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Abstract. We develop the a posteriori error analysis of three mixed finite element formulations
for rotation-based equations in elasticity, poroelasticity, and interfacial elasticity-poroelasticity. The
discretizations use H!-conforming finite elements of degree k + 1 for displacement and fluid pressure,
and discontinuous piecewise polynomials of degree k for rotation vector, total pressure, and elastic
pressure. Residual-based estimators are constructed, and upper and lower bounds (up to data os-
cillations) for all global estimators are rigorously derived. The methods are all robust with respect
to the model parameters (in particular, the Lamé constants); they are valid in 2D and 3D, and also
for arbitrary polynomial degree kK > 0. The error behavior predicted by the theoretical analysis is
then demonstrated numerically on a set of computational examples including different geometries on
which we perform adaptive mesh refinement guided by the a posteriori error estimators.
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1. Introduction. The interaction between interstitial fluid flow and the defor-
mation of the underlying porous structure gives rise to a variety of mechanisms of
fluid-structure coupling. In the specific case of Biot poromechanics, this interaction
occurs when the linearly elastic porous medium is saturated, and such a problem is
relevant to a large class of very diverse applications ranging from bone healing to, e.g.,
petroleum engineering or sound isolation. We are also interested in the interface be-
tween elastic and poroelastic systems that is encountered in hydrocarbon production
in deep subsurface reservoirs (a pay zone and the surrounding nonpay rock formation)
[24], or in the study of tooth and periodontal ligament interactions [4].

Rotation-based formulations are found in applications to the modelling of nonpo-
lar media and helicoidal motion (see, e.g., [7, 29, 34] and the references therein). The
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resulting theory has a similarity with vorticity-based formulations for incompressible
flow such as [6, 11, 19, 21, 27].

The schemes for elasticity and transmission elasticity-poroelasticity and their a
priori error analysis have been studied in [5] and [4], respectively. The solvabil-
ity of the rotation-based poroelasticity has not been addressed yet, and for sake of
completeness we outline its analysis in Appendices A and B. The well-posedness of
the continuous problem is studied by grouping the unknowns with compatible reg-
ularity and realizing that the resulting problem is a mixed variational formulation
that resembles the system introduced in [32, 37] that describes the Biot equations
in their displacement-pressure-total pressure formulation. Our analysis also discusses
the limit case when the specific storage coefficient goes to zero, and we observe that
the continuous dependence on data is robust with respect to the Lamé constants.

Our focus is on the design, analysis, and testing of a posteriori error estimators
for these three rotation-based models and discretizations. Robust a posteriori error
estimators for Biot poroelasticity are relatively recent in the literature. They include a
reliable estimator based on stress and flux reconstructions [38], the weakly symmetric
tensor reconstruction for total stress and Darcy flux from [12, 24], a reliable space-
time a posteriori error estimator for a four-field system from [1] (requiring the solution
of auxiliary local problems), the guaranteed equilibrated bounds for fixed-stress split-
ting scheme from [31] and for double-diffusive poroelasticity from [35] and for multiple
network poroelasticity recently advanced in [20], the robust residual a posteriori es-
timates for displacement-flux-pressure advanced in [33], and for displacement-elastic
pressure-fluid pressure from [30, 36]. We follow the latter approaches and construct
residual-type error estimators. All of the terms that conform the a posteriori error
estimators are easily fully computable locally. The derivation of the upper bounds
for each of the terms conforming the a posteriori estimators for rotation-based elas-
ticity and rotation-based poroelasticity is based on exploiting scaling arguments and
bubble function techniques. The results obtained for these two subproblems are then
combined with estimates for the additional terms that appear in the transmission
problem. As mentioned above, in all cases a careful treatment of the model parame-
ters is essential to maintain robustness with respect to the sensible Lamé constants of
the elastic and poroelastic media (going to infinity when the Poisson ratio approaches
1/2).

The remainder of this paper has been structured in the following manner. In-
stead of grouping the continuous results together and the error bounds separately for
all problems, we have divided the analysis by type of problem. Therefore, section 2
defines the rotation-based elasticity problem, recalls the solvability and stability of
the continuous problem and of the mixed finite element discretization, and provides
the construction and analysis of an a posteriori error estimator. An analogous pre-
sentation is given in section 3 for the rotation-based Biot equations. These results are
then combined in section 4 to treat the rotation-based transmission problem between
a poroelastic and an elastic subdomain. A few examples are presented in section 5,
showing, in particular, that mesh adaptivity steered by the a posteriori error estima-
tors leads to an important reduction in the number of degrees of freedom that are
needed to reach a certain accuracy level, and the tests also indicate the sharpness of
the a posteriori error analysis. We also illustrate the use of the adaptive method in the
simulation of a three-dimensional aquifer interface problem. Finally, in Appendices
A and B, we present the a priori error analysis of the rotation-based poroelasticity
problem. Some concluding remarks and possible extensions are collected in section 6.
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2. Rotation-based linear elasticity. This section is devoted to deriving relia-
bility and efficiency of a residual a posteriori error estimator for a formulation of linear
elasticity in terms of rotation, displacement, and pressure. We start with preliminary
results regarding the continuous and discrete formulations.

2.1. Continuous formulation. Let 2 C R?, d € {2,3}, be a bounded Lipschitz
domain with boundary I' := 9. Our starting point is the rotation-based elasticity
problem, as proposed in [5]: Given an external force FE we seek the displacement w,
the rotation w, and the pressure p such that

2.1a) ViE curlw 4+ Vp = & in Q,
2.1Db) w—+vpFecurlu =0 in £,
2.1c) diva + (20" +AF)"1p =0 in €,
2.1d) u=0 on T
where ;¥ and AP are the Lamé coefficients (material properties of the solid, and

here assumed constant). The weak formulation of (2.1) is as follows: find (u,w,p) €
H}(Q) x L2(Q) x L2(Q) such that

(2.2a) f\/,uE/curl'war/pdivv:f/fE~1; Yo € H(Q),
Q Q Q
(2.2b) /w~07\/,uE/0'curlu:O VO € L2(Q),
Q Q
(2.2¢) / divaug + (2u® + \F)~! / pqg=0 Vg € L3(Q),
Q

Q

or more conveniently written in the form

BE((u,w,p), (Uv 07 q)) = _(fEu v)(),ﬂv

where the multilinear form (having a subscript E, for elasticity) is
Bg((u,w,p), (v,0,q)) := —\/ME/ curlv - w+ / pdivov +/ w-0
Q Q Q
— \/uE/ 0~curlu+/ divug + (2p" +>\E)_1/ q.
Q Q Q

For the considered boundary conditions, the term div H}(€2) can control only the
L? norm of the mean-value zero part of p, and an additional contribution is needed
to control the mean-value part of p (see, e.g., [32]). Thus we can decompose p into
P,.p and py = p — P,p, where P,,p is the mean value part and py is the mean
value zero part. This is required only in the incompressibility limit, as Herrmann’s
problem approaches Stokes equations and pressure (for u prescribed everywhere on
the boundary) is no longer unique. This will be relevant also in the case of rotation-
based Biot equations discussed in section 3, below.

The well-posedness of the above variational problem is a direct consequence of
the following result (see [23]).

THEOREM 2.1. For every (u,w,p) € Hy(Q)xL3(Q)xL%(Q), there exists (v,0,q) €
H{(Q) x L2(Q) x L*(Q) with I(v,6,q)ll < C1ll(w,w,p)ll such that

Be((u,w,p), (v,0,q)) > Call(u,w,p)ll?,
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where (v, 0, Q)lI* := u®|| curlv|[§ o + p®|| divollg o + 0[5 o + (21" + A%)7H|qll§ o +
(1) Hlaollf -

Proof. Consider the decomposition p = pg+ P,,,p. As a consequence of the inf-sup
condition, for every py € L2(Q) there exists vy € H(Q2) such that (pg,divve)ea >
Ca (k") Ipollg o and (%) 2[lvollr,e < (1®)"/?||pollo.o. Thus, we have

C
Bg((u,w,p), (v0,0,0)) > Mﬂnponm Vil(w, curlvg)o o

1 1 €
Co—— | —= 20— =
> (Co- 5 ) elmlio - 5

Choosing v = —u, 8 = w, and ¢ = p, we arrive at

V

BE((’U/,UJ,p), (_uaw7p)) = ||w||gQ + (QME + )‘E)_lang,Q'

Next, we can select v = 0, @ = —+/uE curlu, and ¢ = pF divu, which leads to

E
BE((U,w,P ( —V/1E curlu, d1vu>) > L%chrlu”%yQ

e

E
1% . 2 1 2 2
+Hldivuldo - Sllo - s e Pl

We can also take v = —u + §1vg, 0 = w — d2+/puf curlu, together with ¢ = p +
Sou® div u, giving
BE((u7w>p>7 (’U707q)) = BE((U’ w,p), (—u,0,0)) + 61 Be((u, w p)7 (’00,070))

752BE( u,w,p), ( \/7curlu 1 d1vu)>

(516 (52 E E
- = ||w||09+52f||curlul\og+5szdlquon

2
1\ 1, . 1 S )
+ 41 ( 2) —=Ipollo.o + 2E L AE (1 TS Ipll5.a-

Choosing € = 1/Cq, 01 = 1/2¢, and d2 = 1/2, we have

Bo((w,w,p), (v,0,q)) > min{C; i} i, 0, DI,

and the assertion of the theorem can be established by obtaining

2

ll(v,8,q)lI* = H ( —u+ 6199, w — 621/ pF curlu, p + dop” div U) < 2ll(u, w,p)II*0

2.2. Discrete spaces and Galerkin formulation. Let {7,},>0 be a shape-
regular family of partitions of the closed domain €2, conformed by tetrahedra (or
triangles in two dimensions (2D)) K of diameter hg, with mesh size h := max{hg :
K € T,}. We specify for any k > 0 the finite-dimensional subspaces of the functional
spaces for displacement, pressure, and rotation; as follows:

V5, = {v, € COQ)NHLQ) : vp|x € Pry1(K) VK € Ty},
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W, := {0, € L2(Q) : 0|1 € Pi(K)"V/2 VK € T, },
Zn = {qn € L*(Q) : qu|r € Pr(K) VK € Ty}

The discrete weak formulation reads as follows: find (wup,wn,pr) € Vi, X Wy, X Zp,
such that

(23) BE((uh7wh7ph)7 ('U7 67(1)) = _(fEav)O,Q V('U, 07 Q) S Vh X Wh X Zh~

In view of the comment above regarding pressure uniqueness in the nearly incom-
pressible limit, we can either add a real Lagrange multiplier to fix the mean value of
pressure, or (for the specific case of discontinuous pressures) simply add a jump sta-
bilization (from, e.g., [28]). Then, for k > 0, the modified discrete weak formulation
of the rotation based elasticity reads as follows: find (up,wp,qn) € Vi x Wy X Zj,
such that

24)  Be((wnwnm) ©0.0)+a" Y ke [lonlla) = ~(% v)os

865(7-}1)
V(’U,O,q) € Vh X Wh, X Zh7

where h. stands for the diameter of a given edge, [-] the edge jump, p > 0 is a
stabilization parameter, and £(7;) denotes the set of all edges in 7j,.

By repeating the arguments in Theorem 2.1, we have that (2.3) and (2.4) are
well-posed. In addition, by using standard arguments, it is possible to establish the
corresponding Céa’s estimate and the a priori estimates.

2.3. A posteriori error analysis. First, we define the local elastic error esti-
mator O and the elastic data oscillation Yx for each K € T, as

h
b+ Y. wIReGe + IRallg x + 1 —I1Rs3 x
ecOK pE T 2uE4AE

1

@2 _@ R
K= MEH 1]

Ve h'2 E B
T = 2= - £51R

where fE € L%(Q) is a piecewise polynomial approximation of fE Moreover, the
elementwise residuals are

R, = {fi — ViEcurlw, — Vprlr, Ro:={wn — VpEcurluy )k,
R = {divu, + (2uf + )\E)flph}Ky

and the edge residual is defined as

R — %H\/H»Ewh Xn +phn]]€) € 6 5(77L) \F7
“ 0, ecl.

Finally, the global elastic residual error estimator © and the global elastic data oscil-
lation term are defined as

(2.5) 0% .= Z @%(, T2 = Z 'Y}Z(

KeTh KeTy,
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2.3.1. Reliability estimate. Using the Clément interpolation estimate, the fol-
lowing results hold:
(2.6)

W VEE — @)l S ViFlolwe, b ViFllo = Li(®)llo.e S ViFl

In the next theorem, we discuss the reliability bound of the estimator ©. The Clément
interpolation estimate and the stability estimate are the main ingredients in the proof.

1,wK'

THEOREM 2.2 (reliability estimate for the elasticity problem). Let (u,w,p) be the
solution to (2.2), and let (up,wp,pr) be the solution to (2.3) (or (2.4)). Let ©,7 be
as in (2.5). Then
(2.7) Il (w = wn, w — @i, p = Pi)ll < Crat (O + ).

Proof. Since (u — up,w — wp,p — pp) € HH(Q) x L2(Q) x L2(Q), the stability
theorem, Theorem 2.1, implies

Cill(w — wp, w — wh,p — pu)lI> < Ba((u — un,w — wn,p — pr), (v,6,9)),
with [I(v,0,9)ll < Coll(u — wp,w — wp,p — pr)ll. Using the definition of the weak
forms, it follows that
BE((U — Up, W — Wh, P — ph)a (’U, 0, q)) = BE((U — Up, W — Wh, D — ph)a (’U — Vh, 07 q))
= _<fE - fgav - Uh)O,Q - (.fl}?a'u - vh)O,Q - BE((uh;wh7ph)7 (U — Uh, 97Q))
Integration by parts, the Cauchy—Schwarz inequality, and the approximation results
(cf. (2.6)), imply the bound

Be((u — wp,w —wp,p—pa), (v,0,9)) < CO+T)l(v,0,9)ll,

which, in turn, implies (2.7). ad

2.3.2. Efficiency bounds. Let K € 7; and consider the interior polynomial
bubble function bx (positive in the interior of K and vanishing on 0K). From [39],
the following estimates hold:

(2.8)

1/2 —
oo S 16 vl lbxcvllos S Ivlloses IV (k) o S AR Iollo.x,

where v is a scalar-valued polynomial function defined on K.
Each term defining Ok in terms of local errors is bounded using the following
collection of results.

LeEMMA 2.1. The following holds:
Wi ()RS s S (1) ™R | 7 = Fillo, s + (™) ™2 lp—pn

Proof. For each K € Ty, we can define {|x = (u)"'h%Ribg. We can then
employ (2.8) to arrive at

B3 (1) R < /K Ry - ((4) h3 Rabr) = /K R, -C.

lo,x + llw —wnllo,x-

Recall that ¥ — \/uE curlw — Vp = 0. We subtract this from the last term and then
integrate using |gx = 0,

h%(wE)*HRln%,Ks/ <fE—fE>-c+¢ﬁ/ (wfwh>~curlc+/ (p—pn)V - C.
K K K

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Then, the Cauchy—Schwarz inequality gives
R (1) MRS 1 (S (1) 2R £ = Filloe + (1) 2 |lp = pallo.x
+ Jlw = wnllo, ) ()29 ¢llo,x + (15) 2t 1€ lo,)-
And the proof can be completed thanks to the following estimate:
)21V llo,x + (1) 2R IC o, S (%) 21V o, + it [1€
S WPRMIC N0 s = R ()72 Ry

lo,k)

|O,K- 0
LEMMA 2.2. The following holds:
[Rallo,x < llw = wnllo,x + v/ 1P| curl(w — wp)|lo,x-
Proof. The constitutive relation w — /pf curlu = 0 implies that
IR2]l0,x = ||wn — vV uF curlug|o.x = |[(wh, —w) — vV pE(curluy, — curlu)||o x
S llw = whllo,x + v/ pP || curl(u — wp)|lo,x- 0
LEMMA 2.3. The following holds:
()7 + @2p® + X)) 72| Rslo,x
S VP div(u —un)llo,x + (247 + A%) 72 ||p — pallo.x-
Proof. Using the expression divu + (2u® + AF)~1p = 0, we have
(™) 7+ 2u® + X5 ) T2 Ryloe = (W)~ + 26 + A7) 72 divay,
+ (205 + AF) " ppllo,x
S VPl div(u —un)lo,x + (2% + A%) 72 ||p — pallo,x- O

Let e be an interior edge (or interior facet in three dimensions (3D)) shared by
two elements K and K’. We assume that b., the edge polynomial bubble function on
e, is positive in the interior of the patch P, formed by K U K’, and b, is zero on the
boundary of the patch. Then, also from [39], the following estimates hold:

(2.9)
lallo.c S 15¢%allo.e  Ilbeg
where ¢ denotes the scalar-valued polynomial function defined on the edge e.

LEMMA 2.4. The following holds:

(2 hewE)lnRené,e)m

e€OK

SO (W PR - £

KeP.

lo.x S h?llalloe.  IVbed)llo.c S h7?|dllo. VK € P,

lo.x + (E) Y2 p = prllox + |lw — whnllo.x)-

Proof. For e € E(T) we define locally ¢, = (u®)"1h.R.b.. Therefore, relation
(2.9) implies

he(6F) R 2, < / R, - ((1%) " heRyb,) = / R. -C,.
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Since Jw x nJe = 0 and [pn]. = 0, we have

/ [VAE (wh — w) x 1+ (o — p)nle - €.

e

= Z /K(\//Fcurl(wh —w)+V(pn—p))-Ce

KeP,
+ Z / (ViE(wh — w) - curl ¢, + (pr — p) divV - C,),
Kepr 'K

where we have used integration by parts elementwise. Recalling that f¥—/uF curlw—
Vp = 0|k gives

e 3,65KZ€;3€/I(<(fE_fE)'Ce+\/E/K(wh—w)-curlce
> /KRl.ce.

+/(ph—p)diVV-C> +
K KeP,

he
wlIR

From the Cauchy—Schwarz inequality we can then infer that

he(u™) R S D0 (W) 2 hic | F5 = Fillo.x + ()72 1lp = pallo.x
KeP,

+Jw = wnllox) % (L) 2V lore + (1) 2t 1€ ello,x)-

And the assertion of the lemma is proven after obtaining the bound

Y2V ¢ o,k + ()2 R 1€ llo,xe
S (WP o,k = A2 (1F) T2 R o o

~

Now, we are in position to state the efficiency of the proposed estimator ©.

THEOREM 2.3 (efficiency estimate for the elasticity problem). Let (u,w,p) be

the solution to (2.2) and (up,wp,pr) the solution to (2.3) (or (2.4)). Also, let ©,T
be as in (2.5). Then

0 < Corr(Il(w — wp,w — wp, p— pu)ll + ).

Proof. 1t suffices to combine Lemmas 2.1-2.4. 0

3. Rotation-based poroelasticity with total pressure. In this section we
propose a mixed finite element method for the approximation of linear poroelasticity
equations, formulated in terms of displacement, rotation vector, fluid pressure, and
total pressure. Then, we will present an a posteriori error analysis.

3.1. Continuous formulation. We consider the steady poroelasticity equa-
tions written in terms of displacement w, fluid pressure p, rescaled total pressure
¢ = ap — (2uF + AP)divu, and rescaled rotation vector w := \//Fcurl u, where
a > 0 is the Biot-Willis parameter, and AP, uP are the Lamé constants. More-
over, s¥ is a smooth fluid source term, & is the permeability (isotropic and satisfying

0 < k1 < k(x) < Ky < oo for all © € Q), ¢g > 0 is the storativity coefficient, g is
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gravity, f¥ is the external load, and &, p are the viscosity and density of the pore
fluid, respectively. The system reads

(3.1a) VP curlw + Vo = f£ in Q,
(3.1b) w—+pPeurlu=0 inQ,
(3.1c) 2uf + \P) g +divu — au” +2A7)"Ip=0  inQ
(3.1d)

[co + o?(uf + /\P)_l]p —a2pf + A7t — ¢ div [:(Vp—pg)| = s inQ,

and we assume that the domain is clamped and consider zero filtration flux on the
boundary

u=0 on 099, kEHVp—pg)-m=0 on 0.

Testing each equation of (3.1a)—(3.1d), integrating by parts whenever adequate
(see [25, Theorem 2.11]), and applying the boundary conditions we obtain

—/uP . ivo = — P
\/,LT/chrl'u w—i—/ngdlvv /Qf v,
(3.2) /chef\/;ﬁ/ﬂe'curlu:O,
P Py—1 s P Py—1 _
2u” + %) /Q(bw+/ﬂwdlvu a(2u” + A7) /pr 0,

_C+052/ +L/¢
O (2uP + AP) qu 2uF + AP Jg I

—/EVP'V(]:—B nqu—/qu
Q€ g Q Q

for each (v,8,,q) € H}(Q) x L2(Q2) x L2(Q2) x HY(Q).
We can regard the rotation and the rescaled total pressure ¢ as a single unknown

& = (w, ¢). This gives the unsymmetric variational form: find (&, u,p) € Hx 'V x Q
such that

(3.3a) a(@,6) 4 by (6,u) — by(6,p) = 0 V6 e€H,
(3.3b) b1 (8,v) = F(v) YveV,
(3-3¢) ba (&, q) — c(p,q) = G(q) VqeQ,

where 6 := (0,v), H := L%(Q) x L2(Q), V := H}(Q), Q := H(Q), and the bilinear
forms a : HxH - R, by : HXxV > R by : HxQ — R, b3 : Hx Q — R,
c:Q x Q — R, and linear functionals F' : V — R, G : Q — R are specified in the
following way:

oA 1
a(s, 0) .—/Qw 0+2MP+)\P/Q¢1/),

bi(8,v) == —\/pp/0~curlv+/wdivv, bs(8, p) ::%/W,
Q Q 2p7 + A" Jg

(07

2
1 P
cp,q) = |c +}/pq+ kVp-Vq, F(v):=— ‘v,
#9) {0 2uF + AP ] Jg € Ja @) Qf
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Glg) = -2 ffg-Vq—/qu-
¢ Ja Q

Note that the displacement space Hq(curl, ) N Hy(div, Q) is algebraically and topo-
logically equivalent to V if €2 is a polyhedral bounded domain with Lipschitz boundary
[25, Lemma 2.5, Remark 2.7].

The formulation in (3.3) can be also written, more concisely, as

BP((’LL7(.U, ¢7p)7 (Uv 0,7, Q)) = F(U) + G(Q)»

where the multilinear form (now having a subscript P for poroelasticity) is defined as
BP((“‘v w, ¢7p)a (’U, 0a wa q)) = a(‘37 é)—’_bl (57 u) _bZ(évp)—’_bl ((‘_ja v)+b2("‘_ja q) _C(p7 Q)

The following result will be useful in the next section.

THEOREM 3.1. Assume ﬁ € (0,9¢9/10]. For every (u,w,d,p) € HY(Q) x
L2(Q) x L%(Q) x HY(Q), there exists (v,0,1,q) € H{(Q) x L2(Q) x L(Q) x HY(Q)
with I(v,6,¢,g)ll < Cill(w, w, ¢, p)ll such that

BP(('U/,UJ, ¢,p)a ('U, 971/%61)) 2 CQ”'('LL,U), ¢,p)”|27

where

. 1 1
(v, 0,9, )% := p* (|| curlv||§ o + || divoll§ o) + [10]I5.o + /TPWOHg,Q + m||¢||3,9

2

« 2
2uP + NP 0.0

K
+ (Co + ) ||Q||g,9 + ”qu

Proof. Analogously as in the proof of Theorem 2.1, we have that there exists
vy € H§(Q) such that

Ca -
BP((U7 w, ¢7p)7 ('Uo, 0,0, 0)) > HT||¢O||%,Q - MP (UJ, curl UO)

1 1 €
> (CQ - 26) /Tp||¢0||g,sz - 5”‘-" 3,9-

First, we take v = —u, 8 = w, ¥ = ¢, and ¢ = —p. Consequently,

BP((U, W, ¢ap)7 (_U’v w, ¢7 _p))
= [wlfo + 2u” + A7) Hol5 0 — 2a26” +X7) " (p, 9)o,0
+(co +a® 2" + AT)HIpl3 .0 + 15/€VD(F o

Next, we choose v = 0, @ = —/uf curlu, ¢ = pf divu and ¢ = 0, and therefore,

Bp((u,w, $,p), (0, —/pP curlu, ¥ divu, 0))
— MPH cur1u||§79 + ,uP|| divu||g79 - \/F(w,curlu) + MP(QMP + /\P)ﬂ((b’ div )

—ap® (2p" + A7) (p, diva)
P P
> o leurtulf + (1 s ) vl

2 2
2’“13 ¥ )\p) 0, — EHwHO,Q
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2 1

— e PR — 5o 9]
2(2uP + AP) B 2(2uf + AP)

2
0,0°

Finally, we can take v = —u + §1vg, @ = w — do/ P curlu, ¥ = ¢ + Soub divu, and
q = —p to obtain

BP((“’)"‘Ja d)ap)v (1)7 97¢7Q)) = BP(('LL,L«J, ¢ap)7 (—u,w, ¢7 _p))
+ 5lBP((u7w7 ¢7p)a (’UQ,O, Oa 0))

+ 5QBP((U’7 w, ¢7p)7 (07 -V /”'P curlu, ,uP div u, 0))
P

d1e 62 T H .
> (1 - - > lwllg o+ T” curlullf o + 6 (1 - Y] | divul§ o

2 2 (2uP + AP
1\ & . o 1 16
+ (CQ - 26) /TPH% 0.0+ P L AP <2 - 2) ll¢

a2 (52
e N I 2
+ (co + 21P +AP) < B) )) ||P||o,Q
Choosing € = 1/Cq, 61 = 1/2¢, and §3 = 1/5, we have

|(2),Q + ||”/§Vp||g,9

1 1
BP((“’: w, d))p)a (’U, 97 d)7 Q)) 2 Z min {ng’ 50} |||('U,, w, ¢7p) I"2
And from that, the following estimate completes the proof:

(v, 8,%, g)II* = Il (—u + d1v0, w — d2v/pP curlu, ¢ + Sop’ divu, —p)lI?
< 2[l(u, w, ¢, p)lI*. o

3.2. Discrete spaces and Galerkin formulation. With the same notation
as in section 2.2, we specify finite-dimensional subspaces of the functional spaces for
displacement, fluid pressure, rotations, and total pressure as follows:

V5, :={v, € CQ) NV :vp|x € P (K)? VK € Th},
Qn :={ar € C(DNQ: qulk € Pry1(K) VK € Tp},
W, = {0, € L3(Q) : 0|k € Pp(K)UY/2 VK € T},
(3.4) Zn = {¢n € L2(Q) : Yp|x € Pr(K) VK € Tp,}.
Then the discrete formulation consists of finding (wp, wp, n,pr) € Vi x Wi, X Z X Qp,
such that
(3.5) Be((up,wn, ¢n,pn), (v,0,1,q)) = F(v) + G(q)

for all (v,0,1,q) € Vi x Wy, x Zp X Qp. Likewise, for each k > 0, the modified
(stabilized) discrete weak formulation of the rotation based poroelasticity is as follows:
find (uh,wh,¢h,ph) € Vi x Wy, x Zp, x Qp, such that

(36) BP((uh7wh7¢h7ph)7(v507¢aq)) +,U71 Z he/[[¢h]][[¢]]
e€E(Th) ¢
= —(f",v)o0 — B(F&g7 Vq)o.o — (s7,q)0.0

£

for all (1’7971/)7(]) € Vi X Wy X Zp, X Qh-
The analysis of the continuous and discrete formulations is not found in [5, 4].
For the sake of completeness, we outline it in Appendices A and B.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/04/22 to 130.194.20.155 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A POSTERIORI ANALYSIS OF ELASTICITY/POROELASTICITY B975

3.3. A posteriori error analysis. First, we define the poroelastic local error
estimator W as

h? he
Vi = /TISHRlllﬁ,KJr Y FIReNG e + IR2lIE i + pall RallF s + o1l Rallf

ecOK

+ Z p2||R€Hg,e7

ecOK
where the elemental residuals are defined as
R, = {fﬁ —VuPeurlwy, —Vortk, Rao:i={wp— vubcurluylg,
Rs := {divu, + (2,uP + )\P)_l(bh —a2u+ /\P)_lph}K,
Ry = {s}, — (co+ a®2u+ )" )pn + au” + A") o + £ div[s(Vpn — p8)]} i,

and the edge residuals are defined as

R, — LViPwn x n+ ¢pnle, e € E(Tu)\T,
e - 07 GEF,

o JHE (T~ 8, e € ETINT,
S RV - ), eel,
with the scaling constants taken as
p1 = min{(co + a2(2MP + )‘P)_l)_17 h%{&’%_l}ﬂ
po =& Y he,  pa = ((1F) 71+ 2uF + AT TH 7L
On the other hand, the definition of the poroelastic oscillation term ?K is as follows:
T = hic(u") T~ £h

Finally, the global residual error estimator and data oscillation terms are, respectively,

(3.7) =Y wk, Y= ) TR

KeTy, KeTh

(2J,K + pulls” — 55”3,}(-

3.3.1. Reliability. In this section, we establish reliability of (3.7). The main
ingredients are the stability theorem and the interpolation estimate to establish the
upper bound.

THEOREM 3.2 (reliability for the Biot problem). Let (u,w, ¢, p) and (up, wp, on, p)
be the solutions of the weak formulations (3.2) and (3.5) (or (3.6)), respectively. Then
the following reliability bound holds:

”l(u — Up, W — wha¢ - ¢hap _ph)m S Crel(\I/ + ’/f\)7

where Cre1 > 0 is a positive constant independent of mesh size and parameters.

Proof. Since (u — wup,w —wp, ¢ — dn,p—pr) € HH(Q) x L2(Q) x L2(Q) x HY(Q),
Theorem 3.1 then implies

CQ'”(ufuhaw*whv ¢*¢hap7ph)|”2 < BP((u*uhvwfwha ¢7¢h7p7ph)a (v707w7Q));
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with lI(v,0,%,¢)ll < Cill(uw —wp,w —wh, d— dp, p—pr)ll. From the definition of Bp,
it follows that
BP((U — Up, W — Wh, ¢ - ¢h’p - ph)7 ('l};va,Q))
=—(f" — fr,v—vn)oo — p¢ (g, V(g — qn))o.0
+ (5" = sh,a—an)oo — (F.v —vr)oa + (5h.q — an)o,

- BP((uhaw}u ¢haph)7 (’U — Uhp, aawa q— Qh))

Finally, applying integration by parts, the Cauchy—Schwarz inequality, and approxi-
mation results yields

BP((U — Up,w — wh7¢ - ¢hap _ph)v (Uaavqu)) < C(\II + ?)lll(v,e,'l/},q)”l o

3.3.2. Efficiency. The following lemmas provide upper bounds for each term
defining U .

LEMMA 3.1. The following holds:

hie(UF) V2RSS (1) P hicl| FF £

Proof. The proof follows from Lemma 2.1. ]
LEMMA 3.2. The following holds:

0.5 +(") T2 0= nllo,x+||w—wh]lo, k-

[R2llo.x S lw —whllo.x + VP |l curl(u — up)lo,x-

Proof. The proof follows from Lemma 2.2. a0
LEMMA 3.3. The following holds:

Py IRallo,x S VP |l div(w — wp)|lo,x + (26" + AT) 72| — dnllo,x
+a(2p” + X)) 2|p = prllo,k-

Proof. Using the expression divu + (2uf + AP)71¢ — a(2uf + A\P)~1p = 0, we
have

0.K = p}imH divuy, + 2p" + A7) e — a2u” + A) prllo.x
S VPl div(w — wp)llox + (26 + AF) 7V ) — dpllo,x
+ (2" + A7) 2)p = prllo,x O

1/2
Py |Rs|

LEMMA 3.4. The following holds:

hic(uF) V2RSS (00)' 211 = shllo.x + [co + &2+ X) Y2 (p — pallo,x
+ (5/€)2 IV (p — p)lo,x
+ (2" + A7) 72| — ¢

0,K-

Proof. For each K € Ty, we can take ¢|x = (p1) ' Rs4bx. Then, invoking (2.8),
we end up with

(p) IRl < /K Ra((p1) " Rabxc) = /K Ric.
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Recall that s — [co + (2 + A) " Hp + a(2uf + AP) 1o + 1 div[s(Vp — pg)]x = 0.
We subtract this from the last term, and then integrate using {|ox = 0 to obtain

() MRallZ e < /K (8 = sP)C + [0 + 022+ V)] /K (b pu)C
Lot /K KV (p—pr) - VC
+a<2u+A)*1/K(¢—¢h)c.

Then, the Cauchy—Schwarz inequality gives

(p1) MRS & S((p1)2N1s” = sh lloxc + [co + (2 + X) 2 lp = pullo,x
+&7V2KY2V (9 — pi) o,k
+ (268 + AP T2 6 — o,k ) (k/O) 2V lo,x + (p1) )1 lo,x-

The proof follows after noting that

(5)"1vel

_ K\1/2 _
o+ (o)™ ellore < (5) i elo + o 2ok

S (1) 2 C o,k = (p1)"? | Ralfo,x- o

LEMMA 3.5. The following holds:

( S h(u”) R,

e€cOK

1/2
) < () P hie o

KeP,
+ (1) 72N = nllore + llw = whllore)-

Proof. The proof readily follows from Lemma 2.4. ]
LEMMA 3.6. The following holds:

1/2
(Z P2|Re3,e> <3 ()P — ok

ecOK KeP.
+ [eo + a?(2u + N2 p = pallo,x + (K/EYAV(® — pn)llo.x
+ 26"+ AF) T2 p — o,k )-

Proof. For e € £(Ty) we can locally choose ¢, = paRcb.. Then, from (2.9), we
readily have that

(3.8) pallRe|Z. < / R. - (paRebe) = / R.-C..

€ (&

The weak form (3.2) leads to

/Q(’f/f)v(p —pn) - Vg = (— [Co + (ZMPO:QF )\p)} /quh + 72’upi P /Q ¢Qh>

+ <§/ng-th+/QSQ) —/Q('i/f)vph'velh
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for all g, € Vi,. We can next apply integration by parts and choose g, = ¢,. Then,
from (3.8) we arrive at

P2 /R4C+Z/f<«'/§ (p—pn) VC+Z/ —53,)¢
KeP KeP, KEP,
@
—<Co+ﬁ Z/(p_ph) P PZ/¢ d)h
(267 + X7) Kep. 'K 2 +A KeP,
And the proof is completed after applying the Cauchy—Schwarz inequality. O

THEOREM 3.3 (efficiency estimate for the Biot problem). Let (u,w,¢,p) and
(up,wn, dn, pr) be the solutions to the formulations (3.2) and (3.5) (or (3.6)), re-
spectively. Then the following efficiency bound holds:

U < Corr(Il(w — wp,w — wh, & = G, p — i)l + 1),
where Ceg > 0 is a constant independent of mesh size and model parameters.
Proof. The proof is a direct consequence of combining Lemmas 3.1-3.6. O
4. Rotation-based elasticity-poroelasticity interface problem.

4.1. Continuous formulation. Let {2 now be partitioned into nonoverlapping
and connected subdomains QF, QF representing zones composed by the nonpay rock
(linearly elastic domain) and a reservoir (poroelastic domain), respectively. We focus
on the case where the reservoir is completely surrounded by the elastic subdomain,
such that the interface ¥ = 9QF N 9QF coincides with the boundary of the pay zone.
We consider that the normal unit vector n on X points from QF to QF. The problem
is stated as follows, which is as in [4], except for the particular scaling used herein:

(4.1a)
\/uipcurlwP + Vo' = fF in QF,
(4.1b)
— \//FcurluP =0 inQF,

(4.1c)
2uf + XY 71oP Hdivat —a@2u” + AP P =0 in QF,
(4.1d)
[co + (" + AP)HpP — a(2u” + A7) e" — %div [(Vp" — pg)] = s in QF,
(4.1e)
\/ﬁcurle +VpP =% in QF,
(4.11)
w— \//ﬁcurluE =0 in QF,
(4.1g)
dive + (2uE + XB)"1pP =0 in QF,
(4.1h)

E—0 onT,

(4.13)
uf =uf,  pPwb xn+ ¢Fn =/ pEw® x n + pn, g(VpP —pg)-n=0 on?.
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The weak formulation of the rotation-based Biot’s poroelasticity in QF is as fol-
lows:

— /P curlo® - Wb + PP dive” — (VpEw® x n+ pPn, oty = —/ b,
QP QP QP
/ wb 0" — /P 6" - curlu® =0,
QP QP

-(ZuPJr)\P)’l/ ¢P¢P+/ ¢Pdivup—a(2up+)\P)71/ PPyt =0,
Qr Qr Qr
2

o P P - P P Ko P P
_ - = _ M v/ v
|:Co+ (2/1P+)\P):| /Qpp 7+ 2/1,P+)\P /QP¢ 4 /QP 5 b 4
- /fg-VqP—/ sPqP
§ Jar QP

for each (vF, 07, ¢YF ¢F) € HY(QF) x L2(QF) x L2(QP) x HY(QF). Similarly, for the
equations of linear elasticity in QF we get

—\/ME/ curlvE~wE+/ PP divo® + (VpEw® xn+pEn,vE>g:—/ FE P,

Qe Qe o®
/ WP 0% — /P 6" - curlu® =0,
Qe Qe
/diquqE+(2ME+)\E)—1/ PP =0
Q QE
for each (v®, 0%, ¢%) € HL(QF) x L2(2F) x L2(QF), where HL(QF) = {v € H'(QF) :

v® = 0 on I'}. We define & = {w®, ¢P, WP pP} and write the weak formulation: find
(ﬁ,u,pp) € H x V x QF such that

(@, 0) +b.(6,u) —bo(9,p7) =0 vd cH,
b (&, v) = F(v Yo eV,
bs(<,q") — c(p”. ") = G(¢") Vg e QF,

where ? = (OP,wP, 0", ¢"). We define spaces as
H:=L2(QF) x L2(QF) x L2(QF) x L2(QF), V:=H}(Q), QF :=H'(QP),

and the bilinear forms ¢ : Hx H = R, by : HxV = R, by : Hx QF — R,
b3 : Hx QF = R, ¢: QF x QF — R, and linear functionals F: V - R, G : QF - R
are specified in the following way:

, 1 1
5.6) = PLgP 4 PP+/ E. gE | / 2R
a(e, ) /Qp“’ oGP Ju OV L 2UE + A Jou P 1

bl(é,v) = f\/uP/ OP'curlv+/ wpdivvf\/uE/ 9E~curlv+/ pEdivw,
QP QP QF QF

bo (B, pF) := S / Py b3(3, q%) = S / PP
2( s P ) ()\P_'_Q,U/P) QPp 1;& ) 3(&1,(] ) (2/~LP+)\P) qu ¢ )
2
P Py._ @ pp, 1 P o, P
c(p”.q )= {60+ (2uP+/\P)]/Qpp q +5 QPF»Vp Vg,
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Fo)=—[ ffov—[ ffov,  G¢")=-% H9~qu—/ sPq".
QP QE 5 QF QF

For the forthcoming analysis, we will consider the following (1%, 4 )-dependent norm
(see, for instance, [25, Remark 2.7] for the case of a single-physics domain) for the
displacements:

[v]I%r = | eurlw|[§ e + 1|l divv[|f ge + pP|| curlv|[§ ge + pF| divo|[§ gs,

and H will be endowed with the norm

- 1 1
P E
1011 := 167117 e + /Tp\wgllg,m t5.p 1971500 + 16715 oo

puP + AP
1
E 2 E2
+ /TEHCIO 16,02 + m\\q 16,08
Now, we write down the compact form of the weak formulation as follows:
%
(4.2) Bi((,u,p"),(6,v,¢")) = F(v) + G(¢"),

where the multilinear form now has a subscript I (for interface problem), and it is
defined as

(@, p?), (6,0,07) == a(@, 6) +0,(6,w) — (6, p")
+01(&,v) +b3(F,¢7) — (@, ¢").

We now turn our attention to the stability estimates. The following theorem will also
be very useful in the forthcoming analysis.

THEOREM 4.1. Assume 5 pH\p € (0, 900/10} For every (&, u,p*) € HxVxQF,
there exists (9 v,¢") € Hx V x QF with |||(0 v,¢")ll < Cllll(3 u, pP)Il such that

Bi((@,u,p"), (0,v,¢%)) > Coll(@,u, pP)I2,

— 2
where I1(6 0, ¢")I2 = [[v]% + 6 |3 + (co + ar e a5 qr + 16/6(Va")E or -

Proof. Invoking the relevant inf-sup condition, for each p® € L2(QF) and 4"
€ L2(QF), we can find v§ € H}(QF) and vf € H}(QF) such that

(divog, p™)o,0e > Can /1" Ip5 5. ar, VP VG000 < 1/V/ BB (PG 0.0,
(divog, ¢ )o.ar > Car /i l166 I5.0rs VP VVG 0,00 < 1/V/ 6P (0,00

Hence, for vy € H(Q2) such that vo|ges = v§ and vo|gr = vi, we have
Bi((@u.p"). (0.00,0) = ~ViF [ o curlof 4 [P divol
QP oP
—VuE [ WP curlof +/ p" div vy > (C’Qp — 1) LPH(;SOPH%QP
QE QE 2e1) p ’

1 1 €2 €1
+ (o = 5 ) el e — 21Pluas = $1 o
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%
Selecting 6 = &, v=—u, and q¢© = —p® we have
Bi((&,u,p"), (&, —u, =p")) = [|w®[[§ qr + (2% + A*)||p"|
+ W[5 e + 20" + A7) OV IF ar
—2a(2u” + A7) BT, 67 )0 .0r + (co + a®(2u” + A7) [PV or
+ [1(5/6)" 2 Vpl[g op-

Next, we take ?1 = (—/pP curlu®, P divuf, —/pF curl u®, uF divu®) e H, v =
0, and ¢ = 0. Then

2
0,08

Bi(@,u,p"). (61,0,0))

= 1P curluP (2 o + 18] divu® 2 gr — VAF (WP, curlu®)g o5
+ uB/ 2" + XF) (p", div UE)O,QE
1 [l eurla® |2 gr + uP|| diva® |2 gr — Vi (", curluf ) o

+ 1 (2u" + AT) (@, divaul )00 — ap” (26" + A7) T (", div UP)O,QP

MP P2 MP P P2
> 7” curlu |[§ oe + (1 - W) p |l divat (g or
L pie o P2 1 P2 " E |2
5”“’ |o,QP - mnp |o,QP - mw ||0,QP + 7” curlu”||
E E
2 . B2 Lo g2 H E |2
+ 7Hdwu 116,08 — 5”‘*’ 16,08 — m”p 16,0
— —
Then we can make the choices v = —u + d1vg, 0 = &+ 5201, and ¢¥* = —p©,

leading to

BI((37 u,pP), (3 + 5231, —u + (5111(), _pp))
= BI((ﬁ’ u7pP)7 (2}7 —u, _pP)) + 61B1((3a uvpp)7 (05 Vo, O))

— d1€ 1 E
+82B1((W,w, p"), (61,0,0) > (1 - ;) 0P om + 62 5l curlu | e

P Ee 1 LTNP
+527||dlvu HO,QE + 0 CQE_E ﬁ”%”O,QE

1 o™ B2 0161 02 P2
+ e (1 e ) IR + (1= 252 = 2) 16" I o

p" da P2 pr ivul |2
5 [ curlu’|[§ gp + 61 1_(2MP7+>\P) [ div e |[§ or

+

1 51 P2 1 1 52 P2
+ <CQP - 262> lTpH% 16,00 + Pl 2 o™ 115, or

a? 0
109295 R+ (04 gy (-1 %) ) ¥ R

Assuming the values €; = eo = min{l1/Cqr,1/Cqr}, d1 = 1/2€1, and §3 = 1/5, we
then have

— 1 . . 1
Bi((@,u,p"),(6,v,¢")) > 4 min {mm {Cér,Cr}, %} (&, w, p" ).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/04/22 to 130.194.20.155 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

B982 V. ANAYA, A. KHAN, D. MORA, AND R. RUIZ-BAIER

Finally, the proof concludes after realizing that

_>
(8,0, "2 = (D + 628 1, —u+ 6100, )12 < 20(D, u, pP)I2. O

4.2. Discrete spaces and Galerkin formulation. Let {7;},>0 be a shape-

regular family of partitions of the closed domain €2, conformed by tetrahedra (or
triangles in 2D) K of diameter hy, with mesh size h := max{hx : K € T;,}. In addi-
tion, we assume that the mesh is conforming with the interface. This is achieved, for
example, by generating conforming simplicial meshes for QF and for QF and requiring
that they match on ¥ so that the union of the subdomain meshes is a triangulation
of QP UX U QF. We specify the finite-dimensional subspaces for displacement, fluid
pressure, rotations, and total pressure as follows:

V5, = {v, € CQ)NV :vp|x € Pry1 (K)? VK € Ty},
Qh = {a, € C(OP) : ¢} | € Pry1(K) VK € Ta},
WL = {6} e L2(Q) : 0} |k € Pp(K)U Y2 VK e T},
WE = {67 € L2(0F) : 0} |k € Pp(K)U Y2 VK € T},
Zr = {yF € L2(QF) : ¢F |k € Po(K) VK € T},
7y = {qr € L2(Q%) : ¢'|k € Pr(K) YK € Tp,}.
Define &, := {wh,oF, Wl pl} € WF x ZP x WP x ZF := H;,. The discrete weak

formulation of the rotation based elasticity is read as follows: find (Qh,uh,pg) €
H), x V), x QF such that

_>

(4.3) Bi((@p,un.ph), (6,v,4)) = F(v) + G(q)

for all (3,1}, q") € H, x V}, x Q). For each k > 0, the modified (stablized) discrete
weak formulation of the rotation based elasticity reads as follows: find (&, wp, pr) €
H), x Vj, x QF such that

(44 Bu(@nunph), (@ v+ 3 Z— /[pEMqE]]

e€&(Ty)NOQE

he
Y Rt = P+ 6
e€&(Tn)NOQP B Je
%
for all (6,v,¢") € Hy x V), x Q.

4.3. A posteriori error analysis. Let ©%, U% and A2 be the elasticity esti-
mator (cf. (2.5)), the poroelasticity estimator (cf. (3.7)), and the interface estimator
(see below), respectively. Then we define

=2 ._ 2 2 2
= ) Ok+ Y Ui+ > A
KeT,nQE KeTnnQP ecE(Th)NT

where ~
A= he(u” + 1) HIRs|G o + heér ™ [ Rell5

and

Ry = {ViPwh x n+ ¢hn — VBwl x n —pin}, Ry := {k£(Vp} — pg) -n}.
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Next, we define the global data oscillations term Y as

T2 .= Z TIZ(Jr Z 'le(,

KeT,NnOQE KeT,nQP
where TK and ?K are the local data oscillations for elasticity and poroelasticity,
respectively.

4.3.1. Reliability estimate. In this section, we prove the reliability bound for
the interface estimator.

THEOREM 4.2 (reliability for the transmission problem). Let (3, u,p®) and (3;“
up,pl) be the solutions of the weak formulations (4.2) and (4.3) (or (4.4)), respec-
tively. Then the following reliability bound holds:

(&S — G —un, p© — Pl < Cral(E+ 1),

where Cie) > 0 is a positive constant independent of mesh size and parameters.

Proof. Since (3 — Whou— up, pb — pr) € HxV x QF, then from the stability
theorem we have

Coll(@ — B — w, p — P < Bi(@ — B — g, g — pb), (6,0,47)),

with [1(6, 0, ") < CLI(D — D, — wp, P — pi)ll. And from the definition of the
continuous and discrete weak forms, it follows that

Bi((@ — By —un, pF — pP), (6,0,47))

— —(fT = v —vn)ogr — (fF = FE v —vn)oqe — 2

3
+ (SP - SE,Q - Qh)o,QP - (fl}::a v — ’Uh)o,QP - (f}”:,v - ’Uh)o,QE + (51;’ q— Qh)o,QP

%
- BI((jhvuhvpg)v ( 0 , U — Uhp, qP - Qflj))

(kg, V(g — Qh))o,QP

Applying integration by parts, the Cauchy—Schwarz inequality, and approximation
results yields

Bi((@ = Gnw—wn, p¥ —pb), (0,0,¢7)) < CE+T)(E, v, ¢")l. 0

4.3.2. Efficiency bound.

LEMMA 4.1. The following estimates are satisfied:
O SIW - @nu—up,p” —pI+T, ¥ SN — Dyw—un,p” —pp)ll+ T

Proof. The first bound follows from Theorem 3.3, while the second one follows
from Theorem 2.3. O

LEMMA 4.2. The following holds:

1/2
(ZhewEwP)*nRzn%,e) 52( S () e £ — o

eex e€X N KeP.NOE

+ (W) 2P = pihllok + llw® —willo) + D> () T2l = Fillox
KeP.NQF

)2 0P = R ok + —w*;Ho,K)).
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Proof. For each e € £(Ty) MY, we locally define ¢, = (u* + uF)~1h.Rygb.. Using
(2.9) implies

eG4 ) RIS [ R (64 0) e Rsb) = [ R G
Integration by parts gives
J V@ =) % (o = - — VP = ") st (6 - ¢,
= Y[ (VFeurlw] — ")+ Gk - ) )

KeP.NQE

+ D / (Vi (W) — w®) - curl¢, + (py —p®)divV-C,)
KeP.noE Y K

b [ (VT eurl(l - o)+ V0] - 07) - ¢)
KepP.naP 7 K

+ Z / (\/F(wg—wp)wurlce-i-((bg—¢P)divV-Ce).
KepP.naP 7 K

Recall that f¥ — \/uP curlw® — VpP = 0|k and f* — /uF curlw® — Vp¥ = 0|.
Then, we have

he
WHREHg,eS > /K<(fg_.fE)'Ce"‘\//F/K(wg—wE)~cur1C€

KeP.NOQFE

+/K<p5—pE>divv-<>
+ Z /KRIIECe—i_ Z /KRIIDCe

KeP.NOQE KeP.NOQP
+ > / <(f5—fp)-Ce+VuP/(wlﬁ’—wE)'CllrlCe
Kep.nar K K

+/ (¢}, — ¢")divV - 4).
K
Next, we can apply the Cauchy—Schwarz inequality, leading to

he B
m”Re”ae S Z ((ME) 1/2hK||fEffg|

KeP.NOQE
= Pillo.x + [l = willo.re) x (6™ /21V o, + (1) 2Rt 1€ lo.e)

+ ) (WD) TPhllf” = Frllos + (WP) TR = dhllo.x
KeP.NOF

+ W = willo.x) x ()19 lo,r + (1) 2R ICNo,x)-

o,k + (1F) 72| p"

The sought estimate is then a consequence of the bounds

(WE)Y2V o, + (1) 2R o, S (WF)2ReMIC
SRYP(E 4 1P T2 Re e

0,K
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()21 ¢ o,k + (W5 2Rt o S (7)Y 2 RIS N0, x
SR+ 1P T2 Re e 0

LEMMA 4.3. The following bound holds:

1/2
S AN TS E - @hu—wnp” P+ T,
e€&(Th)NE

Proof. The proof follows straightforwardly from Lemma 3.6. 0

THEOREM 4.3 (efficiency estimate). Let (3,u,pp) and (3;1, up,ph) be the solu-
tions to (4.2) and (4.3) (or (4.4)), respectively. Then, the following efficiency bound
holds:

E < Cert(N(& — @pyuw—un,p” —pL)Il+ ),

where Cogg > 0 is a constant independent of h and of the sensible model parameters.

Proof. The bound results from combining Lemmas 4.1-4.3. a0

5. Computational examples. The accuracy of the three finite element dis-
cretizations and the robustness of the corresponding a posteriori error estimators will
be demonstrated in this section. As usual, such robustness is quantified in terms of
the effectivity index of a given computable indicator ® € {©, ¥, =}, i.e., the ratio
between the total actual error and the estimated error

off(P) = (ef, +ep +---)'/?/ Pk,

and eff is expected to remain constant independently of the number of degrees of
freedom associated with each mesh refinement. The direct solver UMFPACK is used
for all linear systems, and the algorithms are implemented in the FEniCS library [2],
using multiphenics [8] for the handling of subdomains and incorporation of restricted
finite element spaces. We emphasize, however, that no splitting algorithms have been
implemented for the present formulations. All the methods analyzed in the previous
sections are realized using a monolithic approach.

We start with a simple case of manufactured solutions on Q = (0, 1)?, where both
displacement and fluid pressure vanish on 0f2,

7 sin? (1) sin(my) cos(my) + p(z, y)/2\ ) .

ply) =ay(l —z)(a—y), ulzy) = (—7T sin(7x) cos(my) sin®(my) + p(x, y)/2\

To ensure the zero boundary condition for displacement, we choose a = 1. In the
interface problem, we choose a = 0.5 for fluid pressure. Unless specified otherwise,
all parameters (except the Poisson ratio) are taken equal to 1. For the transmission
problem the interface is the horizontal segment located on y = %7 and the porous
domain is below the interface. A sequence of successively refined uniform meshes is
constructed, and exact and estimated errors between these closed-form solutions and
the finite element approximations (in this case focusing on the first- and second-order
schemes, with £ = 0 and k& = 1) are computed. The results are collected in Tables 5.1,
5.2, and 5.3, where the convergence rates are computed as

(5.1) r(y = log(e( /&) [log(h/h)] 7,

where e, € denote errors generated on two consecutive meshes of size h and h.
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TABLE 5.1
Exzample 1A: Errors, convergence rates, and effectivity indexes under uniform mesh refinement.
Smooth manufactured solutions for the rotation-based elasticity problem.

DoFs h ew Tw en T e eff(©)
E=1,v=025k=0
114 0.3536 2.14e+0 0.00 2.64e+0 0.00 3.40e+0 0.249
418 0.1768 1.11e+0 0.95 1.40e+0 0.92 1.79¢+0 0.248
1602 0.0884 5.61e-01 0.99 7.07e-01 0.98 9.02e-01  0.246
6274 0.0442 2.81e-01 1.00 3.54e-01 1.00 4.52e-01  0.245
24834 0.0221 1.40e-01 1.00 1.77e-01 1.00 2.26e-01  0.244
98818 0.0110 7.02e-02 1.00 8.85e-02 1.00 1.13e-01  0.244
E=1,v=025k=1
354 0.3536 5.33e-01 1.63 7.65e-01 1.51 9.32e-01 0.146
1346 0.1768 1.43e-01 1.90 2.09e-01 1.87 2.53e-01  0.151
5250 0.0884 3.67e-02 1.96 5.17e-02 2.02 6.34e-02  0.148
20738 0.0442 9.24e-03 1.99 1.28e-02 2.02 1.58e-02  0.146
82434 0.0221 2.32¢-03 2.00 3.18e-03 2.01 3.93e-03 0.146
328706 0.0110 5.79e-04 2.00 7.93e-04 2.00 9.82e-04 0.146
E=10%v=0499, k=0
114 0.3536 6.43e+2 0.00 7.24e+2 0.00 9.68e+2 0.222
418 0.1768 3.19e+2 1.01 4.02e+2 0.85 5.14e+2  0.247
1602 0.0884 1.6le+2 0.99 2.04e+2 0.98 2.60e+2 0.245
6274 0.0442 8.08e+1 1.00 1.02¢+2 1.00 1.30e+2 0.244
24834 0.0221 4.04e+1 1.00 5.1le+1 1.00 6.5le+1 0.244
98818 0.0110 2.02e+1 1.00 2.55e+1 1.00 3.26e+1 0.244
E=10% v=0.499, k=1
354 0.3536 2.37e+2 0.00 4.18¢+2 0.00 4.81e+2 0.172
1346 0.1768 4.14e+1 2.52 5.94e+1 2.82 7.2de+1 0.150
5250 0.0884 1.06e+1 1.97 1.49e+1 1.99 1.83e+1 0.148
20738 0.0442 2.67e+0 1.99 3.68¢+0 2.02 4.55e+0 0.146
82434 0.0221 6.68e-01 2.00 9.17e-01 2.01 1.13e+0 0.146
328706 0.0110 1.67e-01 2.00 2.29e-01 2.00 2.83e-01  0.145

The expected O(h¥*1) convergence is observed for all fields in their respective
norms, in accordance with the theory from [5, 4], and the effectivity index is close to
constant for all mesh refinements. This same behavior is seen even when the elastic
or the poroelastic material is nearly incompressible (setting £ = 10°, v = 0.499) and
when the poroelastic material is nearly impermeable (setting x = 10712), and we also
note that the effectivity index is slightly modified, but it is still constant and not
affected by the different parameter scaling, again confirming the robustness of the
estimators. The variation in efficiency is not surprising as our analysis only focuses
on h-adaptivity based a posteriori error estimation (and an extension to hp-adaptivity
based a posteriori error estimators might help to overcome such a variation).

For the second and third examples, we employ adaptive mesh refinement con-
sisting of the usual steps of solving, then computing the local and global estimators,
marking, refining, and smoothing. The marking of elements for refinement follows
the classical Dorfler approach [18]: a given K € Tj, is marked (added to the mark-
ing set My, C Tp) whenever the local error indicator ®x satisfies ZKGM}L <I>%( >
gZKeTh ®2., where 0 < ¢ < 1 is a user-defined parameter (meaning that one refines
elements that contribute to a proportion ¢ of the total squared error). Elements in
M, are then refined (their diameter is halved) and an additional smoothing step is ap-
plied before starting a new iteration of the algorithm. When computing convergence
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TABLE 5.2

Example 1B: Errors (combining rotation and total pressure into &), convergence rates, and
effectivity indexes under uniform mesh refinement. Smooth manufactured solutions for the rotation-
based Biot problem.

DoFs h es rs eu T ep Tp e eff (V)
E=1,v=025k=1k=0
139 0.3536 2.14e+0 - 2.64e+0 — 5.51e-02 — 3.40e+0 0.249
499 0.1768 1.11e+0 0.95 1.40e+0 0.92 2.91e-02 0.92 1.79e4+0 0.248
1891 0.0884 b5.61e-01 0.99 7.07e-01 0.98 1.50e-02 0.96 9.02e-01  0.246
7363 0.0442 2.81e-01 1.00 3.54e-01 1.00 7.57e-03 0.98 4.52¢-01  0.245
29059 0.0221 1.40e-01 1.00 1.77e-01 1.00 3.80e-03 0.99 2.26e-01  0.244
115459 0.0110 7.02e-02 1.00 8.85e-02 1.00 1.90e-03 1.00 1.13e-01  0.244
E=1,v=025k=1k=1
435 0.3536 5.33e-01 — 7.65e-01 — 7.19e-03 — 9.32e-01 0.146
1635 0.1768 1.43e-01 1.90 2.09e-01 1.87 1.96e-03 1.88 2.53e-01  0.151
6339 0.0884 3.67e-02 1.96 5.17e-02 2.02 5.11e-04 1.94 6.34e-02  0.148
24963 0.0442 9.24e-03 1.99 1.28e-02 2.02 1.30e-04 1.97 1.58e-02  0.146
99075 0.0221 2.32¢-03 2.00 3.18¢-03 2.01 3.29¢-05 1.99 3.93¢-03 0.146
394755 0.0110 5.79e-04 2.00 7.93e-04 2.00 8.26e-06 1.99 9.82e-04 0.146
E=10%v=0499, k=1, k=0
139 0.3536 6.43¢+2 — 7.24e+2 — 5.10e-02 - 9.68¢+2 0.222
499 0.1768 3.19e+2 1.01 4.02¢+2 0.85 2.85e-02 0.84 5.14e4+2  0.247
1891 0.0884 1.6le+2 0.99 2.04e+2 0.98 1.49e-02 0.94 2.60e+2  0.245
7363 0.0442 8.08e+1 1.00 1.02e+2 1.00 7.55e-03 0.98 1.30e4+2 0.244
29059 0.0221 4.04e+1 1.00 5.1le+1 1.00 3.80e-03 0.99 6.5le+1  0.244
115459 0.0110 2.02e+1 1.00 2.55e+1 1.00 1.90e-03 1.00 3.26e+1 0.244
E=10°51v=0499, k=1k=1
435 0.3536 2.37e+2 — 4.18e+2 — 7.16e-03 - 4.8let2 0.172
1635 0.1768 4.14e+1 2.52 5.94e+1 2.82 1.96e-03 1.87 7.24e+1  0.150
6339 0.0884 1.06e+1 1.97 1.49e+1 1.99 5.11e-04 1.94 1.83e+1 0.148
24963 0.0442 2.67e+0 1.99 3.68e+0 2.02 1.30e-04 1.97 4.55e4+0 0.146
99075 0.0221 6.68e-01 2.00 9.17e-01 2.01 3.29e-05 1.99 1.13e4+0 0.146
394755 0.0110 1.67e-01 2.00 2.29e-01 2.00 8.26e-06 1.99 2.83e-01  0.145
E=10%°v=0499, k =102, k=0
139 0.3536 6.43e+2 — 7.24e+2 — 1.81e-03 - 9.68e+2 0.222
499 0.1768 3.19e+2 1.01 4.02¢+2 0.85 4.62e-04 1.97 5.14e+2  0.247
1891 0.0884 1.61le+2 0.99 2.04e+2 0.98 1.18¢-04 1.96 2.60e+2  0.245
7363 0.0442 8.08e+1 1.00 1.02e4+2 1.00 3.02e-05 1.97 1.30e+2  0.244
29059 0.0221 4.04e+1 1.00 5.1le+1 1.00 7.72e-06 1.97 6.5le+1 0.244
115459 0.0110 2.02e+1 1.00 2.55e+1 1.00 2.00e-06 1.95 3.26e+1 0.244
E=10%v=0499, k =10"12, k=1
435 0.3536 2.37e+2 — 4.18e+2 — 9.97e-04 - 4.8let2 0.172
1635 0.1768 4.14e+1 2.52 5.94de+1 2.82 3.60e-05 4.79 7.24e+1 0.150
6339 0.0884 1.06e+1 1.97 1.49e+1 1.99 5.40e-06 2.74 1.83e+1  0.148
24963 0.0442 2.67e+0 1.99 3.68e+0 2.02 1.15e-06 2.23 4.55e+0 0.146
99075 0.0221 6.68e-01 2.00 9.17e-01 2.01 2.73e-07 2.08 1.13e+0 0.146
394755 0.0110 1.67e-01 2.00 2.29e-01 2.00 6.69e-08 2.03 2.83e-01  0.145

rates under uniform refinement, we use the following modification to (5.1):

B987

r(y = —2log(e(.)/&()[log(DoF /DoF)] ~*.

The second example again investigates the accuracy of the three numerical meth-
ods but this time we use the L-shaped domain Q = (—1,1)?\ (0,1)? and the trans-
mission problem has the interface defined as the segment going from the re-entrant
corner (0,0) to the bottom-left corner of the domain (—1, —1), and the porous domain
is the one above the interface. In addition to the singularity of the geometry, we use
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TABLE 5.3
Exzample 1C: Errors, convergence rates, and effectivity indexes under uniform mesh refinement.
Smooth manufactured solutions for the rotation-based interfacial elasticity/poroelasticity problem
with k =0, 1.

DoFs e p r_p o,P P o,P TP eu T e B TE B T B e ef£(Z)
EE—EP — 1, ,F —o0.25 P =025, k=1, k=0
139 1.5258  — 0.1982 T 3.280-02 0.00 2.6433 —  1.48¢40 —  1.866-01 _—  3.4036 0.281
499 0.7902 0.95 0.0833 1.25 1.33e-02 1.30 1.3992 0.92 7.73e-01 0.94 8.41e-02 1.14 1.7870 0.294
1891 0.3984 0.99 0.0365 1.19 6.37e-03 1.07 0.7071 0.98 3.91e-01 0.98 3.82¢-02 1.14 0.9023 0.298
7363 0.1995 1.00 0.0170 1.10 3.20e-03 0.99 0.3541 1.00 1.96e-01 1.00 1.77e-02 1.11 0.4519 0.298
29059 0.0998 1.00 0.0082 1.05 1.60e-03 1.00 0.1771 1.00 9.80e-02 1.00 8.48¢-03 1.07 0.2260 0.298
115459 0.0499 1.00  0.0040 1.02 8.0le-04 1.00 0.0885 1.00 4.90e-02 1.00 4.15e-03 1.03 0.1130 _ 0.298
EE =P =1, ,F =025 P =025, k=1, k=1
135 0.3750 0.0334 T 3.906-03 — 07644 —  38.756-01 _—  B3.626-02 _— _ 0.9317 0.151
1635 0.1009 1.89 0.0073 2.20 1.08¢-03 1.86 0.2092 1.87 1.0le-01 1.90 7.92e-03 2.19 0.2534 0.154
6339 0.0259 1.96 0.0018 2.05 2.83e-04 1.93 0.0517 2.02 2.58¢-02 1.96 1.90e-03 2.06 0.0634 0.150
24963 0.0065 1.99  0.0004 2.02 7.25¢-05 1.96 0.0128 2.02 6.51e-03 1.99 4.68¢-04 2.02 0.0158 0.148
99075 0.0016 2.00 0.0001 2.01 1.83e-05 1.98 0.0032 2.01 1.63e-03 2.00 1.16e-04 2.01 0.0039 0.148
394755  0.0004 2.00 2.48e-05 2.01 4.62e-06 1.99 0.0008 2.00 4.08e-04 2.00 2.90e-05 2.00 0.0010 0.147
EE =105, EP =105, vP = 0.499, vP = 0499, k =1, k =0
139  450.02 66.730 3.14¢-02 723.84 150612 6.67cF1 968.45  0.241
499 225.32 1.00 13.844 2.27 1.19¢-02 0.85 402.24 0.85 2.25e+2 1.00 1.38e4+1 2.27 513.55 0.293
1891 113.83 0.99 6.1821 1.16 6.24e-03 0.93 203.74 0.98 1.14e+2 0.99 6.18¢+0 1.16 259.81 0.296
7363 57.065 1.00 2.8910 1.10 3.18e-03 0.97 102.12 1.00 5.7le4+1 1.00 2.89e40 1.10 130.22 0.297
20059 28.551 1.00 1.4069 1.04 1.60e-03 0.99 51.085 1.00 2.86e+1 1.00 1.4le4+0 1.04 65.145 0.297
115459 14.277 1.00  0.6965 1.01 8.0le-04 1.00 25.543 1.00 1.43e+1 1.00 6.97e-01 1.01 32.575  0.297
EF =10%, P =105, vB = 0.499, vP = 0.499, k =1, k = 1
135 143.37 87.195 3.850-03 118.47 T.436+2 872+ 1 481.08  0.175
1635 29.208 2.30 2.0812 5.39 1.07e-03 1.84 59.380 2.82 2.92e+1 2.30 2.08¢+0 5.39 72.394 0.153
6339 7.4723 1.97  0.3699 2.49 2.83c-04 1.93 14.911 1.99 7.47e4+0 1.97 3.70e-01 2.49 18.283 0.150
24963 1.8825 1.99  0.0907 2.03 7.25¢-05 1.96 3.6848 2.02 1.88¢+0 1.99 9.07c-02 2.03 4.5477 0.148
99075 0.4716 2.00 0.0224 2.02 1.83e-05 1.98 0.9172 2.01 4.72e-01 2.00 2.24e-02 2.02 1.1345 0.148
394755 0.1180 2.00 0.0056 2.01 4.62e-06 1.99 0.2290 2.00 1.18e-01 2.00 5.57¢-03 2.01 0.2834 0.147
EE =10%, EP =10%, vF =0.499, vF =0.499, k = 10712 k=0
139 450.02  — 66.730 ~ 8.47e-04 — 723.84 45062 —  6.67ef1 _— 96845 0.241
499 225.32 1.00 13.844 2.27 2.15e-04 1.98 402.24 0.85 2.25e+2 1.00 1.38e4+1 2.27 513.55 0.293
1891 113.83 0.99 6.1821 1.16 5.59e-05 1.94 203.74 0.98 1.14e+2 0.99 6.18e4+0 1.16 259.81 0.296
7363 57.065 1.00 2.8910 1.10 1.45e-05 1.95 102.12 1.00 5.7le4+1 1.00 2.89e+0 1.10 130.22 0.297
29059 28.551 1.00 1.4069 1.04 3.79¢-06 1.93 51.085 1.00 2.86e+1 1.00 1.4le+0 1.04 65.145 0.297
115459 14.277 1.00 0.6965 1.01 1.02¢-06 1.90 25.543 1.00 1.43e+1 1.00 6.97e-01 1.01 32.575 0.297
EE —10%, BP =105, vB = 0.499, vP = 0.499, k = 10712, k = 1

435 143.37 - 87.195 —  6.566-04 — 418.47 — 1.43et2 - 8.72ef1 - 481.08 0.175
1635 29.208 2.30 2.0812 5.39 2.18¢-05 4.91 59.380 2.82 2.92e+1 2.30 2.08¢+0 5.39 72.394 0.153
6339 7.4723 1.97  0.3699 2.49 3.41e-06 2.68 14.911 1.99 7.47e+0 1.97 3.70e-01 2.49 18.283 0.150
24963 1.8825 1.99  0.0907 2.03 7.81e-07 2.12 3.6848 2.02 1.88e+0 1.99 9.07¢-02 2.03 4.5477 0.148
99075 0.4716 2.00 0.0224 2.02 1.90e-07 2.04 0.9172 2.01 4.72e-01 2.00 2.24e-02 2.02 1.1345 0.148
394755 0.1180 2.00 0.0056 2.01 4.71e-08 2.01 0.2290 2.00 1.18e-01 2.00 5.57¢-03 2.01 0.2834 0.147

TABLE 5.4
Ezxample 2: Errors, convergence rates, and effectivity indexes under uniform versus adaptive
mesh refinement for the rotation-based interfacial elasticity/poroelasticity problem on the L-shaped
domain, with k = 1.

DoFs e p rt_p ey T4P °,P TP ey Ty e E TE B B E)
With uniform mesh refinement
157 8.56e-01 - 7.86e+0 — 1.36e+0 - 1.61e+0 - 9.86e-01 - 2.35e+4-0 - 8.246 0.071
575 3.80e-01 1.17 3.05e+4+0 1.37 3.64e-01 1.90 7.07e-01 1.19 4.15e-01 1.25 1.16e40 1.02 4.199 0.151
2203 2.22e-01 0.77 1.74e4+0 0.81 1.77e-01 1.05 3.92e-01 0.85 2.22e-01 0.90 6.19e-01 0.91 1.823 0.087
8627 7.72e-02 1.52 4.39e-01 1.99 4.10e-02 2.11 1.14e-01 1.78 5.98e-02 1.89 1.54e-01 2.01 0.765 0.091
34147 2.66e-02 1.54 1.09e-01 2.01 1.09e-02 1.92 3.45e-02 1.72 1.58e-02 1.92 4.10e-02 1.91 0.319 0.034
135875 1.97e-02 0.44 3.79e-02 1.53 3.64e-03 1.58 2.16e-02 0.68 7.28e-03 1.12 1.37e-02 1.58 0.248 0.152
‘With adaptive mesh refinement
157 8.57e-01 - 7.86e+0 - 1.36e+40 - 1.62e+40 - 9.87e-01 0.00 2.36e+0 - 8.239 0.081
551 3.79e-01 1.30 3.05e+0 1.51 3.65e-01 2.10 7.07e-01 1.32 4.17e-01 1.37 1.16e+4+0 1.13 3.201 0.081
1020 2.21e-01 1.75 1.74e+0 1.82 1.77e-01 2.36 3.91e-01 1.92 2.22e¢-01 2.04 6.18e-01 2.05 1.822 0.087
2307 7.36e-02 2.69 4.38e-01 3.38 4.20e-02 3.52 1.11le-01 3.09 5.90e-02 3.25 1.53e-01 3.43 0.463 0.091
5779 1.81e-02 3.06 1.06e-01 3.10 1.21e-02 2.71 2.74e-02 3.04 1.45e-02 3.06 3.96e-02 2.94 0.112 0.089
20209 4.59e-03 2.19 2.67e-02 2.20 3.21e-03 2.12 6.94e-03 2.19 3.63e-03 2.21 1.02e-02 2.18 0.028 0.089
70299 1.15e-03 2.22 6.69e-03 2.22 1.23e-03 1.54 1.74e-03 2.22 9.07e-04 2.22 2.56e-03 2.21 0.007 0.090

manufactured solutions with sharp gradients near the re-entrant corner
t
p'(z,y) = exp(—25(2* +y?)), u(z,y) = (exp(—50(z®+y?)), exp(—50(z* +y?))) .

It is expected that the convergence of the methods is hindered due to the lack of
regularity of the exact solutions whenever one follows a uniform mesh refinement.
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Fic. 5.1. Ezample 2. Adaptively refined meshes (top) and approzimate solutions (bottom) for
the Biot/elasticity problem.
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F1G. 5.2. Ezample 3. Approximate elastic rotation on a horizontally clipped elastic geometry
(top), displacement on a diagonally clipped domain (center), and fluid pressure on a zoomed poro-
elastic domain (bottom), for three steps of adaptive refinement for the Biot/elasticity application in
fractured reservoirs.
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Such a slower error decay is clearly observed in the top half of Table 5.4, while
adaptive mesh refinement (with a Dorfler constant of ¢ = 0.001) yields asymptotic
optimal convergence evidenced on the bottom half of the table, where also one reaches
much smaller errors using a fraction of the degrees of freedom needed in the uniform
case. Here we focus on the methods with £ = 1, and samples of adaptively refined
meshes and approximate solutions are portrayed in Figure 5.1. In this case we have
used the following contrast of parameters between the subdomains: ¢ = 0, « = 1,
EF =10, B =1, v® =0.25, v’ =045, £ =1, k = 1073,

The last test illustrates the use of mesh adaptivity guided by the a posteriori error
estimator = on an interface elasticity /poroelasticity problem applied to oil reservoir
poromechanics, similarly to the test in [24, sect. 8.2] (see also [26, 4]). In CO4 seques-
tration in deep subsurface reservoirs one is interested in the distribution of pressure
and displacement across the interface between the nonpay rock and the aquifer zones
in the case where the poroelastic domain is an array of thin-walled structures fully
surrounded by an elastic region. The multidomain is the unit cube Q = (0, 1)% m3 and
the aquifer array has a width of 0.015m. A well is represented by a localized source
sP(x,y,2) = spexp(—1000[(x — 0.5)2 + (y — 0.5)2 + (2 — 0.5)?]). This is an injection
zone of relatively small radius reaching the center of the pay zone at (0.5,0.5,0.5).
On the surface of the nonpay rock we impose the sliding condition w - n = 0. The
interfacial conditions are as in (4.1i). The simulation uses the following values for the
model parameters: “sy = 0.5, ¢ = 1073, a = 0.75, E¥ =5-10%, EF = 103, v® = 0.3,
P =045,¢=10"3 k=10"7, g = (0,0, -9.81)%.”

Initial coarse meshes are constructed for both subdomains, then we solve the cou-
pled transmission problem, and then apply six steps of the iterative mesh refinement
strategy based on the estimator Z. To observe how the adaptivity takes place on both
elastic and poroelastic domains, we plot in Figure 5.2 samples of the approximate so-
lutions on the first three steps of adaptive mesh refinement. The concentration of the
amount of fluid near the center of the pay zone is seen in the first row, and we can
also see the concentration of refinement near the interface in all panels.

6. Concluding remarks. In this paper we have developed the a posteriori error
analysis for the interfacial coupling between an elastic solid and a poroelastic material.
The formulation is written using rotations as part of the unknowns in both subdo-
mains. We establish reliability and efficiency of three different models, and present a
series of computational results confirming the theoretical properties of the a posteriori
error estimators.

Extensions of this work include H(div)-conforming discretizations, the coupling
with advection-diffusion-reaction systems following [40], and the case of nonlinear
permeability (depending on the total amount of fluid or only on the displacement
divergence) as used in, e.g., [13, 15] and [3, 17]. Nonlinear extensions including
Forchheimer-type terms, as in, e.g., [14], or with the theory from [22] are also feasible.
A much more challenging problem is the interface coupling in the large-deformation
regime, which could follow the recent theory in [9, 10], so far only available for lin-
earised poro-hyperelasticity.

Appendix A. Well-posedness analysis for rotation-based poroelasticity.

The bilinear forms and the linear functionals appearing in the variational problem of

interest (cf. section 3) are all bounded by constants independent of ' and AP [4, 5].
In addition, we have the following result.

LEMMA A.l. Let (B,u,p) € HXxV X Q, where @ = (w, @), be a solution of the
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system (3.3a)—(3.3c); then there exists a constant C > 0, such that

(A1) (w,w,ép)Il < C{E") 2 oo + 1105/6) 2 pglloe + o1 15" o}

. -1 _
where p; = min ((co + ﬁ) ,(K/6)7Y).
Proof. Using Theorem 3.1 implies

Coll(w, w, ¢, p)I* < Bp((u,w, ¢,p), (v,6,1,q)) = F(v) + G(q),

with (v, 0,4, )l < Cyll(w,w, @, p)ll, where Cy and Cy are constants given in Theo-
rem 3.1. And (A.1) results from applying the Cauchy—Schwarz inequality. O

A.1. Solvability of the continuous problem. Let us rewrite (3.3a)—(3.3c) as
follows: find 4 := (&J,u,p) € X := H x V x Q such that (§ + T)u = F, where the
linear operators § : X — X*, 7 : X — X*, and F € X* are defined as

(S(#),B) : = a(, 0) + b1 (6,u) — by (3, v) + c(p, q),
<T(ﬁ)a{;> L= _b2(§7p) - b2("‘_57Q)a <]:7 6) = _F(U) - G(q)
for all 4 := (&, u,p), ¥ := (é, v,q) € X, where (-, -} is the duality pairing between X
and its dual X*.
LEMMA A.2. The operator § : X — X* is invertible.

Proof. First, for a given functional F := (Fyu, Fv, Fq), observe that establishing
the invertibility of S is equivalent to proving the unique solvability of the operator
problem

(A.2) S(#@) = F.

Furthermore, proving unique solvability of (A.2) is in turn equivalent to proving the
unique solvability of the two following uncoupled problems: find (&, u) € H x V such

that
(A3) a(@,0) +b1(0,u) = Fu(f) VOcH,
J,v

b1(&,v) = Fy(v) YveV,
and find p € Q, such that

(A4) c(p,q) = Folg) VYgeqQ,

where Fy, Fyv, and F are the functionals induced by Fg, Fv, and Fq, respectively.
The unique solvability of (A.4) follows by virtue of the Lax—Milgram lemma, and the
well-posedness of (A.3) follows from a straightforward application of the Babuska—
Brezzi theory. ]

LEMMA A.3. The operator T : X — X* is compact.
Proof. We begin by defining the operator B : L2(2) — Q as

(B(¥), ¢)o.0 == a(2u” + AP)—l/qu VqeQ, vy e L2(Q).

This operator is the composition of a compact injection and a continuous map and it
is therefore compact. And denoting by B* the adjoint of B, we infer that the following
map is also compact:

T(ﬁ) = ((07 7153((25)3070)703 7]3*([))) o
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LEMMA A.4. The operator (S+T) : X — X* is injective.

Proof. Tt is sufficient to show that the only solution to the homogeneous problem

a(@,0) + by (8,u) —by(6,p) =0 V6 cH,
bi(B,v)=0 VveV,
ba(W,q) —c(p,q) = 0 VgeQ

is the null-vector in X. Thus, from Lemma A.1, and the fact that F = G = 0, we
have u =0, =0, p=0. |

By virtue of Lemmas A.1, A.2, A.3, and A.4, and the abstract Fredholm alterna-
tive theorem, one straightforwardly derives the main result of this section, stated in
the upcoming theorem.

THEOREM A.l. There exists a unique solution (J,u,p) € H x V x Q, where
& = (w,9), to (3.3a)—(3.3¢c). Furthermore, there exists a positive constant C > 0,
such that

I, w, 6.0l < C{E") 21 £ o0 + 15/€) 2 pgllo + o1 lIs" o0}

where p1 = min ((co + ﬁ)_l, (k/€)7).

Appendix B. A priori error analysis for rotation-based poroelasticity.
Denoting W}, x Z, := Hj,, a Galerkin scheme for (3.3a)—(3.3¢) is as follows: find
(@n,un, pn) == (Whs @n)s wn, pr) € Hy X Vi, x Qp such that

(B.1)  a(@n,6p) + b1(6n,up) — ba(65,pr) = 0 Y6y, := (04, 1) € Hy,
(B.Z) bl(ﬁm’ljh) = F(’Uh) Vv, € Vy,
(B.3) b3(Gn, qn) — c(pn.an) = G(qn) Y gn € Qn.

B.1. Stability of the discrete problem. All bilinear forms and functionals
introduced in section 3 preserve stability on the discrete spaces. Also, a(-,-), and ¢(-, -)
maintain coercivity on Hy and Qp, respectively. Such stability properties permit us
to establish the well-posedness of (B.1)—(B.3).

THEOREM B.1. There exists a unique solution (&p,un,pr) € Hy X Vi, X Qy,
where Gy, = (wp, ¢n), to (B.1)~(B.3). Furthermore, there exists a positive constant
Cstab > 0, independent of h, uF, ¥, such that

Il s wns S o)l < CLE™) 2 1$ o2 + 11(5/€) 20800+ o1 5" 0.0}

where p1 = min((co + ﬁ)_l, (k/&)71).
Proof. The proof follows as in the proof of Lemmas A.1 and A 4. ]

B.2. A priori error bounds. Approximation properties of the spaces in (3.4)
(see, e.g., [16]) produce the following theoretical rate of convergence:

e - @0 —@,6 - 6,0 = D) < CHPEE (w0 + VP a0
+ polldlls.2 + Ppllplls1,0),

where p; = /I/i" + /T/ZAP + A7), p, = max((co + giigey) /2, (1/€)/?), and
C>0.
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THEOREM B.2. In addition to the hypotheses of Theorems A.1 and B.1, assume
that there exists s > 0 such that w € H*(Q), u € H'™5(Q), ¢ € H*(Q), p € HIT5(Q).
Then, there exists Ceony > 0, independent of h and AT, such that with the discrete
spaces (3.4), there holds

ll(w = wnw = wn, 6 = G, p = pa)|| < Coony K™ EF B (w0 + VP lulli1.0
+00ll9lls,2 + pollplls1,0)-

Proof. Using the triangle inequality we can split the error into two parts,

l(w—upn,w—wh, & — dn,p—p1)|| < m(u— u,w —@7¢—¢~7,p—f))‘"
+ M(ﬁ— Up, @ — Wy @ — ¢h7]5—l?h)“|-

Then we can estimate the first term thanks to approximation results. To estimate the
second term, we use the stability result given in Theorem 3.1; then

O ||~ @ - wnd— onp— )|
S BP(('&/ - Uh,(:) - wha&_ ¢h7ﬁ _ph)7 ('07971/’7@)
S BP(('EL - U,LNU _wa(g_ ¢7ﬁ_p)7 (vaeaw7q))a

with ||(v,8,¢,q)|| < Co W(ﬁ —up, @ —wh, d— dn,P— ph)m We can then invoke the
continuity results to get

Cr ||~ wn @ — w6 = o5 —p)|| <o ||(@ - w6 - w665 -p)|. D
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