ωh‖20,Ω + ‖ph‖20,Ω)

1/2

× (hδ (1 + σ1/2 + σ−1/2 ν−1/2‖β‖∞,Ω) ‖(ωh , ph)‖𝕍 + ‖f ‖0,Ω).
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In this way, we obtain

(σ‖ωh‖20,Ω + ‖ph‖20,Ω)
1/2 ⩽ Creg Capx (hδ (1 + σ1/2 + σ−1/2 ν−1/2‖β‖∞,Ω)
× ‖(ωh , ph)‖𝕍 + ‖f ‖0,Ω) (3.8)

and on substitution of (3.8) into (3.6), we readily see that

(1 − CsCregCapx√σν (1 + √σ +
1
√σν ‖β‖∞,Ω) h

δ) ‖(ωh , ph)‖𝕍 ⩽ C‖f ‖0,Ω .

Therefore, there is a positive h0 such that for 0 < h ⩽ h0, the following holds:

(1 − CsCregCapx√σν (1 + σ
1/2 + σ−1/2 ν−1/2‖β‖∞,Ω) hδ) ⩾ γ0 > 0

for some positive γ0, independent of h. This completes the rest of the proof.

Theorem 3.1. For h > 0 small enough, the discrete problem (3.4) has a unique solution (ωh , ph) ∈ 𝕍h.
Proof. Since the assembled discrete problem (3.4) is a square linear system, it is enough to establish unique-
ness of solution. Considering f = 0 and using (ϑh , qh) := (ωh , ph) as a test function in (3.4), the discrete
stability result in Lemma 3.1 (which is valid assuming (2.17)) immediately implies that ωh = 0 and ph = 0,
thus concluding the proof.

Remark 3.1. When (2.17) is satisfied, we modify the stability proof of Lemma 3.1 as follows: From (3.5), using
Young’s inequality on the right-hand side, we obtain

σ(1 − 2‖β‖
2∞,Ω

σν )‖ωh‖20,Ω + 12 ‖√ν curlωh + ∇ph‖20,Ω ⩽ ‖f ‖20,Ω .

In addition, applying Young’s inequality once again, and appealing to (2.18), we obtain the desired stability
result. In such a case we do not need a smallness condition on the mesh parameter h.

3.2 A priori error estimates

In this subsection, using a classical duality argument we bound the error measured in the L2-norm by the
error in thenorm ‖(⋅, ⋅)‖𝕍. Then,we establish an energy error estimate that eventually yields an optimal bound
in L2.

Let (ω, p) ∈ 𝕍 and (ωh , ph) ∈ 𝕍h be the unique solutions to the continuous and discrete problems
(cf. (2.10) and (3.4)), respectively. Then, we obtain

A((ω − ωh , p − ph), (ϑh , qh)) = 0 ∀(ϑh , qh) ∈ 𝕍h . (3.9)

Lemma 3.2 (an L2-estimate). Let us suppose that (3.10) is well-posed. Then, there exists C > 0, independent of
h, such that for h small enough, and δ ∈ (1/2, 1]:

‖ω − ωh‖0,Ω + ‖p − ph‖0,Ω ⩽ C hδ ‖(ω − ωh , p − ph)‖𝕍.
Proof. We appeal again to the Aubin–Nitsche duality argument. For this, let us consider the adjoint continu-
ous problem: Find (ω̃, p̃) ∈ 𝕍 such that

A((ϑ, q), (ω̃, p̃)) = (σ(ω − ωh), ϑ)0,Ω + (p − ph , q)0,Ω ∀(ϑ, q) ∈ 𝕍. (3.10)
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In addition to the unique solvability of (3.10), let us assume that ω̃ ∈ Hδ(curl;Ω) and p̃ ∈ H1+δ(Ω), and there
exists a constant Creg > 0, such that

‖ω̃‖Hδ(curl,Ω) + ‖p̃‖H1+δ(Ω) ⩽ Creg(σ1/2‖ω − ωh‖0,Ω + ‖p − ph‖0,Ω). (3.11)

Next, we proceed to test the adjoint problem (3.10) against (ϑ, q) := (ω −ωh , p − ph) and to use the error
equation (3.9) with (ϑh , qh) = (Nhω̃, Πh p̃) ∈ 𝕍h to obtain that

σ ‖ω − ωh‖20,Ω + ‖p − ph‖20,Ω = A((ω − ωh , p − ph), (ω̃, p̃))
= A((ω − ωh , p − ph), (ω̃ − ϑh , p̃ − qh))
⩽ (1 + σ1/2 + σ−1/2 ν−1/2‖β‖∞,Ω) ‖(ω − ωh , p − ph)‖𝕍‖(ω̃ − ϑh , p̃ − qh)‖𝕍
⩽ CregCapxhδ(1 + σ1/2 + (σν)−1/2‖β‖∞,Ω)
× ‖(ω − ωh , p − ph)‖𝕍(‖ω − ωh‖20,Ω + ‖p − ph‖20,Ω)1/2

where we have used (3.2) and (3.3) with s = δ.
An error estimate in the energy norm can also be derived in the following manner.

Theorem 3.2. Assume that problem (2.10) has a unique solution (ω, p) satisfying the additional regularityω ∈
Hs(curl;Ω) and p ∈ H1+s(Ω), for some s ∈ (1/2, k]. Then, there exists C > 0, independent of h, such that the
following error estimates hold for h small enough:

‖(ω − ωh , p − ph)‖𝕍 ⩽ C hs (‖ω‖Hs(curl;Ω) + ‖p‖H1+s(Ω))
‖ω − ωh‖0,Ω + ‖p − ph‖0,Ω ⩽ C hs+δ (‖ω‖Hs(curl;Ω) + ‖p‖H1+s(Ω))

where (ωh , ph) ∈ 𝕍h is the unique solution to (3.4) with s = δ, if s ∈ (1/2, 1) and δ = 1, if s ∈ [1, k].
Proof. Now rewrite (3.9), then use boundedness, (3.2), and (3.3) to arrive at

A((ω − ωh , p − ph), (ω − ωh , p − ph)) = A((ω − ωh , p − ph), (ω −Nhω, p − Πhp))
⩽ C ‖(ω − ωh , p − ph)‖𝕍 ‖(ω −Nhω, p − Πhp)‖𝕍
⩽ C hs‖(ω − ωh , p − ph)‖𝕍 (‖ω‖Hs(curl;Ω) + ‖p‖H1+s(Ω)) . (3.12)

Next, for the term on the left-hand side of (3.12), apply (2.14) to obtain

A((ω − ωh , p − ph), (ω − ωh , p − ph))
⩾ 12 (‖(ω − ωh , p − ph)‖2𝕍 − (1 + 1

σν ‖β‖∞) (σ‖ω − ωh‖20,Ω + ‖p − ph‖20,Ω)) .
Then, a use of Lemma 3.2 yields

A((ω − ωh , p − ph), (ω − ωh , p − ph)) ⩾ 12 (1 − C(1 + σ−1 ν−1 ‖β‖∞) h2δ) ‖(ω − ωh , p − ph)‖2𝕍.
Choosing h small, the term within brackets, (1 − C(1 + σ−1 ν−1 ‖β‖∞) h2δ), can be made positive; therefore,
concluding the proof.

As a consequence of Theorem 3.2, with eω := ω−ωh and ep := p−ph, or, alternatively, by invoking coercivity
ofA, we obtain the following inf-sup condition: There exists γ0 > 0, independent of h, such that,

sup
(ϑ,q)∈𝕍

A((eω , ep), (ϑ, q))
‖(ϑ, q)‖𝕍 ⩾ γ0 ‖(eω , ep)‖𝕍.
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3.3 Convergence of the post-processed velocity

Let (ωh , ph) ∈ 𝕍h be the unique solution of the discrete problem (3.4). Then following (2.13), we can recover
the discrete velocity as the following element-wise discontinuous function for each T ∈ Th(Ω):

uh|T := σ−1 (Phf − ν−1/2ωh × β − (√ν curlωh + ∇ph)) |T (3.13)

where Ph : L2(Ω)3 → Uh is the L2-orthogonal projector, with

Uh := {vh ∈ L2(Ω)3 : vh|T ∈ Pk−1(T)3 ∀T ∈ Th(Ω)}. (3.14)

Consequently, we can state an error estimate for the post-processed velocity.

Theorem 3.3. Let (ω, p) ∈ 𝕍 be the unique solution of (2.10), and (ωh , ph) ∈ 𝕍h be the unique solution of (3.4).
Assume that ω ∈ Hs(curl;Ω), p ∈ H1+s(Ω), and f ∈ Hs(Ω)3, for some s ∈ (1/2, k]. Then, there exists a positive
constant C, independent of h, such that

‖u − uh‖0,Ω ⩽ Chs (‖f ‖Hs(Ω) + ‖ω‖Hs(curl;Ω) + ‖p‖H1+s(Ω)) .
Proof. From (2.13), (3.13), and triangle inequality, it follows that

‖u − uh‖0,Ω ⩽ 1σ (‖f − Phf ‖0,Ω + ‖√ν curl(ωh − ω) − ∇(p − ph)‖0,Ω + 1
√ν ‖(ω − ωh) × β‖0,Ω) .

Then, the result follows from standard estimates satisfied by Ph, as well as from Theorem 3.2.

An issue with the post-process (3.13) is that it requires numerical differentiation (taking the curl of ωh and
the gradient of ph). A possible way to getting around this problem is to set

Ũh := {vh ∈ H1
0(Ω)3 : vh|T ∈ Pk(T)3 ∀T ∈ Th(Ω)}

and recover the discrete velocity in this space, using the discrete versions of (2.3), (2.4), and (2.5).
This results in finding ũh ∈ Ũh such that

ν∫
Ω
curl ũh ⋅ curl vh + ν∫

Ω
div ũh div vh = √ν∫

Ω
ωh ⋅ curl vh ∀vh ∈ Ũh . (3.15)

The discrete velocity produced by (3.15) gives not only

‖√ν curl(u − ũh)‖0,Ω + ‖√ν div(u − ũh)‖0,Ω = O(hs)
but also, thanks to the identity relating vector Laplacians with curl and divergence −∆Φ = curl curlΦ −
∇(divΦ), one can show, using duality arguments, that

‖u − ũh‖0,Ω = O(hs+δ)
where s and δ are given as in Theorem 3.2.

4 A posteriori error analysis for the 2D problem

In this section, we propose a residual-based a posteriori error estimator. For sake of clarity, we restrict our
analysis to the two-dimensional case (the extension to 3D can be carried out in a similar fashion). Therefore,
the functional space Z considered in the a priori error analysis now becomes Z := H1(Ω), and

Zh := {ϑh ∈ Z : ϑh|T ∈ Pk(T) ∀T ∈ Th(Ω)}. (4.1)

Wenote that in the 2D case, the duality arguments presented in Section 3, hold for any δ ∈ (0, 1]. In particular,
this fact will be considered in the definition of the local a posteriori error indicator. Moreover, to keep the
notation clear, in this section we will denote byNh the usual Lagrange interpolant in Zh.
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For each T ∈ Th we let E(T) be the set of edges of T, and we denote by Eh the set of all edges in Th, that is

Eh = Eh(Ω) ∪ Eh(Γ)
where Eh(Ω) := {e ∈ Eh : e ⊂ Ω}, and Eh(Γ) := {e ∈ Eh : e ⊂ Γ}. In what follows, he stands for the diameter of
a given edge e ∈ Eh, te = (−n2, n1), where ne = (n1, n2) is a fixed unit normal vector of e. Now, let q ∈ L2(Ω)
such that q|T ∈ C(T) for each T ∈ Th, then, given e ∈ Eh(Ω), we denote by [q] the jump of q across e, that is
[q] := (q|T󸀠 )|e − (q|T󸀠󸀠 )|e, where T󸀠 and T󸀠󸀠 are the triangles of Th sharing the edge e. Moreover, let v ∈ L2(Ω)2
such that v|T ∈ C(T)2 for each T ∈ Th. Then, given e ∈ Eh(Ω), we denote by [v ⋅ t] the tangential jump of v
across e, that is, [v ⋅ t] := ((v|T󸀠 )|e − (v|T󸀠󸀠 )|e) ⋅ te, where T󸀠 and T󸀠󸀠 are the triangles of Th sharing the edge e.
The jumps on e ∈ Eh(Γ) are simply taken as [q] = q and [v ⋅ t] = v ⋅ t.

Next, let k ⩾ 1 be an integer and let Zh , Qh and Uh be given by (4.1), (3.1), and (3.14), respectively. Let
(ω, p) ∈ Z × Q and (ωh , ph) ∈ Zh × Qh be the unique solutions to the continuous and discrete problems (2.10)
and (3.4) with data satisfying f ∈ L2(Ω)2 and f ∈ H1(T)2 for each T ∈ Th. We introduce for each T ∈ Th the
local a posteriori error indicator for δ ∈ (0, 1] as

η̃2T := h2(1+δ)T ‖ rot(√ν curlωh + ν−1/2ωh × β − f ) − ν−1/2 σωh‖20,T
+ h2(1+δ)T ‖div( f − ν−1/2ωh × β − ∇ph)‖20,T
+ ∑
e∈E(T)

h(1+2δ)e ‖[(√ν curlωh + ν−1/2ωh × β − f ) ⋅ t]‖20,e
+ ∑
e∈E(T)

h(1+2δ)e ‖[( f − ν−1/2ωh × β − ∇ph) ⋅ n]‖20,e

=: h2(1+δ)T (‖R1‖20,T + ‖R2‖20,T) + ∑
e∈E(T)

h(1+2δ)e (‖[Jh,1 ⋅ t]‖20,e + ‖[Jh,2 ⋅ n]‖20,e)

and define its global counterpart as

η̃ := {{{
∑
T∈Th

η̃2T
}
}}

1/2
. (4.2)

Let us now establish reliability and quasi-efficiency of (4.2).

4.1 Reliability

This subsection focuses on proving the reliability of the estimator in the L2-norm, andwenote that this bound
holds for δ ∈ (0, 1].
Theorem 4.1. There exists a positive constant Crel, independent of the discretisation parameter h, such that

‖σ1/2(ω − ωh)‖0,Ω + ‖p − ph‖0,Ω ⩽ Crel η̃. (4.3)

Proof. Note that, for eω := ω − ωh and ep := p − ph, we have
A((eω , ep), (ϑ, q)) = R(ϑ, q) (4.4)

where the residual operator R : 𝕍 󳨃→ ℝ is given by
R(ϑ, q) = F(ϑ, q) −A((ωh , ph), (ϑ, q))

= ( f − (√ν curlωh + ∇ph) − ν−1/2(ωh × β), (√ν curl ϑ + ∇q))0,Ω − σ(ωh , ϑ)0,Ω .
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Integration by parts on this residual yields

R(ϑ, q) = ∑
T∈Th
(rot(√ν curlωh + ν−1/2ωh × β − f ) − ν−1/2 σωh ,√ν ϑ)0,T

− ∑
e∈Eh

⟨(√ν curlωh + ν−1/2 ωh × β − f ) ⋅ t,√ν ϑ⟩0,e
− ∑
T∈Th
(div( f − ν−1/2ωh × β − ∇ph), q)0,T

+ ∑
e∈Eh

⟨( f − ν−1/2 ωh × β − ∇ph) ⋅ n, q⟩0,e
= ∑
T∈Th
((R1,√ν ϑ)0,T + (R2, q)0,T)

+ ∑
e∈Eh

(⟨Jh,1 ⋅ t,√ν ϑ⟩0,e + ⟨Jh,2 ⋅ n, q⟩0,e) .

For the estimate (4.3), an appeal to theAubin–Nitsche argument, using (3.10)with (ϑ, q) = (ω−ωh , p−ph)
and (ϑh , qh) = (Nhω̃, Πh p̃) ∈ 𝕍h, now yields

σ ‖ω − ωh‖20,Ω + ‖p − ph‖20,Ω = A((ω − ωh , p − ph), (ω̃, p̃))
= A((ω − ωh , p − ph), (ω̃ − ϑh , p̃ − qh))
= R(ω̃ −Nhω̃, p̃ − Πh p̃).

Then, we can rewrite the residual as

R(ω̃ −Nhω̃, p̃ − Πh p̃) = ∑
T∈Th
((R1,√ν (ω̃ −Nhω̃))0,T + ∑

e∈E(T)
⟨Jh,1 ⋅ t,√ν (ω̃ −Nhω̃)⟩0,e)

+ ∑
T∈Th
((R2, p̃ − Πh p̃)0,T + ∑

e∈E(T)
⟨Jh,2 ⋅ n, (p̃ − Πh p̃)⟩0,e)

and an application of the Cauchy–Schwarz inequality together with the approximation properties (3.2), (3.3),
and (3.11) completes the rest of the proof.

4.2 Eflciency

This subsection dealswith the efficiency of the a posteriori error estimator in theweighted𝕍-normdepending
on δ ∈ (0, 1) (a result that we call quasi-efficiency), and a bound in the L2-norm, valid for δ = 1.
Theorem 4.2 (quasi-eflciency). There is a positive constant Ceff , independent of h, such that for δ ∈ (0, 1]

Ceff η̃ ⩽ C ‖hδT(eω , ep)‖𝕍 + h.o.t.
where h.o.t. denotes higher-order terms and

‖hδTh (eω , ep)‖𝕍 := ( ∑
T∈Th
‖hδT(eω , ep)‖2𝕍(T))

1/2
.

The second efficiency result is stated as follows.

Theorem 4.3 (eflciency). There is a positive constant Ceff , independent of h, such that for δ = 1
Ceff η̃ ⩽ C ‖(σ1/2eω , ep)‖0,Ω + h.o.t.

A major role in the proof of efficiency is played by element and edge bubbles (locally supported non-negative
functions),whosedefinitionwe recall inwhat follows. For T ∈ Th(Ω)and e ∈ E(T), letψT andψe, respectively,
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be the interior and edge bubble functions defined as, e.g., in [1]. Let ψT ∈ P3(T) with supp(ψT) ⊂ T, ψT = 0
on ∂T, and 0 ⩽ ψT ⩽ 1 in T. Moreover, let ψe|T ∈ P2(T) with supp(ψe) ⊂ Ωe := {T󸀠 ∈ Th(Ω) : e ∈ E(T󸀠)},
ψe = 0 on ∂T \ e, and 0 ⩽ ψe ⩽ 1 in Ωe. Again, let us recall an extension operator E : C0(e) 󳨃→ C0(T) that
satisfies E(q) ∈ Pk(T) and E(q)|e = q for all q ∈ Pk(e) and for all k ∈ ℕ ∪ {0}.

We now summarise the properties of ψT , ψe, and E. For a proof, see [1] or [34].

Lemma 4.1. The following properties hold:
(i) For T ∈ Th and for v ∈ Pk(T), there is a positive constant C1 such that

C−11 ‖v‖20,T ⩽ ∫
T
ψTv2 dx ⩽ C1‖v‖20,T

C−11 ‖v‖20,T ⩽ ‖ψv‖20,T + h2T |ψv|21,T ⩽ C1‖v‖20,T .
(ii) For e ∈ Eh and v ∈ Pk(e), there exists a positive constant say C1 such that

C−11 ‖v‖20,e ⩽ ∫
e
ψev2 ⩽ C1‖v‖20,e .

(iii) For T ∈ Th with e ∈ E(T) and for all v ∈ Pk(e), there is a positive constant again say C1 such that
‖ψ1/2

e E(v)‖20,T ⩽ C1he ‖v‖20,e .
Proof of Theorem 4.2. With the help of the L2(T)2-orthogonal projection PℓT onto Pℓ(T)2, for ℓ ⩾ k, with re-
spect to the weighted L2-inner product (ψT f , g), for f , g ∈ L2(T)2, it now follows that

‖R1‖20,T = ‖ν−1/2σωh + rot(√ν curlωh + ν−1/2ωh × β − f )‖20,T
⩽ 2‖(I − PℓT) rot (ν−1/2ωh × β − f )‖20,T
+ 2‖PℓT(ν−1/2σωh + rot(√ν curlωh + ν−1/2ωh × β − f ))‖20,T .

For the second term on the right-hand side, a use of Lemma 4.1 shows that

‖PℓT(ν−1/2 σωh + rot(√ν curlωh + ν−1/2ωh × β − f ))‖20,T = ‖PℓTR1‖20,T
⩽ ‖ψ1/2

T PℓTR1‖20,T = (ψTPℓT R1,R1)0,T .
In a similar manner, we can derive the bounds

‖R2‖20,T ⩽ 2(‖(I − PℓT)div ( f − ν−1/2ωh × β)‖20,T + ‖PℓTR2‖20,T)
and

‖PℓTR2‖20,T ⩽ ‖ψ1/2
T PℓT R2‖20,T = (ψTPℓT R2,R2)0,T .

We proceed to choose (ϑ, q) = ψT(PℓT R1,PℓT R2) in (4.4) and obtain
‖ψ1/2

T PℓT R1‖20,T + ‖ψ1/2
T PℓT R2‖20,T = ((R1,R2), ψT(PℓT R1,PℓT R2))0,T

= AT((eω , ep), ψT(PℓT R1,PℓT R2)). (4.5)

Next, we invoke estimate (i) of Lemma 4.1. This yields

‖ψ1/2
T PℓT R1‖20,T + ‖ψ1/2

T PℓT R2‖20,T ⩽ C ‖(eω , ep)‖𝕍(T) ‖ψTPℓT (R1,R2)‖𝕍(T)
⩽ C h−1T ‖(eω , ep)‖𝕍(T) (‖R1‖20,T + ‖R2)‖20,T)1/2.

Altogether, we now arrive at

h2(1+δ)T (‖R1‖20,T + ‖R2‖20,T) ⩽ C‖hδT(eω , ep)‖2𝕍(T) + Ch2(1+δ)T (‖(I − PℓT) rot (ν−1/2ωh × β − f )‖20,T
+ ‖(I − PℓT)div ( f − ν−1/2ωh × β)‖20,T). (4.6)
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Regarding the estimates associated with Jh,1 and Jh,2, we introduce, respectively, P̃ℓT and P̃ℓe as the weighted
L2-orthogonal projections (say, with respect to the weighted inner product (ψe f, g)e), onto Pℓ(T)2 and Pℓ(e),
for ℓ ⩾ k. Then, we can bound Jh,1 and Jh,2 as

h(1+2δ)e (‖[Jh,1 ⋅ t]‖20,e + ‖[Jh,2 ⋅ n]‖20,e) ⩽ h(1+2δ)e (‖[( f − P̃ℓT f ) ⋅ t]‖20,e + ‖[( f − P̃ℓT f ) ⋅ n]‖20,e)
+ h(1+2δ)e (‖[P̃ℓe(Jh,1) ⋅ t]‖20,e + ‖[P̃ℓe(Jh,2) ⋅ n]‖20,e). (4.7)

In order to estimate the first term on the right-hand side of (4.7) we use the trace inequality, yielding

h(1+2δ)e (‖[( f − P̃ℓef ) ⋅ t]‖20,e + ‖[( f − P̃ℓef ) ⋅ n]‖20,e)
⩽ C h(1+2δ)e ∑

T∈Ωe
(h−1e ‖f − P̃ℓef ‖20,T + he‖∇( f − P̃ℓef )‖20,T)

⩽ C ∑
T∈Ωe
(h2δT ‖f − P̃ℓef ‖20,T + h2(1+δ)T ‖∇( f − P̃ℓef )‖20,T). (4.8)

Again from (4.4) we note that with (ϑ, q) = ψeE([P̃ℓeJh,1 ⋅ t], [P̃ℓeJh,2 ⋅ n])e we obtain
AT((eω , ep), ψeE([P̃ℓeJh,1 ⋅ t], [P̃ℓeJh,2 ⋅ n])0,e) = ((R1,R2), ψeE([P̃ℓeJh,1 ⋅ t], [P̃ℓeJh,2 ⋅ n]))0,Ωe

+ (([Jh,1 ⋅ t], [Jh,2 ⋅ n]), ψeE([P̃ℓeJh,1 ⋅ t], [P̃ℓeJh,2 ⋅ n]))0,e .
Now we appeal again to Lemma 4.1 to readily find that

(([Jh,1 ⋅ t], [Jh,2 ⋅ n]), ψeE([P̃ℓeJh,1 ⋅ t], [P̃ℓeJh,2 ⋅ n]))0,e ⩾ C1 (‖[P̃ℓeJh,1 ⋅ t]‖20,e + ‖[P̃ℓeJh,2 ⋅ n]‖20,e)
and, thus, we arrive at

‖[P̃ℓeJh,1 ⋅ t]‖20,e + ‖[P̃ℓeJh,2 ⋅ n]‖20,e ⩽ C−11 (|AT((eω , ep), ψeE([P̃ℓeJh,1 ⋅ t], [P̃ℓeJh,2 ⋅ n])0,e)|
+ |((R1,R2), ψeE([P̃ℓeJh,1 ⋅ t], [P̃ℓeJh,2 ⋅ n]))0,Ωe |).

Therefore, employing properties (i) and (ii) from Lemma 4.1, it follows that

‖[P̃ℓeJh,1 ⋅ t]‖20,e + ‖[P̃ℓeJh,2 ⋅ n]‖20,e ⩽ C (‖(eω , ep)‖𝕍(Ωe) ‖ψ1/2
e E([P̃ℓeJh,1 ⋅ t], [P̃ℓeJh,2 ⋅ n])‖𝕍(Ωe)

+ ‖(R1,R2)‖0,Ωe ‖ψ1/2
e E([P̃ℓeJh,1 ⋅ t], [P̃ℓeJh,2 ⋅ n])‖0,Ωe)

⩽ C (h−1T h1/2e ‖(eω , ep)‖𝕍(Ωe) + h1/2e ‖(R1,R2)‖0,Ωe)
× (‖[P̃ℓeJh,1 ⋅ t]‖20,e + ‖[P̃ℓeJh,2 ⋅ n]‖20,e)1/2.

Now with he ⩽ hT , we simply apply (4.6) and obtain

h1/2+δe (‖[P̃ℓeJh,1 ⋅ t]‖20,e + ‖[P̃ℓeJh,2 ⋅ n]‖20,e)1/2

⩽ C(hδe‖(eω , ep)‖𝕍(Ωe) + h1+δe ‖(R1,R2)‖0,Ωe)
⩽ C(h2δT ‖(eω , ep)‖2𝕍(Ωe) + h2(1+δ)T (‖(I − PℓT) rot (ν−1/2ωh × β − f )‖20,T
+ ‖(I − PℓT)div ( f − ν−1/2ωh × β)‖20,T) )1/2. (4.9)

Finally, we substitute (4.8) and (4.9) in (4.7), and then combine the result with (4.6) to complete the rest of
the proof.

Proof of Theorem 4.3. We follow the same steps taken in the proof of Theorem 4.2 until arriving to rela-
tion (4.5). Then, applying integration by parts and exploiting the properties of ψT we can show that

‖ψ1/2
T PℓT R1‖20,T + ‖ψ1/2

T PℓT R2‖20,T
= (σ1/2eω , σ1/2ψT(PℓT R1))0,T
+ (σ1/2eω × β, σ−1/2ν−1/2(curl(ψTPℓT R1) + ∇(ψTPℓT R2)) )0,T
− (σ1/2eω , σ−1/2(ν curl(curl(ψTPℓT R1)))0,T − (ep , ∆(ψTPℓT R2))0,T . (4.10)
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An application of estimate (i) of Lemma 4.1 together with inverse inequality gives

‖ψ1/2
T PℓT R1‖20,T + ‖ψ1/2

T PℓT R2‖20,T ⩽ C h−2T (‖σ1/2eω‖0,T + ‖ep‖0,T) (‖ψTPℓT R1‖0,T + ‖ψTPℓT R2‖0,T)
⩽ C h−2T ‖(σ1/2eω , ep)‖0,T (‖R1‖20,T + ‖R2‖20,T)1/2.

In this manner we can assert that

h4T (‖R1‖20,T + ‖R2‖20,T) ⩽ C(‖(σ1/2eω , ep)‖20,T + h4T(‖(I − PℓT) rot (ν−1/2ωh × β − f )‖20,T
+ ‖(I − PℓT)div ( f − ν−1/2ωh × β)‖20,T)). (4.11)

In order to estimate Jh,1 and Jh,2, we again proceed as in the proof of Theorem 4.2 to arrive at (4.7). Then, an
integration by parts applied to the first term on the right-hand side of (4.7) as in (4.10), with estimates (i) and
(ii) from Lemma 4.1, in combination with inverse inequality, and obvious cancellation, permit us to write

(‖[P̃ℓeJh,1 ⋅ t]‖20,e + ‖[P̃ℓeJh,2 ⋅ n]‖20,e)1/2 ⩽ C (h−2T ‖(σ1/2eω , ep)‖0,Ωe + h1/2T ‖(R1,R2)‖0,Ωe).
Since he ⩽ hT , we simply apply (4.11) to obtain, after squaring, the bound

h3e (‖[P̃ℓeJh,1 ⋅ t]‖20,e + ‖[P̃ℓeJh,2 ⋅ n]‖20,e) ⩽ C(‖(σ1/2eω , ep)‖20,Ωe + h4T ‖(R1,R2)‖20,Ωe)
⩽ C(‖(σ1/2eω , ep)‖20,Ωe + h4T(‖(I − PℓT) rot (ν−1/2ωh × β − f )‖20,T
+ ‖(I − PℓT)div ( f − ν−1/2ωh × β)‖20,T)). (4.12)

On substitution of (4.12) and (4.8) in (4.7) for δ = 1, it suffices to combine the resulting estimate with (4.11) to
conclude the rest of the proof.

Remark 4.1. The lower bound derived in Theorem4.3 is valid only upon the assumption of H2-regularity, that
is, for δ = 1. When δ ∈ (0, 1), obtaining an efficiency result for the a posteriori error indicator in the L2-norm
is much more involved, essentially due to the presence of corner singularities. For instance, a reliable and
efficient estimator using weighted L2-norms is available for the Poisson equation in [35]. A similar analysis
could eventually be carried out in the present case, provided an additional regularity is established using
weighted Sobolev spaces and appropriate interpolation results. However here we restrict ourselves only to
verifying these properties numerically in the next section.

In addition, the result of Theorem 4.2 does indicate that the estimator is quasi-efficient, as the error in
the L2-norm, ‖(σ1/2eω , ep)‖0,Ω, is proportional to C ‖(eω , ep)‖0,Ω.

5 Numerical tests

In this section, we report the results of some numerical tests carried out with the finite element method pro-
posed in Section 3. The solution of all linear systems is carried out with the multifrontal massively parallel
sparse direct solver MUMPS.

Thediscrete formulation is extended to the case ofmixedboundary conditions, assuming that thedomain
boundary is disjointly split into two parts Γ1 and Γ2 such that (2.5) is replaced by

u = g on Γ1
u × n = a × n on Γ2 (5.1)

p = p0 on Γ2

(see similar treatments in [13, 14]) and the condition of zero average is imposed on the Bernoulli pressure,
using a real Lagrange multiplier approach, only if Γ2 = ⌀. Using (5.1), the linear functional Fh : 𝕍h → ℝ
defining the finite element scheme adopts the specification

F(ϑh , qh) = ∫
Ω
f ⋅ (√ν curl ϑh + ∇qh) + σ√ν⟨g × n, ϑh⟩Γ1 − σ⟨g ⋅ n, qh⟩Γ1 + σ√ν⟨a × n, ϑh⟩Γ2 .
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Tab. 1: Example 1. Accuracy tests against analytical solutions on a sequence of uniformly refined triangulations of the domain
Ω = (−1, 1)2. Errors and rates of convergence for different viscosities and polynomial degrees. The velocity postprocessing
uses (3.13) and (3.15), denoting ẽu = u − ũh, and the kinematic pressure postprocessing uses (5.2).

ν k h ‖eω‖0,Ω r ‖ep‖0,Ω r ‖eu‖0,Ω r ‖ẽu‖0,Ω r ‖(eω , ep)‖𝕍 r ‖eP‖0,Ω r

0.1 1 1.414 5.18e00 — 5.66e00 — 2.81e00 — 2.33e00 — 1.29e01 — 5.12e00 —
0.745 1.48e00 1.95 6.02e-1 3.50 1.56e00 0.92 2.33e00 0.00 7.54e00 0.84 2.23e00 1.04
0.380 5.60e-1 1.45 2.22e-1 1.48 8.72e-1 0.87 5.50e-1 2.14 4.99e00 0.61 1.66e00 0.59
0.190 1.22e-1 2.20 4.78e-2 2.22 4.29e-1 1.02 1.26e-1 2.13 2.26e00 1.14 9.05e-1 0.88
0.096 2.78e-2 2.18 8.44e-3 2.55 2.12e-1 1.03 3.22e-2 2.01 1.10e00 1.06 4.24e-1 1.11
0.051 7.41e-3 2.08 2.09e-3 2.20 1.06e-1 1.09 8.01e-3 2.19 5.50e-1 1.09 2.02e-1 1.17
0.028 1.82e-3 2.30 4.89e-4 2.38 5.30e-2 1.14 1.99e-3 2.28 2.74e-1 1.14 1.00e-1 1.15
0.015 4.66e-4 2.18 1.23e-4 2.21 2.67e-2 1.10 5.06e-4 2.19 1.39e-1 1.08 5.07e-2 1.09

0.1 2 1.414 1.60e00 — 2.18e00 — 2.40e00 — 2.23e00 — 9.71e00 — 4.10e00 —
0.745 4.92e-1 1.85 1.96e-1 3.76 2.36e00 0.03 3.17e-1 3.05 4.68e00 1.14 2.77e00 0.61
0.380 5.77e-2 3.18 1.62e-2 3.70 4.89e-1 2.34 4.31e-2 2.96 8.42e-1 2.55 9.31e-1 1.62
0.190 8.52e-3 2.76 1.09e-3 3.90 1.18e-1 2.05 5.45e-3 2.99 1.94e-1 2.12 2.58e-1 1.85
0.096 1.22e-3 2.86 4.25e-5 4.77 3.17e-2 1.93 6.29e-4 3.18 5.21e-2 1.93 7.31e-2 1.85
0.051 1.55e-4 3.24 5.48e-6 3.22 7.82e-3 2.20 8.05e-5 3.23 1.27e-2 2.22 1.78e-2 2.23
0.028 1.97e-5 3.38 6.60e-7 3.47 1.94e-3 2.28 1.01e-5 3.40 3.18e-3 2.27 4.45e-3 2.27
0.015 2.40e-6 3.38 7.51e-8 3.48 4.91e-4 2.20 1.22e-6 3.38 8.04e-4 2.20 1.13e-3 2.19

1e-09 1 1.414 5.18e-4 — 5.60e00 — 2.75e00 — 2.33e00 — 8.04e00 — 5.32e00 —
0.745 1.48e-4 1.96 5.47e-1 3.63 1.55e00 0.89 2.33e00 0.00 2.23e00 2.00 1.98e00 1.54
0.380 5.57e-5 1.45 8.82e-2 2.71 8.72e-1 0.86 5.41e-1 2.17 1.11e00 1.03 1.65e00 0.57
0.190 1.21e-5 2.21 1.40e-2 2.65 4.29e-1 1.02 1.23e-1 2.14 5.27e-1 1.08 9.01e-1 0.87
0.096 2.73e-6 2.19 3.55e-3 2.02 2.12e-1 1.03 3.15e-2 2.00 2.67e-1 1.00 4.24e-1 1.11
0.051 7.29e-7 2.08 9.26e-4 2.12 1.06e-1 1.09 7.85e-3 2.19 1.35e-1 1.08 2.02e-1 1.17
0.028 1.96e-7 2.15 2.21e-4 2.35 5.30e-2 1.14 1.95e-3 2.28 6.61e-2 1.17 1.00e-1 1.15
0.015 6.55e-8 1.76 5.35e-5 2.27 2.67e-2 1.10 4.95e-4 2.19 3.32e-2 1.10 5.07e-2 1.09

1e-09 2 1.414 1.56e-4 — 1.95e00 — 2.32e00 — 2.23e00 — 6.57e00 — 3.94e00 —
0.745 4.88e-5 1.81 6.84e-2 5.23 2.28e00 0.03 3.08e-1 3.09 4.98e-1 4.03 2.71e00 0.58
0.380 5.57e-6 3.22 3.02e-3 4.63 4.72e-1 2.34 4.31e-2 2.92 8.35e-2 2.65 8.97e-1 1.64
0.190 8.10e-7 2.78 3.01e-4 3.33 1.14e-1 2.05 5.45e-3 2.98 1.91e-2 2.13 2.49e-1 1.85
0.096 1.25e-7 2.74 3.66e-5 3.10 3.06e-2 1.93 6.28e-4 3.18 4.79e-3 2.03 7.08e-2 1.85
0.051 1.95e-8 2.93 5.02e-6 3.12 7.57e-3 2.20 8.05e-5 3.23 1.24e-3 2.13 1.72e-2 2.23
0.028 4.05e-9 2.57 6.09e-7 3.45 1.88e-3 2.28 1.01e-5 3.40 3.00e-4 2.32 4.31e-3 2.27
0.015 1.06e-9 2.16 6.64e-8 3.55 4.75e-4 2.20 1.22e-6 3.38 7.30e-5 2.27 1.10e-3 2.19

Example 1. First, we construct a manufactured solution in the two-dimensional domain Ω = (−1, 1)2 and
assess the convergence properties and verify the rates anticipated in Lemma 3.2, and Theorems 3.2 and 3.3.
We compute individual errors and convergence rates as usual for all fields on successively refined partitions
of Ω. For this test we assume that Γ1 is composed by the horizontal edges and the right edge, whereas Γ2 is
the rest of the boundary. We propose the following closed-form and smooth solutions

ω(x, y) := −√ν (ex−1 sin(πy)2 + 2π2(x − ex−1)(sin(πy)2 − cos(πy)2))
p(x, y) := x4 − y4, u(x, y) := ( (e

x−1 − x)(2π sin(πy) cos(πy))
−(ex−1 − 1)(sin(πy)2) )

satisfying u = 0 on Γ1. In addition, we consider
β(x, y) := (

1
6 (ex−1 − x)(π sin(2πy))
−(ex−1 − 1)(sin(πy)2) )

together with the model parameters σ = 100 and ν = 0.1, which in turn fulfil (2.17). These exact solutions
lead to a nonzero right-hand side that we use to verify the accuracy of the finite element approximation.

We report in Table 1 the error history of the method in the L2- and 𝕍-norms, where we also show the
convergence of the post-processed velocity using the direct computation (3.13) producing uh ∈ Uh, and the
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Tab. 2: Example 2A. Error history and effectivity indexes (5.3) associated with the a posteriori error estimator (4.2). Smooth
solutions on the unit square. Approximation with k = 1, and velocity postprocessing using (3.13) and (3.15), denoting ẽu =
u − ũh, êpω = (√σeω , ep), and ēpω = hδTh

(eω , ep).

δ DoF ‖eu‖0,Ω r ‖ẽu‖0,Ω r ‖êpω‖0,Ω r ‖ēpω‖𝕍 r eff1(η̃) eff2(η̃)
1/10 27 7.35e-2 — 3.71e-3 — 8.48e-2 — 0.8961 — 0.0281 0.2964

83 3.02e-2 1.28 9.61e-4 1.94 2.32e-2 1.87 0.4346 1.04 0.0142 0.2668
291 1.14e-2 1.40 2.33e-4 2.05 5.91e-3 1.97 0.2047 1.08 0.0072 0.2498

1091 4.18e-3 1.45 5.66e-5 2.03 1.49e-3 1.99 0.0957 1.09 0.0037 0.2411
4227 1.50e-3 1.47 1.42e-5 2.01 3.71e-4 1.99 0.0446 1.09 0.0019 0.2367

16643 5.35e-4 1.49 3.48e-6 2.00 9.32e-5 2.00 0.0208 1.10 0.0010 0.2345
66051 1.90e-4 1.49 8.69e-7 2.00 2.33e-5 2.00 9.72e-3 1.10 0.0005 0.2334

263171 6.73e-5 1.50 2.17e-7 2.00 5.81e-6 2.00 4.53e-3 1.10 0.0002 0.2328
1/2 27 7.35e-2 — 3.71e-3 — 8.48e-2 — 0.6791 — 0.0372 0.2398

83 3.02e-2 1.28 9.61e-4 1.95 2.32e-2 1.87 0.2528 1.44 0.0249 0.2382
291 1.14e-2 1.40 2.33e-4 2.05 5.91e-3 1.97 0.0891 1.49 0.0167 0.2395

1091 4.18e-3 1.45 5.66e-5 2.03 1.49e-3 1.99 0.0317 1.50 0.0114 0.2395
4227 1.50e-3 1.47 1.42e-5 2.02 3.70e-4 1.99 0.0115 1.50 0.0079 0.2395

16643 5.35e-4 1.49 3.48e-6 2.01 9.32e-5 2.00 3.95e-3 1.50 0.0055 0.2395
66051 1.90e-4 1.49 8.69e-7 2.00 2.33e-5 2.00 1.47e-3 1.50 0.0039 0.2395

263171 6.73e-5 1.50 2.17e-7 2.00 5.81e-6 2.00 4.90e-4 1.50 0.0027 0.2395
1 27 7.35e-2 — 3.71e-3 — 8.48e-2 — 0.4802 — 0.0452 0.2390

83 3.02e-2 1.28 9.61e-4 1.95 2.32e-2 1.87 0.1248 1.94 0.0450 0.2397
291 1.14e-2 1.40 2.33e-4 2.05 5.91e-3 1.97 0.0315 1.99 0.0448 0.2395

1091 4.18e-3 1.45 5.66e-5 2.03 1.49e-3 1.99 0.0078 2.00 0.0448 0.2394
4227 1.50e-3 1.47 1.42e-5 2.02 3.70e-4 1.99 0.0019 2.00 0.0449 0.2395

16643 5.35e-4 1.49 3.48e-6 2.01 9.30e-5 2.00 0.0004 2.00 0.0448 0.2395
66051 1.90e-4 1.49 8.69e-7 2.00 2.33e-5 2.00 0.0001 2.00 0.0448 0.2395

263171 6.73e-5 1.50 2.17e-7 2.00 5.81e-6 2.00 3.08e-5 2.00 0.0448 0.2395

alternative post-processing through solving the auxiliary problem (3.15), giving ũh ∈ Ũh. We can also recover
the kinematic pressure as the following element-wise discontinuous function

Ph|T := ph − 12uh ⋅ uh +
1

2|Ω| ∫Ω uh ⋅ uh . (5.2)

It can be clearly seen that optimal order of convergence is reached for all fields in both polynomial degrees
k = 1 and k = 2, which confirms the sharpness of the theoretical error bounds. Moreover, even if we re-run
the same test but setting a much higher Reynolds number with ν = 10−9 (bottom rows of the table), the
convergence rates remain optimal for k = 1 and k = 2, while the vorticity errors scale with√ν.
Example 2. Secondly, we test the properties of the a posteriori error estimator (4.2), including the reliability,
efficiency, as well as quasi-efficiency of the estimator. In a first instance (Example 2A) we simply compute
locally the estimator and check, using smooth exact solutions in a convex domain Ω = (0, 1)2, how it relates
to the true error, by refining uniformly themesh. Defining the smooth function φ(x, y) := x2(1−x)2y2(1−y)2,
the closed-form solutions are

u(x, y) := curlφ, p(x, y) := x4 − y4, ω(x, y) := √ν curl u
and we take ν = 10−3, σ = 10, and β(x, y) := curlφ. Only Dirichlet velocity conditions are considered in
this example (that is, Γ2 is empty), which amounts to add a real Lagrange multiplier imposing the condition
of zero-average for the Bernoulli pressure. In Table 2 we collect the error history of the method, including
individual errors and convergence rates as well as the errors analysed in Theorems 4.1, 4.2, and 4.3. As the
estimator and the quasi-efficiency depend on the values of δ, we explore three cases δ ∈ {1/10, 1/2, 1}. The
robustness is assessed by computing the effectivity indexes as the ratios

eff1 := ‖(σ
1/2eω , ep)‖0,Ω

η̃
, eff2 := ‖h

δ
Th
(eω , ep)‖𝕍
η̃

. (5.3)
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Tab. 3: Example 2B. Error history and effectivity indexes (5.3) associated with the a posteriori error estimator (4.2) using δ =
2/3. Steep solutions on an L-shaped domain. Approximation with k = 1, and velocity postprocessing using (3.15); and denoting
ẽu = u − ũh, êpω = (√σeω , ep), and ēpω = hδTh

(eω , ep).

DoF ‖eω‖0,Ω r ‖ep‖0,Ω r ‖ẽu‖0,Ω r ‖êpω‖0,Ω r ‖ēpω‖𝕍 r eff1(η̃) eff2(η̃)
53 1.96e-4 — 6.92e-5 — 2.04e-4 — 6.26e-4 — 6.15e-4 — 0.0344 0.0332

101 9.79e-5 2.16 3.36e-5 2.24 1.86e-4 0.28 3.12e-4 2.16 2.39e-4 2.74 0.0368 0.0295
151 6.11e-5 2.34 2.16e-5 2.18 1.10e-4 2.61 1.89e-4 2.34 1.53e-4 2.33 0.0672 0.0539
333 1.56e-5 3.46 8.83e-6 2.27 3.59e-5 2.84 5.01e-5 3.43 7.07e-5 2.02 0.0463 0.0654
625 6.55e-6 2.75 6.25e-6 1.10 1.64e-5 2.48 2.17e-5 2.66 5.08e-5 1.05 0.0414 0.0973

1493 3.08e-6 1.73 2.38e-6 2.21 7.87e-6 1.69 1.02e-5 1.76 2.39e-5 1.74 0.0408 0.0971
2837 1.55e-6 2.15 1.19e-6 2.14 4.01e-6 2.11 5.04e-6 2.15 1.32e-5 1.84 0.0362 0.0989
6285 6.99e-7 2.00 5.22e-7 2.09 1.83e-6 1.96 2.27e-6 2.01 6.74e-6 1.69 0.0345 0.1020

14631 3.42e-7 1.69 2.29e-7 2.03 8.24e-7 1.90 1.11e-6 1.71 3.24e-6 1.73 0.0340 0.1020
28095 1.81e-7 1.95 1.12e-7 2.09 4.50e-7 1.85 5.83e-7 1.95 1.86e-6 1.72 0.0318 0.1020
63113 8.46e-8 1.88 4.96e-8 2.02 2.02e-7 1.98 2.72e-7 1.88 9.23e-7 1.73 0.0295 0.1019
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Fig. 1: Example 2B. Approximate vorticity, Bernoulli pressure, and velocity components obtained from (3.15). Solutions com-
puted after six steps of adaptive mesh refinement following (4.2) with δ = 2/3.

The results confirm that the estimator is robust with respect to the weighted 𝕍-norm for all values of δ, but
the second-last column of the table indicates that η̃ is not necessarily efficient in the L2-norm, for δ < 1.

Next, as Examples 2Band2C,we consider exact solutionswithhigher gradients and seehow the estimator
performs guiding adaptivemesh refinement as well as restoring optimal convergence rates. For this we follow
a standard procedure of solving the discrete problem→ estimating the error→marking cells for refinement
→ refining the mesh→ solving again. The marking is based on the equi-distribution of the error in such a
way that the diameter of each new element (contained in a generic triangle T on the initial coarse mesh)
is proportional to the initial diameter times the ratio ̄̃ηh/ηT , where ̄̃ηh is the mean value of η̃ over the initial
mesh [34]. The refinement is thendone on themarked elements aswell as on anadditional small layer in order
to maintain the regularity of the resulting grid. An extra smoothing step is also applied after the refinement
step.

For Example 2Bwe concentrate on the L-shaped domainΩ = (−1, 1)2\(0, 1)2, anduse the exact solutions
φ(x, y) := x2(1 − x)2y2(1 − y)2 exp(−50(x − 0.01)2 − 50(y − 0.01)2)

u(x, y) := curlφ, ω(x, y) := √ν curl u
p(x, y) := (x5 − y5) exp(−25(x − 0.01)2 − 25(y − 0.01)2)

employed also to compute boundary data and right-hand side forcing terms. We keep the values of ν, σ from
Example 1. The regularity of the coupled problem (due to the corner singularity) indicates that δ = 2/3. We
collect the results in Table 3, showing similar trends as those seen in Table 2, that is, optimal convergence for
all fields, and robustness of the a posteriori error estimator in the𝕍-norm. Samples of approximate vorticity,
Bernoulli pressure, and post-processed velocity, also for the case of δ = 2/3, and after six steps of adaptive
mesh refinement are shown in Fig. 1.
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Fig. 2: Example 2C. Error decay in different norms and effectivity index eff2 for the finite element approximation of the Oseen
equations having an inner layer. Comparison plots between uniform (solid lines) and adaptive (dashed lines) mesh refinement
using the lowest-order scheme (top panels); and examples of meshes produced after one, three, and six steps of adaptive
refinement (bottom row).

For Example 2C, starting from a coarse initial triangulation of the domain, we construct sequences of uni-
formly and adaptively refined meshes and compute errors between approximate solutions and the following
closed-form solutions exhibiting a vertical inner layer near the central axis of the domain (see [11]):

φ(x, y) := x2(1 − x)2y2(1 − y)2[1 − tanh(150(1/2 − x))], u(x, y) := curlφ
p(x, y) := e−(x−1/2)2 − p0, ω(x, y) := √ν curl u

where p0 is such the average of p over Ω is zero, and we take ν = 10−4, σ = 10, and β(x, y) := curlφ. Again
we take Dirichlet velocity conditions everywhere on ∂Ω.

Figure 2 shows the error history in both cases, confirming that the method constructed upon adaptive
mesh refinement provides rates of convergence slightly better than the theoretical optimal, whereas under
uniform refinement the lack of smoothness in the exact solutions hinder substantially the error decay, ex-
hibiting sublinear convergence in all cases and even stagnating for vorticity. The top left plot portrays the in-
dividual errors, and for reference the optimal error decay for the case of less regular solutions (that is, O(h));
whereas the right panel shows the error in the 𝕍-norm and the effectivity index eff2 defined in (5.3). In ad-
dition, the bottom panels of Fig. 2 display the outputs of mesh refinement indicating a higher concentration
of elements where the large gradients are located.

Example 3.Next, we conduct thewell-known test of flow past a backward-facing step. This is also a 2D exam-
ple where the domain is Ω = (0, 6) × (0, 2) \ (0, 1)2. For this case we choose a method with k = 2 and assume
that β is the discrete velocity at the previous time iteration of a backward Euler time step. Assuming that no
external forces are applied, we then have f = σβ and after each time step characterised by σ = (∆t)−1 = 100,
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Fig. 3: Example 3. Flow over a backward-facing step. Vorticity, Bernoulli pressure, true pressure, post-processed velocity, and
zoom-in on bottom-left corner with velocity streamlines.

Fig. 4: Example 3. Flow over a backward-facing step. Adaptively refined meshes according to the a posteriori error indica-
tor (4.2), applying up to four refinement steps (from top-left to right-bottom).

we update the current velocity β ← u. The flow regime is determined by a moderate viscosity ν = 0.05 and
we prescribe Γ2 as the right edge (the outlet of the channel) where we set p0 = 0 and a = 0. The remain-
der of the boundary constitutes Γ1: on the left edge (the inlet of the channel) we impose a parabolic profile
g = (4(y − 1)(2 − y), 0)T and on the remainder of Γ1 (the channel walls) we set g = 0. The system is run until
the final time t = 1 and samples of the obtained numerical results are collected in Fig. 3. As expected for this
test, a fully developed profile (seen in the plot of post-processed velocity) exits the outlet while an important
recirculation occurs on the bottom-left corner, right after the expanding region. The vorticity has a very high
gradient on the reentrant corner of the channel, but this is well-captured by the numerical scheme. We also
show Bernoulli pressure and the kinematic pressure (which coincides with the expected pressure profiles for
this example), from the differentiation-free postprocessing (5.2). In addition, in Fig. 4 we portray examples
of adaptively refined meshes using the indicator (4.2). One can observe local refinement near the reentrant
corner and at later times, a clustering of elements near the horizontal walls in the channel.

Example 4. Our last test exemplifies the performance of the numerical scheme in 3D. We use as computa-
tional domain the geometry of a femoral end-to-side bypass segmented from 3T MRI scans [27]. We generate
a volumetric mesh of 68351 tetrahedra. The boundaries of this arterial bifurcation are considered as an inlet
Γin, an outlet Γout, the arterial wall Γwall, and an occluded section Γoccl. On the occlusion section and on the
walls we set no-slip velocity. A parabolic velocity profile is considered at the inlet surface whereas a mean
pressure distribution is prescribed on the outlet section. The last two conditions are time-dependent and pe-
riodic with a period of 50 time steps (we employ σ = 100 and run the system for 100 time steps). Moreover
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Fig. 5: Example 4. Bifurcation flow on a femoral bypass geometry. These computations were performed using our first-order
scheme.

we use a blood viscosity of ν = 0.035 (in g/cm3), which represents an average Reynolds number between 144
and 380 [27]. The computations were carried out with the first-order scheme, and the results are shown in
Fig. 5, focusing on the solutions after 50 time steps. A relatively small zone with a secondary flow forms near
the bifurcation, while the bulk stream continues towards the outlet.
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