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Abstract

We propose a new locking-free family of mixed finite element and finite volume element methods for the approximation of
linear elastostatics, formulated in terms of displacement, rotation vector, and pressure. The unique solvability of the three-field
continuous formulation, as well as the well-definiteness and stability of the proposed Galerkin and Petrov–Galerkin methods, is
established thanks to the Babuška–Brezzi theory. Optimal a priori error estimates are derived using norms robust with respect to
the Lamé constants, turning these numerical methods particularly appealing for nearly incompressible materials. We exemplify the
accuracy (in a suitably weighted norm), as well the applicability of the new formulation and the mixed schemes by conducting a
number of computational tests in 2D and 3D, also including cases not covered by our theoretical analysis.
c⃝ 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

The numerical solution of elasticity-based problems encompasses well-documented difficulties. For instance, for
pure-displacement formulations, the use of classical finite element discretisations based on piecewise linear and
continuous elements, ensures accuracy only for moderate values of the Poisson ratio ν. As ν → 0.5, that is, when
the Lamé dilation modulus λ → ∞, and the elastic material becomes nearly incompressible, the numerical scheme
might generate spurious solutions (unphysically small deformations related to the well-known locking phenomenon,
see for instance [1]). A number of appropriate formulations together with their associated numerical methods are
available to overcome this issue. Notably, choosing a mixed scheme would produce accurate solutions even for nearly
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incompressible materials, and at the same time, one accommodates the direct approximation of auxiliary variables of
interest such as pressure, stress, or rotations.

One of the most common mixed approaches for linear elasticity is the Hu–Washizu formulation [2,3]. Some popular
methods based on such formulation include the enhanced assumed strain method [4], the assumed stress method [5],
the mixed-enhanced strain method [6], the strain gap method [7], and the B-bar scheme [1]. Some of these methods
actually coincide under certain conditions (see the discussions in e.g. [8–10]). The well-posedness for this class
of formulations has been established in [11], where it is also shown that a modified version of the Hu–Washizu
formulation is more amenable for obtaining uniform convergence in the incompressibility limit. Alternatively, other
mixed approaches (such as the Hellinger–Reissner principle) can be employed to obtain robust methods with respect
to the Lamé constants.

Schemes more closely related to the present contribution, state the problem using stresses and rotations. We
mention for instance mixed formulations based on stress [12–14], the augmented scheme in [15], a family of
pseudostress-based methods from [16], displacement–pressure mixed formulations [17]; and the first-order least
squares presented in [18]. More recent least squares schemes in connection with the present context include
saddle-point least squares methods [19], mixed approaches also considering anisotropy, large strains and quasi-
incompressibility, or others applied specifically to plates [20,21]. We refer as well to other locking-free methods
for plate models [22], and to the membrane elements introduced in [23], also including the rotation tensor as an
additional field.

In contrast to the brief literature survey given above, here we advocate a novel formulation of the elasticity
equations in terms of displacement, rotation vector, and pressure (similar ideas in the context of vorticity-based
formulations for Stokes and Brinkman equations can be found e.g. in [24–27]). This three-field formulation has
a resemblance with the displacement, pressure, and vorticity momentum formulations for acoustic fluid–structure
interaction studied in [28]. However in that reference, the system is solved for the fluid displacement and the vorticity
momentum arises as the Lagrange multiplier imposing an irrotationality constraint.

In our case, after regarding the pressure together with the rotation vector as a single auxiliary unknown (defined
in an appropriate product functional space), we are able to analyse the solvability of the resulting mixed variational
formulation simply appealing to the classical Babuška–Brezzi theory for saddle-point problems. Thanks to a rescaling
of the rotation vector norm, the well-posedness result and the continuous dependence on the data turn out to
be independent of the Lamé constants. This analysis is valid for (possibly non-homogeneous) Dirichlet boundary
conditions, and bounded Lipschitz domains.

Concerning numerical approximation, we first introduce a family of finite elements given by piecewise continuous
polynomials of degree k ≥ 1 for the displacement, and piecewise polynomials of degree k − 1 for the rotation
and pressure. The unique solvability of the finite element scheme is then established using analogous techniques as
in the continuous case, that is, exploiting a weighted norm. In addition, we prove optimal a priori error estimates
with constants fully independent of the Lamé coefficient λ; guaranteeing robustness of the method also in the nearly
incompressible limit. Nevertheless in the case of full incompressibility, both continuous and discrete problems are not
necessarily well-defined.

We remark that in the two-dimensional case, the computational cost of the proposed FE method in its lowest order
configuration is 2|Nh | (where Nh denotes the set of vertices in the mesh and |Nh | its cardinality), which is lower
than, for instance, the MINI element for displacement–pressure formulations (accounting for 7|Nh | local degrees of
freedom). Furthermore, even if our method involves two additional unknowns (pressure and rotation vector), these can
be statically condensed at the implementation stage without incurring in additional computational cost, thus turning
the proposed discretisation into a very competitive method.

A further goal in this contribution is to construct a finite volume element (FVE) method specifically tailored for
elasticity equations. FVE schemes correspond to Petrov–Galerkin formulations where the trial space is constructed
using a primal partition of the domain, whereas the test space is associated with either a dual mesh or a dual basis.
Depending on the particular kind of dual grid, the transfer operator between trial and test spaces possesses different
interpolation properties which are used in recasting a preliminary pure finite volume formulation into a Petrov–
Galerkin one. In general, these methods enjoy some features shared by finite element and finite volume schemes,
including local flux conservation properties, liberty to choose different numerical fluxes and dual partitions associated
to unstructured primal meshes; and several others (see for example [29]). Discretisation schemes following this
principle have been systematically employed in numerous fluid flow problems, including Stokes, Navier–Stokes (see
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e.g. [30–34]) and also in coupled flow-transport systems arising from diverse applications (see [35–37]). However,
up to our knowledge, the only contributions addressing FVE-like discretisations for solid mechanics are the hybrid-
stress finite volume method for linear elasticity on quads studied in [38]; and [39], where two alternative stabilisation
approaches based on nodal pressure and dual bases and meshes are applied to construct inf–sup stable approximations
for nearly incompressible linear elasticity. The class of finite volume element methods we introduce here is based
on the lowest-order mixed finite element method discussed above. As in well-established FVE schemes for Stokes
equations (cf. [31,32]), it turns out that the two schemes differ only by the assembly of the forcing term, and therefore
straightforward derivation of stability properties and energy estimates in natural norms can be done exploiting the
results obtained for the family of mixed finite elements. In addition, the FVE scheme features mass conservativity on
the dual control volumes, suitability for irregular domains and unstructured partitions, and robust approximations of
displacements. We also observe that the proposed schemes perform very well across the scope of regimes considered
in our numerical simulations.

Outline. We have structured the contents of the manuscript in the following manner. To simplify the exposition, a
few recurrent notations and useful identities are recalled in the remainder of this section. In Section 2 we lay out the
precise form of the linear elasticity equations that we will focus on, we derive a suitable mixed weak formulation,
and provide its solvability analysis. A Galerkin method is introduced in Section 3, where we also obtain stability
properties and a priori error estimates. Section 4 concentrates on the development of a low-order FVE scheme, and
its accuracy is studied in connection with the properties of the FE method. We briefly discuss up to which extent the
definition and construction of the proposed FE and FVE schemes needs to be modified in order to accommodate the
study of mixed displacement–traction boundary conditions. Some indications on how the analysis could be extended
are also addressed. Finally, the convergence and robustness of the proposed methods is illustrated via a set of insightful
computational tests collected in Section 5, including also some comparisons against other methods.

Preliminaries. Let d = 2,3 denote spatial dimension. For given vector fields θ = (θi )d
i=1, v = (vi )d

i=1 we recall the
following notation for differential operators:

div v := ∂1v1 + ∂2v2 + ∂3v3, θ × v :=

⎛⎝θ2v3 − θ3v2
θ3v1 − θ1v3
θ1v2 − θ2v1

⎞⎠ , curl v := ∇ × v =

⎛⎝∂2v3 − ∂3v2
∂3v1 − ∂1v3
∂1v2 − ∂2v1

⎞⎠ .

We also recall a version of Green’s formula given in e.g. [40, Theorem 2.11]:∫
Ω

curl ω · v =

∫
Ω

ω · curl v + ⟨ω × n, v⟩∂Ω , (1.1)

and the following useful identity

curl(curl v) = −∆v + ∇(div v). (1.2)

2. The model problem

2.1. Derivation of a displacement–rotation–pressure formulation

We assume that an isotropic and linearly elastic solid occupies a polyhedral bounded domain Ω of Rd , with
Lipschitz boundary ∂Ω . Determining the deformation of a linearly elastic body subject to a volume load and with given
boundary conditions, and adopting the hypothesis of small strains, results in the classical linear elasticity problem,
formulated as follows. Given an external force f̃ and a prescribed boundary motion g, we seek the displacements u
such that

div
(
2µε(u) + λ div u I

)
= −̃f in Ω , u = g on ∂Ω , (2.1)

where ε(u) =
1
2 (∇u + ∇ut) is the infinitesimal strain tensor, I denotes the d × d-identity matrix, and µ, λ are the

Lamé coefficients (material properties of the solid, and here assumed constant).
Next, and following the seminal work [12], one notices that using the identity

div(ε(u)) =
1
2
∆u +

1
2
∇(div u),
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and dividing the momentum equation by λ + µ, we can rewrite (2.1) in the form of the well-known Cauchy–Navier
(or Navier–Lamé) equations

µ

λ + µ
∆u + ∇(div u) = −f in Ω , u = g on ∂Ω , (2.2)

where the body load has been rescaled as f =
1

λ+µ
f̃ . We then proceed to define the auxiliary scaling parameter

η :=
µ

λ+µ
> 0, and recast (2.2) in a displacement–pressure formulation (considering p = −div u as the solid pressure)

as follows

η∆u − ∇ p = −f in Ω ,

div u + p = 0 in Ω , (2.3)
u = g on ∂Ω .

At this point, and with the aim of deriving formulations whose stability holds independently of the Lamé coefficient
λ, we introduce the field of rescaled rotations ω :=

√
η curl u, as an additional unknown in the problem. Exploiting

(1.2) and the definition of pressure in terms of displacements, we observe that (2.3) is fully equivalent to the following
set of governing equations, in their pure-Dirichlet case. Find the displacement u, the rotation ω and the pressure p
such that (see [18]):

√
η curl ω + (1 + η)∇ p = f in Ω , (2.4)

ω −
√

η curl u = 0 in Ω , (2.5)
div u + p = 0 in Ω , (2.6)

u = g on ∂Ω . (2.7)

The theoretical analysis will be restricted to the case of clamped boundaries, g = 0. The case of non-homogeneous
Dirichlet boundary conditions can be analysed in an analogous manner after introducing a suitable displacement
lifting. On the other hand, the incorporation of mixed (displacement–traction) boundary conditions will be addressed
in Sections 3.2 and 4.2.

2.2. Weak form of the governing equations

Let us introduce the functional spaces

H := H1
0(Ω )d , Z := L2(Ω )d , and Q := L2(Ω ),

where Z and Q are endowed with their natural norms, and we recall the definition of the norm in the product space
Z × Q as

∥(θ , q)∥2
Z×Q := ∥θ∥

2
0,Ω + ∥q∥

2
0,Ω .

On the other hand, for H we consider the following η-dependent scaled norm (see for instance, [40, Remark 2.7]):

∥v∥2
H := η∥curl v∥2

0,Ω + ∥div v∥2
0,Ω ,

which is motivated by the natural energy form of the momentum conservation equation in (2.3), and the rescaled
rotation. Notice that the stability of continuous and discrete problems will be stated in terms of this norm.

We proceed to test (2.6) against adequate functions, to integrate by parts in two terms, and to take into account
the boundary conditions (2.7) in such a way that the resulting mixed variational formulation reads as follows. Find(
(ω, p), u

)
∈ (Z × Q) × H such that∫

Ω

ω · θ + (1 + η)
∫
Ω

pq + (1 + η)
∫
Ω

q div u −
√

η

∫
Ω

θ · curl u = 0 ∀(θ , q) ∈ Z × Q,

(1 + η)
∫
Ω

p div v −
√

η

∫
Ω

ω · curl v = −

∫
Ω

f · v ∀v ∈ H.

Introducing the bilinear forms a : (Z × Q) × (Z × Q) → R, b : (Z × Q) × H → R, together with the linear functional
F : H → R, all defined as

a
(
(ω, p), (θ , q)

)
:=

∫
Ω

ω · θ + (1 + η)
∫
Ω

pq,
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b
(
(θ , q), v

)
:= (1 + η)

∫
Ω

q div v −
√

η

∫
Ω

θ · curl v,

F(v) := −

∫
Ω

f · v,

for all v ∈ H, ω, θ ∈ Z, and p, q ∈ Q; we realise that the variational problem above can be recast as: Find(
(ω, p), u

)
∈ (Z × Q) × H such that

a
(
(ω, p), (θ , q)

)
+ b

(
(θ , q), u

)
= 0 ∀(θ , q) ∈ Z × Q, (2.8)

b
(
(ω, p), v

)
= F(v) ∀v ∈ H. (2.9)

Remark 1. Note that the natural regularity for displacements in (2.8)–(2.9) is actually H0(curl,Ω )∩H0(div,Ω ), where
H0(curl,Ω ) := {v ∈ H(curl,Ω ) : (v × n)|∂Ω = 0} and H0(div,Ω ) := {v ∈ H(div,Ω ) : (v · n)|∂Ω = 0}. According
to [40, Lemma 2.5], an algebraic and topological equivalence between this space and H = H1

0(Ω )d holds under quite
general assumptions on the domain: Ω only needs to be bounded and ∂Ω Lipschitz-continuous (see also [40, Remark
2.7]). In other instances (for example in the analysis of vector Laplacians, see e.g. [41, Section 2.3.2]) if tangential and
normal components of the displacement are to be fixed on different parts of the boundary, then the domain convexity
is also required. However that is not the case in the present study.

Remark 2. In the incompressibility limit ν = 0.5, the problem defined in (2.8)–(2.9) reduces to∫
Ω

pq +

∫
Ω

q div u = 0 ∀q ∈ Q,∫
Ω

p div v = −

∫
Ω

f · v ∀v ∈ H.

However, it is not difficult to see that u satisfies

∇(div u) = −f in Ω ,

which is not well-posed in the space H. Moreover, note that after rescaling, the body force also goes to zero in the
incompressibility limit.

2.3. Well-posedness

The unique solvability of problem (2.8)–(2.9), together with the continuous dependence on the data will be
established using the well-known Babuška–Brezzi theory.

We first observe that the bilinear forms a(·, ·), b(·, ·) and the linear functional F(·) are all bounded by positive
constants independent of η (and therefore independent of the Lamé coefficient λ). In fact, since 0 < η < 1, it is easy
to check that

|a
(
(ω, p), (θ , q)

)
| ≤ ∥ω∥0,Ω∥θ∥0,Ω + 2∥p∥0,Ω∥q∥0,Ω ≤ 2∥(ω, p)∥Z×Q∥(θ , q)∥Z×Q, (2.10)

|b
(
(θ , q), v

)
| ≤ 2∥q∥0,Ω∥div v∥0,Ω +

√
η∥curl v∥0,Ω∥θ∥0,Ω ≤ 2∥(θ , q)∥Z×Q∥v∥H. (2.11)

In addition, the bilinear form a(·, ·) is (Z × Q)-elliptic, uniformly with respect to the scaling parameter η, as stated
in the following result.

Lemma 2.1. There holds

a
(
(θ , q), (θ , q)

)
≥ ∥(θ , q)∥2

Z×Q ∀ (θ , q) ∈ Z × Q.

Moreover, an inf–sup condition holds for the bilinear form b(·, ·).

Lemma 2.2. There exists C > 0, independent of η, such that

sup
(θ ,q)∈Z×Q

b
(
(θ , q), v

)
∥(θ , q)∥Z×Q

≥ C∥v∥H ∀v ∈ H.



76 V. Anaya et al. / Comput. Methods Appl. Mech. Engrg. 344 (2019) 71–94

Proof. Let us consider a generic v ∈ H and define

θ̃ := −
√

η curl v ∈ Z, and q̃ := div v ∈ Q.

We immediately notice that

∥(̃θ , q̃)∥Z×Q ≤ ∥v∥H,

and from the definition of b(·, ·), we readily obtain

sup
(θ ,q)∈Z×Q

b((θ , q), v)
∥(θ , q)∥Z×Q

≥
b((̃θ , q̃), v)
∥(̃θ , q̃)∥Z×Q

≥ C∥v∥H ∀v ∈ H,

which finishes the proof. □

We are now in a position to state the solvability of the continuous problem (2.8)–(2.9).

Theorem 2.1. There exists a unique solution
(
(ω, p), u

)
∈ (Z × Q) × H to problem (2.8)–(2.9), which satisfies the

following continuous dependence on the data

∥(ω, p)∥Z×Q + ∥u∥H ≤ C∥f∥0,Ω .

Proof. By virtue of the general theory for saddle-point problems (see e.g. [42]), the desired result follows from a
direct application of Lemmas 2.1 and 2.2. □

Owing to the well-known regularity for the elasticity equations (see e.g. [43], [44, Theorem 5.2]), the solution u of
(2.8)–(2.9) belongs to H1+s(Ω )n , for some s > 0 depending on the geometry of Ω and on the Lamé coefficients (and
consequently on η). Moreover, there exists C > 0 independent of f such that

∥u∥1+s + ∥ω∥s,Ω + ∥p∥s,Ω ≤ C∥f∥t,Ω , (2.12)

with t = max{0, s − 1}.

3. Finite element discretisation

In this section, we introduce a Galerkin scheme associated to (2.8)–(2.9), we specify the finite dimensional
subspaces to employ, and analyse the well-posedness of the resulting methods using suitable assumptions on the
discrete spaces. The section also contains a derivation of error estimates.

3.1. Formulation, solvability, and error bounds

Let {Th(Ω )}h>0 be a shape-regular family of partitions of the domain Ω , by tetrahedrons (if d = 3, or triangles if
d = 2) T of diameter hT , having meshsize h := max{hT : T ∈ Th(Ω )}. Given an integer k ≥ 1 and a set S ⊂ Rd , the
space of polynomial functions defined in S and having total degree ≤ k will be denoted by Pk(S).

Next, we define the following discrete spaces:

Hh := {vh ∈ H : vh |T ∈ Pk(T )d
∀T ∈ Th(Ω )},

Zh := {θh ∈ Z : θh |T ∈ Pk−1(T )d
∀T ∈ Th(Ω )},

Qh := {qh ∈ Q : qh |T ∈ Pk−1(T ) ∀T ∈ Th(Ω )},

which are subspaces of H, Z and Q, respectively; and proceed to state a Galerkin scheme for the continuous variational
formulation (2.8)–(2.9). Find ((ωh, ph), uh) ∈ (Zh × Qh) × Hh such that

a((ωh, ph), (θh, qh)) + b((θh, qh), uh) = 0 ∀(θh, qh) ∈ Zh × Qh, (3.1)
b((ωh, ph), vh) = F(vh) ∀vh ∈ Hh . (3.2)

Our next goal is to establish discrete counterparts of Lemmas 2.1 and 2.2, leading to the solvability and stability
of the Galerkin method (3.1)–(3.2). Their proofs are obtained using the same arguments exploited in the continuous
case. For completeness we provide the essential steps of the latter result.
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Lemma 3.1. There holds

a((θh, qh), (θh, qh)) ≥ ∥(θh, qh)∥2
Z×Q.

Lemma 3.2. There exists C > 0, independent of η, such that

sup
(θh ,qh )∈Zh×Qh

b((θh, qh), vh)
∥(θh, qh)∥Z×Q

≥ C∥vh∥H ∀vh ∈ Hh .

Proof. For a generic vh ∈ Hh , let us define

θ̃h := −
√

η curl vh ∈ Zh, and q̃h := div vh ∈ Qh .

Then we readily notice that

∥(̃θh, q̃h)∥
2
Z×Q = η∥curl vh∥

2
0,Ω + ∥div vh∥

2
0,Ω = ∥vh∥

2
H,

and so, from the definition of the bilinear form b(·, ·), we arrive at the desired bound

sup
(θh ,qh )∈Zh×Qh

b((θh, qh), vh)
∥(θh, qh)∥Z×Q

≥
b((̃θh, q̃h), vh)
∥(̃θh, q̃h)∥Z×Q

=
η∥div vh∥

2
0,Ω + ∥vh∥

2
H

∥vh∥H
≥ ∥vh∥H ∀vh ∈ Hh . □

We can now state the unique solvability, stability, and convergence properties of the discrete problem (3.1)–(3.2),
formulated in form of the three following theorems.

Theorem 3.1. There exists a unique ((ωh, ph), uh) ∈ (Zh × Qh) × Hh solution of the discrete problem (3.1)–(3.2).
Moreover, there exists a constant C > 0, independent of h and η, such that

∥(ωh, ph)∥Z×Q + ∥uh∥H ≤ C∥f∥0,Ω .

In addition, the following approximation property is satisfied

∥(ω − ωh, p − ph)∥Z×Q + ∥u − uh∥H ≤ C inf
((θh ,qh ),vh )∈(Zh×Qh )×Hh

∥(ω − θh, p − qh)∥Z×Q + ∥u − vh∥H,

where ((ω, p), u) ∈ (Z × Q) × H is the unique solution of (2.8)–(2.9).

Theorem 3.2. Let ((ω, p), u) ∈ (Z × Q) × H and ((ωh, ph), uh) ∈ (Zh × Qh) × Hh be the solutions of the continuous
and discrete problems (2.8)–(2.9) and (3.1)–(3.2), respectively. Then

∥(ω − ωh, p − ph)∥Z×Q + ∥u − uh∥H ≤ Chmin{s,k}
∥f∥k−1,Ω ,

where s > 0 is such that the bound (2.12) is satisfied, and k ≥ 1 denotes the polynomial degree.

Proof. The result follows from Theorem 3.1 and the standard error estimates for the Scott–Zhang interpolant of
u and the vectorial and scalar L2-orthogonal projections for ω and p, respectively; together with the additional
regularity (2.12). □

To close this section, we observe that the convergence of the displacement approximation can be also measured in
the L2(Ω )d -norm, thanks to a classical duality strategy.

Theorem 3.3. Let ((ω, p), u) ∈ (Z × Q) × H and ((ωh, ph), uh) ∈ (Zh × Qh) × Hh be the solutions of the continuous
and discrete problems (2.8)–(2.9) and (3.1)–(3.2), respectively. Then, there exist constants s̃ ∈ (0, 1], (depending on
Ω and on η), and C > 0 (independent of h and η), such that

∥u − uh∥0,Ω ≤ Ch s̃+min{s,k}
∥f∥k−1,Ω .

Proof. Resorting to a duality argument, we first consider the following well-posed problem: Find ((ξ , φ), z) ∈

(Z × Q) × H such that

a((θ , q), (ξ , φ)) + b((θ , q), z) = 0 ∀(θ , q) ∈ Z × Q, (3.3)
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b((ξ , φ), v) =

∫
Ω

(u − uh) · v ∀v ∈ H. (3.4)

Note that, as a consequence of (2.12), the unique solution of (3.3)–(3.4) features additional regularity. More precisely,
we can assert that there exist s̃ ∈ (0, 1] as in (2.12), and C̃ > 0 (independent of η), such that

∥ξ∥s̃,Ω + ∥φ∥s̃,Ω + ∥z∥1+s̃,Ω ≤ C∥u − uh∥0,Ω . (3.5)

Next, and thanks to (3.4), we observe that for all (ξ h, φh) ∈ Zh × Qh we can write

∥u − uh∥
2
0,Ω = b((ξ , φ), u − uh)

= b((ξ − ξ h, φ − φh), u − uh) + b((ξ h, φh), u − uh)
= b((ξ − ξ h, φ − φh), u − uh) − a((ω − ωh, p − ph), (ξ h, φh)), (3.6)

where we have also employed (2.8) and (3.1). We then proceed to bound the second term in the right-hand side of
(3.6). This is carried out by adding and subtracting (ξ , φ), and applying (3.3)

a((ω − ωh, p − ph), (ξ h, φh)) = a((ω − ωh, p − ph), (ξ , φ)) − a((ω − ωh, p − ph), (ξ − ξ h, φ − φh))
= − b((ω − ωh, p − ph), z) − a((ω − ωh, p − ph), (ξ − ξ h, φ − φh))
= − b((ω − ωh, p − ph), z − zh) − a((ω − ωh, p − ph), (ξ − ξ h, φ − φh)),

(3.7)

where in the last step we have also used (2.9) and (3.2), valid for all zh ∈ Hh . Hence, from (3.6)–(3.7), we can deduce
that

∥u − uh∥
2
0,Ω = ∥(ξ − ξ h, φ − φh)∥Z×Q∥u − uh∥H + ∥(ω − ωh, p − ph)∥Z×Q∥z − zh∥H

+ ∥(ω − ωh, p − ph)∥Z×Q∥(ξ − ξ h, φ − φh)∥Z×Q,

which holds for all (ξ h, φh) ∈ Zh × Qh and zh ∈ Hh . Now, we take in particular (ξ h, φh) := P0(ξ , φ), where
P0 : L2(Ω )d

× L2(Ω ) → Uh := {(uh, rh) ∈ L2(Ω )d
× L2(Ω ) : (uh, rh)|T ∈ P0(T )d

× P0(T ) ∀T ∈ Th} is the
L2-orthogonal projection, and we can choose zh as the Scott–Zhang interpolation of z onto the piecewise linear and
continuous vector fields. Thus, the proof follows from standard error estimates, the additional regularity (3.5), and
Theorem 3.2. □

We point out that the value s̃ ∈ (0, 1] is associated to the regularity invoked in (3.5) when the data is (u − uh) ∈

L2(Ω )d . For instance, s̃ = 1 if Ω is a convex domain (cf. [45])

3.2. A discrete formulation with mixed displacement–traction boundary conditions

Let us now consider the case where a given displacement g is imposed only on a part of the boundary ΓD ⊂ ∂Ω ,
and set a given traction t̃ on the remainder of the boundary, say ΓN = ∂Ω \ ΓD. In this case (2.7) is replaced by

u = g on ΓD, and (2µε(u) + λ div u I)n = t on ΓN, (3.8)

where n denotes the outward unit normal on ΓN. This traction condition can be conveniently recast in terms of the
field variables in the following way

2η(∇u)n −
√

η ω × n − (1 − η)p n = t on ΓN, (3.9)

where the rescaled traction is t =
1

λ+µ̃
t, and where we have used the well-known identity ε(u)n = (∇u)n−

1
2 curl u×n.

Let HΓD (curl,Ω ) := {v ∈ H(curl,Ω ) : (v × n)|ΓD = 0} and HΓD (div,Ω ) := {v ∈ H(div,Ω ) : (v · n)|ΓD = 0}. The
form of (3.9) readily implies that the displacement should now belong to the space M := HΓD (curl,Ω )∩HΓD (div,Ω ).
It has been proved in [25, Lemma 1] (restricted to the 2D case) that there exists δ ∈ (1/2, 1] such that M is
continuously imbedded in Hδ(Ω )2. If we set again homogeneous data on the Dirichlet boundary, we could then, as
a first attempt, propose the following discrete modification of (3.1)–(3.2) incorporating mixed displacement–traction
boundary conditions: Find ((ωh, ph), uh) ∈ (Zh × Qh) × Ĥh such that

a
(
(ωh, ph), (θh, qh)

)
+ b

(
(θh, qh), u

)
= 0 ∀(θh, qh) ∈ Zh × Qh, (3.10)

b
(
(ωh, ph), v

)
− c(uh, vh) = F(vh) −

∫
ΓN

t · vh ∀vh ∈ Ĥh, (3.11)
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where Ĥh := {vh ∈ M : vh |T ∈ Pk(T )d
∀T ∈ Th(Ω )} (see [25]), and the diagonal bilinear form c : Ĥh × H̃h → R is

defined as

c(uh, vh) := 2η

∫
ΓN

[∇uh − (div uh)I]n · vh, ∀uh, vh ∈ Ĥh . (3.12)

Since this bilinear form is non-symmetric and not necessarily semi-positive definite, the analysis of (3.10)–(3.11) does
not fall in the same framework as (3.1)–(3.2). A possible way-around would be to define a fixed-point iteration scheme
that assumes c(·, ·) as part of the linear functional. Then the solvability analysis can be carried out following e.g. [46].
Alternatively, one could introduce suitable Lagrange multipliers in order to deal with the boundary terms. Further
investigation is necessary in this regard, and we simply mention that the implementation and numerical verification of
test cases involving (3.10)–(3.12) will be addressed in Section 5, where we observe optimal convergence.

4. A finite volume element scheme

4.1. Formulation and main properties

In addition to the mesh Th (from now on, the primal mesh), we introduce another partition of Ω , denoted by T ⋆
h and

referred to as the dual mesh, where for each element K ∈ Th we create segments joining its barycentre bK with the
midpoints (2D barycentres) m F of each face F ⊂ ∂K (or the midpoints of each edge, in 2D), forming four polyhedra
(or three quadrilaterals, in the 2D case) Qz for z in the set of vertices of K , that is, z ∈ Nh ∩ K . Then to each vertex
s j ∈ Nh , we associate a so-called control volume K ⋆

j consisting of the union of the polyhedra (quadrilaterals in 2D)
Qs j sharing the vertex s j . A sketch of the resulting control volume associated to s j is depicted in Fig. 4.1(a).

In its lowest-order version, a FVE method for the approximation of (2.8)–(2.9) can be constructed by associating
discrete spaces to a dual partition of the domain

H⋆
h :=

{
v ∈ L2(Ω )d

: v|K ⋆
j
∈ P0(K ⋆

j )
d for all K ⋆

j ∈ T ⋆
h , v|K ⋆

j
= 0 if K ⋆

j is a control volume on ∂Ω
}
,

and notice that no additional space is introduced for the finite volume approximation of ω or p. Furthermore, we
define the T ⋆

h -piecewise lumping map Hh : Hh → H⋆
h which relates the primal and conforming dual meshes by

vh(x) =

∑
j

vh(s j )ϕ j (x) ↦→ Hhvh(x) =

∑
j

vh(s j )χ j (x),

for all vh ∈ Hh , where χ j is the vectorial characteristic function of the control volume K ⋆
j and {ϕ j } j is the canonical

FE basis of Hh (cf. [32]). For any v ∈ H, this operator satisfies the interpolation bound (see e.g. [29])

∥v − Hhv∥0,Ω ≤ Ch|v|1,Ω .

In addition, since for the type of domains we are considering we can write H := H1
0(Ω )d

= H0(curl;Ω ) ∩ H0(div;Ω ),
then [40, Remark 2.7] implies that the operator Hh(·) also satisfies

∥v − Hhv∥0,Ω ≤ Ch∥v∥H, (4.1)

which plays a role in the convergence proof for the envisioned FVE method.
The discrete FVE formulation is obtained by multiplying (2.4) by v⋆

h ∈ H⋆
h and integrating by parts over each

K ⋆
j ∈ T ⋆

h , multiplying (2.5) by θh ∈ Zh and integrating by parts over each K ∈ Th , and multiplying (2.6) by
(1 + η)qh , for qh ∈ Qh , and integrating by parts over each K ∈ Th . This, along with identity (1.1), results in a
Petrov–Galerkin formulation that reads as follows: Find

(
(ω̂h, p̂h), ûh

)
∈ (Zh × Qh) × Hh such that

a
(
(ω̂h, p̂h), (θh, qh)

)
+ b

(
(θh, qh), ûh

)
= 0 ∀(θh, qh) ∈ Zh × Qh, (4.2)

b̃
(
(ω̂h, p̂h), v⋆

h

)
= F̃(v⋆

h) ∀v⋆
h ∈ H⋆

h, (4.3)

where the bilinear form b̃ : (Zh × Qh) × H⋆
h → R and the linear functional F̃ : H⋆

h → R are defined as

b̃
(
(θh, qh), v⋆

h

)
:= −(1 + η)

|Nh |∑
j=1

∫
∂K ⋆

j

qh(v⋆
h · n) −

√
η

|Nh |∑
j=1

∫
∂K ⋆

j

(θh × n) · v⋆
h,

F̃(v⋆
h) := −

|Nh |∑
j=1

∫
K ⋆

j

f · v⋆
h .
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Fig. 4.1. Sketch of five elements in the primal mesh Th sharing the vertex s j and employed to construct the control volume K ⋆
j belonging to the

dual partition T ⋆
h (a); example of coarse primal and dual meshes (b); and one triangular element K ∈ Th with barycentre bK , where the mi ’s denote

the midpoints of the edges, and the Qi ’s are the quadrilaterals that form the control volumes (c).

We also introduce the bilinear form B : (Zh × Qh) × Hh → R defined by

B
((

θh, qh
)
, vh

)
:= b̃

((
θh, qh

)
,Hhvh

)
,

which will be used to show that the Petrov–Galerkin formulation (4.2)–(4.3) can be regarded as a Galerkin method.
We proceed to establish a relationship between the bilinear forms b(·, ·) and B(·, ·), which will be useful to carry

out the error analysis in a finite-element-fashion. For the sake of brevity, only the proof for the two-dimensional case
is provided. The proof for the three-dimensional case follows in an analogous manner, where we instead consider
polyhedral control volumes and boundary surfaces rather than boundary edges.

Lemma 4.1. For any
(
θh, qh

)
∈ Zh × Qh and vh ∈ Hh , one has

B
(
(θh, qh), vh

)
:= b̃

(
(θh, qh),Hhvh

)
= b

(
(θh, qh), vh

)
. (4.4)

Proof. First, let g be a function that is continuous on the interior of each quadrilateral Q j (as shown in Fig. 4.1(c))
with

∫
e g = 0 for any boundary edge e. Using Fig. 4.1(c), it is straightforward to show that the following relation

holds:
|Nh |∑
j=1

∫
∂K ⋆

j

g =

∑
K∈Th

3∑
j=1

∫
m j+1bK m j

g,

where m j+1bK m j denotes the union of the line segments m j+1bK and bK m j . We take m j+3 = m j in the case that the
index is out of bound.

Next, from the definition of the transfer operator Hh(·), we find that

B
(
(θh, qh), vh

)
= −(1 + η)

|Nh |∑
j=1

∫
∂K ⋆

j

qhvh(s j ) · n −
√

η

|Nh |∑
j=1

∫
∂K ⋆

j

(θh × n) · vh(s j ).

In order to arrive at (4.4), we use the definition of B
(
·, ·

)
in combination with integration by parts and the fact that

both qh and vh(s j ) are constant in the interior of each quadrilateral Q j , to obtain

B
(
(θh, qh), vh

)
= −(1 + η)

∑
K∈Th

3∑
j=1

∫
m j+1bK m j

qhvh(s j+1) · n

−
√

η
∑

K∈Th

3∑
j=1

∫
m j+1bK m j

(θh × n) · vh(s j+1)
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= (1 + η)
∑

K∈Th

3∑
j=1

qh

[∫
s j m j

vh(s j+1) · n +

∫
m j s j+1

vh(s j+1) · n
]

+
√

η
∑

K∈Th

3∑
j=1

[∫
s j m j

(θh × n) · vh(s j+1) +

∫
m j s j+1

(θh × n) · vh(s j+1)
]
.

Since qh and θh are constant on the edges of each element K ∈ Th , we can write

B
(
(θh, qh), vh

)
= (1 + η)

∑
K∈Th

3∑
j=1

qh

∫
s j s j+1

vh · n +
√

η
∑

K∈Th

3∑
j=1

∫
s j s j+1

(θh × n) · vh

= (1 + η)
∑

K∈Th

∫
∂K

qhvh · n +
√

η
∑

K∈Th

∫
∂K

(θh × n) · vh .

Then, after one application of integration by parts and identity (1.1), we can assert that

B
(
(θh, qh), vh

)
= (1 + η)

∑
K∈Th

∫
K

qhdiv vh −
√

η
∑

K∈Th

∫
K

θh · curl vh,

which completes the proof. □

Lemma 4.1 and the definition of the scaled displacement norm imply, in particular, that the bilinear form b̃
(
·, ·

)
is continuous (cf. (2.11)), with a boundedness constant independent of η (since 0 < η < 1). Similarly, the linear
functional F̃

(
·
)

is bounded uniformly with respect to η.

4.2. A FVE method with displacement–traction boundary conditions

Analogously to Section 3.2, we discuss here how our FVE scheme can be modified to incorporate mixed boundary
conditions. We first define the space

H̃⋆
h :=

{
v ∈ L2(Ω )d

: v|K ⋆
j
∈ P0(K ⋆

j )
d for all K ⋆

j ∈ T ⋆
h , v|K ⋆

j
= 0 if s j ∈ K ⋆

j lies on ΓD
}
.

And then test (2.4) against v⋆
h ∈ H̃⋆

h and integrate by parts, which leads to

(1 + η)
|Nh |∑
j=1

∫
∂K ⋆

j

phv⋆
h · n +

√
η

|Nh |∑
j=1

∫
∂K ⋆

j

(ωh × n) · v⋆
h =

|Nh |∑
j=1

∫
K ⋆

j

f · v⋆
h ∀v⋆

h ∈ H̃⋆
h .

Next we reason as in the proof of Lemma 4.1 by considering the edges that coincide with the boundary segment ΓN
separately. More precisely, by substituting Hhvh and by definition of the traction t, we readily obtain

(1 + η)
[ ∑

K∈Th

∫
∂K/ΓN

phvh · n +

|Nh |∑
j=1

∫
∂K ⋆

j ∩ΓN

phHhvh · n
]

+
√

η

[ ∑
K∈Th

∫
∂K/ΓN

(ωh × n) · vh +

|Nh |∑
j=1

∫
∂K ⋆

j ∩ΓN

(ωh × n) · Hhvh

]

+

|Nh |∑
j=1

∫
∂K ⋆

j ∩ΓN

[2η(∇uh)n − (1 − η)phn − t] · Hhvh =

|Nh |∑
j=1

∫
K ⋆

j

f · Hhvh,

for all vh ∈ Ĥh . We now use that
∫

e(Hhvh − vh) = 0 for every vh ∈ Ĥh and every edge e of each K ∈ Th (cf. [32]),
and the fact that ph ∈ Qh and ωh ∈ Zh are constant on each element K ∈ Th , which implies that

|Nh |∑
j=1

∫
∂K ⋆

j ∩ΓN

phHhvh · n =

∑
K∈Th

∫
∂K∩ΓN

phHhvh · n =

∑
K∈Th

∫
∂K∩ΓN

phvh · n, (4.5)

|Nh |∑
j=1

∫
∂K ⋆

j ∩ΓN

(ωh × n) · Hhvh =

∑
K∈Th

∫
∂K∩ΓN

(ωh × n) · Hhvh =

∑
K∈Th

∫
∂K∩ΓN

(ωh × n) · vh, (4.6)



82 V. Anaya et al. / Comput. Methods Appl. Mech. Engrg. 344 (2019) 71–94

where we have also used that the union of boundary edges of control volumes and the union of boundary edges
of elements coincide. Consequently, we can combine (4.5)–(4.6) with (1.1) to finally obtain the following FVE
formulation using mixed displacement–traction boundary conditions: Find ((ω̂h, p̂h), ûh) ∈ (Zh × Qh) × Ĥh such
that

a
(
(ω̂h, p̂h), (θh, qh)

)
+ b

(
(θh, qh), ûh

)
= 0 ∀(θh, qh) ∈ Zh × Qh,

b
(
(ω̂h, p̂h), vh

)
− C(ûh, vh) = F̃(vh) −

|Nh |∑
j=1

∫
∂K ⋆

j ∩ΓN

t · Hhvh ∀vh ∈ Ĥh,

where the newly introduced bilinear form C : Ĥh × Ĥh → R is defined as

C(uh, vh) := 2η

|Nh |∑
j=1

∫
∂K ⋆

j ∩ΓN

[∇uh − (div uh)I]n · Hhvh, ∀uh, vh ∈ Ĥh . (4.7)

Moreover, the linearity of uh ∈ Ĥh on each element K ∈ Th implies that

C(uh, vh) − c(uh, vh) = 2η
∑

K∈Th

∫
∂K∩ΓN

[∇uh − (div uh)I]n · (Hhvh − vh) = 0, ∀uh, vh ∈ Ĥh .

This relation states that, also for mixed boundary conditions, the lowest-order FE and FVE schemes only differ by
assembly of the right-hand side; which is not necessarily true for all nonsymmetric formulations.

4.3. Stability and convergence analysis

Back to the homogeneous Dirichlet case, our next goal is to prove a FVE-counterpart of Lemma 3.2, leading to the
solvability and stability of (4.2)–(4.3). Recall that Lemma 3.1 establishes that the bilinear form a

(
·, ·

)
is (Zh × Qh)-

elliptic, uniformly with respect to η. Lemmas 4.1 and 3.2 readily imply that B(·, ·) satisfies an inf–sup condition, as
stated in the following result.

Lemma 4.2. There exists C > 0, independent of η, such that

sup
(θh ,qh )∈Zh×Qh

B((θh, qh), vh)
∥(θh, qh)∥Z×Q

≥ C∥vh∥H ∀vh ∈ Hh .

Analogously to the previous section, the following two theorems formulate the unique solvability, stability, best
approximation, and convergence properties of the discrete problem (4.2)–(4.3).

Theorem 4.1. There exists a unique ((ω̂h, p̂h), ûh) ∈ (Zh × Qh) × Hh solution of the discrete problem (4.2)–(4.3).
Moreover, there exists a constant C > 0, independent of h and η, such that

∥(ω̂h, p̂h)∥Z×Q + ∥ûh∥H ≤ C∥f∥0,Ω .

In addition, the following best approximation result is satisfied

∥(ω − ω̂h, p − p̂h)∥Z×Q + ∥u − ûh∥H ≤ C inf
((θh ,qh ),vh )∈(Zh×Qh )×Hh

∥(ω − θh, p − qh)∥Z×Q + ∥u − vh∥H,

where ((ω, p), u) ∈ (Z × Q) × H is the unique solution to (2.8)–(2.9).

The next lemma establishes linear convergence of the lowest-order FVE method.

Theorem 4.2. Let ((ω, p), u) ∈ (Z × Q) × H and ((ω̂h, p̂h), ûh) ∈ (Zh × Qh) × Hh be the solutions of (2.8)–(2.9) and
(4.2)–(4.3), respectively. Then

∥(ω − ω̂h, p − p̂h)∥Z×Q + ∥u − ûh∥H ≤ Ch(∥ω∥1,Ω + ∥p∥1,Ω + ∥u∥2,Ω ).

Proof. Let ((ωh, ph), uh) be the solution to (3.1)–(3.2). Lemma 4.1 readily implies that

a((ωh − ω̂h, ph − p̂h), (θh, qh)) + b((θh, qh), uh − ûh) = 0 ∀(θh, qh) ∈ Zh × Qh,
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b((ωh − ω̂h, ph − p̂h), vh) = F(vh − Hhvh) ∀vh ∈ Hh,

such that substituting (ωh − ω̂h, ph − p̂h) for (θh, qh) and uh − ûh for vh gives

a((ωh − ω̂h, ph − p̂h), (ωh − ω̂h, ph − p̂h)) = −b((ωh − ω̂h, ph − p̂h), uh − ûh), (4.8)
b((ωh − ω̂h, ph − p̂h), uh − ûh) = F((uh − ûh) − Hh(ũh − ûh)). (4.9)

Next, after applying the inf–sup condition from Lemma 4.2 to Eq. (4.8), standard arguments imply that there exists a
constant C0 > 0, independent of h and η, such that

∥uh − ûh∥H ≤ C0h. (4.10)

Moreover, combining (4.8) with (4.9), and using (4.1) together with Lemma 3.1 implies that there exists a constant
C1 > 0, independent of h and η, such that

∥(ωh − ω̂h, ph − p̂h)∥Z×Q ≤ C1h. (4.11)

Applying the triangle inequality to the convergence bound for the FE method established in Theorem 3.2 in
combination with the inequalities (4.10) and (4.11) finishes the proof. □

To close this section, we prove an L2-estimate for the displacement error. For this purpose we first state a
preliminary result (cf. [32]) that involves the transfer operator Hh(·).

Lemma 4.3. For any function zh ∈ Hh and any element K ∈ Th , one has∫
K

(zh − Hhzh) = 0.

Theorem 4.3. Let ((ω, p), u) ∈ (Z × Q) × H and ((ω̂h, p̂h), ûh) ∈ (Zh × Qh) × Hh be the solutions to (2.8)–(2.9) and
(4.2)–(4.3), respectively. Then there exists a constant C > 0, independent of h and η, such that

∥u − ûh∥0,Ω ≤ Ch2
[
∥ω∥1,Ω + ∥p∥1,Ω +

( ∑
K∈Th

∥f∥2
1,K

)1/2

+ ∥u∥2,Ω

]
.

Proof. Let ((ωh, ph), uh) be the unique solution of (3.1)–(3.2). We once again resort to a duality argument involving
(3.3)–(3.4) with ûh instead of uh , for which we assume there exists a unique solution satisfying (3.5). Next, we employ
(3.6) in order to arrive at the envisioned error bound. Using (2.9) and (3.2) in combination with (4.3) and Lemma 4.1,
we obtain

b((ω − ω̂h, p − p̂h), zh) + b((ω̂h − ωh, p̂h − ph), zh) = b((ω, p), zh) − b((ωh, ph), zh) = 0, (4.12)

such that employing identity (3.7) and identity (4.12) yields

a((ω − ω̂h, p − p̂h), (ξ h, φh)) = − b((ω − ω̂h, p − p̂h), z − zh) − a((ω − ω̂h, p − p̂h), (ξ − ξ h, φ − φh))
+ b((ω̂h − ωh, p̂h − ph), zh), (4.13)

which holds for all zh ∈ Hh . In particular, we take the Lagrange interpolant of z, denoted by zI ∈ Hh . Moreover, we
use f K to denote the average of f on a given K ∈ Th . Then, by virtue of Lemma 4.3 and after integrating over K ∈ Th

instead of over control volumes K ⋆
j ∈ T ⋆

h , we find that for some constant C0 > 0, independent of h and η,

|b((ω̂h − ωh, p̂h − ph), zI )| ≤

⏐⏐⏐⏐ |Nh |∑
j=1

∫
K ⋆

j

f · HhzI −

∫
Ω

f · zI

⏐⏐⏐⏐
=

⏐⏐⏐⏐ ∑
K∈Th

∫
K

f · (HhzI − zI )
⏐⏐⏐⏐ =

⏐⏐⏐⏐ ∑
K∈Th

∫
K

(f − f K ) · (HhzI − zI )
⏐⏐⏐⏐

≤ C0h2
( ∑

K∈Th

∥f∥2
1,K

)1/2

|zI |1,Ω .
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Applying triangle inequality, using the estimates for the Lagrange interpolants, and exploiting the additional regularity,
we get

|b((ω̂h − ωh, p̂h − ph), zI )| ≤ C2h2
( ∑

K∈Th

∥f∥2
1,K

)1/2

∥u − ûh∥0,Ω , (4.14)

and we arrive at the desired result after taking the L2-projections for ξ and φ, using interpolation properties, and
employing (4.13) in combination with (4.14). □

5. Numerical tests

We report in this section some numerical examples which confirm our theoretical results, also including some
additional cases not covered by our analysis.

Test 1A (accuracy assessment in 2D). For our first computational example we conduct a convergence test using a
sequence of successively refined uniform partitions of the elastic domain Ω = (0, 1)2. We arbitrarily choose the Lamé
parameters µ = 50, λ = 5000, so that η = 0.0099. This example focuses on the pure-Dirichlet problem (2.4)–(2.7),
where we propose the following closed-form solutions

u =

(
x(1 − x) cos(πx) sin(2πy)
sin(πx) cos(πy)y2(1 − y)

)
, ω =

√
η curl u, p = −div u,

satisfying the homogeneous Dirichlet datum, and where the forcing term f is constructed using these smooth functions
and the linear momentum equation. The convergence study is performed for the FVE method (4.2)–(4.3) (of lowest
order), and for the Galerkin schemes (3.1)–(3.2) of order k = 1 and k = 2. For a generic scalar or vectorial field v, on
each nested mesh we will denote computed errors and experimental convergence rates as

e0(v) = ∥v − vh∥0,Ω , eH(v) = ∥v − vh∥H, ri (v) = log
(

ei (v)
ê(v)

)
[log(h/ĥ)]−1, i = 0, H,

where e, ê stand for errors generated by methods defined on meshes with meshsizes h, ĥ, respectively; and we recall
that ∥ · ∥H denotes the η-dependent norm. These errors are tabulated by number of degrees of freedom in Table 5.1,
which correspond here (and in all subsequent tests) to the dimension of the space Zh × Qh × Hh . Apart from the
displacement error measured in the L2-norm (whose error decays with order hk+1 as anticipated by Theorems 3.3 and
4.3), each individual error exhibits an O(hk) rate of convergence, as predicted by the a priori error estimates stated in
Theorems 3.2 and 4.2. Moreover, the errors produced by the first two methods practically coincide, which is explained
by the fact that they only differ in the RHS assembly. For reference, in the top row of Fig. 5.1 we depict approximate
solutions generated with the lowest-order FVE scheme.

Test 1B (accuracy in a 3D non-convex domain). We now consider again the pure Dirichlet case, now using a
non-homogeneous datum set using the following closed-form displacement defined on an L-shaped domain of width
2, height 1.5 and depth 0.5:

u =

⎛⎝ sin(πx) sin(πy) cos(π z)
−x cos(πx) cos(πy) sin(π z)
xy sin(πx) cos(πy) cos(π z)

⎞⎠ ,

which is also used to compute the exact rotation, pressure, and body load. The model constants are taken as in Test
1A, and we generate a sequence of refined meshes (non nested and unstructured) and produce a convergence study
reported in Table 5.2. This time the convergence rates are computed as ri (v) = log(ei (v)/̂e(v))[− 1

2 log(Dof/D̂of)]−1,
where the two Dof’s stand for the number of degrees of freedom in two consecutive partitions. Once again, the errors
in this case are according to the theoretical results predicted by Theorems 3.3 and 4.3. Sample solutions computed
with a FE scheme of order k = 1 on a coarse mesh and in the deformed configuration, are depicted in the bottom row
of Fig. 5.1.

Test 1C (robustness with respect to η). In addition, these methods are robust with respect to the model parameters,
which we confirm by a series of tests where we fix a Young modulus E = 10000, we vary the Poisson ratio ν, and
measure the errors produced by the first order finite element method on an unstructured mesh of 33282 elements
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Table 5.1
Test 1A. Experimental convergence for the mixed Petrov–Galerkin (cf. (4.2)–(4.3)) and Galerkin (cf. (3.1)–(3.2)) approximation of the compressible
linear elasticity equations using µ = 50 and λ = 5000.

D.o.f. h e0(u) r0(u) eH(u) rH(u) e0(ω) r0(ω) e0(p) r0(p)

Mixed FVE with k = 1

34 0.7071 0.079453 – 0.35510 – 0.05578 – 0.42279 –
68 0.4714 0.063802 0.681 0.27558 0.573 0.04244 0.486 0.36318 0.476

172 0.2828 0.023599 1.540 0.21289 1.021 0.03270 0.638 0.20001 1.034
524 0.1571 0.009612 1.960 0.10311 1.065 0.02033 0.798 0.10700 1.074

1804 0.0831 0.001842 2.071 0.05018 1.073 0.01143 0.921 0.05688 1.079
6668 0.0428 0.000819 2.071 0.02001 1.048 0.00613 0.980 0.02730 1.051

25612 0.0217 0.000079 2.053 0.01295 1.027 0.00304 1.001 0.01258 1.029
100364 0.0109 0.000035 2.027 0.00645 1.015 0.00123 1.002 0.00693 1.016

Mixed FE with k = 1

34 0.7071 0.082091 – 0.44686 – 0.05045 – 0.44405 –
68 0.4714 0.069138 0.623 0.38582 0.562 0.04647 0.202 0.38301 0.464

172 0.2828 0.033144 1.439 0.22359 1.067 0.03639 0.478 0.22061 1.079
524 0.1571 0.009937 2.049 0.11873 1.076 0.02256 0.813 0.11656 1.085

1804 0.0831 0.002630 2.090 0.06008 1.070 0.01247 0.931 0.05877 1.076
6668 0.0428 0.000661 2.082 0.03000 1.047 0.00649 0.984 0.02929 1.050

25612 0.0217 0.000163 2.062 0.01495 1.027 0.00329 1.002 0.01458 1.028
100364 0.0109 0.000041 2.032 0.00745 1.014 0.00165 1.002 0.00727 1.015

Mixed FE with k = 2

98 0.7071 0.042104 – 0.19409 – 0.06606 – 0.18250 –
206 0.4714 0.020403 1.788 0.10392 1.549 0.03889 1.903 0.09637 1.577
542 0.2828 0.005284 2.647 0.03914 1.918 0.01338 2.027 0.03678 1.885

1694 0.1571 0.000945 2.923 0.01239 1.956 0.00418 1.973 0.01166 1.956
5918 0.0831 0.000138 3.027 0.00349 1.995 0.00114 2.033 0.00330 1.982

22046 0.0428 0.000018 3.042 0.00092 2.002 0.00029 2.023 0.00087 1.994
85022 0.0217 0.000003 3.018 0.00023 2.002 0.00008 2.052 0.00022 1.992

333854 0.0109 0.000001 3.039 0.00006 2.001 0.00002 2.013 0.00006 1.998

Table 5.2
Test 1B. Experimental convergence using non-homogeneous Dirichlet conditions on a 3D non-convex domain, using µ = 50 and λ = 5000.

D.o.f. e0(u) r0(u) eH(u) rH(u) e0(ω) r0(ω) e0(p) r0(p)

Mixed FE with k = 1

2754 0.0131 – 0.1388 – 0.1866 – 0.1674 –
7858 0.0034 1.618 0.0606 1.362 0.0266 1.405 0.0545 1.632

26979 0.0017 1.341 0.0388 0.957 0.0175 0.975 0.0337 0.976
66400 0.0009 1.401 0.0276 0.908 0.0128 0.995 0.0245 0.910

132117 0.0006 1.543 0.0118 0.994 0.0102 0.962 0.0192 0.903
231409 0.0003 1.382 0.0073 0.919 0.0083 0.918 0.0157 0.917

and 100364 D.o.f. (see first block in Table 5.3). Furthermore, we also construct a different smooth forcing term
f = 100(cos(x), cos(y))t, independent of the model parameters, solve the discrete problem for relatively large Lamé
constants (we recall that λ = Eν/[(1 + ν)(1 − 2ν)] and µ = E/(2 + 2ν)), and tabulate in the bottom block of
Table 5.3 the obtained norms of the approximate solutions. We evidence stable and robust computations even in the
nearly incompressibility limit. We have also arbitrarily set the scaling parameter to a very low value η =1e-15 (even if
materials with so large differences between the shear and dilation moduli are rarely encountered), and have reproduced
Test 1A (experimental convergence against a manufactured solution), observing that the methods still produce optimal
convergence rates. We stress that these rates are optimal when measured in the H-norm.

The computational cost associated with solving the linear systems arising from the FE and FVE discretisations can
be significantly reduced through static condensation of the pressure and rotation blocks. The relevant systems assume
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Fig. 5.1. Scheme accuracy. Approximate displacement magnitude, rotation scalar field, and pressure; obtained with the lowest-order FVE method
for Test 1A (a, b, c). Approximate solutions computed with a FE scheme of order k = 1 for Test 1B (d, e, f).

the general saddle-point form[
A Bt

B 0

] [
σ h

uh

]
=

[
0
F

]
, (5.1)

with σ h := (ph, ωh)t. Since A is symmetric and positive definite, σ h can be eliminated from the first equation of (5.1)
using σ h = −A−1Bt uh (recall that A is formed by the pressure and rotation mass matrices, so it is block-diagonal and
could be easily inverted). Substituting this equation back into the second equation of (5.1) yields the displacement
Schur complement system

BA−1Bt uh = −F, (5.2)

which is smaller, symmetric, and positive definite. Different methods can be employed to solve the Schur complement
problem efficiently, also avoiding assembling S := BA−1Bt (see e.g. [47] for an application in elasticity).

Test 2 (2D beam bending). For the next computational example we study the displacement–rotation–pressure patterns
of a rectangular beam (with length L = 10 and height l = 2) subjected to a couple (that is, a prescribed traction
( f (1 − y), 0)t, with f = 200) at one end, as shown in Fig. 5.2(a). We assume that the origin O is fully fixed and
that the horizontal displacement is zero along the left edge of the domain Ω . Furthermore, on the remainder of the
boundary we consider zero normal stresses incorporated through the bilinear form c(·, ·) (see (3.12)) and we set up a
zero body force f = 0. The availability of an exact solution (cf. [48])

u1(x, y) =
2 f (1 − ν)2

El
x
(

l
2

− y
)

, and u2(x, y) =
f (1 − ν)2

El

[
x2

+
ν

1 + ν
y(y − l)

]
, (5.3)

makes that this problem is frequently used as a benchmark. In Fig. 5.2 we illustrate the components of the
displacement, the rotation and the pressure computed on a mesh consisting of 5120 triangular elements using the
mixed FE method corresponding to k = 2, where the rectangular beam we consider has the following material
properties: Young’s modulus E = 1500, Poisson’s ratio ν = 0.49, Lamé constants λ = 24664.4 and µ = 503.356,
such that the model parameter equals η = 0.02. In addition, we conduct several tests for the lowest-order mixed FE
and FVE methods on different mesh resolutions and report on the error with respect to the analytic solution (5.3).
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Table 5.3
Test 1C. Accuracy (top rows) and robustness with respect to the Lamé constants (bottom rows) studied on two different benchmark tests approx-
imated with the lowest-order mixed finite element method.

ν λ µ η e0(u) eH(u) e0(ω) e0(p)

0.33333 7500 3750.00 0.33333 0.000040 0.01127 0.00807 0.00787
0.40000 14285.71 3571.43 0.20000 0.000038 0.01004 0.00658 0.00758
0.45000 31034.48 3448.28 0.10000 0.000037 0.00886 0.00491 0.00738
0.49000 164429.53 3355.71 0.02000 0.000035 0.00763 0.00232 0.00727
0.49900 1664442.96 3335.56 0.00200 0.000036 0.00730 0.00075 0.00726
0.49990 16664444.30 3333.56 0.00020 0.000039 0.00727 0.00025 0.00726
0.49999 166664444.43 3333.36 0.00002 0.000040 0.00726 0.00008 0.00726

ν λ µ η ∥uh∥0,Ω ∥uh∥H ∥ωh∥0,Ω ∥ph∥0,Ω

0.33333 7500 3750.00 0.33333 6.346721 23.1147 13.0760 19.0607
0.40000 14285.71 3571.43 0.20000 7.749333 26.3285 12.6964 23.0649
0.45000 31034.48 3448.28 0.10000 9.346012 29.7836 11.1665 27.6111
0.49000 164429.53 3355.71 0.02000 11.28440 33.7542 6.26612 33.1675
0.49900 1664442.96 3335.56 0.00200 11.85713 34.8893 2.10631 34.8257
0.49990 16664444.30 3333.56 0.00020 11.91832 35.0094 0.67041 35.0030
0.49999 166664444.43 3333.36 0.00002 11.92467 35.0215 0.21214 35.0209

Fig. 5.2. Test 2. Rectangular beam fixed at the origin O and with zero horizontal displacement along the left lateral edge, subjected to bending due
to a couple at one end. Sketch of the domain configuration with a coarse structured mesh and the imposed boundary conditions (a), displacement
components (b,c), pressure distribution (d), and rotation (e); all computed with a second order mixed FE method on a mesh of 5120 triangular
elements.

In particular, Fig. 5.3 displays the displacement error in the H-norm and the L2-norm versus the meshsize, for the
FE and FVE schemes, and for two values of the Poisson ratio ν = 0.49, 0.4999. The Young’s modulus is in both
cases E = 1500. Observe that these results are in agreement with the theoretical results obtained in Sections 3–4. In
addition, although this is in general not true, we mention that the second order FE scheme ensures extremely rapid
convergence (explained by the regularity of the true solution (5.3)). For ν = 0.4999, optimal convergence is recovered
for finer meshes.

We also perform a series of tests for the lowest-order FE method using different Lamé constants and model
parameters in order to test the performance of the methods when approaching the incompressibility limit, where we
fix a Young’s modulus E = 1500, vary the Poisson ratio ν, and use a mesh consisting of 100000 triangular elements
and using 301201 D.o.f. Based on the comparisons in Table 5.4, we observe that the performance is barely modified
for large values of λ.
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Fig. 5.3. Test 2. Convergence history for the displacement approximation using the first order mixed FE and FVE schemes, for ν = 0.49 (a) and
ν = 0.4999 (b).

Table 5.4
Test 2. Displacement errors for different Lamé constants produced by the lowest-order mixed FE method on an regular mesh of 100000 triangular
elements, for a fixed Young’s modulus E = 1500.

ν λ µ η e0(u) eH(u) ∥uh∥0,Ω ∥uh∥H

0.2000 416.667 625.00 0.6000 0.0041 0.0048 12.9021 0.9667
0.3333 1124.69 562.51 0.3333 0.0044 0.0046 11.9137 0.8786
0.4000 2142.86 535.71 0.2000 0.0055 0.0045 11.2365 0.8231
0.4500 4655.17 517.24 0.1000 0.0088 0.0045 10.6469 0.7774
0.4900 24664.4 503.36 0.0200 0.0367 0.0053 10.1009 0.7371
0.4990 249666 500.33 0.0020 0.3426 0.0269 9.6729 0.7047
0.4999 2499666 500.03 0.0002 2.5086 0.1928 7.4972 0.5378

Test 3 (3D beam bending). We also consider a three-dimensional beam problem. The beam occupies the domain
Ω = (0, ℓ) × (0, w) × (0, w), with ℓ = 2.5, w = 0.5 (see a sketch in Fig. 5.4(a)); and its elastic properties are
characterised by a Young modulus of E = 1000 and a Poisson ratio ν = 0.3, giving Lamé constants λ = 576.923,
µ = 384.615, and the coefficient η = 0.4. The body force acts in the direction of gravity f̃ = (0, 0, −ρg)t and it is
specified by g = 9.8 and ρ = 0.2. Zero displacements are enforced on the face x = 0, whereas on the remainder of
the boundary we consider zero normal stresses incorporated through the term

∫
x>0 2η(∇u − div u I)n · v defining the

bilinear form c(·, ·) (see (3.12)). In Fig. 5.4 we illustrate (on the deformed configuration) the displacement, rotation
vector, and pressure computed on a mesh of 45221 tetrahedral elements, employing a method of order k = 2. In
the case of gravity-induced deflection, the Euler–Bernoulli beam theory predicts a maximum vertical deflection of
δ = ρg Aℓ/(8E I ), occurring at the free end of the body, A = w2 is the area of the cross-section, and I = A4/12
is the planar inertial moment. Table 5.5 compares the expected deflection with the vertical displacement measured
on the midpoint of the face located at x = ℓ, for different discretisation choices. We also tabulate the norms of the
approximate solutions generated with the lowest-order FE method on successively refined meshes (see Table 5.6).

Test 4 (Cook’s membrane benchmark). We finalise the set of tests by considering a two-dimensional quadrilateral
panel with domain Ω defined as the convex hull of the set {(0, 0), (ℓ, w), (ℓ, ℓ + s), (0, w)}, with ℓ = 48, w = 44,

s = 16, and proceed to study its elastic response dominated by bending and shear. This benchmark is known as
Cook’s membrane problem (cf. [49]). The panel is clamped at the left edge (x = 0) and the body is subjected to a
shearing distributed load t̃ = (0, 1/s)t on the opposite end (at x = ℓ and giving a resulting load of magnitude 1,
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Fig. 5.4. Test 3. Cantilever beam fixed on the left end and subjected to bending due to distributed load applied in the gravity direction. Domain
configuration and a coarse structured mesh (a), pressure distribution (b), displacement components (c, d, e), and rotation vector components (f, g,
h); all computed with a second order FE method.

Table 5.5
Test 3. Maximal deflection of a beam computed at the point (x0, y0, z0) =

(ℓ, 1
2 w, 1

2 w), according to meshsize and discretisation order. The ex-
pected value corresponds to δ = −0.47040.

k h

(w/4)3 (w/8)3 (w/16)3 (w/32)3 (w/64)3

1 −0.4322 −0.4465 −0.4688 −0.4691 −0.4695
2 −0.4671 −0.4694 −0.4702 −0.4703 −0.4704
3 −0.4693 −0.4701 −0.4704 −0.4704 −0.4704

see a sketch in Fig. 5.5(a)). This effect is incorporated in the formulation through the term −
∫

x=ℓ
t · v ds added to the

functional F(·) in the modified weak formulation (3.10)–(3.11). A traction-free condition is applied on the non-vertical
boundaries (imposed as in the previous test, using (3.12)), and we set up a zero volume force f = 0 (so that the weight
of the membrane is not considered). The elastic plate has Young’s modulus E = 1, Poisson ratio ν = 1/3, Lamé
constants λ = 3/4, µ = 3/8, giving a scaling constant of η = 1/3. Fig. 5.5 portrays the displacement, rotation
and pressure fields on the deformed domain (without amplification of the deformation field). We also conduct several
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Table 5.6
Test 3. Solution norms according to the number of D.o.f. for the lowest-
order FE scheme.

D.o.f. ∥uh∥0,Ω ∥uh∥H ∥ωh∥0,Ω ∥ph∥0,Ω

192 0.0501 0.0469 0.0466 0.0049
1257 0.1015 0.1017 0.1015 0.0069
9255 0.1528 0.1559 0.1558 0.0073

71403 0.1794 0.1839 0.1837 0.0069
561747 0.1885 0.1932 0.1931 0.0066

Fig. 5.5. Test 4. Cook’s membrane test where the left edge is clamped and an upward shear force is applied on the right edge. Sketch of the domain
configuration and a coarse structured mesh (a), maximum deflection of the right edge midpoint according to spatial resolution and approximation
order, using ν = 0.3 (b), and according to the number of degrees of freedom and comparison against other classical methods, using ν = 0.4999
(c), approximate displacement components (d, e), rotation scalar (f), and pressure (g); all computed with a second order mixed method.

tests for different mesh resolutions and report on the vertical displacement (deflection) measured at the midpoint of
the right end of the domain, (x0, y0) = (ℓ, ℓ + s/2). The test results are shown in panel (b) of the figure, where the
convergence behaviour of the deflection is observed as a function of the number of points discretising the right edge
of the membrane. In the absence of a known closed form solution for this problem, we also include a referential value
reported in the literature (according to [50–52], under plane stress conditions the maximum vertical displacement at
this point should be around 23.92).
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Table 5.7
Test 4. Solution norms according to the number of D.o.f. for different orders.

D.o.f. ∥uh∥0,Ω ∥uh∥H ∥ωh∥0,Ω ∥ph∥0,Ω D.o.f. ∥uh∥0,Ω ∥uh∥H ∥ωh∥0,Ω ∥ph∥0,Ω

Mixed FE with k = 1 Mixed FE with k = 2

218 0.5405 0.0005 0.0005 2.32e−5 690 1.1193 0.0014 0.0014 6.26e−6
818 0.5483 0.0005 0.0005 4.48e−5 2658 1.1295 0.0014 0.0014 6.31e−6

3170 0.5823 0.0005 0.0006 8.24e−5 10434 1.1343 0.0014 0.0014 6.30e−6
12482 0.6806 0.0007 0.0007 0.0001 41346 1.1364 0.0014 0.0014 6.15e−6
49538 0.8556 0.0010 0.0010 0.0001 164610 1.1370 0.0014 0.0014 5.98e−6

197378 1.0132 0.0012 0.0012 0.0001 656898 1.1383 0.0014 0.0014 5.89e−6
787970 1.0921 0.0014 0.0014 7.08e−5 2624514 1.1422 0.0014 0.0014 5.87e−6

Table 5.8
Test 4. Performance comparison of different methods associated to some different formulations of linear elasticity. Results are presented in terms of
degrees of freedom, number of non-zero entries in the matrix, CPU time of assembly, CPU time of factorisation and solution (if using the direct
solver UMFPACK), CPU time of solution (if using the iterative solver BiCGStab preconditioned with incomplete Cholesky factorisation), and
number of Krylov iterations.

Formulation D.o.f. Non zero CPU (assembly) CPU (direct) CPU (iter) iter

Mixed FVE (4.2)–(4.3) 60402 842494 0.21 2.14 4.55 180
Mixed FE (3.1)–(3.2), k = 1 60402 842494 0.22 2.14 4.61 182
Mixed FE (3.1)–(3.2), k = 2 200802 5446404 0.84 20.43 18.59 225
Displ. Schur (5.2), k = 1 40000 160000 7.33 1.02 2.33 236
IP-DG, k = 1 14000 3900400 1.56 12.84 10.29 390
Pure displacement, k = 2 80802 1846404 1.21 1.39 1.41 167
MINI-element 70603 1435409 0.49 0.95 1.06 129
Taylor–Hood 91003 2681009 1.66 2.17 3.26 160

To conclude we perform again the Cook’s membrane test, but focusing on the nearly incompressibility limit.
We choose the model parameters E = 250, ν = 0.4999, λ = 416611, µ = 83.3389, and η = 0.0002. As
reference value for the maximum deflection at the point (x0, y0) we consider 7.505 (see [4,53]), and conduct a
convergence analysis portrayed in Fig. 5.5(c) (see also Table 5.7, where we display all individual norms for the
numerical approximations via FE schemes of different orders). This time the vertical displacement is plotted against
the D.o.f. associated to the underlying discretisation, where we also include a comparison against numerical results
obtained with other finite element formulations applied to the original equations (2.1) (a classical pure-displacement
formulation discretised with piecewise continuous elements of degree k, the Taylor–Hood finite element for a
displacement–pressure formulation, the MINI-element [54], and a stabilised interior-penalty DG method [55]).

These schemes have comparable complexity (but we do not include other mixed methods based on stress or pseudo-
stress formulations, as their associated cost would be much higher). A further comparison between these methods is
presented focusing now on their computational cost and measured in terms of CPU time. To do so, we consider the
simple test case of a square domain with clamped boundaries where the structured primal mesh has 10000 vertices.
We set E = 10000, ν = 0.33 and solve the elastostatics problem using different methods whose performance is
shown in Table 5.8. The tabulated results display measured wall CPU time comprising matrix assembly, factorisation,
and solution. As direct solvers might not be preferable for large systems and 3D problems, we also include the
wall time for the matrix inversion using a Krylov solver, the bi-conjugate gradient stabilised method (BiCGStab)
preconditioned with an incomplete Cholesky factorisation. The results indicate that the proposed mixed and FVE
methods are preferable. As mentioned above, the matrix system associated with the Schur complement formulation
(5.2) is substantially smaller than in the other methods. Unfortunately, a drawback of this formulation over the standard
implementation of our mixed FE and FVE schemes (3.1)–(3.2) and (4.2)–(4.3) is that the assembly of the blocks and
computation of the action of the inverses (that we do not carry out in an optimal manner) consume most of the CPU
time.

Test 5 (mixed boundary conditions in a 2D non-convex domain). For our last test, we investigate numerically the
accuracy of the formulations proposed in Sections 3.2 and 4.2. Apart from setting displacement–traction boundary
conditions, we again define the problem on a non-convex domain (the unit square from Test 1A now has a hole of
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Table 5.9
Test 5. Experimental convergence for mixed (traction–displacement) boundary conditions on a non-convex domain. Error history produced with
the schemes from Sections 3.2 and 4.2, both using µ = 50 and λ = 5000.

D.o.f. h e0(u) r0(u) eH(u) rH(u) e0(ω) r0(ω) e0(p) r0(p)

Mixed FE

158 0.3526 0.106257 – 0.22217 – 0.09591 – 0.26263 –
276 0.2052 0.022938 2.056 0.11982 1.281 0.02623 1.713 0.11691 1.090
560 0.1311 0.009899 1.876 0.08248 0.933 0.01861 0.965 0.08035 0.837

1824 0.0713 0.007985 0.352 0.04948 0.938 0.01290 0.901 0.04777 0.853
6586 0.0393 0.002014 2.314 0.02530 1.126 0.00659 1.129 0.02443 1.126

25480 0.0198 0.000632 1.695 0.01277 1.000 0.00304 1.128 0.01240 0.991
98762 0.0103 0.000221 1.616 0.00651 1.037 0.00157 1.019 0.00632 1.038

Mixed FVE

158 0.3526 0.102425 – 0.21082 – 0.09447 – 0.21255 –
276 0.2052 0.020957 2.064 0.09476 1.152 0.02188 1.022 0.13730 0.942
560 0.1311 0.008533 1.321 0.06899 0.986 0.01538 0.938 0.07847 0.832

1824 0.0713 0.007508 0.582 0.04451 0.985 0.01084 0.917 0.04249 0.903
6586 0.0393 0.001866 2.782 0.02311 1.053 0.00505 1.171 0.02089 1.144

25480 0.0198 0.000577 1.270 0.01108 1.044 0.00283 1.141 0.01201 0.954
98762 0.0103 0.000204 1.813 0.00527 1.057 0.00124 1.057 0.00604 1.125

Fig. 5.6. Test 5. Accuracy testing of the FE scheme using mixed boundary conditions. Sample displacement approximation on three meshes with
increasing resolution (a, b, c).

radius 0.3). The error history is reported in Table 5.9 for the lowest-order methods, where we have set the bottom, right,
top and left walls of the domain as the displacement boundary and the non-homogeneous traction condition is imposed
on the inner circle. Coarse mesh solutions for displacements are exemplified in Fig. 5.6. The FE scheme exhibits a
similar behaviour to the one observed in Test 1B: suboptimal displacement convergence in the L2-norm, again due
to the non-convexity of the domain, while the remaining errors behave as in the pure Dirichlet case. While we only
confirm this behaviour numerically, these computations stand as a motivation to investigate further the theoretical
properties of the formulations in the case of mixed boundary conditions.
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