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A VIRTUAL ELEMENT DISCRETIZATION FOR THE TIME DEPENDENT
NAVIER–STOKES EQUATIONS IN STREAM-FUNCTION FORMULATION

Dibyendu Adak1,2,* , David Mora1,3, Sundararajan Natarajan2

and Alberth Silgado1

Abstract. In this work, a new Virtual Element Method (VEM) of arbitrary order 𝑘 ≥ 2 for the time
dependent Navier–Stokes equations in stream-function form is proposed and analyzed. Using suitable
projection operators, the bilinear and trilinear terms are discretized by only using the proposed degrees
of freedom associated with the virtual space. Under certain assumptions on the computational domain,
error estimations are derived and shown that the method is optimally convergent in both space and
time variables. Finally, to justify the theoretical analysis, four benchmark examples are examined
numerically.
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1. Introduction

In this work, we study a Virtual Element Method (VEM) for a fourth order nonlinear problem arising in
the numerical discretization of the Navier–Stokes problem. The VEM, introduced in [6], is a generalization
of the Finite Element Method (FEM) which is characterized by the capability of dealing with very general
polygonal/polyhedral meshes, and it also permits to construct in a straightforward way highly regular discrete
spaces. Indeed, by avoiding the explicit construction of the local basis functions, the VEM can easily handle
general polygons/polyhedrons without complex integrations on the element (see [7] for details on the coding
aspects of the method). The VEM has been applied successfully for problems in fluid mechanics; see for instance
[1, 8, 17, 18, 24, 26, 30, 33, 34, 39, 41], where Stokes, Brinkman, Stokes–Darcy and Navier–Stokes equations have
been recently developed.

The Navier–Stokes system is a paradigm of fluid flow problems. Usually, the variables 𝑢 and 𝑝 denote the
velocity and the pressure field, respectively. It is proved that if the body force f and the initial data 𝑢0 are
smooth enough and the boundary of domain Ω is locally Lipschitz continuous, then the two dimensional non
stationary Navier–Stokes problem has weak solution. In [38], Temam showed that 𝑢 ∈ 𝐿∞

(︀
0, 𝑇 ; [𝐻2(Ω)]2

)︀
with the assumption that f and initial data 𝑢0 are suitably smooth. Since the model problem consists of
nonlinear term, it is not straightforward to find analytical solution. Therefore, numerical approximation is
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the only available option in the majority of the cases found in practice, which involves very difficult initial
and boundary conditions. A large amount of articles are contributed to improve the effectiveness of numerical
schemes, the computer resolution of Navier–Stokes equations still challenges the applied mathematician and
scientist. In this article, we have attempted to develop a VEM scheme for a time dependent stream-function
formulation of the Navier–Stokes equations.

In the proposed formulation, the stream-function is the principal unknown of the system [27, 28]. Salient
features in formulations of this kind include that: there is only one scalar variable, the incompressible condition
is satisfied automatically, the stream-function is one of the most useful tools in flow visualization. On the other
hand, we note that the velocity and pressure are not present in the formulation. However, the velocity can be
easily obtained by a simple postprocess from stream-function. In 1979 in [27] the standard weak formulation was
presented for the first time in terms of the stream-function for the Navier–Stokes equations, in this direction in
[20] the authors present conforming finite element method for the steady formulation, including an algorithm
for pressure recovery. More recently, in [25] a 𝐶1 finite element method based on the Argyris element has been
proposed for the stationary quasi-geostrophic equations, which corresponds to an extension of a stream-function
formulation for the Navier–Stokes problem.

It is well-known that conforming finite element methods to solve the fourth order problems require 𝐶1-
continuity. The construction of finite elements with such regularity is not straightforward (see [23]). However,
this can be easily achieved by using the virtual element strategy. More precisely, we will follow the VEM
approach presented in [16,21] (see also [10,12,35,36]) to build global discrete spaces of 𝐻2(Ω) of arbitrary order
to solve the time dependent fourth order nonlinear problem.

There are some works for the approximation by VEM for fluid flow problems using the stream-function
formulation. In [4] a 𝐶1 conforming virtual element method has been presented to solve the Stokes problem
on general polygonal meshes. More recently, a 2D Stokes complex structure for the VEM was analyzed and a
discrete curl formulation of the Navier–Stokes problem has been obtained in [11]. The extension to the 3D case
of the Stokes complex structure for the VEM has been presented in [13].

The goal of this paper is to propose a conforming 𝐶1 virtual element method to solve continuous weak
formulation (2.5) (will be defined in Sect. 2) and to prove that the method is optimally convergent in both space
and time variables. More precisely, we will propose a new VEM discretization to solve the time dependent Navier–
Stokes problem written in terms of the stream-function variable. We consider a primal variational formulation of
the problem written in 𝐻2(Ω). Then, we propose a direct 𝐶1 global virtual element subspace of arbitrary order
𝑘 ≥ 2 to be used in the semi-discrete and fully-discrete formulations. We construct projection operators in order
to write bilinear and trilinear forms that are fully computable. In particular, to discretize the trilinear form, we
propose a form which does not need any stabilization. We prove that the fully-discrete problem is well-posed
by using fixed point arguments and assuming that the data is in a certain sense small enough. Then, we obtain
optimal rate of convergence in 𝐻2(Ω) for the proposed discretizations by using an adequate projection operator
and under standard assumptions on the computational domain. In addition, the velocity field is then obtained
from the discrete stream-function by a postprocess. In a summary, the advantages of the present method are:
the 𝐶1 conforming virtual space can be built with a straightforward construction due to the flexibility of the
VEM and it provides a very competitive alternative to solve the time dependent Navier–Stokes problem on
polygonal meshes.

The rest of the paper is organized as follows: In Section 2, the model problem and the continuous weak
formulation are defined. Using the stream-function formulation, we rewrite the continuous weak formulation that
is nonlinear time dependent biharmonic problem. Further, the basic settings of the functional analysis and the
assumptions required to develop the theory are also highlighted. In Section 3, we introduce the virtual element
subspaces, the polynomial projection operators and the discrete forms which are exploited to construct the
discrete schemes. In Section 4, the semi-discrete and fully-discrete schemes are introduced and the well posedness
of the schemes are also discussed. A priori error estimates for the semi-discrete and the fully-discrete schemes
are investigated in Section 5. The theoretical convergence rates are justified with four numerical examples in
Section 6.
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2. Preliminaries and the model problem

Let Ω ⊂ R2 be a simply connected polygonal domain with boundary Γ := 𝜕Ω. We denote by 𝐿2(Ω), the
space of square integrable scalar functions with the standard inner product (𝜓, 𝜑)0,Ω :=

∫︀
Ω
𝜓𝜑. For each positive

integer 𝑠 ∈ N, we define 𝐻𝑠(Ω) [2], the Sobolev space with standard norm

‖𝜑‖𝑠,Ω :=

⎛⎝ ∑︁
0≤𝛼≤𝑠

‖𝜕𝛼𝜑‖20,Ω

⎞⎠1/2

,

where 𝛼 is multi index and 𝜕𝛼𝜑 denotes 𝛼th partial derivative of 𝜑. Let 𝑡 denote the time variable taking values
in the interval 𝐼 := (0, 𝑇 ], where 𝑇 is a given final time. Moreover, the function space 𝐿2(0, 𝑇 ;𝐻𝑠(Ω)) consists
of scalar functions 𝜑 such that for almost all 𝑡 ∈ [0, 𝑇 ], 𝜑(·, 𝑡) ∈ 𝐻𝑠(Ω) [15] with the norm,

‖𝜑‖𝐿2(0,𝑇,𝐻𝑠(Ω)) :=

(︃∫︁ 𝑇

0

‖𝜑(𝑡)‖2𝑠,Ω

)︃1/2

; ‖𝜑‖𝐿∞(0,𝑇,𝐻𝑠(Ω)) := ess sup
0≤𝑡≤𝑇

‖𝜑(𝑡)‖𝑠,Ω.

In addition, given any Hilbert space 𝑉 , we will denote by [𝑉 ]2 the space of vectors functions with entries in 𝑉
(see [2]). Further, we define 𝜕𝑡𝜑 := d𝜑

d𝑡 , 𝜕𝑡𝑡𝜑 := d2𝜑
d𝑡2 , div𝜑 := d𝜑

d𝑥 + d𝜑
d𝑦 , curl𝜑 :=

(︁
d𝜑
d𝑦 ,−

d𝜑
d𝑥

)︁
, D2𝜑 := (𝜕𝑖𝑗𝜑)1≤𝑖,𝑗≤2

denotes the Hessian matrix of 𝜑, and 𝜕𝑛𝜑 := ∇𝜑 ·𝑛, where 𝑛 is outward normal vector. For second order tensor
fields 𝜎, 𝜏 : Ω → R2×2, we define scalar product : : R2×2 × R2×2 → R by

𝜎 : 𝜏 :=
∑︁

1≤𝑖,𝑗≤2

𝜎𝑖𝑗𝜏 𝑖𝑗 ,

where 𝜎𝑖𝑗 and 𝜏 𝑖𝑗 are the entries at (𝑖, 𝑗)-th position of 𝜎 and 𝜏 , respectively.

2.1. Model problem

We consider the time-dependent Navier–Stokes problem (for more details, see for instance [28, 37]): given a
sufficiently smooth force density f ∈ [𝐿2(Ω)]2, we seek (𝑢(𝑡), 𝑝(𝑡)) such that:

𝜕𝑡𝑢− 𝜈Δ𝑢+ (𝑢 · ∇)𝑢+∇𝑝 = f in Ω,
div 𝑢 = 0 in Ω,

𝑢 = 0 on Γ,
(𝑝, 1)0,Ω = 0,

𝑢(0) = 𝑢0,

(2.1)

where 𝑢, 𝑝 are the velocity and the pressure fields, respectively, and 𝜈 > 0 is the viscosity of the fluid. We
introduce the following Hilbert spaces:

H :=
{︀
𝑣 ∈ [𝐻1(Ω)]2 : 𝑣 = 0 on Γ

}︀
,

and
𝑄 :=

{︀
𝑞 ∈ 𝐿2(Ω) : (𝑞, 1)0,Ω = 0

}︀
.

The standard velocity-pressure variational formulation of the Navier–Stokes problem reads as follows: find
(𝑢(𝑡), 𝑝(𝑡)) ∈ H×𝑄, such that∫︁

Ω

𝜕𝑡𝑢 · 𝑣 + 𝜈

∫︁
Ω

∇𝑢 : ∇𝑣 +
∫︁

Ω

(𝑢 · ∇)𝑢 · 𝑣 −
∫︁

Ω

𝑝 div 𝑣 =
∫︁

Ω

f · 𝑣 ∀𝑣 ∈ H,∫︁
Ω

𝑞 div 𝑢 = 0 ∀𝑞 ∈ 𝑄.
(2.2)
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It is well known that (2.2) admits a unique solution (see [28]). Let us introduce the following space of functions
in H with vanishing divergence

Z := {𝑣 ∈ H : div 𝑣 = 0}.

Then, equation (2.2) can be rewritten in the following form: find 𝑢(𝑡) ∈ Z such that∫︁
Ω

𝜕𝑡𝑢 · 𝑣 + 𝜈

∫︁
Ω

∇𝑢 : ∇𝑣 +
∫︁

Ω

(𝑢 · ∇)𝑢 · 𝑣 =
∫︁

Ω

f · 𝑣 ∀𝑣 ∈ Z.

Now, we reformulate the above problem as follows: since Ω is a simply connected domain, a well known
result states that a vector function 𝑣 ∈ Z if and only if there exists a scalar function 𝜙 ∈ 𝐻2(Ω) (called
stream-function) such that

𝑣 = curl 𝜙 ∈ H.

The function 𝜙 is defined up to a constant. Thus, we consider the following space

𝐻2
0 (Ω) :=

{︀
𝜙 ∈ 𝐻2(Ω) : 𝜙 = 𝜕𝑛𝜙 = 0 on Γ

}︀
.

We endow 𝐻2
0 (Ω) with the natural norm ‖ · ‖2,Ω. Then, (2.2) can be formulated as follows: find 𝜓(𝑡) ∈ 𝐻2

0 (Ω)
such that ∫︁

Ω

𝜕𝑡(curl 𝜓) · curl 𝜑+ 𝜈

∫︁
Ω

∆𝜓∆𝜑+
∫︁

Ω

∆𝜓curl 𝜓 · ∇𝜑 =
∫︁

Ω

f · curl 𝜑 ∀𝜑 ∈ 𝐻2
0 (Ω),

𝜓(0) = 𝜓0.

(2.3)

Now, we introduce the following trilinear form as follows,

𝐶(·; ·, ·) : 𝐻2
0 (Ω)×𝐻2

0 (Ω)×𝐻2
0 (Ω) → R,

𝐶(𝑣;𝜓, 𝜑) :=
∫︁

Ω

∆𝑣curl 𝜓 · ∇𝜑.
(2.4)

It is observed that 𝐶(𝑣;𝜑, 𝜑) = 0 and 𝐶(𝑣;𝜓, 𝜑) = −𝐶(𝑣;𝜑, 𝜓). An application of Hölder inequality and the
Sobolev’s embedding theorem 𝐻1(Ω) →˓ 𝐿4(Ω), we have

𝐶(𝑣;𝜓, 𝜑) ≤ 𝐶0(Ω) ‖𝑣‖2,Ω‖𝜓‖2,Ω‖𝜑‖2,Ω ∀𝑣, 𝜓, 𝜑 ∈ 𝐻2(Ω).

Further, let 𝑋 ′ be the dual space of 𝑋. For any smooth enough function 𝑢, 𝑣 ∈ 𝐻2
0 (Ω), we define the function

𝒢(𝑢, 𝑣) ∈ 𝐻−2(Ω) = [𝐻2
0 (Ω)]′ such that

⟨𝒢(𝑢, 𝑣), 𝑤⟩−2,2,Ω := 𝐶(𝑢; 𝑣, 𝑤) ∀𝑤 ∈ 𝐻2
0 (Ω),

where ⟨·, ·⟩−2,2,Ω denotes duality pairing between 𝐻−2(Ω) and 𝐻2
0 (Ω). It can be easily deduced that

‖𝒢(𝑢, 𝑢)‖−2,Ω ≤ 𝐶0(Ω)‖𝑢‖22,Ω ∀𝑢 ∈ 𝐻2
0 (Ω).

Since 𝜕𝑡(curl 𝜓) = curl (𝜕𝑡𝜓), problem (2.3) above can be written as follows: For a given function f ∈
𝐿2
(︀
0, 𝑇 ; [𝐿2(Ω)]2

)︀
and 𝜓0 ∈ 𝐻2

0 (Ω), the continuous weak formulation is defined as find 𝜓 ∈ 𝐿2
(︀
0, 𝑇 ;𝐻2

0 (Ω)
)︀

such that

𝐴(𝜕𝑡𝜓, 𝜑) + 𝜈𝐵(𝜓, 𝜑) + 𝐶(𝜓;𝜓, 𝜑) = 𝐹 (𝜑) ∀𝜑 ∈ 𝐻2
0 (Ω), (2.5)

𝜓(0) = 𝜓0,

where 𝜓(𝑡) ∈ 𝐻2
0 (Ω) is the stream-function of the velocity field 𝑢(𝑡) ∈ Z (i.e., 𝑢 = curl 𝜓) and

𝐴(·, ·) : 𝐻2
0 (Ω)×𝐻2

0 (Ω) → R, 𝐴(𝜓, 𝜑) :=
∫︁

Ω

curl 𝜓 · curl 𝜑 ∀𝜓, 𝜑 ∈ 𝐻2
0 (Ω), (2.6)
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𝐵(·, ·) : 𝐻2
0 (Ω)×𝐻2

0 (Ω) → R, 𝐵(𝜓, 𝜑) :=
∫︁

Ω

∆𝜓∆𝜑 ∀𝜓, 𝜑 ∈ 𝐻2
0 (Ω), (2.7)

𝐹 (·) : 𝐻2
0 (Ω) → R, 𝐹 (𝜑) :=

∫︁
Ω

f · curl 𝜑 ∀𝜑 ∈ 𝐻2
0 (Ω). (2.8)

Note that
|𝐵(𝜓, 𝜑)| ≤ ‖𝜓‖2,Ω‖𝜑‖2,Ω ∀𝜓, 𝜑 ∈ 𝐻2

0 (Ω),

and
𝐵(𝜑, 𝜑) ≥ 𝐶 ‖𝜑‖22,Ω ∀𝜑 ∈ 𝐻2

0 (Ω),

where 𝐶 is a positive generic constant. Next, we would like to discuss the well-posedness of continuous weak
formulation (2.5).

Theorem 2.1. Let f ∈ 𝐿2
(︀
0, 𝑇 ; [𝐿2(Ω)]2

)︀
and 𝜓0 ∈ 𝐻2

0 (Ω). Then, there exists a unique solution 𝜓 ∈
𝐿2(0, 𝑇 ;𝐻2

0 (Ω)) of problem (2.5).

Proof. For detail proof, we refer to Theorem 2.1 of [31] (see also [14]). �

3. Virtual element method

Let {𝒯ℎ}ℎ be a sequence of decompositions of Ω into general polygonal elements 𝐾. Let ℎ𝐾 denote the
diameter of the element 𝐾 and ℎ the maximum of the diameters of all the elements of the mesh , i.e., ℎ :=
max𝐾∈𝒯ℎ

ℎ𝐾 . In what follows, we denote by 𝑁𝐾 the number of vertices of 𝐾, by 𝑒 a generic edge of 𝒯ℎ and for
all 𝑒 ∈ 𝜕𝐾, we define a unit normal vector 𝑛𝑒𝐾 that points outside of 𝐾 and a unit tangent vector 𝑡𝑒𝐾 to 𝐾.
Further, we denote by ℎ𝑒 the length of the edge 𝑒. For each vertex 𝑉𝑖, we associate a characteristic length ℎ𝑉𝑖

which is the average of the diameter of the elements having 𝑉𝑖 as a vertex.
For the theoretical analysis, we will make the following assumptions: there exists a real number 𝐶𝒯 > 0 such

that, for every ℎ and every 𝐾 ∈ 𝒯ℎ,

Assumption 3.1.
(a) The ratio between the shortest edge and the diameter ℎ𝐾 of 𝐾 is larger than 𝐶𝒯 ;
(b) 𝐾 ∈ 𝒯ℎ is star-shaped with respect to every point of a ball of radius 𝐶𝒯 ℎ𝐾 .

3.1. Local and global virtual spaces

Now, for any subset 𝒟 ⊆ R2 and non negative integer 𝑘, we will denote by 𝒫𝑘(𝒟) the space of polynomials
of degree up to 𝑘 defined on 𝒟. Then, for (𝑠1, 𝑠2) ∈ N× N, we define the set of scale monomials as

ℳ*
𝑠(𝐾) :=

{︂
𝑞* | 𝑞* =

(︂
𝑥− 𝑥𝑑
ℎ𝐾

)︂𝑠1(︂𝑦 − 𝑦𝑑
ℎ𝐾

)︂𝑠2
; 𝑠 = 𝑠1 + 𝑠2

}︂
,

where (𝑥𝑑, 𝑦𝑑) denotes centroid of 𝐾. Then, we define ℳ𝑠(𝐾) := ∪𝑗≤𝑠ℳ*
𝑗 (𝐾) as a basis of 𝒫𝑠(𝐾). Analogously,

we consider the set of the scaled monomials defined on each edge 𝑒:

ℳ𝑠(𝑒) :=

{︃
1,
𝜉 − 𝜉𝑒
ℎ𝑒

,

(︂
𝜉 − 𝜉𝑒
ℎ𝑒

)︂2

, . . . ,

(︂
𝜉 − 𝜉𝑒
ℎ𝑒

)︂𝑠}︃
,

where 𝜉𝑒 is the midpoint of 𝑒.
Then, for any 𝑘 ≥ 2 and for every polygon 𝐾 ∈ 𝒯ℎ, we introduce the following preliminary local virtual space:

̃︀𝑉ℎ(𝐾) :=
{︀
𝜑ℎ ∈ 𝐻2(𝐾) : ∆2𝜑ℎ ∈ 𝒫𝑘−2(𝐾), 𝜑ℎ|𝜕𝐾 ∈ 𝐶0(𝜕𝐾), 𝜑ℎ|𝑒 ∈ 𝒫𝑟(𝑒) ∀𝑒 ∈ 𝜕𝐾,

∇𝜑ℎ|𝜕𝐾 ∈ [𝐶0(𝜕𝐾)]2, 𝜕𝑛𝑒
𝐾
𝜑ℎ|𝑒 ∈ 𝒫𝛼(𝑒) ∀𝑒 ∈ 𝜕𝐾

}︀
,
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where 𝑟 := max{3, 𝑘} and 𝛼 := 𝑘 − 1.
Next, for a given 𝜑ℎ ∈ ̃︀𝑉ℎ(𝐾), we introduce five sets D1−D5 of linear operators from the local virtual spacẽ︀𝑉ℎ(𝐾) into R.

– D1 : contains linear operators evaluating 𝜑ℎ at the 𝑁𝐾 vertices of 𝐾;
– D2 : contains linear operators evaluating ℎ𝑉𝑖∇𝜑ℎ(𝑉𝑖) for all vertices 𝑉𝑖 of 𝐾, where 1 ≤ 𝑖 ≤ 𝑁𝐾 ;

– D3 : for 𝑟 > 3, the moments
1
ℎ𝑒

∫︁
𝑒

𝑞(𝜁)𝜑ℎ(𝜁) d𝜁 ∀𝑞 ∈ℳ𝑟−4(𝑒), ∀ edge 𝑒;

– D4 : for 𝛼 > 1, the moments
∫︁
𝑒

𝑞(𝜁)𝜕𝑛𝑒
𝐾
𝜑ℎ(𝜁) d𝜁 ∀𝑞 ∈ℳ𝛼−2(𝑒), ∀ edge 𝑒;

– D5 : for 𝑘 ≥ 4, the moments
1
ℎ2
𝐾

∫︁
𝐾

𝑞(𝑥)𝜑ℎ(𝑥) d𝑥 ∀𝑞 ∈ℳ𝑘−4(𝐾), ∀polygon 𝐾.

In order to construct the discrete scheme, we first observe that∫︁
Ω

∆𝜙∆𝜑 =
∫︁

Ω

D2𝜙 : D2𝜑.

Then, we decompose the bilinear form (2.7) in the following element by element contribution:

𝐵(𝜙, 𝜑) =
∫︁

Ω

D2𝜙 : D2𝜑 =
∑︁
𝐾∈𝒯ℎ

𝐵𝐾(𝜙, 𝜑) =
∑︁
𝐾∈𝒯ℎ

∫︁
𝐾

D2𝜙 : D2𝜑, ∀𝜙, 𝜑 ∈ 𝐻2
0 (Ω).

In what follows, we are going to build the discrete version of the local bilinear forms listed above. With this
aim, we define the following projector operator Π𝑘,Δ

𝐾 : ̃︀𝑉ℎ(𝐾) −→ 𝒫𝑘(𝐾) ⊆ ̃︀𝑉ℎ(𝐾) for each 𝜑ℎ ∈ ̃︀𝑉ℎ(𝐾), as the
solution of the local problems (on each polygon 𝐾):

𝐵𝐾

(︁
Π𝑘,Δ
𝐾 𝜑ℎ, 𝑞

)︁
= 𝐵𝐾(𝜑ℎ, 𝑞) ∀𝑞 ∈ 𝒫𝑘(𝐾), (3.1a)

Π̂𝑘,Δ
𝐾 𝜑ℎ = ̂︁𝜑ℎ, ̂∇Π𝑘,Δ

𝐾 𝜑ℎ = ̂︂∇𝜑ℎ, (3.1b)

where ̂︁(·) is defined as follows:

̂︁𝜒ℎ :=
1
𝑁𝐾

𝑁𝐾∑︁
𝑖=1

𝜒ℎ(𝑉𝑖) ∀𝜒ℎ ∈ 𝐶0(𝜕𝐾), (3.2)

and 𝑉𝑖, 1 ≤ 𝑖 ≤ 𝑁𝐾 , are the vertices of 𝐾.
The following result establishes that the projector Π𝑘,Δ

𝐾 is computable using the output values of the sets
D1 −D5.

Lemma 3.2. The operator Π𝑘,Δ
𝐾 : ̃︀𝑉ℎ(𝐾) −→ 𝒫𝑘(𝐾) is explicitly computable for every 𝜑ℎ ∈ ̃︀𝑉ℎ(𝐾), using only

the information of the linear operators D1 −D5.

Proof. For detail proof, we refer to [21]. �

For each 𝑘 ≥ 2 and for any 𝐾 ∈ 𝒯ℎ our local enhanced virtual space is given by:

𝑊 𝑘
ℎ (𝐾) :=

{︂
𝜑ℎ ∈ ̃︀𝑉ℎ(𝐾) :

∫︁
𝐾

𝑞* Π𝑘,Δ
𝐾 𝜑ℎ =

∫︁
𝐾

𝑞* 𝜑ℎ, ∀𝑞* ∈ℳ*
𝑘−2(𝐾) ∪ℳ*

𝑘−3(𝐾)
}︂
, (3.3)

where ℳ*
𝑘−2(𝐾) and ℳ*

𝑘−3(𝐾) are scaled monomials of degree 𝑘−2 and 𝑘−3, respectively, with the convention
that ℳ*

−1(𝐾) = ∅.
By using the linear operators D1−D5, we can evaluate Π𝑘,Δ

𝐾 𝜑ℎ for all 𝜑ℎ ∈𝑊 𝑘
ℎ (𝐾), which is stated explicitly

in the next result.



VEM FOR THE NAVIER-STOKES EQUATIONS 2541

Lemma 3.3. The operator Π𝑘,Δ
𝐾 is well defined and computable on the local enhanced virtual space 𝑊 𝑘

ℎ (𝐾).

Proof. From definition of local enhanced virtual space (3.3), we deduce that 𝑊 𝑘
ℎ (𝐾) ⊆ ̃︀𝑉ℎ(𝐾). Consequently,

for 𝜑ℎ ∈𝑊 𝑘
ℎ (𝐾) implies 𝜑ℎ ∈ ̃︀𝑉ℎ(𝐾) and hence Π𝑘,Δ

𝐾 𝜑ℎ is well-defined and computable. �

On the other hand, we observe that 𝒫𝑘(𝐾) ⊆𝑊 𝑘
ℎ (𝐾) which will guarantee the good approximation properties

for the space. Moreover, following similar arguments presented in [3, 16] (see also [21]) we obtain that the sets
of linear operators D1 −D5 constitutes a set of degrees of freedom for 𝑊 𝑘

ℎ (𝐾).
Now, we introduce the global virtual space by combining the local spaces 𝑊 𝑘

ℎ (𝐾) and incorporating the
homogeneous Dirichlet boundary conditions. For every decomposition 𝒯ℎ of Ω into polygons 𝐾, we define

𝑊ℎ :=
{︀
𝜑ℎ ∈ 𝐻2

0 (Ω) : 𝜑ℎ|𝐾 ∈𝑊 𝑘
ℎ (𝐾)

}︀
.

3.2. Construction of bilinear forms and the force term

In order to build the discrete local and global forms, we observe that the particular condition appearing in the
definition of the local virtual space 𝑊 𝑘

ℎ (𝐾) will be useful to construct an 𝐿2-projection which will be employed
to build the discrete bilinear forms. In particular, we consider the 𝐿2(𝐾)-projection onto 𝒫𝑘−2(𝐾). For each
𝜑 ∈ 𝐿2(𝐾), Π𝑘−2

𝐾 𝜑 ∈ 𝒫𝑘−2(𝐾) satisfies∫︁
𝐾

(︀
Π𝑘−2
𝐾 𝜑

)︀
𝑞 =

∫︁
𝐾

𝜑𝑞 ∀𝑞 ∈ 𝒫𝑘−2(𝐾). (3.4)

The following lemma establishes that Π𝑘−2
𝐾 is computable on 𝑊 𝑘

ℎ (𝐾). The proof follows from the definition
of the local virtual space and the set of degrees of freedom.

Lemma 3.4. The operator Π𝑘−2
𝐾 : 𝑊 𝑘

ℎ (𝐾) −→ 𝒫𝑘−2(𝐾) is explicitly computable for each 𝜑ℎ ∈ 𝑊 𝑘
ℎ (𝐾), using

only the information of the set of degrees freedom D1 −D5.

Proof. For a detail proof, we refer to [21]. �

Now, for 𝑘 ≥ 2, we will introduce some additional projectors which will be used to write the virtual scheme.
First, we define Π𝑘,∇⊥

𝐾 : 𝑊 𝑘
ℎ (𝐾) −→ 𝒫𝑘(𝐾) ⊆ 𝑊 𝑘

ℎ (𝐾) for each 𝜑ℎ ∈ 𝑊 𝑘
ℎ (𝐾) as the solution of the following

local problem. ∫︁
𝐾

curl Π𝑘,∇⊥
𝐾 𝜑ℎ · curl 𝑞 =

∫︁
𝐾

curl 𝜑ℎ · curl 𝑞 ∀𝑞 ∈ 𝒫𝑘(𝐾), (3.5a)

̂Π𝑘,∇⊥
𝐾 𝜑ℎ = ̂︁𝜑ℎ, (3.5b)

where ̂︁(·) has been defined in (3.2). The following result states that this operator is fully computable.

Lemma 3.5. The operator Π𝑘,∇⊥
𝐾 : 𝑊 𝑘

ℎ (𝐾) −→ 𝒫𝑘(𝐾) ⊆ 𝑊 𝑘
ℎ (𝐾) is explicitly computable for each 𝜑ℎ ∈

𝑊 𝑘
ℎ (𝐾), using only the information of the set of degrees freedom D1 −D5.

Proof. First we note that (3.5b) is computable using the information of the set D1. On the other hand, we
integrate by parts on the right hand side of (3.5a) to obtain:∫︁

𝐾

curl 𝜑ℎ · curl 𝑞 = −
∫︁
𝐾

𝜑ℎ∆𝑞 +
∫︁
𝜕𝐾

𝜑ℎ𝜕𝑛𝐾
𝑞 ∀𝑞 ∈ 𝒫𝑘(𝐾)

= −
∫︁
𝐾

Π𝑘−2
𝐾 𝜑ℎ∆𝑞 +

∫︁
𝜕𝐾

𝜑ℎ𝜕𝑛𝐾
𝑞 ∀𝑞 ∈ 𝒫𝑘(𝐾),

where we have used the fact that ∆𝑞 ∈ 𝒫𝑘−2(𝐾) and the definition of the projection Π𝑘−2
𝐾 (cf. (3.4)). The

previous equality allows us to conclude that the polynomial Π𝑘,∇⊥
𝐾 𝜑ℎ can be explicitly computed from the

degrees of freedom D1 −D5. �
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Now, we will introduce an additional projection operator onto the polynomial space [𝒫𝑘−1(𝐾)]2, which will
be used to construct a local approximation of 𝐴(·, ·) and 𝐶(·; ·, ·). For 𝐾 ∈ 𝒯ℎ, and 𝑣 ∈ [𝐿2(𝐾)]2, we define
Π𝑘−1
𝐾 : [𝐿2(𝐾)]2 → [𝒫𝑘−1(𝐾)]2 by∫︁

𝐾

Π𝑘−1
𝐾 𝑣 · q =

∫︁
𝐾

𝑣 · q ∀q ∈ [𝒫𝑘−1(𝐾)]2. (3.6)

We observe that for any 𝜑ℎ ∈ 𝑊 𝑘
ℎ (𝐾), the vector functions Π𝑘−1

𝐾 curl 𝜑ℎ ∈ [𝒫𝑘−1(𝐾)]2 and Π𝑘−1
𝐾 ∇𝜑ℎ ∈

[𝒫𝑘−1(𝐾)]2 can be explicitly computed from the degrees of freedom D1 −D5. In fact, for all 𝐾 ∈ 𝒯ℎ and for
all 𝜑ℎ ∈𝑊 𝑘

ℎ (𝐾), using integration by parts on the right-hand side of (3.6) (with curl𝜑ℎ instead of 𝑣), we have
(see [28]) ∫︁

𝐾

curl 𝜑ℎ · q =
∫︁
𝐾

𝜑ℎ rot q−
∫︁
𝜕𝐾

𝜑ℎ(q · 𝑡𝐾) ∀q ∈ [𝒫𝑘−1(𝐾)]2

=
∫︁
𝐾

(︀
Π𝑘−2
𝐾 𝜑ℎ

)︀
rot q−

∫︁
𝜕𝐾

𝜑ℎ(q · 𝑡𝐾) ∀q ∈ [𝒫𝑘−1(𝐾)]2,

where we have used (3.4). The first term on the right-hand side above depends only on Π𝑘−2
𝐾 𝜑ℎ and this depends

only on the values of the degrees of freedom (see Lem. 3.4). The second term is an integral on the boundary of
the element 𝐾, which is fully computable.

Next, we use the above projection operators to construct computable approximations of the continuous
bilinear and trilinear forms, and for the right-hand side. First, let 𝑠Δ𝐾(·, ·) and 𝑠curl

𝐾 (·, ·) be any symmetric
positive definite bilinear forms to be chosen as to satisfy:

𝑐0𝐵𝐾(𝜑ℎ, 𝜑ℎ) ≤ 𝑠Δ𝐾(𝜑ℎ, 𝜑ℎ) ≤ 𝑐1𝐵𝐾(𝜑ℎ, 𝜑ℎ) ∀𝜑ℎ ∈𝑊 𝑘
ℎ (𝐾), with Π𝑘,Δ

𝐾 𝜑ℎ = 0,

𝑐2𝐴𝐾(𝜑ℎ, 𝜑ℎ) ≤ 𝑠curl
𝐾 (𝜑ℎ, 𝜑ℎ) ≤ 𝑐3𝐴𝐾(𝜑ℎ, 𝜑ℎ) ∀𝜑ℎ ∈𝑊 𝑘

ℎ (𝐾), with Π𝑘,∇⊥
𝐾 𝜑ℎ = 0, (3.7)

with 𝑐0, 𝑐1, 𝑐2 and 𝑐3 are positive constants independent of ℎ and 𝐾. From (3.7), we deduce that 𝑠Δ𝐾(·, ·), and
𝑠curl
𝐾 (·, ·) scale same as 𝐵𝐾(·, ·) and 𝐴𝐾(·, ·), respectively.

On each element 𝐾, we define the local discrete bilinear forms

𝐴ℎ𝐾(·, ·) : 𝑊 𝑘
ℎ (𝐾)×𝑊 𝑘

ℎ (𝐾) → R, 𝐵ℎ𝐾(·, ·) : 𝑊 𝑘
ℎ (𝐾)×𝑊 𝑘

ℎ (𝐾) → R

as follow, for all 𝜓ℎ, 𝜑ℎ ∈𝑊 𝑘
ℎ (𝐾)

𝐴ℎ𝐾(𝜓ℎ, 𝜑ℎ) := 𝐴𝐾

(︁
Π𝑘,∇⊥
𝐾 𝜓ℎ,Π

𝑘,∇⊥
𝐾 𝜑ℎ

)︁
+ 𝑠curl

𝐾

(︁
𝜓ℎ −Π𝑘,∇⊥

𝐾 𝜓ℎ, 𝜑ℎ −Π𝑘,∇⊥
𝐾 𝜑ℎ

)︁
,

𝐵ℎ𝐾(𝜓ℎ, 𝜑ℎ) := 𝐵𝐾

(︁
Π𝑘,Δ
𝐾 𝜓ℎ,Π

𝑘,Δ
𝐾 𝜑ℎ

)︁
+ 𝑠Δ𝐾

(︁
𝜓ℎ −Π𝑘,Δ

𝐾 𝜓ℎ, 𝜑ℎ −Π𝑘,Δ
𝐾 𝜑ℎ

)︁
.

It can be observed that the forms 𝑠curl
𝐾 (·, ·) and 𝑠Δ𝐾(·, ·) reduce to zero when one of the two entries 𝜑ℎ or 𝜓ℎ

is a polynomial function. Different computable form of the stabilizers are available in the literature [5, 16, 36].
However, we choose the following representation

𝑠curl
𝐾

(︁
𝜑𝑖 −Π𝑘,∇⊥

𝐾 𝜑𝑖, 𝜑𝑗 −Π𝑘,∇⊥
𝐾 𝜑𝑗

)︁
:= 𝛼curl

𝐾

𝑁dof
𝐾∑︁
𝑧=1

dof𝑧
(︁(︁
𝐼 −Π𝑘,∇⊥

𝐾

)︁
𝜑𝑖

)︁
dof𝑧

(︁(︁
𝐼 −Π𝑘,∇⊥

𝐾

)︁
𝜑𝑗

)︁
,

𝑠Δ𝐾

(︁
𝜑𝑖 −Π𝑘,Δ

𝐾 𝜑𝑖, 𝜑𝑗 −Π𝑘,Δ
𝐾 𝜑𝑗

)︁
:= 𝛼Δ

𝐾

𝑁dof
𝐾∑︁
𝑧=1

dof𝑧
(︁(︁
𝐼 −Π𝑘,Δ

𝐾

)︁
𝜑𝑖

)︁
dof𝑧

(︁(︁
𝐼 −Π𝑘,Δ

𝐾

)︁
𝜑𝑗

)︁
,
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where 𝛼curl
𝐾 and 𝛼Δ

𝐾 are the suitable constants, and 𝑁dof
𝐾 denotes the number of degrees freedom of 𝑊 𝑘

ℎ (𝐾).
Adding the local contribution, the global forms are defined as

𝐴ℎ(𝜓ℎ, 𝜑ℎ) :=
∑︁
𝐾∈𝒯ℎ

𝐴ℎ𝐾(𝜓ℎ, 𝜑ℎ) ∀𝜓ℎ, 𝜑ℎ ∈𝑊ℎ, (3.8)

𝐵ℎ(𝜓ℎ, 𝜑ℎ) :=
∑︁
𝐾∈𝒯ℎ

𝐵ℎ𝐾(𝜓ℎ, 𝜑ℎ) ∀𝜓ℎ, 𝜑ℎ ∈𝑊ℎ. (3.9)

The following result establishes the usual consistency and stability properties for the discrete local bilinear
forms.

Proposition 3.6. For 𝑘 ≥ 2, the local bilinear forms 𝐴ℎ𝐾(·, ·) and 𝐵ℎ𝐾(·, ·) on each element 𝐾 satisfy

– Consistency: for all ℎ > 0 and for all 𝐾 ∈ 𝒯ℎ, we have that

𝐴ℎ𝐾(𝑞, 𝜑ℎ) = 𝐴𝐾(𝑞, 𝜑ℎ) ∀𝑞 ∈ 𝒫𝑘(𝐾), ∀𝜑ℎ ∈𝑊 𝑘
ℎ (𝐾), (3.10)

𝐵ℎ𝐾(𝑞, 𝜑ℎ) = 𝐵𝐾(𝑞, 𝜑ℎ) ∀𝑞 ∈ 𝒫𝑘(𝐾), ∀𝜑ℎ ∈𝑊 𝑘
ℎ (𝐾). (3.11)

– Stability and boundedness: There exist positive constants 𝛼𝑖, 𝑖 = 1, . . . , 4, independent of 𝐾, such that:

𝛼1𝐴𝐾(𝜑ℎ, 𝜑ℎ) ≤ 𝐴ℎ𝐾(𝜑ℎ, 𝜑ℎ) ≤ 𝛼2𝐴𝐾(𝜑ℎ, 𝜑ℎ) ∀𝜑ℎ ∈𝑊 𝑘
ℎ (𝐾), (3.12)

𝛼3𝐵𝐾(𝜑ℎ, 𝜑ℎ) ≤ 𝐵ℎ𝐾(𝜑ℎ, 𝜑ℎ) ≤ 𝛼4𝐵𝐾(𝜑ℎ, 𝜑ℎ) ∀𝜑ℎ ∈𝑊 𝑘
ℎ (𝐾). (3.13)

Proof. For further details, we refer to [19,21,35]. �

We observe that from the symmetry of 𝐴ℎ(·, ·) and 𝐵ℎ(·, ·) and the stability conditions stated before imply
the continuity of 𝐴ℎ and 𝐵ℎ. In fact, for all 𝜓ℎ, 𝜑ℎ ∈𝑊ℎ:

|𝐴ℎ(𝜓ℎ, 𝜑ℎ)| ≤ 𝐶𝐴‖𝜓ℎ‖1,Ω‖𝜑ℎ‖1,Ω,
|𝐵ℎ(𝜓ℎ, 𝜑ℎ)| ≤ 𝐶𝐵‖𝜓ℎ‖2,Ω‖𝜑ℎ‖2,Ω.

(3.14)

The following result establishes that by virtue of (3.13), bilinear form 𝐵ℎ(·, ·) is uniformly elliptic.

Lemma 3.7. There exists a constant 𝛼 > 0, independent of ℎ, such that

𝐵ℎ(𝑣ℎ, 𝑣ℎ) ≥ 𝛼‖𝑣ℎ‖22,Ω ∀𝑣ℎ ∈𝑊ℎ.

Now, we proceed to discretize the force function as follows

𝐹ℎ𝐾(·) : 𝑊 𝑘
ℎ (𝐾) → R

such that

𝐹ℎ𝐾(𝜑ℎ) :=
∫︁
𝐾

Π𝑘−1
𝐾 f · curl 𝜑ℎ =

∫︁
𝐾

f ·Π𝑘−1
𝐾 curl 𝜑ℎ ∀𝜑ℎ ∈𝑊 𝑘

ℎ (𝐾). (3.15)

Globally, the force function 𝐹ℎ𝐾 is defined as follows

𝐹ℎ(𝜑ℎ) :=
∑︁
𝐾∈𝒯ℎ

𝐹ℎ𝐾(𝜑ℎ) ∀𝜑ℎ ∈𝑊ℎ. (3.16)
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3.3. Discretization of the nonlinear term

In this section, we would like to discretize the trilinear term associated with the problem (2.3). Using the
projection operators Π𝑘,Δ

𝐾 and Π𝑘−1
𝐾 , we discretize the trilinear term.

𝐶ℎ𝐾(·; ·, ·) : 𝑊 𝑘
ℎ (𝐾)×𝑊 𝑘

ℎ (𝐾)×𝑊 𝑘
ℎ (𝐾) → R

such that
𝐶ℎ𝐾(𝑣ℎ;𝜓ℎ, 𝜑ℎ) :=

∫︁
𝐾

(︁
∆Π𝑘,Δ

𝐾 𝑣ℎ

)︁
Π𝑘−1
𝐾 curl 𝜓ℎ ·Π𝑘−1

𝐾 ∇𝜑ℎ ∀𝑣ℎ, 𝜓ℎ, 𝜑ℎ ∈𝑊 𝑘
ℎ (𝐾).

The term is fully computable from the degrees of freedom. Globally, the trilinear term is defined as

𝐶ℎ(𝑣ℎ;𝜓ℎ, 𝜑ℎ) :=
∑︁
𝐾∈𝒯ℎ

𝐶ℎ𝐾(𝑣ℎ;𝜓ℎ, 𝜑ℎ) ∀𝑣ℎ, 𝜓ℎ, 𝜑ℎ ∈𝑊ℎ. (3.17)

Moreover, it can be shown that the discrete trilinear form 𝐶ℎ(·; ·, ·) is uniformly bounded on 𝑊ℎ.

Lemma 3.8. Let 𝐶ℎ(𝑣ℎ;𝜓ℎ, 𝜑ℎ) be the trilinear form defined in (3.17). Then there exists a positive constant 𝐶
such that

|𝐶ℎ(𝑣ℎ;𝜓ℎ, 𝜑ℎ)| ≤ 𝐶‖𝑣ℎ‖2,Ω‖𝜓ℎ‖2,Ω‖𝜑ℎ‖2,Ω,

where 𝐶 is independent of mesh size ℎ.

Proof. An application of boundedness of the projection operators Π𝑘,Δ
𝐾 and Π𝑘−1

𝐾 , Hölder inequality, and
Sobolev’s embedding theorem yields the proof. �

Moreover, we have the following properties of 𝐶ℎ(·; ·, ·)

𝐶ℎ(𝑣ℎ;𝜑ℎ, 𝜑ℎ) = 0 ∀𝑣ℎ, 𝜑ℎ ∈𝑊ℎ. (3.18)

In addition, we observe that 𝐶ℎ(·; ·, ·) can be extended to 𝐻2
0 (Ω) only taking the projections of the continuous

𝑣, 𝜓, 𝜑 ∈ 𝐻2
0 (Ω).

Remark 3.9. The discrete trilinear form 𝐶ℎ(·; ·, ·) does not contain non-polynomial part or stabilizer. It is
defined using the projection operators Π𝑘,Δ

𝐾 and Π𝑘−1
𝐾 which are computable from the information provided by

the degrees of freedom. With this definition, we will show that the semi-discrete and fully-discrete schemes are
well-posed and we will obtain the corresponding error estimates.

4. Discrete schemes and their well posedness

In this section, we will introduce the semi-discrete and fully-discrete virtual element schemes for problem (2.5),
by using the discrete forms introduced in Sections 3.2 and 3.3. We will also prove that under some assumptions
on 𝜈, the fully-discrete scheme is well posed.

4.1. Semi-discrete formulation

The semi-discrete VEM formulation for the time dependent Navier–Stokes problem reads as follows. For all
𝑡 > 0, find 𝜓ℎ ∈ 𝐿2(0, 𝑇 ;𝑊ℎ) such that

𝐴ℎ(𝜕𝑡𝜓ℎ(𝑡), 𝜑ℎ) + 𝜈𝐵ℎ(𝜓ℎ(𝑡), 𝜑ℎ) + 𝐶ℎ(𝜓ℎ(𝑡);𝜓ℎ(𝑡), 𝜑ℎ) = 𝐹ℎ(𝜑ℎ) ∀𝜑ℎ ∈𝑊ℎ. (4.1)

Additionally, we set 𝜓ℎ(0) = 𝜓𝐼(0), where 𝜓𝐼(0) is a suitable interpolation of 𝜓0 (see Prop. 5.2). In this section,
we will discuss the well-posedness of semi-discrete scheme (4.1).
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First, we observe that the matrix representation corresponding to the discrete bilinear form 𝐴ℎ(·, ·) is positive
definite and hence inverse exists. Further, let us assume that A,B be the matrix representation corresponding
to the discrete forms 𝐴ℎ(·, ·), 𝐵ℎ(·, ·), respectively. Therefore, problem (4.1) reduces to a system of nonlinear
differential equations as follows

A
d𝜓ℎ
d𝑡

+ 𝜈B𝜓ℎ + C(𝜓ℎ) = F (4.2)

𝜓ℎ(0) = 𝜓0, (4.3)

where 𝜓ℎ denotes the vector whose entries are the components in the basis of 𝜓ℎ. Moreover, C(𝜓ℎ) is the matrix
corresponding to the nonlinear term and F be the right hand side load vector corresponding to the basis 𝜑ℎ.
Before going into further details, we would like to prove that the nonlinear term , i.e., 𝐶ℎ(𝜓ℎ;𝜓ℎ, 𝜑ℎ) satisfies
Lipschitz’s continuity condition. In this direction, let 𝜓1

ℎ, 𝜓
2
ℎ be two elements in 𝑊ℎ. Then, we can write as⃒⃒⃒

𝐶ℎ
(︀
𝜓1
ℎ;𝜓1

ℎ, 𝜑ℎ
)︀
− 𝐶ℎ

(︀
𝜓2
ℎ;𝜓2

ℎ, 𝜑ℎ
)︀⃒⃒⃒

=
⃒⃒⃒
𝐶ℎ
(︀
𝜓1
ℎ;𝜓1

ℎ, 𝜑ℎ
)︀
− 𝐶

(︀
𝜓2
ℎ;𝜓1

ℎ, 𝜑ℎ
)︀

+ 𝐶
(︀
𝜓2
ℎ;𝜓1

ℎ, 𝜑ℎ
)︀
− 𝐶ℎ

(︀
𝜓2
ℎ;𝜓2

ℎ, 𝜑ℎ
)︀⃒⃒⃒

≤
∑︁
𝐾∈𝒯ℎ

(︃ ⃒⃒⃒ ∫︁
𝐾

∆Π𝑘,Δ
𝐾

(︀
𝜓1
ℎ − 𝜓2

ℎ

)︀
Π𝑘−1
𝐾 curl 𝜓1

ℎ ·Π
𝑘−1
𝐾 ∇𝜑ℎ

⃒⃒⃒
⏟  ⏞  

:=𝐿1

+
⃒⃒⃒ ∫︁
𝐾

∆Π𝑘,Δ
𝐾 𝜓2

ℎΠ
𝑘−1
𝐾 curl

(︀
𝜓1
ℎ − 𝜓2

ℎ

)︀
·Π𝑘−1

𝐾 ∇𝜑ℎ⏟  ⏞  
:=𝐿2

⃒⃒⃒)︃
.

(4.4)

An application of Hölder inequality and using the continuity of Π𝑘−1
𝐾 with respect to 𝐿4-norm and stability of

Π𝑘,Δ
𝐾 , we obtain ∑︁

𝐾∈𝒯ℎ

𝐿1 ≤ 𝐶‖𝜓1
ℎ − 𝜓2

ℎ‖2,Ω‖curl 𝜓1
ℎ‖𝐿4(Ω)‖∇𝜑ℎ‖𝐿4(Ω),

using Sobolev’s embedding theorem, we obtain∑︁
𝐾∈𝒯ℎ

𝐿1 ≤ 𝐶‖𝜓1
ℎ − 𝜓2

ℎ‖2,Ω‖curl 𝜓1
ℎ‖1,Ω‖∇𝜑ℎ‖1,Ω. (4.5)

Using analogous arguments, we derive that∑︁
𝐾∈𝒯ℎ

𝐿2 ≤ 𝐶‖𝜓2
ℎ‖2,Ω‖curl

(︀
𝜓1
ℎ − 𝜓2

ℎ

)︀
‖1,Ω‖∇𝜑ℎ‖1,Ω. (4.6)

Inserting (4.5) and (4.6) into (4.4), we can claim that the nonlinear term 𝐶ℎ(𝜓ℎ;𝜓ℎ, 𝜑ℎ) is Lipschitz contin-
uous. Therefore, from Picard’s Theorem of existence and uniqueness of system of differential equation, we can
deduce that (4.2) and (4.3) has a unique solution.

4.2. Fully-discrete formulation

A classical backward Euler integration method is employed for the time discretization of (4.1) with time step
∆𝑡 = 𝑇/𝑁 , where 𝑁 is a positive integer. In addition, we introduce 𝜓𝑛ℎ := 𝜓ℎ(𝑡𝑛) for 𝑛 = 0, 1, 2, . . . , 𝑁 . This
results in the following fully discrete method: find 𝜓𝑛ℎ ∈𝑊ℎ such that

𝐴ℎ
(︂
𝜓𝑛ℎ − 𝜓𝑛−1

ℎ

∆𝑡
, 𝜑ℎ

)︂
+ 𝜈𝐵ℎ(𝜓𝑛ℎ , 𝜑ℎ) + 𝐶ℎ(𝜓𝑛ℎ ;𝜓𝑛ℎ , 𝜑ℎ) = 𝐹ℎ(𝜑ℎ) ∀𝜑ℎ ∈𝑊ℎ,

𝜓0
ℎ = 𝜓𝐼(0),

(4.7)
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where 𝜓0
ℎ ∈ 𝑊ℎ is an initial approximation of 𝜓 at 𝑡 = 0. Next, we prove the well posedness of the fully-

discrete scheme (4.7). In this direction, we first recollect Brouwer’s fixed point theorem. Then, under certain
assumption, we will show that the fully-discrete scheme has unique solution 𝜓𝑛ℎ and the solution is bounded,
i.e., ‖𝜓𝑛ℎ‖2,Ω ≤ ℛ, where ℛ is a positive constant which will be specified later.

Theorem 4.1 (Brouwer’s theorem). Let 𝒦 be a Banach space and let ℬ ⊂ 𝒦 be a compact and convex subset.
If ℒ : ℬ → ℬ is continuous, then ℒ has a fixed point.

Theorem 4.2. Assume that

max

{︃
2𝐶2

𝛼2
3𝜈

2
,

2𝐶2𝐶2
𝐵

𝛼4
3𝜈

2

}︃
‖𝜓ℎ‖2𝐿∞(0,𝑡𝑛−1;𝐻2(Ω)) < 1. (4.8)

Then, for 1 ≤ 𝑛 ≤ 𝑁 and for sufficiently small values of ∆𝑡, there exists a unique solution of the fully-discrete
problem (4.7) and the solution 𝜓𝑛ℎ satisfies the condition ‖𝜓𝑛ℎ‖2,Ω ≤ ℛ, with

ℛ :=

(︁
Δ𝑡

𝛼1𝛼3𝜈
‖f‖2𝐿∞(0,𝑡𝑛−1;𝐿2(Ω)) + 2𝐶2

𝐵

𝛼2
3
‖𝜓ℎ‖2𝐿∞(0,𝑡𝑛−1;𝐻2(Ω))

)︁1/2

(︁
1− 2𝐶2

𝛼2
3𝜈

2 ‖𝜓ℎ‖2𝐿∞(0,𝑡𝑛−1;𝐻2(Ω))

)︁1/2
·

Proof. Let 𝜓𝑛−1
ℎ ∈ 𝑊ℎ. Define a mapping ℱ : 𝑊ℎ → 𝑊ℎ such that 𝜓𝑛ℎ = ℱ(𝜉ℎ) for all 𝜉ℎ ∈ 𝑊ℎ, where 𝜓ℎ is

defined by
1

∆𝑡
𝐴ℎ(𝜓𝑛ℎ , 𝜑ℎ) + 𝜈𝐵ℎ(𝜓𝑛ℎ , 𝜑ℎ) + 𝐶ℎ(𝜉ℎ;𝜓𝑛ℎ , 𝜑ℎ) = 𝐹ℎ(𝜑ℎ) +

1
∆𝑡

𝐴ℎ
(︀
𝜓𝑛−1
ℎ , 𝜑ℎ

)︀
. (4.9)

The proof of the result will be divided in three steps. We first define a mapping ℱ from 𝑊ℎ to 𝑊ℎ and prove
that the mapping is well-defined and maps a ball ℬℛ to a ball ℬℛ. In second stage, we prove that the mapping
is continuous. Then, from Brouwer’s Theorem, we deduce that ℱ has a fixed point inside the ball ℬℛ which is
the solution of the fully-discrete scheme (4.7). Finally, using assumption (4.8), we prove that the solution is
unique.

Well possedness of ℱ : Since the bilinear form 𝐵ℎ(𝜑ℎ, 𝜑ℎ) is elliptic (cf. Lem. 3.7), (3.18) and the fact
that 𝐴ℎ(𝜑ℎ, 𝜑ℎ) > 0, we have that problem (4.9) is well-posed, which follows from the Lax–Milgram Theorem.

Further, to present the analysis we denote by 𝒟𝑡𝜓𝑛ℎ := 𝜓𝑛
ℎ−𝜓

𝑛−1
ℎ

Δ𝑡 .
Now, we will construct a ball with radius ℛ say ℬℛ such that ℱ : ℬℛ → ℬℛ. We consider 𝜑ℎ = 𝒟𝑡𝜓𝑛ℎ in

(4.9) and obtain
𝐴ℎ(𝒟𝑡𝜓𝑛ℎ ,𝒟𝑡𝜓𝑛ℎ) + 𝜈𝐵ℎ(𝜓𝑛ℎ ,𝒟𝑡𝜓𝑛ℎ) + 𝐶ℎ(𝜉ℎ;𝜓𝑛ℎ ,𝒟𝑡𝜓𝑛ℎ) = 𝐹ℎ(𝒟𝑡𝜓𝑛ℎ).

An application of the stability property of the discrete bilinear forms (3.12), (3.13), and (3.18) yields

𝛼1‖curl𝒟𝑡𝜓𝑛ℎ‖20,Ω +
𝛼3𝜈

∆𝑡
‖𝜓𝑛ℎ‖22,Ω ≤ |𝐹ℎ(𝒟𝑡𝜓𝑛ℎ)|+ 𝜈

∆𝑡
𝐵ℎ
(︀
𝜓𝑛ℎ , 𝜓

𝑛−1
ℎ

)︀
+

1
∆𝑡

𝐶ℎ
(︀
𝜉ℎ;𝜓𝑛ℎ , 𝜓

𝑛−1
ℎ

)︀
. (4.10)

By exploiting Cauchy–Schwarz inequality and boundedness of the 𝐿2-projection operator Π𝑘−1
𝐾 , we obtain

|𝐹ℎ(𝒟𝑡𝜓𝑛ℎ)| =

⃒⃒⃒⃒
⃒ ∑︁
𝐾∈𝒯ℎ

∫︁
𝐾

Π𝑘−1
𝐾 f · curl𝒟𝑡𝜓𝑛ℎ

⃒⃒⃒⃒
⃒ ≤ ‖f‖0,Ω‖curl𝒟𝑡𝜓𝑛ℎ‖0,Ω. (4.11)

Using the continuity property of 𝐵ℎ(·, ·) (cf. (3.14)), we get

|𝐵ℎ
(︀
𝜓𝑛ℎ , 𝜓

𝑛−1
ℎ

)︀
| ≤ 𝐶𝐵‖𝜓𝑛ℎ‖2,Ω‖𝜓𝑛−1

ℎ ‖2,Ω. (4.12)
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Inserting (4.11) and (4.12) in (4.10), and using boundedness of the trilinear term 𝐶ℎ(·; ·, ·) (cf. Lem. 3.8), we
obtain

𝛼1‖curl𝒟𝑡𝜓𝑛ℎ‖20,Ω +
𝛼3𝜈

∆𝑡
‖𝜓𝑛ℎ‖22,Ω ≤

(︂
‖f‖0,Ω‖curl𝒟𝑡𝜓𝑛ℎ‖0,Ω +

𝐶𝐵𝜈

∆𝑡
‖𝜓𝑛ℎ‖2,Ω ‖𝜓𝑛−1

ℎ ‖2,Ω

+
𝐶

∆𝑡
‖𝜉ℎ‖2,Ω‖𝜓𝑛ℎ‖2,Ω ‖𝜓𝑛−1

ℎ ‖2,Ω

)︃
.

(4.13)

Upon employing Young’s inequality, we obtain

𝛼1

2
‖curl𝒟𝑡𝜓𝑛ℎ‖20,Ω +

𝛼3𝜈

∆𝑡
‖𝜓𝑛ℎ‖22,Ω ≤

1
2𝛼1

‖f‖20,Ω +
𝐶𝐵𝜈

∆𝑡
‖𝜓𝑛ℎ‖2,Ω ‖𝜓𝑛−1

ℎ ‖2,Ω

+
𝐶

∆𝑡
‖𝜉ℎ‖2,Ω‖𝜓𝑛ℎ‖2,Ω ‖𝜓𝑛−1

ℎ ‖2,Ω.

Since the term 𝛼1
2 ‖curl𝒟𝑡𝜓𝑛ℎ‖20,Ω is positive, we can neglect the term and obtain

𝛼3 𝜈‖𝜓𝑛ℎ‖22,Ω ≤
∆𝑡
2𝛼1

‖f‖20,Ω + 𝐶𝐵𝜈‖𝜓𝑛ℎ‖2,Ω ‖𝜓𝑛−1
ℎ ‖2,Ω + 𝐶‖𝜉ℎ‖2,Ω‖𝜓𝑛ℎ‖2,Ω ‖𝜓𝑛−1

ℎ ‖2,Ω.

Exploiting Young’s inequality and kick-back argument, we obtain

𝛼3 𝜈

2
‖𝜓𝑛ℎ‖22,Ω ≤

∆𝑡
2𝛼1

‖f‖20,Ω +
𝐶2
𝐵𝜈

𝛼3
‖𝜓𝑛−1

ℎ ‖22,Ω +
𝐶2

𝛼3𝜈
‖𝜉ℎ‖22,Ω‖𝜓𝑛−1

ℎ ‖22,Ω

≤ ∆𝑡
2𝛼1

‖f‖2𝐿∞(0,𝑡𝑛−1;𝐿2(Ω)) +

(︃
𝐶2
𝐵𝜈

𝛼3
+

𝐶2

𝛼3𝜈
‖𝜉ℎ‖22,Ω

)︃
‖𝜓ℎ‖2𝐿∞(0,𝑡𝑛−1;𝐻2(Ω)).

(4.14)

Moreover, we adopt that ‖𝜉ℎ‖2,Ω ≤ ℛ. Then from (4.14), we derive as

∆𝑡
𝛼1𝛼3𝜈

‖f‖2𝐿∞(0,𝑡𝑛−1;𝐿2(Ω)) +

(︃
2𝐶2

𝐵

𝛼2
3

+
2𝐶2

𝛼2
3𝜈

2
ℛ2

)︃
‖𝜓ℎ‖2𝐿∞(0,𝑡𝑛−1;𝐻2(Ω)) ≤ ℛ

2. (4.15)

Upon writing explicitly (4.15), we obtain

ℛ2 =

(︁
Δ𝑡

𝛼1𝛼3𝜈
‖f‖2𝐿∞(0,𝑡𝑛−1;𝐿2(Ω)) + 2𝐶2

𝐵

𝛼2
3
‖𝜓ℎ‖2𝐿∞(0,𝑡𝑛−1;𝐻2(Ω))

)︁
(︁

1− 2𝐶2

𝛼2
3𝜈

2 ‖𝜓ℎ‖2𝐿∞(0,𝑡𝑛−1;𝐻2(Ω))

)︁ ·

Now, according to assumption (4.8), the term
(︁

1− 2𝐶2

𝛼2
3𝜈

2 ‖𝜓ℎ‖2𝐿∞(0,𝑡𝑛−1;𝐻2(Ω))

)︁
is positive and consequently, we

define ℬℛ := {𝑣ℎ ∈𝑊ℎ : ‖𝑣ℎ‖2,Ω ≤ ℛ}. Therefore, we deduce that ℱ : ℬℛ → ℬℛ is well defined.

Continuity of ℱ : Let 𝜀 > 0 be a small number and let 𝜉⋆ℎ, 𝜉ℎ be two elements in ℬℛ such that 𝜓⋆ℎ := ℱ(𝜉⋆ℎ)
and 𝜓ℎ := ℱ(𝜉ℎ) and ‖∆(𝜉⋆ℎ − 𝜉ℎ)‖0,Ω < 𝛿. Then, from (4.9), we have

𝐴ℎ(𝜓ℎ − 𝜓⋆ℎ, 𝜑ℎ) + ∆𝑡𝜈𝐵ℎ(𝜓ℎ − 𝜓⋆ℎ, 𝜑ℎ) + ∆𝑡
(︀
𝐶ℎ(𝜉ℎ;𝜓ℎ, 𝜑ℎ)− 𝐶ℎ(𝜉⋆ℎ;𝜓⋆ℎ, 𝜑ℎ)

)︀
= 0. (4.16)

Putting 𝜑ℎ = (𝜓ℎ − 𝜓⋆ℎ) ∈𝑊ℎ in (4.16), we obtain

𝐴ℎ(𝜓ℎ − 𝜓⋆ℎ, 𝜓ℎ − 𝜓⋆ℎ) + ∆𝑡𝜈𝐵ℎ(𝜓ℎ − 𝜓⋆ℎ, 𝜓ℎ − 𝜓⋆ℎ) + ∆𝑡
(︀
𝐶ℎ(𝜉ℎ;𝜓ℎ, 𝜓ℎ − 𝜓⋆ℎ)− 𝐶ℎ(𝜉⋆ℎ;𝜓⋆ℎ, 𝜓ℎ − 𝜓⋆ℎ)

)︀
= 0.
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An application of stability property of 𝐴ℎ(·, ·) and 𝐵ℎ(·, ·) yields

𝛼1‖curl (𝜓ℎ − 𝜓⋆ℎ)‖20,Ω + ∆𝑡𝜈𝛼3‖∆(𝜓ℎ − 𝜓⋆ℎ)‖20,Ω ≤ ∆𝑡|𝐶ℎ(𝜉⋆ℎ;𝜓⋆ℎ, 𝜓ℎ − 𝜓⋆ℎ)− 𝐶ℎ(𝜉ℎ;𝜓ℎ, 𝜓ℎ − 𝜓⋆ℎ)|. (4.17)

The difference on the right hand side above can be bound as follows:⃒⃒⃒⃒
⃒ ∑︁
𝐾∈𝒯ℎ

(︂∫︁
𝐾

∆Π𝑘,Δ
𝐾 𝜉ℎΠ𝑘−1

𝐾 curl 𝜓ℎ ·Π𝑘−1
𝐾 ∇(𝜓ℎ − 𝜓⋆ℎ)−

∫︁
𝐾

∆Π𝑘,Δ
𝐾 𝜉⋆ℎΠ

𝑘−1
𝐾 curl 𝜓⋆ℎ ·Π

𝑘−1
𝐾 ∇(𝜓ℎ − 𝜓⋆ℎ)

)︂⃒⃒⃒⃒
⃒

≤
∑︁
𝐾∈𝒯ℎ

⃒⃒⃒⃒
⃒
(︂∫︁

𝐾

∆Π𝑘,Δ
𝐾 𝜉ℎΠ𝑘−1

𝐾 curl 𝜓ℎ ·Π𝑘−1
𝐾 ∇(𝜓ℎ − 𝜓⋆ℎ)−

∫︁
𝐾

∆Π𝑘,Δ
𝐾 𝜉⋆ℎΠ

𝑘−1
𝐾 curl 𝜓ℎ ·Π𝑘−1

𝐾 ∇(𝜓ℎ − 𝜓⋆ℎ)
)︂⃒⃒⃒⃒
⃒⏟  ⏞  

=:𝑇1

+

⃒⃒⃒⃒
⃒
(︂∫︁

𝐾

∆Π𝑘,Δ
𝐾 𝜉⋆ℎΠ

𝑘−1
𝐾 curl 𝜓ℎ ·Π𝑘−1

𝐾 ∇(𝜓ℎ − 𝜓⋆ℎ)−
∫︁
𝐾

∆Π𝑘,Δ
𝐾 𝜉⋆ℎΠ

𝑘−1
𝐾 curl 𝜓⋆ℎ ·Π

𝑘−1
𝐾 ∇(𝜓ℎ − 𝜓⋆ℎ)

)︂⃒⃒⃒⃒
⃒⏟  ⏞  

=:𝑇2

.

Using Hölder’s inequality and the boundedness of the projection operator Π𝑘,Δ
𝐾 , the term 𝑇1 can be bounded

as follows:

|𝑇1| ≤ ‖∆Π𝑘,Δ
𝐾 𝜉ℎ −∆Π𝑘,Δ

𝐾 𝜉⋆ℎ‖0,𝐾‖Π
𝑘−1
𝐾 curl 𝜓ℎ‖𝐿4(𝐾) ‖Π𝑘−1

𝐾 ∇(𝜓ℎ − 𝜓⋆ℎ)‖𝐿4(𝐾)

≤ ‖∆(𝜉ℎ − 𝜉⋆ℎ)‖0,𝐾 ‖curl 𝜓ℎ‖𝐿4(𝐾)‖∇(𝜓ℎ − 𝜓⋆ℎ)‖𝐿4(𝐾).

Suming the above inequality for all elements 𝐾 and using the Sobolev’s embedding theorem,∑︁
𝐾∈𝒯ℎ

|𝑇1| ≤ ̂︀𝐶‖∆(𝜉ℎ − 𝜉⋆ℎ)‖0,Ω‖curl 𝜓ℎ‖1,Ω‖∇(𝜓ℎ − 𝜓⋆ℎ)‖1,Ω. (4.18)

Now, using (3.18), we deduce that the term 𝑇2 = 0.
Inserting (4.18) into (4.17), we obtain

𝛼1‖curl (𝜓ℎ − 𝜓⋆ℎ)‖20,Ω + ∆𝑡𝛼3𝜈‖𝜓ℎ − 𝜓⋆ℎ‖22,Ω ≤ ̂︀𝐶∆𝑡𝛿‖curl 𝜓ℎ‖1,Ω‖∇(𝜓ℎ − 𝜓⋆ℎ)‖1,Ω.

Since the term 𝛼1‖curl (𝜓ℎ − 𝜓⋆ℎ)‖20,Ω is positive, we deduce that

‖𝜓ℎ − 𝜓⋆ℎ‖2,Ω ≤
̂︀𝐶𝛿
𝛼3𝜈

‖curl 𝜓ℎ‖1,Ω.

Hence, using that 𝜓ℎ ∈ ℬℛ, we conclude that ‖𝜓ℎ − 𝜓⋆ℎ‖2,Ω < 𝜀 if

𝛿 <
𝛼3𝜈𝜀̂︀𝐶ℛ ,

which implies that the function ℱ is continuous.
Therefore, we claim that the function ℱ has a fixed point 𝜓ℎ ∈ ℬℛ from Brouwer’s fixed point theorem (cf.

Thm. 4.1) such that 𝜓ℎ = ℱ(𝜓ℎ). Hence the fully-discrete scheme (4.7) has a solution. Now we proceed to show
that the solution is unique.

Uniqueness of solution: Let 𝜓1
ℎ, 𝜓

2
ℎ ∈ ℬℛ be two solutions of (4.7). Then from (4.9), we have

𝐴ℎ
(︀
𝜓1
ℎ − 𝜓2

ℎ, 𝜑ℎ
)︀

+ ∆𝑡𝜈𝐵ℎ
(︀
𝜓1
ℎ − 𝜓2

ℎ, 𝜑ℎ
)︀

+ ∆𝑡
(︀
𝐶ℎ
(︀
𝜓1
ℎ;𝜓1

ℎ, 𝜑ℎ
)︀
− 𝐶ℎ

(︀
𝜓2
ℎ;𝜓2

ℎ, 𝜑ℎ
)︀)︀

= 0. (4.19)
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To bound the nonlinear term in (4.19), we add and substract 𝐶ℎ
(︀
𝜓2
ℎ;𝜓1

ℎ, 𝜑ℎ
)︀

in the above equality, to get

𝐶ℎ
(︀
𝜓1
ℎ;𝜓1

ℎ, 𝜑ℎ
)︀
− 𝐶ℎ

(︀
𝜓2
ℎ;𝜓2

ℎ, 𝜑ℎ
)︀

= 𝐶ℎ
(︀
𝜓1
ℎ;𝜓1

ℎ, 𝜑ℎ
)︀
− 𝐶ℎ

(︀
𝜓2
ℎ;𝜓1

ℎ, 𝜑ℎ
)︀

+ 𝐶ℎ
(︀
𝜓2
ℎ;𝜓1

ℎ, 𝜑ℎ
)︀
− 𝐶ℎ

(︀
𝜓2
ℎ;𝜓2

ℎ, 𝜑ℎ
)︀
.

(4.20)

Using Hölder’s inequality and Sobolev embedding theorem, the first two terms in (4.20) can be bounded as
follows

|𝐶ℎ
(︀
𝜓1
ℎ;𝜓1

ℎ, 𝜑ℎ
)︀
− 𝐶ℎ

(︀
𝜓2
ℎ;𝜓1

ℎ, 𝜑ℎ
)︀
| =

⃒⃒⃒⃒
⃒ ∑︁
𝐾∈𝒯ℎ

∫︁
𝐾

(︁
∆Π𝑘,Δ

𝐾

(︀
𝜓1
ℎ − 𝜓2

ℎ

)︀
Π𝑘−1
𝐾 curl 𝜓1

ℎ ·Π
𝑘−1
𝐾 ∇𝜑ℎ

)︁⃒⃒⃒⃒⃒
≤ ̂︀𝐶‖𝜓1

ℎ − 𝜓2
ℎ‖2,Ω‖curl 𝜓1

ℎ‖1,Ω‖∇𝜑ℎ‖1,Ω.

The last two terms on the right hand side of (4.20) can be written as follows,

𝐶ℎ
(︀
𝜓2
ℎ;𝜓1

ℎ, 𝜑ℎ
)︀
− 𝐶ℎ

(︀
𝜓2
ℎ;𝜓2

ℎ, 𝜑ℎ
)︀

= 𝐶ℎ
(︀
𝜓2
ℎ;𝜓1

ℎ − 𝜓2
ℎ, 𝜑ℎ

)︀
.

Taking 𝜑ℎ =
(︀
𝜓1
ℎ − 𝜓2

ℎ

)︀
∈ 𝑊ℎ in (4.19), we have that the right hand side above vanish (cf. (3.18)), and using

the stability property of the discrete bilinear forms 𝐴ℎ(·, ·) and 𝐵ℎ(·, ·), and Young’s inequality, we obtain

𝛼1‖curl
(︀
𝜓1
ℎ − 𝜓2

ℎ

)︀
‖20,Ω + 𝛼3∆𝑡𝜈‖𝜓1

ℎ − 𝜓2
ℎ‖22,Ω ≤ ∆𝑡 ̂︀𝐶‖𝜓1

ℎ − 𝜓2
ℎ‖2,Ω‖curl 𝜓1

ℎ‖1,Ω‖∇
(︀
𝜓1
ℎ − 𝜓2

ℎ

)︀
‖1,Ω.

An application of kick back arguments, we obtain

𝛼1‖curl
(︀
𝜓1
ℎ − 𝜓2

ℎ

)︀
‖20,Ω + ∆𝑡

(︁
𝛼3𝜈 − ̂︀𝐶ℛ)︁‖𝜓1

ℎ − 𝜓2
ℎ‖22,Ω ≤ 0.

Now, according to assumption (4.8), and for sufficiently small values of ∆𝑡,
(︁
𝛼3𝜈 − ̂︀𝐶ℛ)︁ > 0. Hence, we have

‖𝜓1
ℎ − 𝜓2

ℎ‖2,Ω = 0; therefore 𝜓1
ℎ = 𝜓2

ℎ, and we conclude the proof. �

Remark 4.3. In Theorem 4.2, we have proved the fully-discrete scheme (4.7) has unique solution based on
certain feasible assumption on the viscosity 𝜈 (cf. (4.8)) and for sufficiently small values of time-step ∆𝑡. In
particular, for sufficiently large values of 𝜈, we have(︃

𝛼2
3𝜈

2 − 2𝐶2𝐶2
𝐵

𝛼2
3

‖𝜓ℎ‖2𝐿∞(0,𝑡𝑛−1;𝐻2(Ω))

)︃
> 0.

Then for sufficiently small values of ∆𝑡, we have

𝜈

(︃
𝛼2

3𝜈
2 − 2𝐶2𝐶2

𝐵

𝛼2
3

‖𝜓ℎ‖2𝐿∞(0,𝑡𝑛−1;𝐻2(Ω))

)︃
>

𝐶2

𝛼1𝛼3
∆𝑡‖f‖2𝐿∞(0,𝑡𝑛−1;𝐿2(Ω)),

which implies (︁
𝛼3𝜈 − ̂︀𝐶ℛ)︁ > 0.

5. Convergence analysis

In this section, we will derive a priori error estimation for the virtual element semi-discrete and fully-discrete
schemes. With this aim, first we introduce a discrete energy projection operator 𝒮ℎ : 𝐻2

0 (Ω) → 𝑊ℎ, which is
defined as follows:

𝐵ℎ(𝒮ℎ𝑢,𝑤ℎ) = 𝐵(𝑢,𝑤ℎ) ∀𝑤ℎ ∈𝑊ℎ. (5.1)
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Upon exploiting the energy projection operator 𝒮ℎ, we will split the error of the stream-function as

𝜓 − 𝜓ℎ = 𝜓 − 𝒮ℎ𝜓 + 𝒮ℎ𝜓 − 𝜓ℎ.

Next, we define

𝜌ℎ := 𝜓 − 𝒮ℎ𝜓,
𝜃ℎ := 𝜓ℎ − 𝒮ℎ𝜓.

(5.2)

In what follows, we will prove approximations properties for 𝒮ℎ, thus the first term 𝜌ℎ will be easily bounded.
Then, using the continuous problem (2.3) and the polynomial approximation properties, we bound the term 𝜃ℎ.
In this regard, we introduce the polynomial approximation property and the interpolation operator 𝜓𝐼 on the
virtual element space 𝑊ℎ. Further, to derive the a priori error estimations of the semi-discrete and fully-discrete
schemes, some additional results are needed which will be presented in the next subsection.

5.1. Preliminary results

We start with the following approximation result, on star-shaped polygons, which is derived by interpolation
between Sobolev spaces (see for instance [28], Thm. I.1.4 from the analogous result for integer values of 𝑠). We
mention that this result has been stated in Proposition 4.2 of [6] for integer values and follows from the classical
Scott–Dupont theory (see [15] and [5], Prop. 3.1):

Proposition 5.1. There exists a constant 𝐶 > 0, independent of mesh size ℎ but depends on mesh regularity
parameter 𝐶𝒯 (Assumption 3.1) such that for every 𝑣 ∈ 𝐻𝛿(𝐾) there exists 𝑣𝜋 ∈ 𝒫𝑘(𝐾), 𝑘 ≥ 0 such that

‖𝑣 − 𝑣𝜋‖ℓ,𝐾 ≤ 𝐶ℎ𝛿−ℓ𝐾 ‖𝑣‖𝛿,𝐾 0 ≤ 𝛿 ≤ 𝑘 + 1, ℓ = 0, . . . , [𝛿],

with [𝛿] denoting largest integer equal or smaller than 𝛿 ∈ R.

Now, we present an interpolation result in the virtual space 𝑊ℎ (see [5, 10]).

Proposition 5.2. Assume A1 and A2 are satisfied, then for all 𝑣 ∈ 𝐻𝛿(𝐾) there exist 𝑣𝐼 ∈ 𝑊ℎ and 𝐶 > 0
independent of ℎ such that

‖𝑣 − 𝑣𝐼‖ℓ,𝐾 ≤ 𝐶ℎ𝛿−ℓ𝐾 ‖𝑣‖𝛿,𝐾 , ℓ = 0, 1, 2, 2 ≤ 𝛿 ≤ 𝑘 + 1,

where 𝐶 is independent of mesh size ℎ but depends on mesh regularity parameter 𝐶𝒯 (Assumption 3.1).

Next, in order to prove the convergence of our method, we introduce the following broken 𝐻ℓ-seminorm
(ℓ = 1, 2):

|𝑣|ℓ,ℎ :=

(︃ ∑︁
𝐾∈𝒯ℎ

|𝑣|2ℓ,𝐾

)︃1/2

,

which is well defined for every 𝑣 ∈ 𝐿2(Ω) such that 𝑣|𝐾 ∈ 𝐻ℓ(𝐾) for all polygon 𝐾 ∈ 𝒯ℎ.
In order to obtain the error estimates, we prove the following approximation properties of the discrete

projection operator 𝒮ℎ (cf. (5.1)).

Lemma 5.3. For each 𝑢 ∈ 𝐻2
0 (Ω)∩𝐻2+𝑠(Ω), with 1/2 < 𝑠 ≤ 𝑘−1, there exists a unique function 𝒮ℎ(𝑢) ∈𝑊ℎ,

such that the following approximation properties hold:

(1) There exists a positive constant 𝐶, independent of ℎ, such that

‖𝑢− 𝒮ℎ(𝑢)‖2,Ω ≤ 𝐶ℎ𝑠‖𝑢‖2+𝑠,Ω. (5.3)
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(2) There exist a positive constant 𝐶 and 𝑠 ∈ (1/2, 1], independent of ℎ, such that

‖𝑢− 𝒮ℎ(𝑢)‖1,Ω ≤ 𝐶ℎ𝑠+𝑠‖𝑢‖2+𝑠,Ω. (5.4)

Proof. We begin by proving (1). Since the bilinear form 𝐵ℎ(·, ·) is bounded and coercive in 𝑊ℎ and the function
𝐵(𝑢, ·) is continuous on 𝑊ℎ hence there exists an unique solution of the variational formulation (5.1).

Now, we proceed to prove the approximation results. In this direction, we rewrite the term 𝑢 − 𝒮ℎ(𝑢) as
follows.

𝑢− 𝒮ℎ(𝑢) = 𝑢− 𝑢𝐼 + 𝑢𝐼 − 𝒮ℎ(𝑢),

where 𝑢𝐼 ∈𝑊ℎ is the interpolation operator introduced in Proposition 5.2.
The estimation of 𝑢 − 𝑢𝐼 is known, hence we proceed to bound the term 𝜉ℎ := (𝒮ℎ(𝑢)− 𝑢𝐼) ∈ 𝑊ℎ. Using

coercivity (cf. Lem. 3.7), we have

𝛼|𝜉ℎ|22,Ω ≤ 𝐵ℎ(𝜉ℎ, 𝜉ℎ)

= 𝐵ℎ(𝒮ℎ(𝑢), 𝜉ℎ)−𝐵ℎ(𝑢𝐼 , 𝜉ℎ)

= 𝐵(𝑢, 𝜉ℎ)−
∑︁
𝐾∈𝒯ℎ

(︀
𝐵ℎ𝐾(𝑢𝐼 − 𝑢𝜋, 𝜉ℎ) +𝐵ℎ𝐾(𝑢𝜋, 𝜉ℎ)

)︀
= 𝐵(𝑢, 𝜉ℎ)−

∑︁
𝐾∈𝒯ℎ

(︀
𝐵ℎ𝐾(𝑢𝐼 − 𝑢𝜋, 𝜉ℎ) +𝐵𝐾(𝑢𝜋, 𝜉ℎ)

)︀
=
∑︁
𝐾∈𝒯ℎ

(︀
𝐵ℎ𝐾(𝑢𝜋 − 𝑢𝐼 , 𝜉ℎ) +𝐵𝐾(𝑢− 𝑢𝜋, 𝜉ℎ)

)︀
,

where we have added and subtracted 𝑢𝜋 ∈ 𝒫𝑘(𝐾), 𝑘 ≥ 2 and then we have used (3.11). Using the continuity
property of the bilinear form 𝐵ℎ(·, ·) and Cauchy–Schwarz inequality, we have

𝛼|𝜉ℎ|22,Ω ≤ 𝐶 (|𝑢𝜋 − 𝑢|2,ℎ + |𝑢− 𝑢𝐼 |2,Ω)|𝜉ℎ|2,Ω.

Now, an application of the approximation properties of the interpolation operator and the projection operator
𝑢𝐼 and 𝑢𝜋, respectively, we obtain

𝛼|𝜉ℎ|2,Ω ≤ 𝐶ℎ𝑠‖𝑢‖2+𝑠,Ω. (5.5)

Thus, we have that
|𝑢− 𝒮ℎ(𝑢)|2,Ω ≤ 𝐶ℎ𝑠‖𝑢‖2+𝑠,Ω. (5.6)

Now, we proceed to prove (2). Let 𝜑 ∈ 𝐻2
0 (Ω) be the solution of the auxiliary variational problem: find 𝜑

such that
𝐵(𝜑, 𝑣) =

∫︁
Ω

∇(𝑢− 𝒮ℎ(𝑢)) · ∇𝑣 ∀𝑣 ∈ 𝐻2
0 (Ω), (5.7)

where 𝐵(·, ·) is the bilinear form defined in (2.6).
As a consequence of a classical regularity result for the biharmonic problem with its right hand side in

𝐻−1(Ω) := [𝐻1
0 (Ω)]′ (cf. [29]), there exists 𝑠 ∈ (1/2, 1] such that 𝜑 ∈ 𝐻2+𝑠(Ω) and

‖𝜑‖2+𝑠,Ω ≤ 𝐶|𝑢− 𝒮ℎ(𝑢)|1,Ω. (5.8)

Now, let 𝜑𝐼 ∈𝑊ℎ be such that Proposition 5.2 holds true. Taking 𝑣 := (𝑢− 𝒮ℎ(𝑢)) ∈ 𝐻2
0 (Ω) as test function

in (5.7), using the symmetry of the bilinear form and adding and subtracting 𝜑𝐼 , we obtain

|𝑢− 𝒮ℎ(𝑢)|21,Ω ≤ 𝐵(𝑢− 𝒮ℎ(𝑢), 𝜑)
= 𝐵(𝑢− 𝒮ℎ(𝑢), 𝜑− 𝜑𝐼) +𝐵(𝑢− 𝒮ℎ(𝑢), 𝜑𝐼)
= 𝐵(𝑢− 𝒮ℎ(𝑢), 𝜑− 𝜑𝐼) +𝐵(𝑢, 𝜑𝐼)−𝐵(𝒮ℎ(𝑢), 𝜑𝐼)

= 𝐵(𝑢− 𝒮ℎ(𝑢), 𝜑− 𝜑𝐼) +𝐵ℎ(𝒮ℎ(𝑢), 𝜑𝐼)−𝐵(𝒮ℎ(𝑢), 𝜑𝐼)
=: 𝑇1 + 𝑇2,

(5.9)
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where we have used the definition of the continuous (see (2.5)) and discrete problems (see (5.1)).
Now, we bound the terms 𝑇1 and 𝑇2 separately. We start with 𝑇1 as follows.

𝑇1 = 𝐵(𝑢− 𝒮ℎ(𝑢), 𝜑− 𝜑𝐼) ≤ ‖𝑢− 𝒮ℎ(𝑢)‖2,Ω‖𝜑− 𝜑𝐼‖2,Ω
≤ 𝐶ℎ𝑠(‖𝑢‖2+𝑠,Ω)ℎ𝑠‖𝜑‖2+𝑠,Ω
≤ 𝐶ℎ𝑠+𝑠(‖𝑢‖2+𝑠,Ω)|𝑢− 𝒮ℎ(𝑢)|1,Ω,

(5.10)

where we have used the continuity of bilinear form 𝐵(·, ·), (5.6) and Proposition 5.2.
Now, we continue with the term 𝑇2 in (5.9). Let 𝑢𝜋 ∈ 𝒫𝑘(𝐾), 𝜑𝜋 ∈ 𝒫2(𝐾) such that Proposition 5.1 holds

true with respect to 𝑢 and 𝜑, respectively. Using (3.11), we have

𝑇2 =
∑︁
𝐾∈𝒯ℎ

[︀
𝐵ℎ𝐾(𝒮ℎ(𝑢)− 𝑢𝜋, 𝜑𝐼 − 𝜑𝜋) +𝐵𝐾(𝑢𝜋 − 𝒮ℎ(𝑢), 𝜑𝐼 − 𝜑𝜋)

]︀
≤
∑︁
𝐾∈𝒯ℎ

𝐶‖𝒮ℎ(𝑢)− 𝑢𝜋‖2,𝐾‖𝜑𝐼 − 𝜑𝜋‖2,𝐾

≤
∑︁
𝐾∈𝒯ℎ

𝐶(‖𝒮ℎ(𝑢)− 𝑢‖2,𝐾 + ‖𝑢− 𝑢𝜋‖2,𝐾)(‖𝜑𝐼 − 𝜑‖2,𝐾 + ‖𝜑− 𝜑𝜋‖2,𝐾)

≤
∑︁
𝐾∈𝒯ℎ

𝐶(‖𝒮ℎ(𝑢)− 𝑢‖2,𝐾 + ℎ𝑠𝐾‖𝑢‖2+𝑠,𝐾)
(︀
‖𝜑𝐼 − 𝜑‖2,𝐾 + 𝐶ℎ𝑠𝐾‖𝜑‖2+𝑠,𝐾

)︀
≤ 𝐶(‖𝒮ℎ(𝑢)− 𝑢‖2,Ω + 𝐶ℎ𝑠‖𝑢‖2+𝑠,Ω)

(︀
𝐶ℎ𝑠‖𝜑‖2+𝑠,Ω + ‖𝜑𝐼 − 𝜑‖2,Ω

)︀
≤ 𝐶(ℎ𝑠‖𝑢‖2+𝑠,Ω)𝐶ℎ𝑠‖𝜑‖2+𝑠,Ω
≤ 𝐶ℎ𝑠+𝑠(‖𝑢‖2+𝑠,Ω)|𝑢− 𝒮ℎ(𝑢)|1,Ω,

(5.11)

where we have used continuity of local bilinear forms 𝐵𝐾(·, ·) and 𝐵ℎ𝐾(·, ·), Proposition 5.1, (5.6) and (5.8).
Thus, equation (5.3) follows from (5.9) to (5.11). The proof is complete. �

5.2. Error estimation for semi-discrete scheme

In this section, we will derive the error estimation for the semi-discrete scheme (cf. (4.1)). With this end, we
state the following lemma.

Lemma 5.4. Let 𝜓(𝑡) ∈𝑊 be the solution of problem (2.5). Assume that 𝜓(𝑡) ∈ 𝐻2+𝑟(Ω), for 1
2 < 𝑟 ≤ 𝑘 − 1,

for almost all 𝑡 ∈ [0, 𝑇 ]. Then, there exists a positive generic constant 𝐶, which could be depended on mesh
regularity Assumption 3.1, Sobolev regularity of the solution 𝜓, but independent of mesh size ℎ such that

|𝐶(𝜓;𝜓, 𝜑ℎ)− 𝐶ℎ(𝜓;𝜓, 𝜑ℎ)| ≤ 𝐶ℎ𝑟(|𝜓|1+𝑟,Ω + ‖𝜓‖2,Ω)|𝜓|2+𝑟,Ω‖𝜑ℎ‖2,Ω ∀𝜑ℎ ∈𝑊ℎ. (5.12)

Proof. Using the definition of the continuous nonlinear term 𝐶(·; ·, ·) (see (2.4)) and discrete nonlinear term
𝐶ℎ(·; ·, ·) (see (3.17)), we have that

𝐶(𝜓;𝜓, 𝜑ℎ)− 𝐶ℎ(𝜓;𝜓, 𝜑ℎ)

=
∑︁
𝐾∈𝒯ℎ

(︂∫︁
𝐾

∆𝜓curl 𝜓 · ∇𝜑ℎ −
∫︁
𝐾

(︁
∆Π𝑘,Δ

𝐾 𝜓
)︁
Π𝑘−1
𝐾 curl 𝜓 ·Π𝑘−1

𝐾 ∇𝜑ℎ
)︂
,

=
∑︁
𝐾∈𝒯ℎ

(︂∫︁
𝐾

∆𝜓curl 𝜓 ·
(︁
𝐼 −Π𝑘−1

𝐾

)︁
(∇𝜑ℎ) +

∫︁
𝐾

∆𝜓
(︁
𝐼 −Π𝑘−1

𝐾

)︁
curl 𝜓 ·Π𝑘−1

𝐾 ∇𝜑ℎ

+
∫︁
𝐾

∆
(︁
𝐼 −Π𝑘,Δ

𝐾

)︁
𝜓 Π𝑘−1

𝐾 curl 𝜓 ·Π𝑘−1
𝐾 ∇𝜑ℎ

)︂
=: 𝐷1 +𝐷2 +𝐷3.

(5.13)
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Next, we bound the term 𝐷1, and we split it in two cases. First, we consider the case 1/2 < 𝑟 ≤ 1.

𝐷1 =
∑︁
𝐾∈𝒯ℎ

∫︁
𝐾

∆𝜓curl 𝜓 ·
(︁
𝐼 −Π𝑘−1

𝐾

)︁
∇𝜑ℎ

≤
∑︁
𝐾∈𝒯ℎ

‖∆𝜓‖𝐿4(𝐾)‖curl 𝜓‖𝐿4(𝐾)‖(𝐼 −Π𝑘−1
𝐾 )∇𝜑ℎ‖0,𝐾

≤ 𝐶ℎ

(︃ ∑︁
𝐾∈𝒯ℎ

‖∆𝜓‖4𝐿4(𝐾)

)︃1/4(︃ ∑︁
𝐾∈𝒯ℎ

‖curl 𝜓‖4𝐿4(𝐾)

)︃1/4(︃ ∑︁
𝐾∈𝒯ℎ

|𝜑ℎ|22,𝐾

)︃1/2

≤ 𝐶ℎ‖∆𝜓‖𝐿4(Ω)‖curl 𝜓‖𝐿4(Ω)|𝜑ℎ|2,Ω
≤ 𝐶ℎ‖𝜓‖2+𝑟,Ω‖curl 𝜓‖𝑟,Ω|𝜑ℎ|2,Ω
≤ 𝐶ℎ‖𝜓‖2+𝑟,Ω‖𝜓‖1+𝑟,Ω|𝜑ℎ|2,Ω,

where we have used the Sobolev embedding 𝐻𝑟(Ω) →˓ 𝐿4(Ω) for 𝑟 ∈ (1/2, 1]. On the other hand, for the case
1 ≤ 𝑟 ≤ 𝑘 − 1, we proceed as follows. Using the orthogonality property of the projection operator Π𝑘−1

𝐾 on the
polynomial function of degree 𝑘− 1 and Cauchy–Schwarz inequality, we bound the first term on the right hand
side of (5.13).

𝐷1 =
∑︁
𝐾∈𝒯ℎ

∫︁
𝐾

∆𝜓curl 𝜓 ·
(︁
𝐼 −Π𝑘−1

𝐾

)︁
∇𝜑ℎ =

∑︁
𝐾∈𝒯ℎ

∫︁
𝐾

(︁
𝐼 −Π𝑘−1

𝐾

)︁
(∆𝜓curl 𝜓)

(︁
𝐼 −Π𝑘−1

𝐾

)︁
∇𝜑ℎ

≤
∑︁
𝐾∈𝒯ℎ

‖
(︁
𝐼 −Π𝑘−1

𝐾

)︁
(∆𝜓curl 𝜓)‖0,𝐾‖

(︁
𝐼 −Π𝑘−1

𝐾

)︁
∇𝜑ℎ‖0,𝐾

≤ 𝐶ℎ𝑟−1|(∆𝜓curl 𝜓)|𝑟−1,Ω𝐶ℎ|𝜑ℎ|2,Ω.

An application of Hölder’s inequality and Sobolev embedding theorem Lemma 4.2 of [9] yields,

|∆𝜓curl 𝜓|𝑟−1,Ω ≤ 𝐶‖∆𝜓‖𝑊 𝑟−1,4(Ω) ‖curl 𝜓‖𝑊 𝑟−1,4(Ω) ≤ 𝐶‖𝜓‖2+𝑟,Ω ‖𝜓‖1+𝑟,Ω.

Collecting the above inequalities, we obtain for 𝑟 > 1/2 that

𝐷1 =
∑︁
𝐾∈𝒯ℎ

∫︁
𝐾

∆𝜓curl 𝜓 ·
(︁(︁
𝐼 −Π𝑘−1

𝐾

)︁
∇𝜑ℎ

)︁
| ≤ 𝐶ℎ𝑟‖𝜓‖1+𝑟,Ω‖𝜓‖2+𝑟,Ω‖𝜑ℎ‖2,Ω. (5.14)

Using Hölder’s inequality, the term 𝐷2 in (5.13) can be bounded as follows∑︁
𝐾∈𝒯ℎ

∫︁
𝐾

∆𝜓
(︁(︁
𝐼 −Π𝑘−1

𝐾

)︁
curl 𝜓

)︁
·Π𝑘−1

𝐾 ∇𝜑ℎ ≤
∑︁
𝐾∈𝒯ℎ

𝐶‖∆𝜓‖0,𝐾‖
(︁
𝐼 −Π𝑘−1

𝐾

)︁
curl 𝜓‖𝐿4(𝐾)‖Π𝑘−1

𝐾 ∇𝜑ℎ‖𝐿4(𝐾).

Using the continuity of Π𝑘−1
𝐾 on the space 𝐿4(𝐾) and optimal approximation property of the polynomial

projection operator, we have

‖
(︁
𝐼 −Π𝑘−1

𝐾

)︁
curl 𝜓‖𝐿4(𝐾) ≤ ‖curl (𝜓 − 𝜓𝜋)‖𝐿4(𝐾) + ‖Π𝑘−1

𝐾 (curl 𝜓 − curl 𝜓𝜋)‖𝐿4(𝐾)

≤ 𝐶ℎ𝑟|𝜓|𝑊 𝑟,4(𝐾).

Also, the term can be bounded as

‖Π𝑘−1
𝐾 ∇𝜑ℎ‖𝐿4(Ω) ≤ ‖∇𝜑ℎ‖𝐿4(Ω) ≤ 𝐶|𝜑ℎ|2,Ω,
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where we have used that 𝐻1(Ω) →˓ 𝐿4(Ω). Hence, by the Sobolev embedding 𝐻1+𝑟(Ω) →˓ 𝑊 𝑟,4(Ω), we can
write

𝐷2 ≤
∑︁
𝐾∈𝒯ℎ

|
∫︁
𝐾

∆𝜓
(︁(︁
𝐼 −Π𝑘−1

𝐾

)︁
curl 𝜓

)︁
·Π𝑘−1

𝐾 ∇𝜑ℎ| ≤ 𝐶ℎ𝑟‖∆𝜓‖0,Ω|𝜓|2+𝑟,Ω|𝜑ℎ|2,Ω. (5.15)

Using the Hölder’s inequality and suming over each element 𝐾, the third term of (5.13) can be bounded as
follows

𝐷3 =
∑︁
𝐾∈𝒯ℎ

∫︁
𝐾

∆
(︁
𝐼 −Π𝑘,Δ

𝐾

)︁
𝜓Π𝑘−1

𝐾 curl 𝜓 ·Π𝑘−1
𝐾 ∇𝜑ℎ

≤
∑︁
𝐾∈𝒯ℎ

∫︁
𝐾

|
(︁
𝐼 −Π𝑘,Δ

𝐾

)︁
𝜓|2,𝐾‖Π𝑘−1

𝐾 curl 𝜓‖𝐿4(𝐾)‖Π𝑘−1
𝐾 ∇𝜑ℎ‖𝐿4(𝐾).

Therefore, from the fact that Π𝑘,Δ
𝐾 is the projector defined by (3.1a), the continuity of Π𝑘−1

𝐾 on the space 𝐿4(𝐾)
and Sobolev’s embedding theorem, we obtain

𝐷3 ≤ 𝐶ℎ𝑟|𝜓|2+𝑟,Ω|𝜓|2,Ω|𝜑ℎ|2,Ω. (5.16)

Finally, the proof follows by collecting all the estimations (5.14)–(5.16) and inserting into (5.13). �

The following theorem provides the error estimates for the semi-discrete virtual element scheme.

Theorem 5.5. Let 𝜓(𝑡) ∈ 𝑊 be the solution of problem (2.5) and let 𝜓ℎ(𝑡) ∈ 𝑊ℎ be the solution of problem
(4.1). Assume that 𝜓(𝑡) ∈ 𝐻2+𝑟(Ω), 𝜕𝑡𝜓(𝑡) ∈ 𝐻1+𝑟(Ω), for 1

2 < 𝑟 ≤ 𝑘 − 1 and for almost all 𝑡 ∈ [0, 𝑇 ]. In

addition, assume that 𝜓,𝜓ℎ ∈ 𝒦 :=
{︁
𝑣 ∈𝑊 : 2‖𝑣‖2,Ω

𝛼3𝜈
< 1
}︁
. Then, there exists a positive generic constant 𝐶,

which could be depended on mesh regularity Assumption 3.1, Sobolev regularity of the solution 𝜓, 𝜕𝑡𝜓, 𝜕𝑡𝑡𝜓 but
independents of mesh size ℎ such that the following estimation holds

‖𝜓 − 𝜓ℎ‖𝐿∞(0,𝑡,𝐻1(Ω)) + 𝐶‖𝜓 − 𝜓ℎ‖𝐿2(0,𝑡,𝐻2(Ω)) ≤ ‖𝜓(0)− 𝜓ℎ(0)‖1,Ω + 𝐶(𝐶𝐴)ℎ𝑟
(︁
‖𝜓(0)‖1+𝑟,Ω

+ ‖f‖𝐿2(0,𝑡,𝐻𝑟−1(Ω)) + ‖𝜕𝑡𝜓‖𝐿2(0,𝑡,𝐻1+𝑟(Ω)) + ‖𝜓‖𝐿2(0,𝑡,𝐻2+𝑟(Ω))

)︁
.

Proof. Upon applying the projection operator 𝒮ℎ, we split the error as (see (5.2)):

𝜓ℎ − 𝜓 := 𝜓ℎ − 𝒮ℎ𝜓 + 𝒮ℎ𝜓 − 𝜓

=: 𝜃ℎ + 𝜌ℎ.

Since the estimation for 𝜌ℎ is known from the Lemma 5.3, we attempt to bound 𝜃ℎ.
Using the semi-discrete scheme (4.1), definition of the projection operator 𝒮ℎ (5.1) and the continuous weak

formulation (2.3), we obtain

𝐴ℎ(𝜕𝑡𝜃ℎ(𝑡), 𝜑ℎ) + 𝜈𝐵ℎ(𝜃ℎ(𝑡), 𝜑ℎ) = 𝐹ℎ(𝜑ℎ)− 𝐶ℎ(𝜓ℎ;𝜓ℎ, 𝜑ℎ)−𝐴ℎ(𝜕𝑡𝒮ℎ𝜓, 𝜑ℎ)− 𝜈𝐵ℎ(𝒮ℎ𝜓, 𝜑ℎ)

= 𝐹ℎ(𝜑ℎ)− 𝐹 (𝜑ℎ)− 𝐶ℎ(𝜓ℎ;𝜓ℎ, 𝜑ℎ) + 𝐶(𝜓;𝜓, 𝜑ℎ)

−𝐴ℎ(𝜕𝑡𝒮ℎ𝜓, 𝜑ℎ) +𝐴(𝜕𝑡𝜓, 𝜑ℎ)− 𝜈𝐵ℎ(𝒮ℎ𝜓, 𝜑ℎ) + 𝜈𝐵(𝜓, 𝜑ℎ).

(5.17)

Now, we will bound all the terms on the right hand side above. We start with the nonlinear terms 𝐶(𝜓;𝜓, 𝜑ℎ)−
𝐶ℎ(𝜓ℎ;𝜓ℎ, 𝜑ℎ). We rewrite the term as follows:

𝐶(𝜓;𝜓, 𝜑ℎ)− 𝐶ℎ(𝜓ℎ;𝜓ℎ, 𝜑ℎ) = 𝐶(𝜓;𝜓, 𝜑ℎ)− 𝐶ℎ(𝜓;𝜓, 𝜑ℎ)⏟  ⏞  
=:𝐴1

+𝐶ℎ(𝜓;𝜓, 𝜑ℎ)− 𝐶ℎ(𝜓ℎ;𝜓ℎ, 𝜑ℎ)⏟  ⏞  
=:𝐴2

.
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The term 𝐴1 has been bounded in Lemma 5.4. Thus, we will bound the term 𝐴2.
We rewrite the term 𝐴2 as follows

𝐶ℎ(𝜓;𝜓, 𝜑ℎ)− 𝐶ℎ(𝜓ℎ;𝜓ℎ, 𝜑ℎ)

=
∑︁
𝐾∈𝒯ℎ

(︂∫︁
𝐾

∆Π𝑘,Δ
𝐾 𝜓Π𝑘−1

𝐾 curl 𝜓 ·Π𝑘−1
𝐾 curl 𝜑ℎ −

∫︁
𝐾

∆Π𝑘,Δ
𝐾 𝜓ℎ Π𝑘−1

𝐾 curl 𝜓ℎ ·Π𝑘−1
𝐾 curl 𝜑ℎ

)︂
,

=
∑︁
𝐾∈𝒯ℎ

(︂∫︁
𝐾

∆Π𝑘,Δ
𝐾 𝜓Π𝑘−1

𝐾 curl 𝜓 ·Π𝑘−1
𝐾 curl 𝜑ℎ −

∫︁
𝐾

∆Π𝑘,Δ
𝐾 𝜓ℎΠ𝑘−1

𝐾 curl 𝜓 ·Π𝑘−1
𝐾 curl 𝜑ℎ

+
∫︁
𝐾

∆Π𝑘,Δ
𝐾 𝜓ℎΠ𝑘−1

𝐾 curl 𝜓 ·Π𝑘−1
𝐾 curl 𝜑ℎ −

∫︁
𝐾

∆Π𝑘,Δ
𝐾 𝜓ℎΠ𝑘−1

𝐾 curl 𝜓ℎ ·Π𝑘−1
𝐾 curl 𝜑ℎ

)︂
=
∑︁
𝐾∈𝒯ℎ

(︂∫︁
𝐾

∆
(︁

Π𝑘,Δ
𝐾 𝜓 −Π𝑘,Δ

𝐾 𝜓ℎ

)︁
Π𝑘−1
𝐾 curl 𝜓 ·Π𝑘−1

𝐾 curl 𝜑ℎ

+
∫︁
𝐾

∆Π𝑘,Δ
𝐾 𝜓ℎΠ𝑘−1

𝐾 (curl 𝜓 − curl 𝜓ℎ) ·Π𝑘−1
𝐾 curl 𝜑ℎ

)︂
Using Hölder’s inequality, the first term on the right hand side of (5.18) can be bounded as follows,∑︁

𝐾∈𝒯ℎ

∫︁
𝐾

∆
(︁

Π𝑘,Δ
𝐾 𝜓 −Π𝑘,Δ

𝐾 𝜓ℎ

)︁
Π𝑘−1
𝐾 curl 𝜓 ·Π𝑘−1

𝐾 curl 𝜑ℎ

≤ 𝐶
∑︁
𝐾∈𝒯ℎ

‖∆Π𝑘,Δ
𝐾 (𝜓 − 𝜓ℎ)‖0,𝐾‖Π𝑘−1

𝐾 curl 𝜓‖𝐿4(𝐾)‖Π𝑘−1
𝐾 curl 𝜑ℎ‖𝐿4(𝐾)

≤ 𝐶‖∆Π𝑘,Δ
𝐾 (𝜓 − 𝜓ℎ)‖0,Ω‖Π𝑘−1

𝐾 curl 𝜓‖𝐿4(Ω)‖Π𝑘−1
𝐾 curl 𝜑ℎ‖𝐿4(Ω)

≤ 𝐶|𝜓 − 𝜓ℎ|2,Ω‖curl 𝜓‖1,Ω‖curl 𝜑ℎ‖1,Ω
≤ 𝐶(|𝜓 − 𝒮ℎ𝜓|2,Ω + |𝒮ℎ𝜓 − 𝜓ℎ|2,Ω)‖curl 𝜓‖1,Ω‖curl 𝜑ℎ‖1,Ω
≤ 𝐶(ℎ𝑟|𝜓|2+𝑟,Ω + |𝜃ℎ(𝑡)|2,Ω)‖𝜓‖2,Ω‖𝜑ℎ‖2,Ω,

(5.18)

where we have used the boundedness of Π𝑘,Δ
𝐾 , Sobolev’s embedding theorem and the approximation property

of the operator 𝒮ℎ (cf. (5.3)).
Using Hölder’s inequality, we can bound the second term on the right hand side of (5.18) as follows,∑︁

𝐾∈𝒯ℎ

∫︁
𝐾

∆
(︁

Π𝑘,Δ
𝐾 𝜓ℎ

)︁
Π𝑘−1
𝐾 (curl 𝜓 − curl 𝜓ℎ)Π𝑘−1

𝐾 ∇𝜑ℎ

≤
∑︁
𝐾∈𝒯ℎ

‖∆Π𝑘,Δ
𝐾 𝜓ℎ‖𝐿2(𝐾)‖Π𝑘−1

𝐾 (curl 𝜓 − curl 𝜓ℎ)‖𝐿4(𝐾)‖Π𝑘−1
𝐾 ∇𝜑ℎ‖𝐿4(𝐾)

≤ 𝐶|𝜓ℎ|2,Ω‖curl 𝜓 − curl 𝜓ℎ‖𝐿4(Ω)‖∇𝜑ℎ‖𝐿4(Ω)

≤ 𝐶|𝜓ℎ|2,Ω‖curl 𝜓 − curl 𝜓ℎ‖1,Ω‖∇𝜑ℎ‖1,Ω
≤ 𝐶|𝜓ℎ|2,Ω(ℎ𝑟|𝜓|2+𝑟,Ω + |𝜃ℎ(𝑡)|2,Ω)‖𝜑ℎ‖2,Ω,

(5.19)

where we have exploited Sobolev inequality and approximation property of 𝒮ℎ (cf. (5.3)).
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Using the polynomial consistency property of discrete bilinear form 𝐴ℎ(·, ·) (cf. (3.10)), we can represent the
time derivative term in (5.17) as

−𝐴ℎ(𝜕𝑡𝒮ℎ𝜓, 𝜑ℎ) +𝐴(𝜕𝑡𝜓, 𝜑ℎ) = 𝐴ℎ(−𝒮ℎ𝜕𝑡𝜓, 𝜑ℎ) +𝐴(𝜕𝑡𝜓, 𝜑ℎ)

+
∑︁
𝐾∈𝒯ℎ

(︁
𝐴ℎ𝐾

(︁
Π𝑘,∇⊥
𝐾 𝜕𝑡𝜓, 𝜑ℎ

)︁
−𝐴𝐾

(︁
Π𝑘,∇⊥
𝐾 𝜕𝑡𝜓, 𝜑ℎ

)︁)︁
=
∑︁
𝐾∈𝒯ℎ

𝐴ℎ𝐾

(︁
Π𝑘,∇⊥
𝐾 𝜕𝑡𝜓 − 𝒮ℎ𝜕𝑡𝜓, 𝜑ℎ

)︁
+𝐴𝐾

(︁
𝜕𝑡𝜓 −Π𝑘,∇⊥

𝐾 𝜕𝑡𝜓, 𝜑ℎ

)︁
≤ 𝐶

∑︁
𝐾∈𝒯ℎ

|Π𝑘,∇⊥
𝐾 𝜕𝑡𝜓 − 𝒮ℎ𝜕𝑡𝜓|1,𝐾 |𝜑ℎ|1,𝐾 + |𝜕𝑡𝜓 −Π𝑘,∇⊥

𝐾 𝜕𝑡𝜓|1,𝐾 |𝜑ℎ|1,𝐾

≤ 𝐶(𝐶𝐴)ℎ𝑟|𝜕𝑡𝜓|1+𝑟,Ω|𝜑ℎ|2,Ω,

(5.20)

where we have used the Cauchy–Schwarz inequality, the approximation property of the projection operator
Π𝑘,∇⊥
𝐾 and Lemma 5.3.
Now, we move to bound the load term in (5.17). To bound this term (cf. (3.15)), we will exploit the approx-

imation property of the projection operator Π𝑘−1
𝐾 , which implies

|𝐹ℎ(𝜑ℎ)− 𝐹 (𝜑ℎ)| =
∑︁
𝐾∈𝒯ℎ

⃒⃒⃒ ∫︁
𝐾

(Π𝑘−1
𝐾 f − f) · curl 𝜑ℎ

⃒⃒⃒
≤
∑︁
𝐾∈𝒯ℎ

‖Π𝑘−1
𝐾 f − f‖0,𝐾‖Π𝑘−1

𝐾 curl 𝜑ℎ − curl 𝜑ℎ‖0,𝐾

≤ 𝐶ℎ𝑟|f |𝑟−1,Ω|𝜑ℎ|2,Ω.

(5.21)

Now, inserting the estimations (5.18), (5.12), (5.19), (5.20), (5.21) into (5.17), choosing test function 𝜑ℎ =
𝜃ℎ(𝑡), using stability properties of the bilinear forms 𝐴ℎ(·, ·) and 𝐵ℎ(·, ·), we derive

𝛼1
1
2

d
d𝑡
‖curl 𝜃ℎ(𝑡)‖20,Ω + 𝛼3 𝜈‖𝜃ℎ(𝑡)‖22,Ω ≤ 𝐶 ℎ𝑟|f |𝑟−1,Ω‖𝜃ℎ(𝑡)‖2,Ω + 𝐶(𝐶𝐴)ℎ𝑟|𝜕𝑡𝜓|1+𝑟,Ω‖𝜃ℎ(𝑡)‖2,Ω

+ 𝐶(ℎ𝑟|𝜓|2+𝑟,Ω + ‖𝜃ℎ(𝑡)‖2,Ω)‖𝜓‖2,Ω‖𝜃ℎ(𝑡)‖2,Ω
+ ‖𝜓ℎ‖2,Ω(ℎ𝑟|𝜓|2+𝑟,Ω + ‖𝜃ℎ(𝑡)‖2,Ω)‖𝜃ℎ(𝑡)‖2,Ω.

Upon applying kick-back argument, we obtain

𝛼1
1
2

d
d𝑡
‖curl 𝜃ℎ(𝑡)‖20,Ω + (𝛼3𝜈 − ‖𝜓‖2,Ω − ‖𝜓ℎ‖2,Ω)‖𝜃ℎ(𝑡)‖22,Ω

≤ 𝐶(𝐶𝐴)ℎ𝑟(|f |𝑟−1,Ω + |𝜕𝑡𝜓|1+𝑟,Ω + |𝜓|2+𝑟,Ω) ‖𝜃ℎ(𝑡)‖2,Ω.
(5.22)

Since 𝜓,𝜓ℎ ∈ 𝒦, from the assumption of the theorem, and applying Young’s inequality and taking integration
on both sides of (5.22), we derive

‖curl 𝜃ℎ(𝑡)‖0,Ω + 𝐶(𝛼3, 𝜈,ℛ)‖𝜃ℎ(𝑡)‖𝐿2(0,𝑡,𝐻2(Ω)) ≤ ‖curl 𝜃ℎ(0)‖0,Ω + 𝐶(𝐶𝐴)ℎ𝑟
(︁
|f |𝐿2(0,𝑡,𝐻𝑟−1(Ω))

+ |𝜕𝑡𝜓|𝐿2(0,𝑡,𝐻1+𝑟(Ω)) + |𝜓|𝐿2(0,𝑡,𝐻2+𝑟(Ω))

)︁
,

for almost all 𝑡 ∈ (0, 𝑇 ]. Using the approximation properties of 𝒮ℎ (Lem. 5.3), we derive

‖𝜓 − 𝜓ℎ‖𝐿∞(0,𝑡,𝐻1(Ω)) + 𝐶(𝛼3, 𝜈,ℛ)‖𝜓 − 𝜓ℎ‖𝐿2(0,𝑡,𝐻2(Ω)) ≤ ‖𝜓(0)− 𝜓ℎ(0)‖1,Ω + 𝐶(𝐶𝐴)ℎ𝑟
(︁
|𝜓(0)|𝑟+1,Ω

+|f |𝐿2(0,𝑡,𝐻𝑟−1(Ω)) + |𝜕𝑡𝜓|𝐿2(0,𝑡,𝐻1+𝑟(Ω)) + |𝜓|𝐿2(0,𝑡,𝐻2+𝑟(Ω))

)︁
.

The proof is complete. �
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5.3. Error estimation for fully-discrete scheme

In this section, we would like to derive the error estimation for the fully-discrete scheme (cf. (4.7)). To derive
the estimates, we first split the error as follows:

𝜓𝑛ℎ − 𝜓(𝑡𝑛) = 𝜓𝑛ℎ − 𝒮ℎ𝜓(𝑡𝑛) + 𝒮ℎ𝜓(𝑡𝑛)− 𝜓(𝑡𝑛) = 𝜃𝑛ℎ + 𝜌𝑛ℎ,

where 𝜃𝑛ℎ := 𝜓𝑛ℎ−𝒮ℎ𝜓(𝑡𝑛) and 𝜌𝑛ℎ := 𝒮ℎ𝜓(𝑡𝑛)−𝜓(𝑡𝑛). Since the estimation for 𝜌𝑛ℎ is known from the Lemma 5.3,
we will focus in bounding the term 𝜃𝑛ℎ .

Theorem 5.6. Let 𝜓𝑛ℎ ∈𝑊ℎ be the virtual element solution generated by (4.7), and 𝜓(𝑡𝑛) ∈𝑊 be the analytical

solution of the problem (2.3) at time 𝑡 = 𝑡𝑛. Assume that 𝜓(𝑡𝑛), 𝜓𝑛ℎ ∈ ̃︀𝒦 :=
{︁
𝑣 ∈ ℬℛ : 2ℛ

𝛼3𝜈
< 1
}︁
. Also, we assume

that the Assumption 3.1 is satisfied on mesh regularity. Then, under the condition of the Theorem 5.5, there
exists a positive generic constant 𝐶 that depends on mesh regularity parameter, and Sobolev regularity of the
exact solution 𝜓, 𝜕𝑡𝜓, 𝜕𝑡𝑡𝜓 and force function f but independent of mesh size ℎ and time steps ∆𝑡 such that the
following estimation holds

‖𝜓𝑛ℎ − 𝜓(𝑡𝑛)‖1,Ω +

⎛⎝∆𝑡
𝑛∑︁
𝑗=1

‖𝜓𝑗ℎ − 𝜓(𝑡𝑗)‖22,Ω

⎞⎠1/2

≤ 𝐶(𝐶𝐴, 𝛼3,ℛ, 𝜓, 𝜕𝑡𝜓, 𝜕𝑡𝑡𝜓, f)(ℎ𝑟 + ∆𝑡),

for 1
2 < 𝑟 ≤ 𝑘 − 1.

Proof. Using the fully discrete scheme (4.7), weak formulation (2.3), and the biharmonic projection operator
𝒮ℎ, we obtain

𝐴ℎ
(︂
𝜃𝑛ℎ − 𝜃𝑛−1

ℎ

∆𝑡
, 𝜑ℎ

)︂
+ 𝜈𝐵ℎ(𝜃𝑛ℎ , 𝜑ℎ) = 𝐴ℎ

(︂
𝜓𝑛ℎ − 𝜓𝑛−1

ℎ

∆𝑡
, 𝜑ℎ

)︂
+ 𝜈𝐵ℎ(𝜓𝑛ℎ , 𝜑ℎ)

−𝐴ℎ
(︂
𝒮ℎ𝜓(𝑡𝑛)− 𝒮ℎ𝜓(𝑡𝑛−1)

∆𝑡
, 𝜑ℎ

)︂
− 𝜈𝐵ℎ(𝒮ℎ𝜓(𝑡𝑛), 𝜑ℎ)

= 𝐹ℎ(𝜑ℎ)− 𝐹 (𝜑ℎ)− 𝐶ℎ(𝜓𝑛ℎ ;𝜓𝑛ℎ , 𝜑ℎ) + 𝐶(𝜓(𝑡𝑛);𝜓(𝑡𝑛), 𝜑ℎ)

+𝐴(𝜕𝑡𝜓(𝑡𝑛), 𝜑ℎ)−𝐴ℎ
(︂
𝒮ℎ𝜓(𝑡𝑛)− 𝒮ℎ𝜓(𝑡𝑛−1)

∆𝑡
, 𝜑ℎ

)︂
.

(5.23)

In order to derive the desired estimation, we will put 𝜑ℎ = 𝜃𝑛ℎ into (5.23).

𝐴ℎ
(︂
𝜃𝑛ℎ − 𝜃𝑛−1

ℎ

∆𝑡
, 𝜃𝑛ℎ

)︂
+ 𝜈𝐵ℎ(𝜃𝑛ℎ , 𝜃

𝑛
ℎ) = 𝐹ℎ(𝜃𝑛ℎ)− 𝐹 (𝜃𝑛ℎ)− 𝐶ℎ(𝜓𝑛ℎ ;𝜓𝑛ℎ , 𝜃

𝑛
ℎ) + 𝐶(𝜓(𝑡𝑛);𝜓(𝑡𝑛), 𝜃𝑛ℎ)

+𝐴(𝜕𝑡𝜓(𝑡𝑛), 𝜃𝑛ℎ)−𝐴ℎ
(︂
𝒮ℎ𝜓(𝑡𝑛)− 𝒮ℎ𝜓(𝑡𝑛−1)

∆𝑡
, 𝜃𝑛ℎ

)︂
.

(5.24)

The nonlinear term can be rewritten as follows:

𝐶(𝜓(𝑡𝑛);𝜓(𝑡𝑛), 𝜃𝑛ℎ)− 𝐶ℎ(𝜓𝑛ℎ ;𝜓𝑛ℎ , 𝜃
𝑛
ℎ) = 𝐶(𝜓(𝑡𝑛);𝜓(𝑡𝑛), 𝜃𝑛ℎ)− 𝐶ℎ(𝜓(𝑡𝑛);𝜓(𝑡𝑛), 𝜃𝑛ℎ)

+ 𝐶ℎ(𝜓(𝑡𝑛);𝜓(𝑡𝑛), 𝜃𝑛ℎ)− 𝐶ℎ(𝜓𝑛ℎ ;𝜓𝑛ℎ , 𝜃
𝑛
ℎ).

(5.25)

Using analogous arguments as in the proof of the Theorem 5.5, we have

|𝐶(𝜓(𝑡𝑛);𝜓(𝑡𝑛), 𝜃𝑛ℎ)− 𝐶ℎ(𝜓(𝑡𝑛);𝜓(𝑡𝑛), 𝜃𝑛ℎ)| ≤ 𝐶ℎ𝑟|𝜓(𝑡𝑛)|2+𝑟,Ω‖𝜓(𝑡𝑛)‖2,Ω‖𝜃𝑛ℎ‖2,Ω. (5.26)
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Proceeding same as semi-discrete case, another term of (5.25) can be estimated as follows

|𝐶ℎ(𝜓(𝑡𝑛);𝜓(𝑡𝑛), 𝜃𝑛ℎ)− 𝐶ℎ(𝜓𝑛ℎ ;𝜓𝑛ℎ ; 𝜃𝑛ℎ)| ≤ 𝐶(ℎ𝑟|𝜓(𝑡𝑛)|2+𝑟,Ω + ‖∆𝜃𝑛ℎ‖0,Ω)‖curl 𝜓(𝑡𝑛)‖1,Ω‖curl 𝜃𝑛ℎ‖1,Ω
+ ‖∆𝜓𝑛ℎ‖0,Ω(ℎ𝑟|𝜓(𝑡𝑛)|2+𝑟,Ω + ‖𝜃𝑛ℎ‖0,Ω) ‖∇𝜃𝑛ℎ‖1,Ω.

(5.27)

Using the projection operator Π𝑘,Δ
𝐾 , and polynomial consistency property of the discrete bilinear form 𝐴ℎ(·, ·),

we obtain

𝐴(𝜓𝑡(𝑡𝑛), 𝜃𝑛ℎ)−𝐴ℎ
(︂
𝒮ℎ𝜓(𝑡𝑛)− 𝒮ℎ𝜓(𝑡𝑛−1)

∆𝑡
, 𝜃𝑛ℎ

)︂
= 𝐴

(︂
𝜓𝑡(𝑡𝑛)− 𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1)

∆𝑡
, 𝜃𝑛ℎ

)︂
+
∑︁
𝐾∈𝒯ℎ

𝐴𝐾

(︃
𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1)

∆𝑡
−

(︃
Π𝑘,Δ
𝐾 (𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1))

∆𝑡

)︃
, 𝜃𝑛ℎ

)︃

+
∑︁
𝐾∈𝒯ℎ

𝐴ℎ𝐾

(︃(︃
Π𝑘,Δ
𝐾 (𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1))

∆𝑡

)︃
− 𝒮ℎ𝜓(𝑡𝑛)− 𝒮ℎ𝜓(𝑡𝑛−1)

∆𝑡
, 𝜃𝑛ℎ

)︃
:= Σ1 + Σ2 + Σ3.

(5.28)

Following the analogous arguments as Theorem 3.3 of [40], we can write the term Σ1 as follows,

Σ1 ≤
1

∆𝑡
|𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1)−∆𝑡𝜓𝑡(𝑡𝑛)|1,Ω|𝜃𝑛ℎ |1,Ω ≤

1
∆𝑡

⃒⃒⃒⃒
⃒
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝑠− 𝑡𝑗−1) 𝜓𝑡𝑡(𝑠)

⃒⃒⃒⃒
⃒
1,Ω

|𝜃𝑛ℎ |1,Ω

≤ ‖𝜕𝑡𝑡𝜓‖𝐿1(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω))|𝜃𝑛ℎ |1,Ω.

Further, in order to bound Σ2, we derive the following estimate

Σ2 ≤
1

∆𝑡

∑︁
𝐾∈𝒯ℎ

‖curl (𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1))− curl Π𝑘,Δ
𝐾 (𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1))‖0,𝐾 |𝜃𝑛ℎ |1,𝐾

≤ 1
∆𝑡

𝐶ℎ𝑟‖𝜕𝑡𝜓‖𝐿1(𝑡𝑛−1,𝑡𝑛;𝐻𝑟+1(Ω))|𝜃𝑛ℎ |1,Ω.

Adding and subtracting curl (𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1)), the term Σ3 (cf. (5.28)) can be written as

Σ3 ≤
1

∆𝑡
𝐶𝐴

∑︁
𝐾∈𝒯ℎ

‖curl (𝒮ℎ𝜓(𝑡𝑛)− 𝒮ℎ𝜓(𝑡𝑛−1))− curl Π𝑘,Δ
𝐾 (𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1))‖0,𝐾 |𝜃𝑛ℎ |1,𝐾

≤ 1
∆𝑡

𝐶𝐴
∑︁
𝐾∈𝒯ℎ

‖curl (𝒮ℎ𝜓(𝑡𝑛)− 𝒮ℎ𝜓(𝑡𝑛−1))− curl (𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1))‖0,𝐾 |𝜃𝑛ℎ |1,𝐾

+ ‖curl (𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1))− curl Π𝑘,Δ
𝐾 (𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1))‖0,𝐾 |𝜃𝑛ℎ |1,𝐾 .

Using the approximation properties of the operator 𝒮ℎ, we obtain∑︁
𝐾∈𝒯ℎ

‖curl (𝒮ℎ𝜓(𝑡𝑛)− 𝒮ℎ𝜓(𝑡𝑛−1))− curl (𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1))‖0,𝐾 |𝜃𝑛ℎ |1,𝐾

≤ 𝐶ℎ𝑟‖𝜕𝑡𝜓‖𝐿1(𝑡𝑛−1,𝑡𝑛;𝐻1+𝑟(Ω))|𝜃𝑛ℎ |1,Ω.

Analogously, we have∑︁
𝐾∈𝒯ℎ

‖curl (𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1))− curl Π𝑘,Δ
𝐾 (𝜓(𝑡𝑛)− 𝜓(𝑡𝑛−1))‖0,𝐾 |𝜃𝑛ℎ |1,𝐾

≤ 𝐶ℎ𝑟‖𝜕𝑡𝜓‖𝐿1(𝑡𝑛−1,𝑡𝑛;𝐻1+𝑟(Ω))|𝜃𝑛ℎ |1,Ω.
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Inserting the above estimates in (5.28), and then using it together with (5.26) and (5.27) into (5.24), and
multiplying by ∆𝑡, we obtain that

𝛼1‖curl 𝜃𝑛ℎ‖20,Ω + 𝜈∆𝑡𝛼3‖𝜃𝑛ℎ‖22,Ω ≤ 𝐶∆𝑡 ℎ𝑟|f |𝑟−1,Ω‖𝜃𝑛ℎ‖2,Ω + 𝐶 ∆𝑡(ℎ𝑟|𝜓(𝑡𝑛)|𝑟+2,Ω + ‖𝜃𝑛ℎ‖2,Ω)
× ‖𝜓(𝑡𝑛)‖2,Ω ‖𝜃𝑛ℎ‖2,Ω + 𝐶 ∆𝑡 ‖𝜓𝑛ℎ‖2,Ω(ℎ𝑟|𝜓(𝑡𝑛)|𝑟+2,Ω + ‖𝜃𝑛ℎ‖2,Ω) ‖𝜃𝑛ℎ‖2,Ω
+ 𝐶(𝐶𝐴)∆𝑡ℎ𝑟‖𝜕𝑡𝜓‖𝐿1(𝑡𝑛−1,𝑡𝑛;𝐻𝑟+1(Ω))‖curl 𝜃𝑛ℎ‖0,Ω + 𝐶∆𝑡‖𝜕𝑡𝑡𝜓‖𝐿1(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω))‖curl 𝜃𝑛ℎ‖0,Ω
+ 𝛼1‖curl 𝜃𝑛ℎ‖0,Ω ‖curl 𝜃𝑛−1

ℎ ‖0,Ω.

An application of the Young’s inequality and kick-back argument yields
𝛼1

2
‖curl 𝜃𝑛ℎ‖20,Ω−

𝛼1

2
‖curl 𝜃𝑛−1

ℎ ‖20,Ω + ∆𝑡(𝜈𝛼3 − ‖𝜓(𝑡𝑛)‖2,Ω − ‖𝜓𝑛ℎ‖2,Ω)‖𝜃𝑛ℎ‖22,Ω
≤ 𝐶ℎ𝑟(|f |𝑟−1,Ω + |𝜓(𝑡𝑛)|𝑟+2,Ω)‖𝜃𝑛ℎ‖2,Ω + 𝐶(𝐶𝐴)ℎ𝑟‖𝜕𝑡𝜓‖𝐿1(𝑡𝑛−1,𝑡𝑛;𝐻𝑟+1(Ω))‖curl 𝜃𝑛ℎ‖0,Ω

+ 𝐶∆𝑡‖𝜕𝑡𝑡𝜓‖𝐿1(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω))‖curl 𝜃𝑛ℎ‖0,Ω.

Since 𝜓(𝑡𝑛), 𝜓𝑛ℎ ∈ 𝒦̃, from the assumption of the theorem, and using Young’s inequality and iterating 𝑗 =
1, . . . , 𝑛, we have

𝛼1

2
‖curl 𝜃𝑛ℎ‖20,Ω + ∆𝑡𝐶(𝜈, 𝛼3,ℛ)

𝑛∑︁
𝑗=1

‖𝜃𝑗ℎ‖
2
2,Ω ≤

𝛼1

2
‖curl 𝜃0ℎ‖20,Ω + 𝐶 ∆𝑡2 ‖𝜕𝑡𝑡𝜓‖2𝐿1(0,𝑡𝑛;𝐿2(Ω))

+ 𝐶(𝐶𝐴)ℎ2𝑟
(︁
‖f‖2𝐿∞(0,𝑡𝑛;𝐻𝑟−1(Ω)) + ‖𝜓‖2𝐿∞(0,𝑡𝑛;𝐻𝑟+2(Ω)) + ‖𝜕𝑡𝜓‖2𝐿∞(0,𝑡𝑛;𝐻𝑟+1(Ω))

)︁
≤ 𝐶‖𝜓0

ℎ − 𝒮ℎ(𝜓(0))‖21,Ω + 𝐶(𝐶𝐴)ℎ2𝑟
(︁
‖f‖2𝐿∞(0,𝑡𝑛;𝐻𝑟−1(Ω)) + ‖𝜓‖2𝐿∞(0,𝑡𝑛;𝐻𝑟+2(Ω))

+ ‖𝜕𝑡𝜓‖2𝐿∞(0,𝑡𝑛;𝐻𝑟+1(Ω))

)︁
+ 𝐶 ∆𝑡2 ‖𝜕𝑡𝑡𝜓‖2𝐿1(0,𝑡𝑛;𝐿2(Ω))

≤ 𝐶
(︀
‖𝜓𝐼(0)− 𝜓(0)‖21,Ω + ‖𝜓(0)− 𝒮ℎ(𝜓(0))‖21,Ω

)︀
+ 𝐶 ∆𝑡2 ‖𝜕𝑡𝑡𝜓‖2𝐿1(0,𝑡𝑛;𝐿2(Ω))

+ 𝐶(𝐶𝐴)ℎ2𝑟
(︁
‖f‖2𝐿∞(0,𝑡𝑛;𝐻𝑟−1(Ω)) + ‖𝜓‖2𝐿∞(0,𝑡𝑛;𝐻𝑟+2(Ω)) + ‖𝜕𝑡𝜓‖2𝐿∞(0,𝑡𝑛;𝐻𝑟+1(Ω))

)︁
.

Using the approximation properties for 𝒮ℎ, and Proposition 5.2, we get

𝛼1

2
‖curl 𝜃𝑛ℎ‖20,Ω + ∆𝑡𝐶(𝜈, 𝛼3,𝒮)

𝑛∑︁
𝑗=1

‖𝜃𝑗ℎ‖
2
2,Ω ≤ 𝐶 ∆𝑡2 ‖𝜕𝑡𝑡𝜓‖2𝐿1(0,𝑡𝑛;𝐿2(Ω))

+ 𝐶(𝐶𝐴)ℎ2𝑟
(︁
‖𝜓(0)‖22+𝑟,Ω + ‖f‖2𝐿∞(0,𝑡𝑛;𝐻𝑟−1(Ω)) + ‖𝜓‖2𝐿∞(0,𝑡𝑛;𝐻𝑟+2(Ω))

+ ‖𝜕𝑡𝜓‖2𝐿∞(0,𝑡𝑛;𝐻𝑟+1(Ω))

)︁
.

Finally, using the fact that 𝜓𝑛ℎ − 𝜓(𝑡𝑛) = 𝜃𝑛ℎ + 𝜌𝑛ℎ, from the above estimation and approximation properties for
𝒮ℎ (see Lem. 5.3), we have the desired thesis. �

Remark 5.7. In Theorems 5.5 and 5.6, we have chosen that the analytical solution 𝜓 at time 𝑡 = 𝑡𝑛 and fully
discrete solution 𝜓𝑛ℎ belong to a bounded subset of ℬℛ. To satisfy this condition, an additional condition has
to be imposed on viscosity 𝜈, which leads

max

⎧⎨⎩ 2𝐶2

𝛼2
3𝜈

2
,

2𝐶2
𝐵

(︁
4 + 𝐶2

)︁
𝛼4

3𝜈
2

⎫⎬⎭‖𝜓ℎ‖2𝐿∞(0,𝑡𝑛−1;𝐻2(Ω)) < 1.

For sufficiently small values of ∆𝑡 and 𝜈 satisfying the above mentioned condition, we advocate a numerical
approximation of (2.3) that converges optimally in both space and time variable. The primary advantage of this
scheme is that the condition imposed on 𝜈 is independent of 1/∆𝑡 which ensures the robustness of the scheme
for very small values of ∆𝑡.
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Figure 1. Sample meshes: 𝒯 1
ℎ (top left), 𝒯 2

ℎ (top right), 𝒯 3
ℎ (bottom left) and 𝒯 4

ℎ (bottom right).

6. Numerical experiments

In this section, we report the results of four numerical tests carried out with the fully-discrete virtual element
scheme proposed in Section 4, in order to validate the theoretical results presented in Section 5. We have
developed a MATLAB code that implements the fully-discrete scheme for 𝑘 = 2 and 𝑘 = 3. For the time
discretization, we employ a backward Euler scheme and for each time step, we use the Newton–Raphson method
to solve the resulting nonlinear system, with maximum 10 iterations, a user specified tolerance tol:= 10−8, and
taking 𝜓in

ℎ = 0 as initial guess.
For our numerical tests, we have used different families of polygonal meshes (see Fig. 1):

– 𝒯 1
ℎ : Uniform triangular meshes.

– 𝒯 2
ℎ : Trapezoidal meshes.

– 𝒯 3
ℎ : Sequence of Centroidal Voronoi Tessellation.

– 𝒯 4
ℎ : Distorted concave rhombic quadrilaterals.

In order to test the convergence properties of the VEM method, we measure the errors as the difference
between the exact solution 𝜓 and the suitable projections of the numerical solution 𝜓ℎ. More precisely, for the
norm 𝐿2

(︀
0, 𝑇 ;𝐻2(Ω)

)︀
, we consider the following quantity:

E2(𝜓) := error
(︀
𝜓,𝐿2, 𝐻2

)︀
=

(︃
∆𝑡

𝑁∑︁
𝑛=1

|𝜓(𝑡𝑛)−Π𝑘,Δ
𝐾 𝜓𝑛ℎ |22,ℎ

)︃1/2

.

6.1. Test 1. Homogeneous Dirichlet boundary conditions and initial data

In this numerical test, we solve the Navier–Stokes problem (2.1) on the square domain Ω := (0, 1)2. We take
the load term f , boundary and initial conditions in such a way that the analytical solution is given by:

𝑢(𝑥, 𝑦, 𝑡) = 0.1
(︂

sin(𝑡) 𝑥2(1− 𝑥)2(2𝑦 − 6𝑦2 + 4𝑦3)
− sin(𝑡) 𝑦2(1− 𝑦)2(2𝑥− 6𝑥2 + 4𝑥3)

)︂
, 𝑝(𝑥, 𝑦, 𝑡) = 𝑡2

(︂
𝑥3𝑦3 − 1

16

)︂
,
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Table 1. Test 1. Errors for the stream-function 𝜓ℎ in the discrete 𝐿2
(︀
0, 𝑇 ;𝐻2(Ω)

)︀
norm

obtained with 𝑘 = 2, 𝜈 = 1 and 𝒯 2
ℎ .

dof ℎ Δ𝑡0 Δ𝑡0/2 Δ𝑡0/4 Δ𝑡0/8 Δ𝑡0/16

147 ℎ0 1.076690e-3 1.055725e-3 1.045194e-3 1.039916e-3 1.037273e-3

675 ℎ0/2 5.450550e-4 5.344520e-4 5.291258e-4 5.264563e-4 5.251199e-4

2883 ℎ0/4 2.723653e-4 2.670638e-4 2.644015e-4 2.630672e-4 2.623994e-4

11907 ℎ0/8 1.361231e-4 1.334675e-4 1.321353e-4 1.314681e-4 1.311342e-4

48387 ℎ0/16 6.807611e-5 6.673602e-5 6.606687e-5 6.573250e-5 6.556536e-5

Table 2. Test 1. Errors for the stream-function 𝜓ℎ in the discrete 𝐿2
(︀
0, 𝑇 ;𝐻2(Ω)

)︀
norm

obtained with 𝑘 = 3, 𝜈 = 10−3 and 𝒯 4
ℎ .

dof ℎ Δ𝑡0 Δ𝑡0/2 Δ𝑡0/4 Δ𝑡0/8 Δ𝑡0/16

211 ℎ0 9.546949e-4 9.395878e-4 9.320480e-4 9.282763e-4 9.263893e-4

899 ℎ0/2 2.760235e-4 2.701636e-4 2.678057e-4 2.667518e-4 2.662540e-4

3715 ℎ0/4 8.270615e-5 7.376976e-5 7.135559e-5 7.064923e-5 7.041604e-5

15107 ℎ0/8 4.423838e-5 2.603643e-5 1.969686e-5 1.785950e-5 1.736430e-5

60931 ℎ0/16 4.077910e-5 1.976831e-5 1.021248e-5 6.047226e-6 4.554491e-6

𝜓(𝑥, 𝑦, 𝑡) = 0.1 sin(𝑡) 𝑥2(1− 𝑥)2𝑦2(1− 𝑦)2.

We consider the time interval [0, 1], for the viscosity we consider the values 𝜈 = 1 and 𝜈 = 10−3 and we start
the process with ℎ0 = 1/8 and ∆𝑡0 = 1/16.

We report in Tables 1 and 2 the errors E2(𝜓) for different refinement levels and time steps and using the
family of meshes 𝒯 2

ℎ for 𝑘 = 2 and the family 𝒯 4
ℎ for 𝑘 = 3. Moreover, the maximum number of iterations that

are required for the Newton method in this example is 4 for all the meshes and for 𝑘 = 2, 3. It can be seen
along the diagonal of Table 1, that the error E2(𝜓) reduces linearly with respect to ℎ and along the diagonal of
Table 2 can be observed that the error E2(𝜓) reduces quadratically with respect to ℎ, which are the expected
order of convergence for 𝑘 = 2 and 𝑘 = 3, respectively. In addition, we have highlighted the errors which are
dominated by space in Tables 1 and 2 for small values of time-step ∆𝑡. We also observed that for big values of
ℎ, the error E2(𝜓) is almost constant with respect to ∆𝑡. Further, to examine the rate of convergence for the
space variable, we have included convergence graph using all family of meshes in Figure 2, for 𝑘 = 2 and 𝑘 = 3.

6.2. Test 2. Non-homogeneous Dirichlet boundary conditions and initial conditions

In this numerical test, we solve the Navier–Stokes problem (2.1) on the square domain Ω := (0, 1)2. We take
the load term f , non-homogeneous Dirichlet boundary and initial conditions in such a way that the analytical
solution is given by:

𝑢(𝑥, 𝑦, 𝑡) = 0.1𝜋
(︂
− exp(0.1𝑡)(1 + cos(𝜋𝑥)) sin(𝜋𝑦)

exp(0.1𝑡)(1 + cos(𝜋𝑦)) sin(𝜋𝑥)

)︂
, 𝑝(𝑥, 𝑦, 𝑡) = exp(−𝑡)

(︂
𝑥2 + 𝑦2 − 2

3

)︂
,

𝜓(𝑥, 𝑦, 𝑡) = 0.1 exp(0.1𝑡)(1 + cos(𝜋𝑥))(1 + cos(𝜋𝑦)).

In this test, we consider the time interval to [0, 1], the viscosity 𝜈 = 10−3 and we start with ℎ0 = 1/4 and
∆𝑡0 = 1/16.
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Figure 2. Test 1: Rate of convergence for space variable for different meshes with meshsize
ℎ = 1/4, . . . , 1/64, 𝜈 = 1 and for small values of time-step ∆𝑡. For 𝑘 = 2 and ∆𝑡 = 0.05 (left
panel) and 𝑘 = 3 and ∆𝑡 = 0.0025 (right panel).

Table 3. Test 2. Errors for the stream-function 𝜓ℎ in the discrete 𝐿2
(︀
0, 𝑇 ;𝐻2(Ω)

)︀
norm

obtained with 𝒯 4
ℎ and 𝜈 = 10−3.

dof ℎ Δ𝑡0 Δ𝑡0/2 Δ𝑡0/4 Δ𝑡0/8 Δ𝑡0/16

123 ℎ0 3.312118e-1 3.307043e-1 3.304508e-1 3.303242e-1 3.302609e-1

531 ℎ0/2 1.674332e-1 1.672076e-1 1.670951e-1 1.670389e-1 1.670108e-1

2211 ℎ0/4 8.358238e-2 8.345864e-2 8.339822e-2 8.336843e-2 8.335366e-2

9027 ℎ0/8 4.229862e-2 4.222367e-2 4.218726e-2 4.216934e-2 4.216047e-2

36483 ℎ0/16 2.163267e-2 2.160239e-2 2.158950e-2 2.158367e-2 2.158092e-2

We report in Table 3 the errors E2(𝜓) for the family of meshes 𝒯 4
ℎ and different refinement levels and time

steps. In this example, the maximum number of iterations that are required for the Newton method is 5. Once
again, it can be seen along the diagonal of Table 3 that the error E2(𝜓) reduces linearly with respect to ℎ, which
is the expected order of convergence for 𝑘 = 2. In addition, we have highlighted the errors which are dominated
by space in Table 3 for small values of time-step ∆𝑡.

6.3. Test 3. Example with dominating time error

In the present numerical test, we study the order of convergence of the virtual scheme in time. We solve the
Navier–Stokes problem (2.1) on the square domain Ω := (0, 1)2. We take the load term f , boundary and initial
conditions in such a way that the analytical solution is given by:

𝑢(𝑥, 𝑦, 𝑡) =
(︂

sin(10𝜋𝑡) 𝑥2(1− 𝑥)2(2𝑦 − 6𝑦2 + 4𝑦3)
− sin(10𝜋𝑡) 𝑦2(1− 𝑦)2(2𝑥− 6𝑥2 + 4𝑥3)

)︂
,

𝑝(𝑥, 𝑦, 𝑡) = −
(︂
𝑥3 + 𝑦3 − 1

2

)︂(︂
3
2

+
1
2

sin(10𝜋𝑡)
)︂
, 𝜓(𝑥, 𝑦, 𝑡) = sin(10𝜋𝑡) 𝑥2(1− 𝑥)2𝑦2(1− 𝑦)2.

We consider the time interval [0, 1], the viscosity 𝜈 = 1 and we start the process with ℎ0 = 1/8 and ∆𝑡0 = 1/8.
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Table 4. Test 3. Errors and experimental rates for the stream-function 𝜓ℎ in norm
𝐿2
(︀
0, 𝑇 ;𝐻2(Ω)

)︀
obtained with the meshes 𝒯 1

ℎ , 𝑘 = 2 and 𝜈 = 1.

dof ℎ Δ𝑡0 Δ𝑡0/2 Δ𝑡0/4 Δ𝑡0/8 Δ𝑡0/16

147 ℎ0 2.556643e-2 1.851436e-2 1.439994e-2 1.256422e-2 1.186603e-2

675 ℎ0/2 2.437394e-2 1.579445e-2 1.025426e-2 7.432721e-3 6.296528e-3

2883 ℎ0/4 2.406341e-2 1.502749e-2 8.911963e-3 5.428423e-3 3.772418e-3

11907 ℎ0/8 2.398373e-2 1.482783e-2 8.541759e-3 4.795144e-3 2.800171e-3

48387 ℎ0/16 2.396363e-2 1.477733e-2 8.446522e-3 4.623010e-3 2.498059e-3

Figure 3. Rate of convergence for time variable for different meshes with time-steps ∆𝑡 =
1/8, . . . , 1/128 and meshsize ℎ = 1/64, 𝜈 = 1 and 𝑘 = 3.

We report in Table 4 the errors E2(𝜓) obtained for 𝑘 = 2 and using the family of meshes 𝒯 1
ℎ with different

refinement levels and time steps. In this experiment, differently to the first and second tests, we can observe
that, for small values of ℎ, the error E2(𝜓) reduces linearly with respect to ∆𝑡 (see the last row of Tab. 4), which
is the expected order of convergence in time according to Theorem 5.6. We also observe that for big values of ∆𝑡
the error E2(𝜓) is almost constant with respect to ℎ. In this numerical test, the maximum number of iterations
that are required for the Newton method is 3.

Further, in Figure 3, we have posted a convergence graph where errors E2(𝜓) are dominated by time and
virtual element space of order 𝑘 = 3 is chosen. We have used all family of meshes. We deduce that the rate of
convergence is closer to 1 (expected order of convergence for time variable) for very small values of ℎ.

6.4. Test 4. Chorin problem

In this example, we consider the well-known Chorin problem for incompressible Navier–Stokes equations [22].
For this test the load term is f = 0, and the initial and boundary conditions correspond to the analytical
solution:

𝑢(𝑥, 𝑦, 𝑡) =
(︂
− cos(2𝜋𝑥) sin(2𝜋𝑦)𝑒−8𝜋2𝜈𝑡

sin(2𝜋𝑥) cos(2𝜋𝑦)𝑒−8𝜋2𝜈𝑡

)︂
, 𝑝(𝑥, 𝑦, 𝑡) = −1

4
(cos(4𝜋𝑥) + cos(4𝜋𝑦))𝑒−8𝜋2𝜈𝑡,

𝜓(𝑥, 𝑦, 𝑡) =
1

2𝜋
cos(2𝜋𝑥) cos(2𝜋𝑦)𝑒−8𝜋2𝜈𝑡.
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Table 5. Test 4. Errors and experimental rates for the stream-function 𝜓ℎ, using the meshes
𝒯 3
ℎ , and with different values of 𝜈.

𝜈 dof ℎ E1(𝜓) r1(𝜓) E2(𝜓) r2(𝜓)

54 1/4 2.589181e-2 – 3.689706e-1 –
294 1/8 6.856293e-3 1.916 1.979657e-1 0.898

10−3 1371 1/16 1.796994e-3 1.931 1.012519e-1 0.967
5796 1/32 4.332627e-4 2.052 5.059189e-2 1.000
23874 1/64 1.078390e-4 2.006 2.519974e-2 1.005

54 1/4 2.590922e-2 – 3.691334e-1 –
294 1/8 6.858939e-3 1.917 1.980514e-1 0.898

10−6 1371 1/16 1.796887e-3 1.932 1.012955e-1 0.967
5796 1/32 4.328584e-4 2.053 5.061318e-2 1.000
23874 1/64 1.074008e-4 2.010 2.520898e-2 1.005

It has been observed that some finite element methods for a velocity-pressure formulation, the 𝐿2 error of the
velocity converge suboptimally or even lock for small values of the viscosity (see [32], Sect. 4.2). It can be seen
that the 𝐿2 error of the velocity is related with the 𝐻1 error for the stream-function. Thus, in order to assess
the performance of the virtual scheme for this numerical example, we introduce the following discrete quantity:

E1(𝜓) := error(𝜓,𝐿2, 𝐻1) =

(︃
∆𝑡

𝑁∑︁
𝑛=1

|𝜓(𝑡𝑛)−Π𝑘,Δ
𝐾 𝜓𝑛ℎ |21,ℎ

)︃1/2

.

We observe that an additional order of convergence is expected in this discrete error. To show this fact, we will
compute experimental rates of convergence for each individual error as follows:

r𝑖(𝜓) :=
log(E𝑖(𝜓)/E′𝑖(𝜓))

log(ℎ/ℎ′)
, 𝑖 = 1, 2,

where ℎ, ℎ′ denote two consecutive mesh sizes with their respective errors E𝑖 and E′𝑖.
We report in Table 5 the discrete errors E1(𝜓) and E2(𝜓), for the family of meshes 𝒯 3

ℎ . The results were
obtained by considering the final time 𝑇 = 0.01 and time stepping ∆𝑡 = 0.001. For the viscosity 𝜈, we take two
values: 𝜈 = 10−3 and 𝜈 = 10−6. The maximum number of iterations that are required for the Newton method
in this example is 4 for 𝜈 = 10−3 and 5 for 𝜈 = 10−6.

It can be clearly observed from Table 5 a linear order of convergence in the norm E2(𝜓) and a quadratic order
in the norm E1(𝜓) (which has not been proved). Thus, we conclude that our virtual scheme does not suffer from
a suboptimal order of convergence or locking phenomenon.

Exact and approximate solutions (including a postprocessed velocity field) are illustrated in Figure 4.

7. Conclusion

In this article, we have proposed a 𝐶1 VEM to discretize the time-dependent Navier–Stokes problem in the
stream-function form. Exploiting enhanced virtual element spaces, we have approximated the spatial variables
and we have discretized the time variable using the backward Euler scheme. We have derived a priori error
estimations for semi-discrete and fully-discrete schemes and the theoretical results are verified by four numerical
experiments. Moreover, the fourth numerical experiment allows us to conclude that our virtual scheme does not
suffer from a suboptimal order of convergence when the diffusion coefficient 𝜈 is small, in contrast to some finite
element methods in velocity-pressure formulation, where a suboptimal convergence is observed in 𝐿2-norm of
the velocity for the Chorin problem with small values of 𝜈 (see [32]).
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Figure 4. Test 4. Exact and approximate solutions 𝜓, 𝜓ℎ and the postprocessed velocity field
𝑢ℎ := curl𝜓ℎ, using ∆𝑡 = 0.001 for 𝑇 = 0.01, using the mesh 𝒯 3

ℎ with ℎ = 1/32 and 𝜈 = 10−6.
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