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Abstract

In this article, we have considered a nonlinear nonlocal time dependent fourth order equation
demonstrating the deformation of a thin and narrow rectangular plate. We propose C ! con-
forming virtual element method (VEM) of arbitrary order, kK > 2, to approximate the model
problem numerically. We employ VEM to discretize the space variable and fully implicit
scheme for temporal variable. Well-posedness of the fully discrete scheme is proved under
certain conditions on the physical parameters, and we derive optimal order of convergence
in both space and time variable. Finally, numerical experiments are presented to illustrate the
behaviour of the proposed numerical scheme.

Keywords Virtual element method - Fourth order plate equation - Time dependent
problem - Error estimates
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1 Introduction

We consider the nonlinear nonlocal time dependent equation which demonstrates the defor-
mation of a thin and narrow rectangular plate having two free long edges and two hinged short
edges. In neutral, the plate lies horizontally flat representing a real suspension bridge with
planar computational domain. The plate is dealt with internal (due to its own weight) force and
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external force (due to the load of vehicles and people) that act orthogonally downward which
are neutralised by the compressive forces along the edges, the so-called buckling loads. Fur-
ther, we consider here the simplest scenario neglecting the complex interactions between all
the components of areal bridge. The planar domain €2 is represented by 2 := (0, L) x (—¢, £)
withQ < ¢ < L.Following[16,25, 28], the nonlinear nonlocal dynamic plate equation which
models the deformation of bridge is given by

Dyt + 8Dyu + A%u + [P - S/ (Dxu)QdQ] Doyu=g inQr:=Qx[0,T], (L.1)
Q

U= Dyu=0 on Iy x [0, T], (1.2)
Dyyu + 0 Dyxu = Dyyyu + (2 —0)Dyyyu =0 onI'y x[0,T], (1.3)
u(x,y,0) =up(x,y), Dux,y,0)=wo(x,y) in €, (1.4)

where D,u and D,u denote the derivative of a function u with respect to time variable ¢ and
space variable x and I'y := {0, L} x [—£, £], and I'y := [0, L] x {—£, £}. The constants
appearing in the model problem (1.1)—(1.4) are expressed as below:

e L = length of the plate;

e 2¢ = width of the plate;

e § = damping coefficient;

e o = Poisson ratio of the material of the plate;

e P = pre-stressing constant;

e S > 0is a coefficient that depends on the elasticity of the material composing the plate;
e g represents the vertical load over the plate and may depend on space and time.

The deformation of the plate is described by the function u(x, y, t). The model problem
consists of nonlocal nonlinearity involving the buckling constant P for which we have that
P > 0 if the plate is compressed and P < 0 if the plate is elongated in the x direction. The
term S fQ(Dxu)de measures the geometric nonlinearity of the plate due to its stretching.
Moreover, the term [P — S f Q(Dxu)de] carries a nonlocal effect into the model. We refer
to [16, 25] for further details. In [16], the well-posedness of the model problem (1.1)—(1.4)
was analyzed. Recently, in [21] it has been studied the uniform decay rates in the presence of
nonlocal nonlinearity due to applying external forces. Moreover, a finite difference scheme
for a linearised scheme is proposed to validate the theoretical results.

In this article, we exploit a conforming C! virtual element to approximate the solution of
the nonlinear plate equation. The model problem involves fourth order derivative in space
variable which a conforming discretization requires globally C! functions. It is well-known
that the construction of H?2-conforming finite elements is difficult in general, since they usu-
ally involve a large number of degrees of freedom [23]. Alternative solution is the application
of mixed formulations or the use of non-conforming or discontinuous Galerkin methods. In
this article, we will develop a C! conforming approximation on polygonal elements based
on the Virtual Element Method (VEM).

The VEM introduced in [12] as a generalization of FEM which is characterized by the
capability of dealing with very general polygonal/polyhedral meshes, including hanging
nodes and nonconvex elements (see [7, 10, 13, 15, 19, 20, 26, 27, 30, 32, 33, 37] and
refereneces therein). The VEM also permits to easily implement highly regular conforming
discrete spaces [18, 22] which make the method very feasible to solve various fourth-order
problems [8, 14, 34-36]. Regarding VEM for time dependent problems, we mention the
following works [1, 2, 4, 6, 9, 38—40].
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The aim of the present paper is to introduce and analyze a virtual element method to
approximate the transverse displacement of the time dependent nonlinear plate model prob-
lem (1.1)—(1.4). The well-posedness of the continuous formulation has been studied in [16].
Thus, we introduce conforming C'-discretization of the problem based on the VEM for
the space variable. As demanded by our analysis, we have extended the C!'-VEM space
introduced in [18], in order to compute some L? projection operators to discretize the time
dependent terms and the nonlocal term. This newly introduced technique is capable of hand-
ing very general polygonal meshes avoiding complex integration over elements. Moreover,
we have written a fully-discrete formulation by using a fully-implicit scheme. We prove that
the numerical solution converges to analytical solution by using a fixed-point strategy and
under standard assumptions on the computational domain, we establish error estimates in
H?-norm. Further, the appearance of nonlocal term diminish the sparse structure of the Jaco-
bian of the fully-discrete scheme. To avoid this difficulty, we have introduced a new variable
and retrieved the sparse structure of the Jacobian. Further, we have proposed a linearised
scheme to reduce the computational cost without compromising the rate of convergence. In
summary, the advantages of the proposed method are the possibility to use general polyg-
onal meshes with a rather straightforward construction due to the flexibility of the virtual
approach. Moreover, the method provides an attractive and competitive alternative in terms
of its computational cost. Finally, we mention that the method can be used to solve the linear
Kirchhoff-Love dynamic plate problem [11].

The outline of this article is presented as follows. In Sect. 2, the continuous weak for-
mulation of the physical model problem is presented. Basic setting of functional analysis
and the well-posedness of the weak formulation are highlighted in the same section. Next,
we discuss the C!'-VEM space and the computation of the projection operators in Sect. 3.
The well-posedness of the semi-discrete and fully-discrete schemes are proved in the same
section. In Sect. 4, we discuss the convergence analysis of semi-discrete and fully-discrete
schemes. The theoretical convergence rate are justified by investigating numerical tests in
Sect. 5.

The major contributions of this article are enlisted as follows.

e The model problem deals with time dependent biharmonic term along with nonlocal non-
linearity which is very expensive to approximate using standard finite element method.
In this article, we have proposed an efficient, attractive and competitive virtual element
scheme for the model problem. For instance, in the lowest order case (k = 2), the total
cost of the scheme is almost 3Nz, where Nz denotes the number of vertices in the polyg-
onal mesh. Moreover, the nonlinear scheme is solved by introducing new variable which
maintains the sparsity of the jacobian.

e The well-posedness of fully discrete scheme is proved based on some practicable assump-
tions on the nonlocal coefficients P and S and extended the analysis for semi-discrete
and fully-discrete case.

e Using Schauder’s fixed point theorem, we have derived that the solution of fully discrete
scheme belongs to a ball B; with radius d which in independent of 1/ At and depends on
initial data. Therefore, we deduce that the fully discrete scheme is stable when Az goes
to 0 and mesh size h goes to 0.

e Unlike bilinear term, we have discretized the nonlocal term avoiding non-polynomial
part or stabilization part and theoretically prove that the numerical solution approximates
exact solution optimally.
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2 Preliminaries and Weak Formulation of the Problem

Throughout the paper, we have dealt with the following notations. 2 C R? is a bounded
polygonal domain with Lipschitz boundary I" := 92, corresponding to the mean surface of a
plate in its reference configuration. We assume that I" admits a disjoint partitionI' = I'yUT 7,
the plate being simply-supported on I'y and free on I' r. For the sake of simplicity, we also
assume that both I'y and I'y have positive measure. For the time variable, we consider
t € T := (0, T], where T is fixed final time. L2(2) denotes the Sobolev space of square
integrable function with the norm ||¢||%,Q = fQ ¢*>dQ and the norm is induced by the
inner-product (¢, ¥)o.q = fg ¢ dQ2. The space H*(2) consists of functions which have
square integrable derivative D%¢ upto order s and the norm associated with the space is

defined as ||¢||32,Q = (ZOgags ||D“¢||(2)VQ), where « is multi-index. Further, the space
L%(0, T; H*(2)) consists of function ¢ such that ¢ (-, r) € H*() for all most all ¢ € (0, T
and the associated norm is defined as ||¢||iz(0’T;HS(Q)) = (fOT ||¢(t)||§’th). In parallel
way, we define L°°(0, T; H*(Q2)) := {¢ (-, 1) € H*(R2) for all most all r € (0, T]}. Further,
we define the function space

H2(Q):={p e H*(Q):¢=0 on Iy},

with its dual space Hf(Q)’ . Moreover, we use the angle bracket (-, -) to denote the duality
of H2(Q)' x H2(R). On H2(R), we define the inner product

(u, U)HZ(Q) = /;2 (AuAv — (1 = 0)(UxxVyy + thyyUxx —2uxyvxy))d§2, Yu,v € H*z(Q),

2.1
where o € (0, 1). We have that H*Z(Q) is a Hilbert space (see [21]).
Next, we derive the weak formulation for (1.1)—(1.4).

2.1 Weak Formulation

Let g € C°([0, T1, L3(R2)) for some T > 0 and define A(u, v) := (u, v)H*z(Q) forall u,v e
H2() (cf. (2.1)). A weak solution of (1.1)~(1.4) is a function u € C°([0, T], H2(R)) N
C'([0, T1, L*>()) N C%([0, T1, (H>(2))') such that
(Dyyu, v) + 8(Dyu, v)o.q + A, v) + [S[ Dull§ o — Pla*(u, v) = (. v)o.0
u(x7y70)=”l0(xﬁy)! Dt”(x’ya0)=w0(xa)’)’
forallt € [0, T]and all v Hf(Q), and a* (u, v) := (Dyu, Dyv)o.q.

In order to state the well-posedness of (2.2), we consider the following eigenvalue problem:
Find (A, w) € R x H2(Q), w # 0, such that

(2.2)

Alw = rw in Q,
w=Dw=0 on [, 2.3)
Dyyw +0Dyyw = Dyyyw + (2 —0)Dyyyw=0o0nTy.
We will denote by A1 > 0 the lowest eigenvalue of problem (2.3).
The following inequalities are going to be useful in the next sections (cf. [16]).

lvllo.e < [IDvlloe.  MiviGg < IvlEg.  MIDwIGe < lvl3g Yve HAQ).
2.4)
Following [16,Theorem 5], we state the well-posedness of (2.2).

@ Springer



Journal of Scientific Computing (2022) 91:23 Page50f37 23

Theorem 1 Let us assume that § > 0, S > 0, P € [0, 11), g € CO([0, T, L3(2)), ug €
HE(Q), and wy € L3(Q), then there exists a unique weak solution u of (2.2). Further, if
g € CI([0,T], L*(R)), up € H*(Q) N H2(RQ), and wy € H2 (), then

ue CO0, T1, HH(Q) N HX(Q)) N C ([0, T1, HX(R)) N C*([0, T], L*(R))

and u is a strong solution of (1.1)—(1.4).

3 Virtual Element Methods

In this section, we describe the modified C! virtual element space to approximate the defor-
mation of a plate modelled by (1.1)—(1.4). The construction of modified VEM space consists
of several steps. We start with the mesh construction and the assumptions considered to
introduce the discrete virtual element spaces.
Let {25 }5~0 represents sequence of decomposition of €2 into general possibly concave
polygonal element E with diam(E) := hg, and diam(E) = mag% dg2(x,y). We define
X,y

the mesh size h := glzg hg. For all polygonal elements E € Q,, P (E) denotes polynomial
€y

- N -
space of degree k on E and Mg (E) := %) 8] < Ol], d = 1, 2, denotes the scaled
monomials, where Xg signifies the centroid of the polygon E.

For a particular element E € €2;,, we denote by e and N the straight edges of the mesh
2, and the number of vertices of E, respectively, and n% denotes the unit outward normal
vector to e acting outward to E.

To analyze the discrete scheme mathematically, we will assume that €2 satisfies the
following regularity condition:

Assumption 1 (Mesh-Regularity)

e Every element E € €2y, is star shaped with respect to a ball of radius greater yh g, where
y 1s a positive constant.
e For every element E, and for alle C 0E, |e| > yhg.

In order to introduce the discretization, for every integer k > 2 and for every polygon E,
we define the following finite dimensional space:

zE = ¢y € H(E) : N¢ylg € Pi(E), ¢nlor € C°DE), dple € Pre) Ve € JE,
Vénlaz € CODE), dug dnle € Pii(e) Ve € DE],
where r := max{3, k}. Next, we identify a set of linear operators by x from Zf to R.

Linear operators .

e D1 : The values of ¢, (E) for all vertex E;
e D2 : The values of hg V¢, (E) for all vertex E;
e D3 : Forr > 4, the moments

1
E/;‘](s)ff’h(&)df Vg e M!_,(e) Vedgee;
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e D4 : For k > 3, the moments
[a@moner a5 va e i) vedgee
e

e D5 : For k > 4, the moments
1
o / q(X)p(x)dx ¥g € Mj_4(E),
EVJVE

where hg corresponds to the average of the diameters corresponding to the elements with &
as a vertex.

To construct the modified VEM space, we introduce projection operators H%A, H/E that
will be used to discretize the forms in the variational problem (2.2) and these operators are
computable from the functional x.

Let us define the projection operator HIEA : Zf — Pr(E) as,

AR, 9) = A(v, q) ¥q € Pr(E)

H%Av =7 and VH%AU = Vv,

-~ 1 NEg — — .
where v := Np Zi:l v(E;) and E; are the vertices of E.

With the help of HkE’A, our local virtual element space is defined as follows,

zZf = {(/)h e zF 1 | mp™ey =/ Mo, Mo € MI*(E), a =k k— 1,k—2,k—3},
E E

3.1
where /\/li**(E), o =k, k—1, k—2, k—3 are scaled monomials of degree k, k—1, k—2, k—3,
respectively, with the convention that MZ_T(E ) =140.
The global virtual element space is defined as

2= {on e HX® : dule € 2F ).

From (3.1), it can be foreseen that the dimension of the space Zf is same as original
C'-VEM space defined in [18]. The primary advantage of this space is that we can compute
the L?-projection operator H"E onto Py (E).

Next, we will prove that x forms DoFs of the virtual element space ZhE . With this aim,
let the numbers of vertex functionals corresponding to D1 and D2 be Ny, the numbers of
edge momentums corresponding to D3 and D4 be N, and the numbers of cell momentums
corresponding to D5 be V. Hence the cardinality of x = N gf’f = Ny +N,+Ng. Globally,
the total DoFs will be denoted by N9°f,

Lemma 1 The dimension of the auxiliary space Z,f is Ny + N + W Moreover, the
set of functionals D1 to D4 with cell moments upto order k form a set of DoF for Z]f .

Proof For each element v € Zf , we can choose the DoFs of v as the trace of v on 9 E and
Vv on dE (polynomial of degree k) and the moments of v in E upto order k. Clearly, the
DoFs D1 to D2 ensure C! continuity at the vertices. Further, with the help of D1 and D2,
we can identify a polynomial of degree < 3 uniquely. To compute a polynomial of degree r,
additional (» — 3) information can be obtained from D3. The DoFs D2 and D4 can identify
a polynomial of degree k — 1 on each edge. Further, proceeding in the analogous way as [5],
we can prove that a function in Hg(E ) with A%v € P, (E), there is a mapping between the
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moments of the functions upto order r and their bilaplacian of order . Hence, the dimension
of Z,f iS Ny + N, +dim(Py(E)). Note that, the dimension of the set containing momentum
upto order £ is same as dimension of P (E) = W ]

In the next result, we will show that the dimension of Z,f is same as the dimension of C'!
conforming VEM space defined in [18].

Lemma2 The dimension OthE is Ny + N, + W The set of functionals D1 — D5
(cf. x) form DoFs of the space Zf

Proof First, it can be observed that the dimension of Mi'*(E) U M,%fl (E)U Mifz(E) U

MG (E) is 4k — 2. Therefore,
dim(2£) > dim(ZE) — (4k — 2)
(k + 1)(k +2)

= Ny + N+ =5 — @k = 2)
k—3) k-2
:NV+NE+()2#.

Now, we prove that a function v € Zf that vanishes on 0 E with Vv vanishes on 0 E and
has zero moments upto order k — 4 is identically zero. Clearly, D1 — D5 are zero implies
H%A is zero which implies that all momentums of order k, k — 1, k — 2 and k — 3 are zero.
Therefore, we deduce that v = 0 and we conclude the proof. O

Weak formulation (2.2) consists of non-stationary parts that require L? projection operator
to be computed. The C! space introduced in [18], does not provide enough information to
compute the orthogonal L? projection operator. With the new space Zf we can compute L2
projection operators onto Px_1 (E) and Py (E) keeping same the computational cost.

On a polygon E, we define orthogonal L? projection operator I'[Ilifl : Zf — Pr—1(E)
by

/ kg = / vng Vq € Pr-1(E).
E E
Globally, the projection operator IT¥~! is defined in L2(2) as
Hkilvhhg = Hlé_lvh Yu, € 2.
The following result shows that 1'[127l is computable.

Lemma 3 The polynomial H/‘E_lvh can be expressed explicitly in terms of DoFs D1 — D5
forall v, € Zf.

Proof Let g € Pr—1(E). We can split g into two polynomials ¢g; and ¢, such that q; €
Pr—1(E) \ Pr—4a(E) and g2 € Pr_a(E).

Using the definition of the HII‘;I, and the modified virtual element space Zf , we have for

all g € Pr_1(E)
/l'llfg_lthI=/ vng
E E

2/ % vhg +/ Vng2.
E E

Using cell momentum, we can compute the above integration. O
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Now, we state that the L>-orthogonal projection operator onto Py (E) is also computable.

Lemma4 The operator 1'1’1‘5 : ZhE — Pr(E) is computable for all v, Zf

Proof Proceeding in an analogous way as in Lemma 3, the result follows. O

3.1 Discretization of Bilinear Forms

In this subsection, we will employ the projection operators to discretize the bilinear forms.
For, each polygonal element E, we define Af(-, DI Z,f X Zf — R, and a;’E(-, DI
2Ex 2F > RandmE (., ) : 2F x ZF — Ras follows
Al (0, v) = AP (52w, T2 0) + S5 (1 - Mo, 1 = T™)  Vo,ve 2F,
az’E(a), V) = (HI‘E_IDxa), H%_lev)o,E Yw,v € ZhE,
mE(w,v) = (M&w, M) g+ SE(I — K)o, 1 —TTK)v)  Vo,ve 2E.
The non-polynomial parts S f(-, -) and 8,5(-, -) are symmetric positive definite bilinear

forms ensure stability of the discrete forms Af (-, ), and mf (-, -), respectively. Moreover,
the bilinear forms satisfies the following conditions

a AE (up, vy) < SX (v, vp) < o* AE (uy, vp) Vo, € Ker(T%),
Ve on, vi)o.E < SE(un, vn) < y*(on, vi)o.E Yo, € Ker(IK),

where a,, o, vy, y™* are positive constants independent of polygon E, and K er(IT) denotes
kernel of a operator IT. The global bilinear forms are defined as addition of local contribution.

Ap(@,v) = Y Af(@,v) Yo,ve 2, (32)
EeQ),

af(@,v) =Y afw,v) Yo,vez, (3.3)
EeQy

mp(w, v) = Z mf(a), v) Yw,v € Zj. 3.4
EeQy,

The discrete bilinear forms satisfy consistency on polynomials and stability in the follow-
ing sense.

Lemma 5 (Polynomial Consistency) For each polygonal element E € Q2p,, and assume that
q € Pr(E)withk > 2 and vy, € Zf the local bilinear forms satisfy the following property:

Af (g, vn) = AE(q, ),
mE(q, vn) = (¢, vn)o,E

a; (g, vn) = a*E(g, v,

where AE (., ) and a*E (-, -) are restriction to element E of the corresponding global forms.
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Lemma 6 (Stability) There exist four positive constants dx, o, Vi )75‘ independent of the
polygon E such that

@ AE (v, o) < AE (o, o) < a* AE oy, vn) Yoy, € ZF,

~ E % E
Ve, vo, g < my (vp, vp) < y*(p, vpoe Yup € 2.

Further, we would like to assert that for each polygon E € €2y, the discrete bilinear form

a;’E(-, -) is bounded. In fact, for wy,, v, € ZhE, we have that

E k=1 k-1
lay, " (wp, vi)| < 1M Dywpllo,e 1Ty Dyvallo,e
< I Dxwpllo,e | Dxvrllo,E (3.5)

< l|wnl1,Elvnl1E-

Discretization of nonlocal term and load term. The model problem (1.1) consists on
geometric nonlinearity S fQ(Dxu)2 which is caused due to the stretching of the plate in

x direction. By using L? projection operator ngl, we discretize the nonlocal term as

2
ZEth Je (H’;E_IDxuh) . It can be observed that for each element E, TT*"! D uy | is
computable from D1 — DS5. Further, we discretize the load term as follows

(oo =y (Mg, voe = Y (& Mpvoe Yo € 2. (3.6)
EeQy EeQy

3.2 Semi-Discrete Scheme
By exploiting (3.2)-(3.4) and (3.6), we define the semi-discrete virtual element approximation

of (2.2) as follows. Find u, € L%(0, T; Z,) with D,u, € L%(0,T; Z;) and Dyuy, €
L%(0, T; Z3) such that

mp(Digup, vp) + dmp (Diup, vp) + Ap(up, vp) + [S Z /EII'IIEIDxuhl2 —P]aﬁ(uh,vh)

EeQy
= (gn,vn)n Yo, € Zy fora.e.t € (0,T]. 3.7
up(x,y,0) =upo, (3.3)
Diup(x,y,0) = wp 0, (3.9)

where uj, 0 and wy, o are certain approximations of ¢ and wy, respectively. Let us denote
the nonlinear term in (3.7) by

Catan) = 32 I Dol = P
EeQy

In what follows, we will show that the term Cj, (up)aj, (up, vy) is Lipschitz continuous. In
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fact, let up, 1, up2 € Z5 be two elements. Then, it follows that
ICh (un,1)ay, (wp,1, vi) — Cp(up2)ay (up 2, vp)l

=[5 3 I Dawn 1 5 — P Jai Gunr. )

EeQy
k—1 2
=8 X2 105 Danalid g — P a2, o)
EeQy
k—1 2 k—1 2
=[5 32 I Dot 13 st Ganr, v = 530 N D 2, s, 00|
EeQy EeQ)

+ P‘ [a;f(uh,z, vp) — aj (up,1, Uh)]‘

k—1 2 k—1 2
=S| 3 I Daann a1 g s = w2, v |+ |[8 D2 1T D1,

EeQy EcQy
k—1 2
-8 Z (ITT Dxuh,zllo,E]aif(uh.z, Uh)’-l—P’a;f(uh,Z_uh,l»Uh)
EeQy
2 k—1
< SIDwunilgq Y 1D @iy —unlo.e IDcvrllos +S Y / (|HE Dyup,i|
EeQy Eeq, ' E
k—1 k—1 k—1
I Dyn 2l ) ¢ (1T Dy | = 1 Deunal) Y IDwan 2l I Dxvnllo.s
EeQy

+ P Y IDx(un2 = un)lo.£ | Drvallo. £
EeQy
< C(S, P, [[Dxupn,illo.@, l|Dxun2llo.e) |Dx(@n1 —un2)llo.Q | Dxvnllo.q-
(3.10)
Let us assume that the matrix representation of the bilinear forms Ay(-, ), my(-, ),
and aj (-, -) be A, M, and A, respectively. Further, the matrix M is symmetric and positive
definite, hence the matrix is invertible. Therefore, (3.7) reduces to a system of nonlinear
differential equations as below

dn, dny
M— +M— + A C =G 3.11
gz PM— =+ A+ Cy) (3.11)
1,(0) =13 (3.12)
dny
—(0) = , 3.13
o 0) = wn,0 (3.13)

where G is load vector. Clearly (3.11)-(3.13) is a system of nonlinear differentiable equations
and the nonlinear function C(n;,) is a Lipschitz continuous with respect to ;. Consequently,
by Picard’s Theorem on existence and uniqueness of system of differential equation, the
semi-discrete scheme (3.11)-(3.13) has an unique solution.

3.3 Fully-Discrete Scheme

In this section, we discretize the time variable by fully-implicit scheme. Let N € N be a
positive integer and consider the time step At = T /N and the time t, = n At. Let the
approximation of uj, at time t = t, is defined as U;} ~ u; (-, t,), wheren =0, 1,..., N. By
applying finite difference for time variable and C'-VEM for space variable, the fully discrete
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scheme of the model problem (1.1) is given by: find U;' € Z;, such that

U11_2UI1—1+UVL_2 []n—ljn_2
mh< : A v ) + 8 mp | v | + AU v)

At? 2At
Hs 2 [In 0P - | g o) = (o (3.14)
Eeq, ' E
U;? = Thuy, and U,: = Atlhwy + U;?. (3.15)

In what follows, we would like to highlight that (3.14) is fully implicit scheme and which
is unconditionally stable. Next, we proceed to prove the well posedness of the fully-discrete
scheme. Employing Schauder’s fixed point theorem, we show that the fully discrete scheme
has unique solution U;} at each time-step #, and the solution is bounded, i.e U} ll2,. < d,
where d is a positive constant which will be defined in the subsequent theorem.

We first recollect the Schauder’s fixed point theorem which is stated as below [31].

Lemma 7 (Schauder’s Fixed Point Theorem) Let KC be a Banach space and B C K be a
compact and convex subset. If L : B — B continuous mapping then L has a fixed point.

Theorem 2 Let us assume that the Assumption 1 on mesh regularity holds and we assumed
that the prestressing constant P € (0, %). Then the system of nonlinear equations (3.14)-

(3.15) has a solution and further, we assume that S € (0, M], then the solution is unique,

2d
where d is the radius of the ball B, is defined as
~ ~ ~ ~ ~ 1/2
d = (C(@x, a*, mo)lluollz.o + C i, v llwoll2. + At C(, V*)||g||L00(o,;,,;L2(Q))) /

Proof We first rewrite the fully-discrete scheme (3.14) as

S At
ma(Uy . vn) + == ma(Uf vn) + AP AL UL o) + ACCHUD i (U} o)

§ At
= A (gl v + 2 mp (U vp) + <T - 1) mp(UP 2, vp) Yoy € Zp.

Further, we define a mapping
Ly:Z, — 2

by U} := L(q), where U}/ satisfies

my (U, vn) + % my (U}, vp) + A Ay (U}, vn) + APCh(@)ay (U, vn)
(3.16)
2/,.n n—1 8 At n—2

= At7(gy,, vi)n + 2mp (U, ™, vp) + (T — l) mp (U, ", vp) Yo, € 2.
Well-posedness of the mapping Lj: To show that the mapping Lj is well-posed, it is
sufficient to prove that p = Lj(q) is the solution of the variational problem (3.16) for each
q € Zy.

Now, for fixed values of At¢, since problem (3.16) is a square linear system it is enough
to prove uniqueness. To this end we assume that the right hand side vanish, and we test the
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problem with v, = U}/, to obtain that

5 At
0=(1+ T) ma(UL, UP) + AP (UL, U + A2Ch(q)at (U, UL

= (14 5) U g + A2 & 107130 + A7 (X 1005 Dgl )
EeQy

< (Y m D ) - A P (X IT DU ;)

EcQy EeQy

§ At 2 ny 2
= (14 257) 7 UL 5.0 + AF @ 21 I DLURIG o = AP PIDLUS IR o

AV AN ~
> (14 530) A 10130 + A2(& 1 = P)IDU g 2 0

where we have used the third inequality in (2.4). This shows that U}’ = 0. Thus, (3.16) has
unique solution and L, is well-defined.

Next, we show that the mapping Lj;, : By — B4 maps a closed ball to a closed ball of
radius d € R, where By := {v;, € Z), : ||vh||2 o <d}.

Ui— Uh

By choosing test function vy, := in (3.16), we obtain

~1 ) ) -2 -2
mh<U,;'—2U,g' +Ut Up - Uy >+5mh up-upTt oup - up
At? ’ At 2Ar At

Ur — Un—2 U — Un—2 Ur — Un—2
A (Uf'?’ W) +0@a; (Uﬁ” B Rl Ul v I
h

By using stability of my, (-, -) (cf. Lemma 6), we obtain

2 2
n n—2
Uh _ Uh

At

2
Ui — Uy
At

-1 -2
Uyt —up
At

C(Pur v
At

)
+2

0,2 0,2 0,2
1 1 k-1 2
+ AL UD + | S 30 I Degllg g — P ) (U, U
EeQy
upr—up?

1 -2 mo -2
= MR U1+ 22 lak (U7 037) 1+ lghloe |~

0,2

where we have bounded |C;(¢)| < mo VYq € Zj,.
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Further, using the assumption on P and the third inequality in (2.4), we obtain

2 2 2

CHumy [|Uup —ur™! B upt—up? ms | upr—up?

At At At 2 At

0,2 0,2 0,2
O?;F ny2 1 &:")‘1 ny2

5 WiB o+ 1 (55 =PI
s > I Degls | 1D UR G < WP lelur )

At e PxqloE xplloe = Ari¥nlizelby, liz.e

EeQy
-2

mo ) U — U;:

+ o IP<Uillo.e IDxU oo + ligillo.e | —"——
0,2
(3.17)

Multiplying by At on both side of (3.17) and using Young’s inequality, and neglecting the
term L (S Y req, 1T Dig ||g,E) IDLUP 3 g we derive

2 2
~ v —uvr! JisAr U —up? @,
AR h h * h h Ly 2
2% ‘ A 1 AL T3 1Ux 2.2
0, 0,Q
~ -1 n—2 |2
oy M 5 ~ o~ U;: - Uh
+ (55 = P)IDU R o = € ) |
0,
~ % n—2,2 ~ n—2p2
+ C(ay, a )”Uh ||2!Q+C(m0,a*,)»1)|\Dth ”()Q
+A1CG TIN5 0
(3.18)
~ Un_Un—Z 2
Neglecting the term AR % in (3.18) and rearranging the terms, we obtain
0,9

1 0
Uh B Uh

1U3. < C@, a*, mo) U153 g + C(Fr v "

0,2
+ At C((S, )Z)||g||i°c(0,tn;Lz(Q))'

We define

-~ -~ - 1/2
d:= (c<a*, a*, mo)luol3 ¢ + C(Fa, ¥ llwnl3 o + AL C (6, y*)||g||im(o,t”l2(m)) :
(3.19)

Therefore, using the boundedness property of the interpolation operator I, in || - |2, norm,
we conclude that L, : B; — B, where the radius d is defined in (3.19).

Continuity of Lj: Let € > 0 be a small number and g, go € By be two given elements

such that |lg — qoll2.@ < 8§ where § > 0 is a fixed small number could be depend on €. We
will show that

lg —qolre <8 = U — pollaa <e,
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where U}! = Ly(q) and po = Lj(qo). Using (3.16), we obtain

SAt
my(U; — po. vp) + TMh(U[f — po. vp) + AP AR UL — po, vp) + A2 Pag (pg — UJ', vy)

+a(s Y f " DeqlPa U o) =S Y f I DagolPaj (po, va) ) = 0.
Eeq, ' E Eex, '
(3.20)
Adding and subtracting the term S ZEth fE |1'I’1‘5_1 qulzaﬁ (po, vp) with (3.20), we obtain

SAt
mp (U} — po, vp) + - mp (U — po, vp) + A2 Ay (U — po, vp)

+ A2 Gy — ooy = 523(s 3 [ M Dgol?
Feo, U E (3.21)

-5y / 0" Daq ?)ai (po, vi).
EeQy, E

By choosing, vy, := U,’f — po in (3.21), we obtain

n n SAr n n 2 n n
my(Uy — po, Uy — po) + - my (U — po, Uy — po) + At” Ay (U — po, Uy — po)

+ A Cr(q)a (UL — po, Ul — po)
=a (s Y /Em’;lequ—S 3 /E|H"E*1qu|2)a;:(po,U,;’ —~ o).

EecQy EeQy
(3.22)
Further, using the boundedness of the projection operator I[T¥~! and using that ¢, g9 € By,
we rewrite the difference on the right hand side as follows

(s ¥ [ bl —s ¥ [ imn.gP)

EeQy EeQy

=Sy /(m’;leqm + 115 Deg (115 Degol — T Digl)
E

EecQ, (3.23)
<28d Y |5 ' Dilgo — Pllo.e
EEQh
<28d |q0 — ql1.- (Recollecting (3.18))

By applying the stability of my (-, -), Ap(-, -) (cf. Lemma 6) continuity of aj (-, -) (cf.
(3.5)) in (3.22), and boundedness of pg such as || poll2,.@ < d, and using the third inequality
in (2.4), we obtain

~ SAt A2 &,
7lUR = pollg.q + — U - polig o+ o poll3
A
+ A (22— PYIDLU; - pol g
2 (3.24)
+ A’ (s > ||n’g‘leuh||%,E) 1D (U} = po)ll§
EEQh

<28d A Dy pollo.e g0 — qllz.e 1 Dx (U = po)llo.a-

@ Springer



Journal of Scientific Computing (2022) 91:23 Page150f37 23

Neglecting the term (S ZEesz,, [| 1'[’271 D uy II%’E) | Dx (U;} — po) ”(2)& on the left-side of
(3.24), we obtain

~ dAL 2
V*”Uh p()||09+ J/*”Uh PO”O,Q
Ar?

e

+

“Up = poll.q + Ar% ( P)ID:(U; = Pl g

< 25d At Dxpollo. lgo — qll.@ IDx (U] — po)llo.q-

Further, using Young’s inequality and kick-back arguments, we obtain

- SAt ) A12 e ) 5 (Gxh — 2P
UL = pollg ot 7IU; = polli o + 10 = pol @ + A (Z2—=)
(8 8% d*
< D2 (U} = po)l§ .0 < YD) A1 llgo — qlI3, -
*

Since the coefficients of || U{l’ —pollo,q and || Dy (U,Z’ — po)llo,q are positive, hence neglect-
ing the terms, we obtain

(16 8% d*) 5
= IIqo ql7.0

un 7 77
Il h PO”QQ_( A —2P)a

which implies that the mapping Ly is continuous.

Hence from Schauder’s fixed point theorem (cf. Lemma 7), we can conclude that L, has
a fixed point, i.e, ¢ = Lj(g) which implies that there a solution of the nonlinear equation
(3.14).
Uniqueness of the solution: Let U,} and U,% be two numerical solutions of (3.14). Then
from (3.14), we obtain

SAt
mu (U} — vh)—i-Tm WU — U2 op) + AP A (U — U2, ) + AP Pai (U2 = U, vy)
+Az Z / I ' DU, Pag Uy, o) =S ) f ko, U2|2ah(U,%,uh)):
EeQy EeQy
(3.25)

By choosing vy, := Unl — U,% in (3.25), we obtain

m,,(U,}—U,,Z,Ul—U)Jr m(U1 U2, U — U+ AP A U — U2, U —U?

+ar( /m" leU RACIR R
EeQy
-5y / |05 DU el (U2, U — U,%)) — PAai UL - U2, U — U2 =0.
EeQy
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Further, an application of stability property of my(-, -), and A (-, -), and continuity of
ay, (-, -) (cf. Lemma 6) and following same arguments as (3.23), we obtain

~ SAt
y*nU,}—U,%n%,wTy*nU' U l§.q + A& | Dx(Uy — UD G o

+al(s Y3 / N DU = P) Y I DU = UDIE

EeQy EeQy
<25d AP | Dy (U} = U .

Further, using the third inequality in (2.4) and the assumptions of Theorem 2 on P, we
derive

- SAT ~
FlUy = U o + 57U} = UZIR o + A7 (&1 = P)IDc(U) = UDI o

+al(s 3 f N D U2R) Y I D)~ UDIR
EeQy, EeQy
<25d Ar* | Dy (U} — UDII§ o-
(3.26)
Since the term (At2 S Y peq, [o M DLUZR Y peq, IT5' DU} — U,%)||(2,’E) is
positive, neglecting from left-hand side of (3.26), we obtain
- SAT -
PlUy = Ui @ + - 7ellU) — Ul o + A2 (@1 = P)ID:(U) — UD I} g
<25d Ar* | Dy (U} — UDII§ o-

A straightforward mathematical evaluation implies that

7 SAt &r — P
TN = U o + S U = Ul @ + AP (25— = S)ID:(U) = UD)li3 o < 0.
Further, the assumption of Theorem 2 on S implies that the term (% - S) > 0, and

hence neglecting the term corresponding to || D (U! — U?)|lo.q and ||U,} — U2 ||y, we obtain
Uy = Uglig.e <0
which implies U} = U,%. O

Remark 1 In the proof of Theorem 2, we have proved that the fully-discrete scheme (3.14)-
(3.15) has unique solution based on some assumptions on P and S which are explicitly
stated as P € (0, & ’\‘ )and S € (0, O‘*’\‘ P ). In comparison with the wellposedness of
continuous weak formulatlon (Theorem 1) we have considered analogous assumption on P.
The positive constant &y appeared due to discrete virtual element formulation. In addition, the
fully-discrete scheme posses unique solution for sufficiently small values of S. Further, we
would like to highlight that the proof of wellposedness of fully-discrete scheme is independent
of small values of time-step, i.e., At and could be completely controlled by initial data.

3.4 Implementation of Fully-Discrete Scheme
In this section, we discuss the implementation procedure of the fully-discrete scheme. By

employing fully-implicit scheme in time variable and C'-VEM in space variable, the fully-
discrete scheme (3.14) reduces to system of nonlinear equations for each time-steps t,,
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0 < n < N. The nonlinear system can be solved by employing any iteration technique such
as Picard’s iteration technique or Newton’s method. Since the Newton’s method converges
with higher order (rate of convergence is 2) compared to Picard’s iteration technique (rate
of convergence is 1), we will utilize Newton’s method to solve the nonlinear system (3.14).
However, the primary difficulty with Newton’s methods is that the computation of Jaco-
bian which needs to be updated at each time-step. Further, the presence of nonlocal term
Cn(U})ay (U}, vp) disfigures the sparse structure of the Jacobian. Consequently, the compu-
tational cost is increased. To avoid this difficulty, we introduce a new independent variable
and maintain the sparse structure of the Jacobian. Let {¢; }; -; - yaor be the global basis of Z;,
associated with the DoFs x of €2;,. By applying the §;; property of the basis function ¢; of
Z,, we rewrite the discrete solution as

Ndof

Up =) 1) ¢). (3:27)
j=1

where n']’. = x,;(U}) is the coefficient of the basis function ¢ ;. Collecting all coefficient n']’.,

we constitute the coefficient vector say 9" := [0}, 3, ..., n'llvdof]T. Using (3.27), we rewrite
(3.14) into system of algebraic equation as follows.

M) =0 1<i=<N,
where ‘3
E ") = ma(U ) + = ——mn(Ujl, ¢0) + AP AU 6)
+ APCLUN @y US, ¢i) — AP (g Uh)h (3.28)
= 2my (U™, ) +my (U2 ¢0) — ——mi (U} 72, ).
Each entries of the Jacobian matrix J is formulated as below

AEM") _
on’;

(J)ij = h(¢j’¢l)+ mh(¢/7¢1)+At2Ah(¢/v¢1)

J

+2482[s Y / ' D.Up M Dagy lap g G329
EeQ

+ A CLUNa; (D, i)

It can be observed that the Jacobian J is full matrix, hence numerically expensive to
implement. To avoid this difficulty, we exploit the idea by extending the independent variable
which is presented in [29]. By doing this, we rewrite the system as follows: Find (U}, §) €
Z;, x R such that

n n At n 2 n
E WU, &) = mp Uy, ¢i) + ——mp Uy, ¢i) + A" Ay (Uy, ¢1)

2
+ Atz[SS - P]a;;(u,;’, ¢1) — A (g v
(3.30)

At §
—2mp (UL, ) + mu (U2, @) — ——mn Uy~ 290, 1<i< N

Enaory (U 6) = Y / Mk p up 2 — &

EeQy
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The Jacobian of the system (3.30) is given by
~ |
J = 3 1 .
3 J4 (Nd°f+l)X(Nd°f+l)
J1 is the jacobian corresponding to the system of linear equations
&R, E)=0 1<i<N™,
which is given by

A& WU}L6)

Ji,j = o =mh(¢j,¢i)+Tmh(¢j,¢i)+At Ap(dj, i)
J

+ A (SE — P)ai(pj, di), 1 <i,j <N

Joand J 3T are the column vectors which are defined as follows:

&Y, 8)
(J2)z,l = 8%‘
= A2 Saf U, i) 1<i<NY,
and

agNd0f+l(U;Z, f;:)
Uhji=——g
an’j

=2y / o U T Dy, 1< j < N
EeQy E

Further, the matrix with single entry J4 can be expressed as
dE oty (UY, §)
a& B

In continuation, we would like to highlight that in the discrete formulation, we have consid-

T 1x1 = —1.

ered nonlinearity of the polynomial part of U}/ only such as [ > Ecq, I |1'IkE_] DU} Isz].
In the next section, we will prove that the proposed approximation ensures optimal rate

of convergence. The following result, which proof follows standard arguments, shows that
(3.28) and (3.30) are equivalent.

Theorem 3 Let us assume that Assumption 1 holds and U;: € Zy be the solution of (3.28),
then the pair (U}, £) € Z;, x R be the solution of (3.30). Conversely, let (U}, ) € Z, xR
satisfies (3.30), then U;} € Z;, satisfies (3.28).

3.5 Linearized Scheme

In the previous subsection, we have highlighted that the presence of nonlocal term increases
the computational cost of (3.14). To avoid this shortcoming, we propose a linearized scheme

without compromising the rate of convergence as follows: forn =2, ..., N, find lﬂ]zl €z
such that
gr —2ur ! 4 U2 gr - ur? _
my | =2 b b oy |+ 8 my | vy | + AR (U], o)

A2 2At
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—

+ WU )a (U} vn) = (gt vdns (3.31)
UY=Ly, and U} := Athywo + UD. (3.32)

(3.31) has the same matrix structure as linear system of equation excluding the matrix A*
multiplied by a constant C(l?;l"\_a) = [S ZEth fE |1'[1{E_1D,(l7h"\_/2|2 — P]. Recollecting

the matrix representation of the bilinear forms my (-, -) and Ay(-, -) from the Sect. 3.2, we
rewrite (3.31)-(3.32) as follows:

5 At ~
((1 + T)M L APA+C AzzAx>ﬁ” = GG (3.33)
7(0) = (3.34)
i (3.35)
— = W@. .
a0

Since the matrix M is positive definite and the matrices A and A* are positive semi-definite,
((1 + %)M +APPA+C AIZAX) is invertible, hence the algebraic system (3.33)-(3.35)
has a unique solution.

4 Convergence Analysis of the Discrete Scheme

In this section, we will derive the a priori error estimates for semi-discrete, fully-discrete and
linearized schemes. We define the projection operator (Ritz’s projection) R, : H*Z(SZ) — Zp
such that

Ap(Rpu, vp) = A(u, vy) Yo, € 2y “4.1)

Following [1, 39], it can be prove that the discrete bilinear form Ay (-, -) is coercive and for any
function w € H*Z(Q), A(w, -) is continuous on Zj,. By using the Lax-Milgram Theorem, we
can conclude that (4.1) has unique solution. The existence and uniqueness of Rju directly
follows from the fact that Rju is the solution of the variational problem (4.1). It can be
perceived that employing the projection operator R, we can bound the error u — uj, easily.
In this direction, we split the error as below.

U—up=u— Ryu+ Ryu—up :=¢—y. 4.2)

By using the approximation property of R, (Lemma 8), we can bound ¢. To estimate u —
uy, we focus to estimate . In this direction, we explore polynomial approximation and
interpolation operator properties on discrete space Z [8, 17].

Proposition 1 (Polynomial Approximation) Assume that the mesh regularity assumption [
is satisfied. Then there exists a constant C > 0 independent of mesh-size h but depends on
the mesh regularity parameter y such that for every z € H®(E) there exists z, € Py(E),
k € N such that

|z —zxlep < Chy Ylzls e 0<8<k+1,£=0,....[8],
with [§] denoting largest integer equal or smaller than § € R.

Proposition 2 (Interpolation Approximation) Under the assumption of Proposition 1 and
forall z € H*(E) there exists If (z) € Zf and C > 0 independent of h such that

llz = IF @Il < Chiy Yzls . €=0,1,2, 2<s<k+]1,
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where C is independent of mesh-size h but depends on mesh regularity parameter y (assump-
tion 1).

For each element £ € 2, we deduce that
dof; (vy) = dof; (I (vp)) V1 <i <N,

where vy, € Zf be an arbitrary element. The global interpolation is defined as I, (vy)|g =

IE (vp).
h
The projection operator Rj, satisfies the following approximation properties.

Lemma 8 There exists a unique function Ry, (1) € Zj, such that the following approximation
properties hold:

1) There exists a positive constant C, independent of h, such that
le = Ry@)ll2, < CR™™ S Dulrys0 0<s <k —1.
2) There exist a positive constant C and 5 € (1/2, 1], independent of h, such that
le = Ry@)ll1e < CRH™ gy 0 0<s <k -1
3) There exists a positive constant C, independent of h, such that
(a) If k = 2, then there exists 5§ € (1/2, 1], independent of h, such that
le = Ry@)llo.e < CHF™ 0 Muly g 0<s < 1.
(b) If k > 3, then there exist s > 1/2 and y € (1/2, 2], independent of h, such that

lu — Ry (u)lo,q < CRY MMt k=l 0 0<s <k—1.

Proof The estimations of u — Ry (u) in || - |2, and || - ||1,@ norms can be proved following
analogous arguments as [1]. Now, we proceed to prove the estimation of u — Ry, () in || - ||, -
norm. We start with (3a): the estimate is a direct consequence of the estimate (2) and the
Poincaré inequality.

Now, we continue with (3b). Let ¢ € H*z(Q) be the solution of the following auxiliary
variational problem:

Alp,v) = / (u — Rp(w))v Yv e H*Z(Q), 4.3)
Q

where A(-, ) = (-, ) H2(Q) (cf. (2.1)). As a consequence of a classical regularity result for
the biharmonic problem, there exists y € (1/2, 2] such that ¢ € H 247 (Q) and

lpll24y.@ < Cllu — Ry(w)llo,e-
Next, by standard duality arguments, we get
le — Ry@)llo,o < CAY ™MK Dupyy o) k= 3.

The proof is complete. O

With the help of approximation property of the projection operator Ry, we move to estimate
the bound for the nonlinear term as follows.
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Lemma9 Letu € Hf(Q) be the solution of (2.2) and let Ry, be the Ritz-projection operator
defined in (4.1). Then, there exists a positive constant C depends on mesh regularity of
Assumption 1 and Sobolev regularity of u, independent of h, such that

(s X [ i Danl - PapRicun = (5 3 [ 1Dl = P)a* )
EeQy, E EeQy E
< C(S, P) " |ulks1,2 I Dxvallo.e

+ C S ||Dx(un —w)llo.2 [IDxvnllo,e Yvn € Zh.

(4.4)
Proof We have that
[s ¥ [ i Dans? - Plai v = [s 3 [ 10, = Pla*e )
Eeq,E Eeq, ' E
:(S > / T Do Pay (Rpu, vp) = S / |Dyul?a* (u, vh)> 4.5)
EeQy E EeQy E

+ P(ax(u, vp) — ay, (Rpu, vh)).

Further, the first term on the right-hand side of (4.5) can be written as

(s> /E|H’§10xuh|2az(1ehu,vh)—s 3 fE|Dxu|2aX(u,vh))

EeQy EeQy

=(S > f I ' Deup* =S Y f |Dxu|2)a;f(Rhu,vh)
EeQy E EeQy E

+S > / |Dxu|2(a;:<Rhu, vh>—a)‘<u,vh>).
E E
eQy

By using simple algebra and boundedness of discrete solution uy, regularity of # and
boundedness of the projection operator 1'1/1‘5_1, we obtain

(s> /EmkE*‘Dxumz—s > /E|Dxu|2)a;:<Rhu,vh)

EeQy EeQy

=5y / (1" Dean] + 103l ) (1M Dounl = 1Dl 1 D Rl 1 Divnlo.
EeQy, E

<CS Y A" Dewnlio. + I1Dxullo,£) (1T Deun — Dyullo )
EeQy
|DxRyullo. IDxvillo.e < C SCY_ (I Deunllo g + | Deullo,£)*)'?
EeQy

3 1/2
(X A e = Daullo.)?) 1Dx Raullo.e | Divallo.s
EeQy,

_ _ 1/2 _ 1/2
<Clup) S (( S I Dy — T lz)xuug.E) +( 3 I D - Dxu||3’5> )
EeQy EeQy

IIDx Ruttllo.e | Dxvallo.e < C S (lun — ulia + k¥ |ulis1.2) | Dx Raullo.e | Dxvallo.q-
4.6)
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Using the definition of discrete bilinear form a;, (-, -) and approximation property of pro-
jection operator Ry, and polynomial approximation property of aj (-, -) (cf. Lemma 5), we
derive

(e Ruws o) = @) = 3 (Rt = e, 0p) = =z, )

EeQ)
< Z (IDx (Rpu — uz)llo,@ + |1 Dx (u — uz)llo, )1 Dxvpllo, E
EeQ)
< ChMulesr, 0l Dxvpllo, -
4.7
Inserting the estimations (4.6) and (4.7) into (4.5), we derived the intended result. O

4.1 Error Estimates for Semi-Discrete Scheme

In this section, we will derive the error estimation for the semi-discrete scheme (cf. (3.7)-
(3.9)). With this end, we state the following theorem.

Theorem 4 Let u be the solution of (2.2) and uy, be the semi-discrete solution of (3.7)-(3.9).
Let us assume that the Assumption 1 holds. Furthermore, we assume that the exact solution
u satisfies following regularity u € L*(0, T; H**1(Q)), D;u € L*(0, T; H*1(Q)) and the
force function g € L2(0, T; Hk""l(Q)) and up,0 = Ihug € Z, and w0 := Ihwo € 2 be
the initial approximation of ug and wy, respectively. Then, there exists a positive constant C
independent of mesh size h but depends on mesh-regularity parameter y, Sobolev regularity
of u, stability parameter of bilinear forms Ay(-,-), and my(-, -), and continuity of aj, (-, -)
such that for all t € (0, T], the following regularity holds

1D (u = up)(Ollo,@ + llu(®) —un®l2,@ = €W @)D (u — up)(0) o,

+ 140 = un(O)ll2.0) + C (7%, &, 7%, O (Ionler1.0
+ luole+1,@ + 1820, 7: 41 () + 1 Deettll 120, 7; HE+1 ()

=+ ||Dtu ||L2(0,T;Hk+l (Q)) + ”M ||L2(O,T;Hk+| (Q)))

Proof Using weak formulation (2.2), semi-discrete formulation (3.7), definition of R in
(4.1), and the splitting of u — uy, as (4.2), we obtain

mp Dy (1), vp) + 8mp (D (), vp) + Ap (W (2), vp)
+ [s 3 fEm"E—leth— P]a;(w(t),vh) = (g, v
EeQy
— mp(Dy Rpu(t), vy) — Smp (D Rpu(t), vp) — Ap(Rpu(t), vp)
- [S > /E Mg Dyunl — P]aﬁ(Rhu(f), vn) = (ghs vi)n — (8, vn)
EeQy
— mp(Dy Rpu(t), vy) + (Dyu(t), vp) — dmp (D Rpu(t), vp)

+8(Du(e), ) — 5 Y / M0 Dyaun? — P aj (R, o)
E
EeQy

+[S 3 /Eleu|2—P] a* (i, vp).

EGQ],
4.8)
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By using the approximation property of the projection operator 1'[']‘5 and Cauchy-Schwarz
inequality, we bound the load term as below

[(gn- v — (g ol = Y ITg —gllo.ellvnllo.r < CH* gleyrg lvallog.  (4.9)
EeQy

An application of approximation property of Ritz operator Rj; (cf. Lemma 8) and
polynomial consistency of my(-, -) (cf. Lemma 5), continuity of m(-, -) and polynomial
approximation property (cf. Lemma 1) yields the bound

|mp (Dyy Ry, vy) — (Dygu, vp)| < |lmp(Dy Ry — Dyguig, vp)| + [(Dystr — Dygut, vp)|

< C»*) Y (IDuRyu — Dysuzllo.e + || Distix
EcQy
— Dyullo.e)llwnllo.e = €% K Dyulisr.ellvallo.g-
(4.10)
In the above estimation, we have used the property that R; commutes with time-derivative
and C(F*) is a positive generic constant.
By using analogous arguments as (4.10), we bound the term

8 |my (Dy Ryut, vp) — (Dyu, vp)| < C(v*, I Dyulirr @ llonllo.q- 4.11)
Further, using Lemma 9, we estimate the error for nonlinear term as below
[s 2 [ i Dant = Plajue v ~[s 3 [ 1D = Pla* v
Eeq, ' E Eeq, Y E

< C(S, P) i ulis1.2 |1 Dxvallo.e + € S 1 Dx¥llo.e | Dxvallo.g-
(4.12)
Inserting (4.9)-(4.12) into (4.8), substituting the test function v, := D;, using continuity
and stability of aﬁ (-, -), and assumption on P we derive

1 1 1/ 5
5 D (D, Do)+ 8mi (D, Do) + 2 DA 9 + 5 (Z57 = P) DI Dv 0l
1
+5(5 20 1y Dol ) D v) = CH (gl

EeQy
+ | Dytlis1,@ + | Deutlis1, ) 1 Derllo, + C(S, PYRE Julisr ol DVl

+C S IDx¥rllo.e 1Dl -
(4.13)

By using stability property of the discrete bilinear forms my (-, -), A (-, -) (cf. Lemma 6), and
Young’s inequality, and neglecting the term % (S > Eeq, | I'I’;leuh II% E) Dyay (Y, ), we
obtain

1 - |
3 PD DAY DG + 87 1D IIG. + 15D [RZGIER

1 /@ M
E< *2 B P)Dt”DXW(Z)”(Z)’Q = Cth(|g|%+l,Q + |Dttu|£+lyg
+ 1Dl o) + CIDA IR + C(S, PY hF [ulisr ol Dyl g

+ CS IDxV¥llo.2 |DiYrl1.q-
(4.14)
Again, by applying Young’s inequality and since the term | D; |1 o is bounded, we can
build the term C (e, S%, P?) | D[] . which can be absorbed by 874Dy 1§ o, where € is
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small positive parameter and we rewrite (4.14) as follows

1 - -~ 1.
3 7DD )5 + (ay* 1D 1I§.q — Cle, $%, P?) |Dﬂ/f|%,9) + Za*Dtnwa)n%,Q
1 /& A 5
+5(5 - P)DDv 0

< Ch*(1gli 1.0+ |1Duttli, g o + 1Dwulf, g o) + CIDW NG+ C h* ulf, | o

+C | Dx V[ o-
(4.15)
Upon integrating both sides of (4.15) with respect to 7, and exploiting Gronwall inequality,
we derive

PADA O g+ @Y O g = €@ (1D O o + 1V O g)
+ C()Z;v Ozkv )71, 8)h2k(”g”iz(o,T;H’(‘Fl(Q)) + ||Dttu||i2(0’T;Hk+l(Q)) (416)

2 2
+ ” Dtu ”LZ(O,T;H"'H(Q)) + ||M ”LZ(O,T;Hk'H(Q))) .

An application of approximation property of Ritz operator R (cf. Lemma 8), we derive
as below

I1Dr (u — up)(®llo,@ + lu@) —up@®)ll2,0 < C(¥x, 07*)(||Dt(u —up)(0)]lo,@

+ [[u(0) — Hh(0)||2,52) + C (P & y*, OB (|w0|k+1,s2 + [uolk+1.9
+ gl 20,1 5+ (@)) T 1Duttll 20,7 54+ (@) + 1Dl 20,7 54+ ()

+ ”M ||L2(O,T;Hk+| (Q))) .
]
Remark 2 Using Young’s inequality, we have chosen the coefficient in (4.15) C(e, S2, P?)
small enough such that C (e, s2, P2)|D,1p|%’Q can be absorbed by the term & )7;||Dt1/f||(2)’9.
A straight forward calculation infer the choice of € which should be satisfied
‘< 8 7 D115
T C(SE P IDY g

Since the coefficient 1/C (52, P?) involving S and P? is a sufficiently big quantity, we can
choose € such that the coefficient in right-hand side of (4.15) involving 1/¢€ is a bounded
quantity which does not affect the optimal order of convergence as stated in Theorem 4.

4.2 Error Estimates for Fully-Discrete Scheme

In this section, we would like to study the convergence analysis of the fully-discrete scheme.
With this aim, for each time-step #,, we denote by u” := u(t,) 1 < n < N. We divide the
error as below

u" — Uy =u" — Rpu" + Rpu"" = Uj) = ¢" — "

By utilizing the approximation property of Rj, at time t = #,, we can estimate ¢" . Therefore,
we focus on the bound of 1/”. Further, to present the analysis ambiguously, we introduce the
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following notation:

R ,(pn _ an—] + 1pn—Z ; ,(pn _ wn—Z
= AL ; Y = —.

d2
4 2At

Theorem 5 Let u € HE(Q) be the solution of (2.2) and let U;} € Z, be the solution of
(3.14) for time t = t,, where 1 < n < N. Further, assume that the Assumptions 1, and

wlA_two H = O(hW**! + A12) [24, Theorems 3 and
0,2

4]. Then under the assumption of Theorem 4, there exists a positive generic constant C that
depends on mesh regularity parameter y, Sobolev regularity of u, stability parameters of
bilinear forms Ay (-, -), and my (-, -), and continuity of aj, (-, -) but independent of mesh size
h and time-step At such that the following estimation holds

assumption of Theorem 2 satisfy and H

lu" = Upll2. < C(Px, &, )7;, u, Dttty Dyru, Diu, g, d) (hk_l + Alz).
Proof By using the fully-discrete scheme (3.14), weak formulation (2.2) and (4.1), we derive

(29" vn) + S @, o) + An " o) + [8 )0 /Em’;'DxU;?IZ—P]aﬁ(w",vm
EeQy

= (g, v)n — mp(d> Rypu", vp) — Smp (3 Rpu", vy) — An(Rpu”, vp)

- [S > /Em’;leU,ﬂz— P]a;(khu",vh)

EeQy
= (g} v)n — (8" ) — my(d} Ry, vy) + (Dyud", vp)
— 8my (3 Rpu™, vp) + 8(Dyu”, vy) — Ap(Rpu, vp) + A, vp)

-[s> /EIl'l’;leU,?lz—P]a;;(Rhuz,vh)+[S 3 /Eleu"|2—P]ax(u",vh),

EeQy EeQy
4.17)

By using approximation property of the projection operator IT* at time 1 = 1, we derive
|(&hs v = (8", v | < CH g ke llvallo.o- (4.18)
Next, we split the third and fourth terms on the right hand side in (4.17) as follows

mp(d} Ryu", vp) — Dy, vp) = mp(d} Ry, vp) — (dFu", vp) + (d7u", vp) — (Dyu”, vp)

4.19)
Using approximation property of R;, and following the analogous technique as [3, 39], we
estimate as

|mi(dF Rpu”, vn) — (dFu" op)| < CHH a2 ey, onlo,o- (4.20)

Using Taylor’s series expansion and fundamental theorem of calculus [3, 24], we bound

(7" o) = (D, vp)| < CAL [ Dyt~ o, 2llvnlo, - @21)

By emphasizing on identical techniques as [4, 39], we bound the following term as below
| = 8ma (@ Rut”, v3) + (D", )| < €O (K | 1. gllvn o

2
+ A% [ Dy o 2lvnlo.g)-
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By utilizing approximation property of the Ritz projection operator Rj, polynomial con-
sistency property, stability and continuity of A (-, -) and (4.1), we derive

|AR(Rpu", o) — Ap(u™, vp)| < C@)R T w1 0 lunll.g. (4.22)

Now, we proceed to bound the nonlocal term. Using Lemma 9 at time t = ¢,,, we obtain

~[s ¥ [in 0.0if - plai g0 +[s ¥ [ 0P = platar o

EeQy EeQy

< C(S, P) ¥ [u" k41,0 IDxvnllo. + C S IDx¥" 0. | Dxvallo.q-
(4.23)

By choosing v, = 9;¢" into (4.17) and inserting (4.18)-(4.23) into (4.17), and using third
inequality in (2.4), we obtain

C(]/) wn 1//" 1 - lﬂ"71 —1/[”72
] LA A g Ny ER L P T
Ay Al _
+< T P) IDx¥" 15,0 + (S >k 1wa"||%,E) IDY" 15
EeQy,

< A" "D+ mo lag (", ")
+C (18" 1.0 + 170" 0+ [0 I 2+ (0" 1 0)

n n—1 n—1 n—2
+ CAf4(||Dmunil ||(2)Q + | Dyu” ||(2)Q> + CAt (” 14 w H H w HO Q)
w.n 1 wn -2 H

+CS I Ba+C D 2l +C [

0.Q
(4.24)
Using Young’s inequality, and assumption on P (cf. Theorem 2), and neglecting the

... k—1 .
positive term (S ZEth T Dy ||(%’E) | Dxyr™ ”(2),9’ we obtain

1/;” 1'//n 1

Cyx) H
At 0,Q

2
Oy A1
+1/2 (T - P) D915

~ - &
- o) o T ALY o+ IV 1

¢n71 _ Ipn72 2
At Ho,

< C@ GNP 2B g + Clomo &) 1D 2 g + € 1 (18" 1.0

2 2 2 4 —1y2 2
12" B + 100" o + 10y g ) + CAC (1D ™13 g + 1D )

Y — 1 I)[/.n—l _ wn—Z 2 . wn—l _ wn—Z 2
rear (|5 1 la) res e e [
(4.25)
Following [3], we write the term as
2 1 A 1
diu" = AL 7A1(At — |t Dy ™ (ty—1 + 1) d1,
which implies
N
AtY N7 7. < ClDuitl 20,7141 - (4.26)
n=2
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Upon iterating (4.24) n = 2 to n and using discrete Gronwall inequality and (4.26), and
for sufficiently small values of S (C S < 1) where C S denote the coefficient of the sum

> i %7 [12., we derive

1"l < C(H‘/’];t‘”o

gt 1V N2+ 10 2.0)

+ Chk<|g|Loo(07T;Hk+l(Q)) + 1Dl 20,7 i+1 ()

+ 1Dl 20,7 ks () + ||u||Lw(0,T;Hk+1(Q))> + CAt2(IIDmulle(o,T;Lzm))
+ ||Dtt“||L°°(O,T;L2(Q)))'

By using the assumption of Theorem 5 and approximation property of R, at time ¢t = ¢,
(cf. Lemma 8), approximation property of interpolation operator I, we obtain the intended
result.

U} = u"l2.0 < CH* + Ar?).

Remark 3 After simplifying equation (4.68), the coefficient involving the term || e v'n ]

| =

I3.2
contains Vs, 8,a* and Ar. The coefficient involving the term | ||0 o contains
s 8, a*. Therefore, after iterating the inequality (4.68) n = 2 to n, the coefficient of

J—yd ~n—1 —
Z il Wi ||0 o contains term involving 7"~ Losn=1 o*"" and A"~ and the coeffi-

cient of || '/’ VLR Ll ! Both the coefficients are bounded and by
using dlscrete Gronwall inequality, we can achieve the desired result.

In Sect. 3.5, we have proposed linearized scheme (3.31) and highlighted that the scheme
provides optimal order of convergences for both space and time variables. Next, we proceed
to prove in the following theorem

Theorem 6 Let u € H*2(Q) be the solution of (2.2) and let U;} € Z}, be the solution of
(3.31) at time t = t,, where 2 < n < N. Then, under the assumptions of Theorem 5, there
exists a constant C which depends on mesh regularity parameter y, Sobolev regularity of u,
stability parameters of bilinear forms Ay (-, -), and my(-, -) but independent of mesh size h
and time-step At such that the following estimation holds

[ v' - wo 0 1
10} —u"l20 < C (H oot ¥ 2+ 1w ||2,sz)
+Ch*! (|M0|k+1,Q + 1810, 7: HE1 ()
+ “DttullLZ(o’T;HkH(Q)) + ||D[M||L2(0’T;Hk+l(9)) + ||u ”LOO(O,T;H]"H(Q)))

2
+ CAt <||DrrtM||L°°(O,T;L2(Q)) + IDsutll o< 0,7;2(02)) + ||DrM||L°°(0,T;L2(Q))>-

Proof The proof follows analogous arguments with a minor modification of estimates of
nonlocal term. In fact, following [3,Theorem 5.3] and the errors due to nonlocal term can be
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(a) Non-convex (b)Distorted square

(¢) Regular polygons (d) Smoothed Voronoi

Fig. 1 A schematic representation of different discretizations employed in this study

bounded as

—[s 3 |H’E—IDXU;Z—2|2—P]a;(Rhu”,vh)+[s 3 f |Dxu"|2—P]ax(u",vh)
EeQy E EeQy E

k k. on—2 -
<C (h lu" k41,2 IDxvnllo,@ + 1 10"~ lkt1,0 I Dxvpllo,o + 1¥" 22,0 I Dxvallo,@

+ At D" o, @l Dxvallo,@)-

Proceeding same as Theorem 5, we obtain the intended result. O
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5 Numerical Experiments

In this section, we would like to demonstrate the performance of the proposed method for
the lowest order C! conforming virtual element space, i.e. for polynomial of degree k = 2.
We have studied two test cases where the first example deals with manufactured solution and
another case which is focused on more realistic example. We have computed the numerical
solutions on different type of meshes including smoothed Voronoi, regular polygons, non-
convex, distorted square and square meshes (see Fig. 1). The time dependent nonlocal plate
equation models the deformation of bridges. The nonlocal nonlinearity appears in the model
problem (1.1)-(1.4) due to the stretching of the plate in the x-direction. The function g
represents the vertical load over the plate. In [21], authors have focused to study the decay
of the energy with the time progression surveying some practical examples with or without
the presence of an external load function g. However, in a fully discrete form, the model
problem reduces to a system of nonlinear equations, which has to be solved numerically.
Traditional techniques based on FEM are expensive, since the it requires C! elements and
the presence of the nonlocal term destorys the sparse structure of the Jacobian of the nonlinear
system (Newton’s Method). To avoid these difficulties, we have introduced a new independent
variable and maintained the sparse structure of the Jacobian as shown in Fig. 2. All the
Jacobian matrices are computed for meshes of 16x 16 elements for square, distorted square,
regular polygons and non-convex meshes and for Voronoi mesh with mesh size & = 1/10.

Aspect of implementation of projection operator H"‘E‘l. In (3.14), we have discretized the
nonlocal term using the projection operator l'[’j,;1 which is computable form the degrees of
freedom D1 — D5 for any order of k > 2. Further, we explain briefly the computation of the
projection operator l'IIf{l for arbitrary order k > 3 as follows

/nkE‘leq:/ Dipgqg Vg ePri(E)
E E

=—/¢qu+/ ¢ nyq,
E E

where n, is ax component of unit outward normal vector. The term f 9E @ nx q consists of an
integral of a polynomial of degree 2k — 1. Since the virtual function ¢ is polynomial of degree
k on edge e C 9 E and is explicitly computable from the degrees of freedom associated with
the discrete space. The another function ¢ is a known polynomial of degree k — 1 and hence
the integration is fully computable from degrees of freedom D1 — D4. For the case k = 2,
the virtual function ¢|, € P3(e); consequently, we have four unknown coefficients which
can be computed from the four DoFs D1 — D2.

5.1

Stabilization bilinear forms. To complete the choice of the VEM scheme for k = 2, we
had to fix the forms Sf (-,-) and S,’,f (-, +) (cf. Sect. 3.1). In particular, we have considered the
form

NEg
SE (@n, o) =Y lon(E)va(E) + Vou(E) - Vor(E)] - Yo, v € 2,
i=1

where E1, ..., By, are the vertices of E. Thus, we take Sg(-, -) and S,ff(-, -) in terms of
SE(., ), properly scaled (see [18] for further details).

@ Springer



23

Page 30 of 37

Journal of Scientific Computing

(2022) 91:23

10

o

20

o

ARRS

500

300
400l 1000
500 [
1500
600 1
700 1
2000
800 1
0 200 400 600 800 0 500 1000 1500 2000
nz = 18853 nz = 96621
(a) Distorted square (b) Non-convex
0 . . . . 0 A — . s
100 1 200 :
200 1 400 :
By N
300 600 : \: \:
400} 800 | E
500 1000 | : B -
N N B
600 11200 v v ¥
700 11400 1 g :
800 11600 [ o g
N N 3
0 200 400 600 800 0 500 1000 1500
nz = 18851 nz = 58898
(¢) Square (d) Uniform polygon
0
200
400
600
800 | R
1000
1200
1400
1600 |
1800
0 500 1000 1500
nz = 69129

(e) Voronoi

Fig.2 Example 1: Sparsity of Jacobian for different discretization considered in this analysis
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Fig. 3 Example 1: a Conditioning number of the Jacobian matrix and b Convergence of the error in the H 2
norm with mesh refinement

5.1 Example 1

First, we have considered a clamped plate with a manufactured solution. We consider the
model problem (1.1) with the exact solution u(x, y, 1) := sin(wt)(x — x*)%(y — y*)? in
Q := (0, 1)? and u = dpu = 0 on Q. The damping coefficient § is chosen as 1 and the
pre-stressing constant P and the elasticity of the material S are chosen as 10~ and 1073,
respectively. The final time 7 is chosen as 1/2. Initial guess U ,? is considered as zeros and U, i:

. . . Ul -up .
is computed using the finite difference formula % = %(O). The time steps are chosen

as sufficiently small to achieve the optimal rate of convergence in space variable. The errors
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are computed using the formula
12
k,A
& =( Y " -y U;f|%’E) . (5.2)
EeQy
However, one can also compute the errors using the relative error formula such as

Ap@" — UM u" — U

Erel(u) = A uh)

(5.3)

We have displayed the solutions with the family of meshes containing 4x 4, 8x8, 16x 16,
32x%32, and 64x64 elements. In Fig. 2, we have shown the sparse structure of Jacobians
and condition numbers of the Jacobians are shown in Fig. 3(a), where it is seen that the
condition numbers increase as ~ O (h*). Further, the nonlocal term is discretized using
the L2 projection operator H’E’l on each element E (cf. (5.1)). Thus, we can compute the
term l'[’f{l Dy ¢;. In the discretization of a* (-, -), we have considered only polynomial part
avoiding non-polynomial part or stabilization part. However, we have proved theoretically
that the fully-discrete scheme (3.14)-(3.15) is well posed and converges optimally in both
space and time variables. In particular, let (A*);; = ZEth fE 1'[12_] D, ¢; l'[lzj_1 Dy¢;dE,
then the nonlocal term could be computed as ZEth fE IH]“{] D Uy |2dE = [ﬂ"]Ax[ﬂ"]T,
where ["] is the coefficient vector defined in (3.27). In Fig. 3(b), we have displayed the
convergence behaviour for different type of meshes for nonlinear scheme. It is inferred that
the proposed framework yields optimal convergence in the H2-norm.

On the other hand, we mention that the linearized scheme (3.31)-(3.32) where the non-
linear term is computed at previous step. Thus, the fully-discrete linearized scheme reduces
to system of linear equations, we can employ any linear solver to compute the system of
equations and we dare to leave the scheme without verifying experimentally.

5.2 Example 2

In this section, we have borrowed a more realistic example that models the deformation of a
real bridge [21,Numerical Example 5.4]. We considerg = 0, P = 1073, 8 =1075,0 = 0.2.
The computational domain is considered as [0, 7] x [—¢, £], where £ = 7/150. The initial
guess U 2 is chosen as the solution of the following stationary problem:

A%y =50sin(2x)  in 2,

u(0,y) = Dxxu(0,y) = u(m,y) = Dyyu(w,y) =0 y € (¢, 0),
Dyyu(x, ) + 0Dy u(x, £0) =0, x € (0,m),

Dyyyu(x, £0) + (2 — 0)Dyyyu(x, £0) =0, x € (0, m).

Further, we choose the immediate next approximation U ,i =U ,? (wg = 0).

Figure 4, shows the initial guess U, ,? which is basically the initial deformation at time
t = 0. It is noted that the damping coefficient § (x, y) plays a significant role in decaying the
energy as time ¢ goes to infinity, which should be positive (> 0) in the neighbourhood of
Q= (0, 10h) U (r — 10k, ) x (—€, —€£ 4+ 5h) U (£ — 5h, £), and zero in 2\ Q. We choose

I, (e

YEN=N 0 oy ea\d.
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Fig.4 Example 2: Initial guess Ug

For the computation, the final time 7 is chosen as 0.01. We have computed numerical results
at final time and the convergence of the H? errors with mesh refinement are shown in Fig. 5.
Time-step is taken as At = O (h). Further, the rate of convergence of the numerical solution
is in accordance with the theory as proved in Theorem 5. In addition, we also would like to
study the decay of energy as it is analyzed in [21,Theorem 3.7]. The energy is defined as

E, () :

1 2 1 2 P 2 N 4
D72 )+ 5 14D 2 ) = 5 1D 726y + FIDeu D2y (54)
where ¢ > 0. It is estimated that

13
Eu(t) < s(f - 1) Vi > Ty >0,

Ty

and lim;_, 5, S(#) = 0. In discrete version, the energy is defined by using the virtual element
discrete solution as

- 1 ur —uyrt yr—uyr! 1
Eypy =5 3 mi (Tt Tt ) g D AR U

EeQy At Az EeQy (5 5)
P _ S _
=5 2 I DU g + 5 D I DU G
EcQy EeQy

We have post processed the results to recover the norm such as > e, I I'[/}f;_1 DUy ||% B
using the following discrete bilinear form:

> I DU g = (UL U, (5.6)
EeQy
or, in matrix form,
T DUR G g = T AT ("),
EeQy
where 7" and A* are defined in Sect. 3.4. The energy is computed on square mesh for 16 x 16

elements with very small time step A7 = 1/1000. In Fig. 6, we have plotted Energy versus
final time T and it is clearly observed that as T — oo, the energy E ur = 0. From (6), we
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Fig.5 Example 2: convergence of the error H 2(2) with mesh refinement for different types of discretizations
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Fig.6 Example 2: Decay of energy with respect to time

deduce that the bridge reaches immobilized condition at time 7" = 5 with initial deformation
as defined in Example 2. Finally, we would also like to conclude the discussion by dissecting
the Jacobian without introducing new variable as &. Recollecting (3.29), it can be observed
that (J);; # Ofori # j.The Jacobianis displayed in Fig. 7. The Jacobian is computed for the
full matrix, without introducing the additional variable on a square mesh for Example 2. It is
observed that the number of non-zeros is greater in this case when compared to the case with
an additional variable. Further, it is also observed that the Newton iterations take relatively
more iterations without inviting the new additional variable and the number of non-zeros in
Jacobian increases as the mesh size, i approaches 0. It is clear from this discussion, that the
presented framework is advantageous in spite of having an additional variable.
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Fig.7 Example 2: Jacobian 0 - T N T

computed on square mesh

without introducing the new 100 ¢ 1
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paper 300 1
400 ]
500 1
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800 1

0 200 400 600 800
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6 Conclusion

In this article, we have proposed a numerical technique to solve the time dependent nonlocal
plate problem which models deformation of bridge. In order to discretize time dependent part,
we need to compute the L? projection operator and accordingly, we have modified the VEM
space which allows the full computation of the L? projection operator. Further, the model
problem deals with nonlocal nonlinearity which spoils the sparse structure of the Jacobian
matrix and consequently computational cost. We have addressed this difficulty by introducing
independent variable and retrieve the sparse structure of the Jacobian. Wellposedness of the
fully discrete scheme and a priori error estimates are derived in H? norm. Finally, we explore
the workability of the numerical technique by examining two benchmark examples including
a problem with manufactured solution and clamped boundary condition and another cases
are prototype of more realistic bridge modelling without external vertical force functions.
Also, we have studied the potential and kinetic energy associated with deformation of bride
and plotted against time to demonstrate the uniform decay of energy as time goes to infinity
as claimed in [21].
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